Prof. Dr. Sören Bartels
23.04.2025
M.Sc. Vera Jackisch

Übung zur Vorlesung

Numerik II

SS 2025 — Blatt 0 (Anwesenheitsaufgaben)

https://aam.uni-freiburg.de/agba/lehre/ss25/num/index.html

Aufgabe 1 (Quiz) (0 Punkte)

Entscheiden Sie für jede der folgenden Aussagen zu Teil I der Numerik Vorlesung, ob diese wahr oder falsch ist. Sie sollten Ihre Beurteilung begründen können. Definitionen und Notationen finden Sie im Buch Numerik 3x9.

Nr.	Aussage	Beurteilung
1	Die Subtraktion zweier Zahlen ist gut konditioniert.	
2	Für $A = \begin{bmatrix} -2 & 4 \\ 0 & 5 \end{bmatrix}$ gilt $ A _{\infty} = 6$ und $ A _{1} = 9$.	
3	Ist λ ein Eigenwert von A , so gilt $ A \leq \mathbf{i} $ für jede Opera-	
	tornorm.	
4	Das Produkt zweier oberer Dreiecksmatrizen ist eine obere	
	Dreiecksmatrix.	
5	Permutationsmatrizen erhält man durch Zeilenvertauschun-	
	gen in der Einheitsmatrix.	
6	Das Ausgleichsproblem besitzt stets eine Lösung.	
7	Die Lösung des Ausgleichsproblems ist bedingungslos ein-	
	deutig.	
8	Die quadratischen Matrizen A und A^T besitzen dieselben	
	Eigenwerte und Eigenvektoren.	
9	Die Eigenschaft $a_{ii} \neq 0$ einer Matrix $A \in \mathbb{R}^{n \times n}$ ist notwendig	
	für die Wohldefiniertheit des Jacobi- und des Gauß-Seidel-	
	Verfahrens.	
10	Für $b = 10$, $p = 4$, $e_{min} = -3$, $e_{max} = 3$ ist $-13 \cdot 10^{-2}$ eine	
	normalisierte Gleitkommazahl.	

Jacobi-Verfahren (für Eigenwerte): Im Falle kleiner Nichtdiagonaleinträge liefern die Diagonaleinträge einer Matrix eine gute Approximation der Eigenwerte. Durch das Jacobi-Verfahren lassen sich die Nichtdiagonaleinträge einer quadratischen Matrix durch Transformationsmatrizen verringern. Diese haben folgende Gestalt (bitte wenden):

Definition (Givens-Rotation). Für $c, s \in \mathbb{R}$ mit $c^2 + s^2 = 1$ und $1 \le p, q \le n$ wird eine Givens-Rotation $G_{pq} \in O(n)$ definiert durch

$$(G_{pq})_{ij} = \begin{cases} 1, & i = j, i \neq p, \\ 1, & i = j, i \neq q, \\ c, & i = p, j = p, \\ c, & i = q, j = q, \\ s, & i = q, j = p, \\ -s, & i = p, j = q, \\ 0 & \text{sonst.} \end{cases} \qquad G_{pq} = \begin{bmatrix} 1 & & & & \\ & \ddots & & \\ & c & -s & \\ & & \ddots & \\ & s & c & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}.$$

Algorithmus (Jacobi-Verfahren). Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch. Setze $A_0 = A$ und k = 0.

- (1) Seien p,q die Indizes des betragsmäßig größten Nichtdiagonalelements von A_k und wähle die Givens-Rotation G_{pq} , sodass für $A_{k+1} = G_{pq}^T A_k G_{pq}$ der Eintrag $(A_{k+1})_{pq}$ verschwindet.
- (2) Stoppe falls $\mathcal{N}(A_{k+1}) \leq \varepsilon_{stop}$, wobei $\mathcal{N}(A) = ||A||_{\mathcal{F}}^2 \sum_{i=1}^n a_{ii}^2$; andernfalls erhöhe $k \to k+1$ und wiederhole Schritt (1).

Aufgabe 2 (0 Punkte)

Berechnen Sie eine Iteration des Jacobi-Verfahrens zur approximativen Bestimmung der Eigenwerte der Matrix

$$A := \left[\begin{array}{rrr} 2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{array} \right]$$

mit einer Givens-Rotation für $c=1/\sqrt{2}$ und $s=1/\sqrt{2}$. Wie beurteilen Sie die Güte dieser Approximation?

Der Satz von Rolle: Seien a < b reelle Zahlen, I = [a, b] ein Intervall und $f : I \to \mathbb{R}$ eine stetige Funktion, die auf dem offenen Intervall (a, b) differenzierbar ist. Erfüllt sie f(a) = f(b), so exisitiert ein $\xi \in (a, b)$ mit $f'(\xi) = 0$.

Aufgabe 3 (0 Punkte)

- (i) Geben Sie eine Beweisskizze für den Satz von Rolle an.
- (ii) Geben Sie jeweils eine Funktion an, die die Voraussetzungen des Satzes von Rolle auf dem Intervall I = [0, 1] erfüllt und deren Ableitung f' auf dem offenen Intervall (a, b)
 - (a) genau eine Nullstelle hat.
 - (b) genau zwei Nullstellen hat.
- (iii) Lassen sich mit dem Satz von Rolle auch Nullstellen der Ableitung in den Randpunkten a, b des Intervalls I charakterisieren?

Abgabe: keine Abgabe