

Praktische Übungen zu Numerik 2

Blatt 1 - 2.5.2022

Abgabe: 13.5.2022, 10:00 Uhr

Homepage zur Vorlesung:

https://aam.uni-freiburg.de/agba/lehre/ss22/num

Projekt 1 (10 Punkte). Die Lösung eines linearen Gleichungssystems Ax = b ist nach der Cramerschen Regel gegeben durch $x_i = \det A_i/\det A$, i = 1, 2, ..., n, wobei $A_i \in \mathbb{R}^{n \times n}$ aus A entsteht, indem die i-te Spalte von A durch den Vektor b ersetzt wird. In Matlab lässt sich A_i mit den Kommandos A_i =A und A_i (:,i)=b; erzeugen. Implementieren Sie die Cramersche Regel und testen Sie Ihr Programm für das Gleichungssystem Ax = b mit

$$A = \begin{bmatrix} 0.2161 & 0.1441 \\ 1.2969 & 0.8648 \end{bmatrix}, \quad b = \begin{bmatrix} 0.1440 \\ 0.8642 \end{bmatrix}.$$

Die exakte Lösung ist gegeben durch $x=[2,-2]^{\top}$. Bestimmen Sie für die numerische Lösung \widetilde{x} den Vorwärtsfehler $\|x-\widetilde{x}\|_{\infty}/\|x\|_{\infty}$ sowie den Rückwärtsfehler $\|A\widetilde{x}-b\|_{\infty}/\|b\|_{\infty}$. Betrachten Sie die Konditionszahl von A und vergleichen Sie die Fehler mit denen der durch das Gaußsche Eliminationsverfahren mit Pivotsuche berechneten numerischen Lösung \widehat{x} , die Sie in Matlab mit x=A\b bestimmen können.

Projekt 2 (10 Punkte). Implementieren Sie das Neville-Schema in nichtrekursiver Form und verwenden Sie es, um das Interpolationspolynom der Funktion $f(x) = (1+25x^2)^{-1}$ bezüglich äquidistanter Stützstellen $-1 = x_0 < x_1 < \dots < x_n = 1$ sowie Tschebyscheff-Knoten $-1 \le t_0 < t_1 < \dots < t_n \le 1$ an den Punkten $x_a = \pi/8$ und $x_b = \pi/4$ für n = 1, 2, 4, 8, 16, 32 auszuwerten. Kommentieren Sie Ihre Beobachtungen.