III MATRIXFAKTORISIERUNGEN

S. BARTELS, 13.11.2013

III.A. Dreiecksmatrizen. In kanonischer Weise lassen sich lineare Gleichungssysteme lösen, die durch eine Dreiecksmatrix definiert sind. Dies motiviert die Faktorisierung von Matrizen mittels Dreiecksmatrizen.

Definition III.1. Eine Matrix $L \in \mathbb{R}^{n \times n}$ heißt untere Dreiecksmatrix, falls $\ell_{ij} = 0$ für i < j gilt. Eine Matrix $U \in \mathbb{R}^{n \times n}$ heißt obere Dreiecksmatrix, falls U^{\top} untere Dreiecksmatrix ist. Eine Dreiecksmatrix $D \in \mathbb{R}^{n \times n}$ heißt normalisiert, falls $d_{ii} = 1$ für i = 1, 2, ..., n gilt.

Gleichungssysteme mit regulärer Dreiecksmatrix lassen sich mittels sogenannter Rückwärts- beziehungsweise Vorwärtssubstitution lösen. Die Diagonalelemente einer regulären Dreiecksmatrix U sind wegen $0 \neq \det U =$ $u_{11}u_{22}\ldots u_{nn}$ von Null verschieden.

Algorithmus III.2 (Rückwärtssubstitution). Sei $U \in \mathbb{R}^{n \times n}$ eine reguläre obere Dreiecksmatrix und $b \in \mathbb{R}^n$. Berechne $x \in \mathbb{R}^n$ mit

for
$$i = n: -1: 1; \ x_i = \Big(b_i - \sum_{j=i+1}^n u_{ij} x_j\Big)/u_{ii};$$
 end

Bemerkung III.3. Im i-ten Schritt werden n-i viele Multiplikationen und Subtraktionen sowie eine Division durchgeführt, so dass der Gesamtaufwand der Rückwärtssubstition gegeben ist durch

$$\sum_{i=1}^{n} (1 + 2(n-i)) = n + 2\sum_{k=1}^{n-1} k = n + (n-1)n = n^{2}.$$

Die Mengen der regulären unteren und oberen Dreiecksmatrizen bilden Gruppen.

Lemma III.4. Seien $U, V \in \mathbb{R}^{n \times n}$ obere Dreiecksmatrizen. Dann ist UVeine obere Dreiecksmatrix und falls U regulär ist, so ist auch U^{-1} eine obere Dreiecksmatrix mit Diagonaleinträgen u_{ii}^{-1} , $i=1,2,\ldots,n$.

Beweis. Siehe Übung.

III.B. LU-Zerlegung. Ist eine Faktorisierung A = LU einer regulären Matrix $A \in \mathbb{R}^{n \times n}$ in eine untere (lower) und eine obere (upper) Dreiecksmatrix $L \in \mathbb{R}^{n \times n}$ beziehungsweise $U \in \mathbb{R}^{n \times n}$ gegeben, so lässt sich das lineare Gleichungssystem Ax = b in zwei Schritten lösen:

$$(i)$$
 Löse $Ly = b$. (ii) Löse $Ux = y$.

Es gilt dann Ax = (LU)x = L(Ux) = Ly = b. Störungen werden im ersten Schritt mit $\operatorname{cond}(L)$ und im zweiten mit $\operatorname{cond}(U)$ verstärkt, insgesamt also mit $\operatorname{cond}(L)\operatorname{cond}(U)$. Das Verfahren ist also nur stabil, falls $\operatorname{cond}(L)\operatorname{cond}(U) \approx \operatorname{cond}(A)$ gilt. Dies ist im Allgemeinen nicht der Fall.

Beispiel III.5. Für $A = \begin{bmatrix} \varepsilon & 1 \\ 1 & 0 \end{bmatrix}$ mit $0 < \varepsilon \ll 1$ ist $A^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -\varepsilon \end{bmatrix}$ und es gilt $||A||_{\infty} = ||A^{-1}||_{\infty} = 1 + \varepsilon$ also $\operatorname{cond}_{\infty}(A) = (1 + \varepsilon)^2 \approx 1$. Eine Faktorisierung ist gegeben durch

$$L = \begin{bmatrix} 1 & 0 \\ \varepsilon^{-1} & 1 \end{bmatrix}, \quad U = \begin{bmatrix} \varepsilon & 1 \\ 0 & -\varepsilon^{-1} \end{bmatrix}.$$

