Prof. Dr. Sören Bartels, Tatjana Schreiber

Algorithmic Aspects of Data Analytics and Machine Learning

SS 2025 — Sheet 7

https://aam.uni-freiburg.de/agba/lehre/ss25/algml/index.html

Due: June 20, 2025, 2 p.m.

Task 1

Let $D = \{(3, 2, 2), (2, 3, -2)\} \subset \mathbb{R}^3$ and let

be the corresponding data matrix. Compute an orthonormal set of vectors $v_1, v_2, v_3 \in \mathbb{R}^3$ as follows:

1.) Find v_1 that maximizes ||Xv|| under the constraint ||v|| = 1.

2.) Compute v_2 maximizing ||Xv|| subject to ||v|| = 1 and $v \perp v_1$.

3.) Finally, determine v_3 as a unit vector maximizing ||Xv|| subject to ||v|| = 1 and $v \perp v_1, v_2$.

The resulting vectors form an orthonormal basis aligned with the principal directions of the data. Sketch the resulting subspaces spanned by $\{v_1\}$ and by $\{v_1, v_2\}$.

Hint: To maximize ||Xv|| under the constraint ||v|| = 1, consider maximizing $||Xv||^2 = v^{\top}X^{\top}Xv$ instead. Introduce a Lagrange multiplier λ and solve

$$\nabla_v \left(v^\top X^\top X v - \lambda (v^\top v - 1) \right) = 0.$$

Note: The subspaces spanned by $\{v_1\}$ and $\{v_1, v_2\}$ give the best rank-1 and rank-2 approximations to the data in terms of squared error. They are also referred to as 1-dimensional and 2-dimensional best-fitting subspaces.

Task 2

Show that *n* data points in \mathbb{R}^d do not, in general, uniquely determine a *k*-dimensional best-fitting subspace, even if the rank of the data matrix $X \in \mathbb{R}^{n \times d}$ is strictly greater than *k*.

We only consider the case k = 1 here. You can choose $D = \{(1,0), (-1,0), (0,1), (0,-1)\}$ and maximize ||Xv|| under the constraint ||v|| = 1 as described in Task 1.

Task 3

Let $\mathbf{X} \in \mathbb{R}^{n \times s}$ and $\mathbf{Y} \in \mathbb{R}^{s \times m}$ be two matrices such that \mathbf{X} and \mathbf{Y} both have full rank s, with $s \leq \min\{n, m\}$. Show that the matrix $\mathbf{A} = \mathbf{X} \cdot \mathbf{Y} \in \mathbb{R}^{n \times m}$ also has rank s.

Task 4

(i) Consider a graph G with Laplacian matrix L whose characteristic polynomial is given by

$$\det(L - \lambda I) = \lambda^3 (\lambda - 2)(\lambda - 3)^4 (\lambda - 4)^2.$$

How many connected components does the graph G have?

(ii) Determine the Cheeger constant of the following graph

(5 Points)

(3 Points)

(4 Points)

