Übungen zur Vorlesung Mathematik II für Studierende des Ingenieurwesens

Sommersemester 2016

Albert-Ludwigs-Universität Freiburg

Prof. Dr. S. Bartels, Dipl.-Math. P. Schön, M.Sc. Marijo Milicevic

Aufgabenblatt 9

Aufgabe 1 (3 Punkte)

- (a) Zeigen Sie: Ist $D \subset \mathbb{R}^n$ offen, so gilt $\partial D \cap D = \emptyset$.
- (b) Zeigen Sie: Für $D \subset \mathbb{R}^n$ ist die Menge $\overline{D} = D \cup \partial D$ abgeschlossen.

Aufgabe 2 (3 Punkte)

Es seien $f, g: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x) = \begin{cases} 0, & \text{falls } x_1 = x_2 = 0, \\ \frac{x_1 x_2}{x_1^2 + x_2^2}, & \text{sonst} \end{cases}, \qquad g(x) = \begin{cases} 0, & \text{falls } x_1 = x_2 = 0, \\ \frac{x_1^2}{\sqrt{x_1^2 + x_2^2}}, & \text{sonst} \end{cases}.$$

- (a) Zeigen Sie, dass $\lim_{x_1\to 0} f(x_1,0) = \lim_{x_2\to 0} f(0,x_2) = f(0)$ gilt und f nicht stetig in x=0 ist.
- (b) Ist g stetig in x = 0?

Aufgabe 3 (3 Punkte)

Es seien $f: \mathbb{R}^3 \to \mathbb{R}$ und $g: \mathbb{R}^2 \to \mathbb{R}^3$ gegeben durch

$$f(x) = x_1 e^{x_1 x_3} + \sin(x_1 x_2), \qquad g(x) = \left[x_1 + 2x_2^3, x_1^2, e^{x_1 x_2}\right]^T.$$

- (a) Berechnen Sie $\partial_1 f(x)$, $\partial_2 f(x)$ und $\partial_3 f(x)$ und prüfen Sie nach, dass $\partial_i \partial_j f(x) = \partial_j \partial_i f(x)$ für $1 \le i, j \le 3$ gilt.
- (b) Berechnen Sie die Jacobimatrix Dg(x) von g.

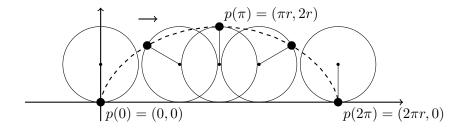
Aufgabe 4 (3 Punkte)

Im \mathbb{R}^2 sei zum Zeitpunkt t=0 ein Kreis mit Radius r>0 und Kreismittelpunkt $x_M=(0,r)$ gegeben. Betrachte den festen Punkt p, welcher zum Zeitpunkt t=0 auf der Kreislinie im Punkt (0,0) liegt. Der Kreis drehe sich nun in Richtung $[1,0]^T$ so, dass sich zum Zeitpunkt $t=2\pi$ der Kreismittelpunkt im Punkt $(2\pi r,r)$ befinde. Der Punkt p befindet sich im Zeitpunkt $t=2\pi$ im Punkt $(2\pi r,0)$. Der Weg, den der Punkt p im Zeitintervall $[0,2\pi]$ durchlaufen hat, wird parametrisiert durch die Kurve $p:[0,2\pi]\to\mathbb{R}^2$,

$$p(t) = r \left[t - \sin(t), 1 - \cos(t) \right]^{T}.$$

Berechnen Sie die Länge L(p) der zurückgelegten Strecke.

Hinweis: Verwenden Sie die Identität $(1 - \cos(t))^2 + \sin^2(t) = 4\sin^2(t/2)$.



Abgabe: Montag 27.06.2016 vor der Vorlesung.

Bitte schreiben Sie Ihren Namen, den Namen des Tutors und die Nummer der Übungsgruppe auf die Lösung.