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Task 1 (4 Points)
Let A ∈ Rm×n be a real matrix with rank(A) = r and singular value decomposition A = UΣV T.

(i) The Frobenius inner product is defined by

⟨A, B⟩F := trace
(
ATB

)
=

m∑
i=1

n∑
j=1

aijbij .

Prove that ⟨·, ·⟩F is an inner product on Rm×n.

(ii) Show that the induced norm ∥A∥F =
√

⟨A, A⟩F is unitarily invariant, i.e. ∥UAV T∥F = ∥A∥F for all orthogonal
U and V .
Conclude that the Frobenius norm of A can be expressed through its singular values as

∥A∥F =

√√√√ r∑
i=1

σ 2
i .

(iii) Show, that
∥A∥2 ≤ ∥A∥F ≤

√
rank(A) ∥A∥2.

Task 2 (4 Points)
Let A ∈ Rm×n be a real matrix with rank(A) = r and singular value decomposition A = UΣV T.

(i) Denote by ui and vi the ith columns of U and V , respectively. Show that the rank-one matrices uiv
T
i are

pairwise orthogonal with respect to the Frobenius inner product and that∥∥uiv
T
i

∥∥
F

= 1 for every i.

(ii) For k < r define the truncated matrix

Ak :=
k∑

i=1
σi uiv

T
i .

Prove the error identity

∥A − Ak∥ 2
F =

r∑
i=k+1

σ 2
i ,

and explain briefly why Ak is the best rank-k approximation of A with respect to the Frobenius norm.

Task 3 (4 Points)
Given the data matrix

C =
[
1 2 3 4 5
1 2 3 5 5

]⊤

.

(i) Compute the column-wise means and the centered matrix Ac = A − 1ā. Compute the singular value
decomposition Ac = UΣV⊤.

(ii) Denote by v1 the first singular vector. Project all three centered points onto v1 and form the rank-1
reconstruction A(1) = U1Σ1V⊤

1 . Show that the Frobenius error satisfies ∥Ac − A(1)∥2
F = σ2

2 . Discuss when it is
sensible to retain only the first principal component.

(iii) Sketch the original data points, the centered data cloud (with the origin as new centroid) and the direction v1
and the projected points.



Task 4 (4 Points)
Consider the following matrix of mathematics course ratings, where each row corresponds to a student and each
column to a course:

Logic Numerics Linear Algebra Probability Analysis
Anne 1 0 2 0 0
Berti 0 2 0 2 2
Christoph 4 3 5 1 2
Diana 1 4 1 3 4
Elif 3 2 3 0 1
Finn 0 5 0 5 5
Gianni 2 4 2 1 3

Let A ∈ R7×5 be the rating matrix. Suppose a new student, Hailey, rates Logic with 2 and Numerics with 5.
Based on the SVD approximation of A, which of the other courses would you recommend to Hailey? Justify your
recommendation using the SVD structure.
What latent factors might explain the structure of the rating matrix?

Hint: You may use (without proof) the SVD of A, given by

A ≈


−0.07 −0.26 −0.46 −0.61 −0.07 −0.30 0.49
−0.22 0.21 −0.12 0.08 −0.15 −0.81 −0.45
−0.43 −0.60 −0.35 0.03 −0.07 0.30 −0.49
−0.46 0.20 0.06 −0.18 0.84 0.00 0.00
−0.26 −0.44 0.17 0.61 0.08 −0.30 0.49
−0.56 0.53 −0.29 0.19 −0.37 0.26 0.28
−0.41 −0.12 0.73 −0.42 −0.33 0.00 0.00

·


13.85 0.00 0.00 0.00 0.00
0.00 7.26 0.00 0.00 0.00
0.00 0.00 1.53 0.00 0.00
0.00 0.00 0.00 0.49 0.00
0.00 0.00 0.00 0.00 0.25
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

·

−0.28 −0.55 0.12 0.69 0.37
−0.62 0.10 0.50 0.06 −0.59
−0.31 −0.67 −0.41 −0.49 −0.19
−0.40 0.41 −0.74 0.35 −0.11
−0.54 0.26 0.14 −0.40 0.68


⊤



Practical exercise
The following exercise is not mandatory; the points are bonus points that you can collect. Please submit your
solutions as a MATLAB or Python file by June 27, 2 p.m., via email to tatjana.stiefken@mathematik.uni-freiburg.de.
Please comment your code and your results.

Project (4* Points)
Download the 320 × 240 image matrix A ∈ R320×240 from the course web page (the matrix contains gray–scale
values, one pixel per entry). Compute the singular value decomposition (SVD) A = UΣV T and, for k ∈ {1, 5, 10, 50},
form the truncated matrices

Ak = U[:,1:k] Σ1:k,1:k V T
[:,1:k].

(i) Plot the original matrix A and the four approximations Ak as gray-scale images.

(ii) For each k compute the retained Frobenius-energy fraction

ρk =

∥∥∥[
σ1, · · · , σk

]⊤
∥∥∥

2∥∥∥[
σ1, · · · , σr

]⊤
∥∥∥

2

, 0 ≤ ρk ≤ 1,

where r = rank(A). Interpret the numerical value of ρk in terms of the visual quality of the reconstruction.