Es gilt $||L||_{\infty} = ||L^{-1}||_{\infty} = 1 + \varepsilon^{-1}$ sowie $||U||_{\infty} = \varepsilon^{-1}$, $||U^{-1}||_{\infty} = 1 + \varepsilon^{-1}$, also

$$\operatorname{cond}_{\infty}(L) = (1 + \varepsilon^{-1})^2 \approx \varepsilon^{-2}, \quad \operatorname{cond}_{\infty}(U) = (1 + \varepsilon^{-1})/\varepsilon \approx \varepsilon^{-2}.$$

Definition III.6. Eine Faktorisierung A = LU mit unterer Dreiecksmatrix $L \in \mathbb{R}^{n \times n}$ und oberer Dreiecksmatrix $U \in \mathbb{R}^{n \times n}$ heißt LU-Zerlegung von A. Sie heißt normalisiert, falls L normalisiert ist, das heißt auf der Diagonalen von L stehen nur Einsen.

Satz III.7. Für eine reguläre Matrix $A \in \mathbb{R}^{n \times n}$ sind folgende Aussagen äquivalent:

- (i) Es existiert eine eindeutig bestimmte normalisierte LU-Zerlegung von A.
- (ii) Alle Untermatrizen $A_k = (a_{ij})_{1 \le i,j \le k} \in \mathbb{R}^{k \times k}$ von A sind regulär.

Beweis. Siehe Vorlesung. \Box

Beispiele III.8. (i) Ist A positiv definit, das heißt gilt $Ax \cdot x > 0$ für alle $x \in \mathbb{R}^n \setminus \{0\}$, oder strikt diagonaldominant, das heißt gilt $\sum_{j=1,...,n,j\neq i} |a_{ij}| < |a_{ii}|$ für i=1,2,...,n, so besitzt A eine LU-Zerlegung.

$$|a_{ii}|$$
 für $i = 1, 2, ..., n$, so besitzt A eine LU -Zerlegung.
(ii) Die Matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ besitzt keine LU -Zerlegung.

Die LU-Zerlegung einer Matrix lässt sich sehr einfach bestimmen.

Lemma III.9. Ist A = LU eine normalisierte LU-Zerlegung von A, so folgt

$$a_{ik} = u_{ik} + \sum_{j=1}^{i-1} \ell_{ij} u_{jk}, \quad a_{ki} = \ell_{ki} u_{ii} + \sum_{j=1}^{i-1} \ell_{kj} u_{ji}.$$

Beweis. Siehe Vorlesung.

Die Formeln des Lemmas lassen sich nach u_{ik} für $i \leq k$ beziehungweise wegen $u_{ii} \neq 0$ nach ℓ_{ki} für k > i auflösen.

Algorithmus III.10 (LU-Zerlegung nach Crout). Die Matrix $A \in \mathbb{R}^{n \times n}$ besitze eine normalisierte LU-Zerlegung. Die nicht-trivialen Einträge von L

und U sind gegeben durch:

$$\begin{array}{l} \text{for } i=1:n \\ \text{for } k=i:n; \ u_{ik}=a_{ik}-\sum_{j=1}^{i-1}\ell_{ij}u_{jk}; \ \text{end} \\ \\ \text{for } k=i+1:n; \ \ell_{ki}=\big(a_{ki}-\sum_{j=1}^{i-1}\ell_{kj}u_{ji}\big)/u_{ii}; \ \text{end} \\ \\ \text{end} \end{array}$$

Bemerkungen III.11. (i) Die Berechnung von u_{ik} erfordert i-1 Multiplikationen und Subtraktionen, bei der von ℓ_{ki} ist zusätzlich eine Division erforderlich, so dass im i-ten Schritt

$$(n-i+1)2(i-1) + (n-i)(2(i-1)+1) = (4n+5)i - 4i^2 - (3n+2)$$

Operationen anfallen. Durch Summation über i = 1, 2, ..., n ergibt sich der Gesamtrechenaufwand $2n^3/3 + \mathcal{O}(n^2)$.

- (ii) Die Einträge von A können sukzessive durch die nicht-trivialen Einträge von L und U überschrieben werden, es ist also kein zusätzlicher Speicherplatz notwendig.
- III.C. Cholesky-Zerlegung. Ist $A \in \mathbb{R}^{n \times n}$ symmetrisch, so sind lediglich n(n+1)/2 viele Einträge von A relevant und es ist naheliegend, nach einer Faktorisierung $A = LL^{\top}$ mit einer unteren Dreiecksmatrix $L \in \mathbb{R}^{n \times n}$ zu suchen. Notwendig dafür ist, dass A symmetrisch und positiv semi-definit ist, denn die Faktorisierung impliziert, dass

$$A^{\top} = (LL^{\top})^{\top} = LL^{\top} = A,$$

$$x^{\top}Ax = x^{\top}(LL^{\top})x = (L^{\top}x)^{\top}(L^{\top}x) = ||L^{\top}x||_2^2 \ge 0.$$

Ist A oder L regulär, so folgt, dass A positiv definit sein muss. In diesem Fall sind die Bedingungen für die Existenz der Cholesky-Zerlegung auch hinreichend und implizieren deren Eindeutigkeit.

Definition III.12. Die Matrix $A \in \mathbb{R}^{n \times n}$ heißt positiv definit, falls für alle $x \in \mathbb{R}^n \setminus \{0\}$ gilt, dass $x^\top Ax > 0$. Gilt nur $x^\top Ax \geq 0$ für alle $x \in \mathbb{R}^n$, so heißt A positiv semi-definit.

Lemma III.13. Sei A symmetrisch und positiv definit. Dann gilt det A > 0 und alle Untermatrizen $A_k = (a_{ij})_{1 \le i,j \le k}$ sind positiv definit.

Beweis. Siehe Übung.
$$\Box$$

Definition III.14. Eine Faktorisierung $A = LL^{\top}$ mit einer unteren Dreiecksmatrix L hei βt Cholesky-Zerlegung.

Satz III.15. Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit. Dann existiert eine eindeutig bestimmte untere Dreiecksmatrix $L \in \mathbb{R}^{n \times n}$ mit $A = LL^{\top}$ und $\ell_{ii} > 0$ für i = 1, 2, ..., n.

Beweis. Siehe Vorlesung.

Die Faktorisierungen lassen sich wieder durch Koeffizientenvergleich bestimmen.

Lemma III.16. Gilt $A = LL^{\top}$ so folgt

$$a_{ik} = \begin{cases} \ell_{ik}\ell_{kk} + \sum_{j=1}^{k-1} \ell_{ij}\ell_{kj} & \text{f\"{u}r } i > k, \\ \ell_{kk}^2 + \sum_{j=1}^{k-1} \ell_{kj}^2 & \text{f\"{u}r } i = k. \end{cases}$$

Beweis. Da $\ell_{kj} = 0$ für j > k gilt, folgt

$$a_{ik} = \sum_{j=1}^{n} \ell_{ij} \ell_{kj} = \sum_{j=1}^{k} \ell_{ij} \ell_{kj}$$

und dies impliziert die Behauptung.

Die Identitäten lassen sich nach ℓ_{kk} und ℓ_{ik} auflösen.

Algorithmus III.17 (LL^{\top} -Zerlegung). Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit. Die nicht-trivialen Einträge von L sind gegeben durch:

for
$$k=1:n$$

$$\ell_{kk} = \left(a_{kk} - \sum_{j=1}^{k-1} \ell_{kj}^2\right)^{1/2}$$
 for $i=k+1:n;\ \ell_{ik} = \left(a_{ik} - \sum_{j=1}^{k-1} \ell_{ij}\ell_{kj}\right)/\ell_{kk};$ end end

Bemerkung III.18. Der Algorithmus berechnet die Cholesky-Zerlegung mit $n^3/3 + \mathcal{O}(n^2)$ Operationen.

Beispiel III.19. Die Matrix $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ ist positiv definit, falls a > 0 und $ca - b^2 > 0$ gilt. In diesem Fall erhält man $A = LL^{\top}$ mit

$$L = \begin{bmatrix} a^{1/2} & 0 \\ b/a^{1/2} & (c - b^2/a)^{1/2} \end{bmatrix}.$$

Die Lösung eines linearen Gleichungssystems lässt sich mit Hilfe der Cholesky-Zerlegung folgendermaßen bestimmen:

(i) Löse
$$Ly = b$$
. (ii) Löse $L^{\top}x = y$.

Um zu zeigen, dass dies einen stabilen Algorithmus definiert, verwenden wir, dass die Spektralnorm einer Matrix $M \in \mathbb{R}^{n \times n}$ gegeben ist durch

$$||M||_2^2 = \varrho(M^\top M) = \max\{|\lambda| : \lambda \text{ ist Eigenwert von } M^\top M\}.$$

Ist M symmetrisch, so gilt $||M||_2 = \varrho(M)$.

Satz III.20. Ist $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit, so gilt für die Cholesky-Zerlegung $A = LL^{\top}$, dass

$$\operatorname{cond}_2(L) = \operatorname{cond}_2(L^{\top}) = \left(\operatorname{cond}_2(A)\right)^{1/2}.$$

Beweis. Siehe Vorlesung.