Prof. Dr. Sören Bartels M.Sc. Vera Jackisch 07.05.2025

Übung zur Vorlesung

Numerik II

SS 2025 — Blatt 2

Aufgabe 1 (Lagrange-Interpolation)

(5 Punkte)

Seien $f(x) = \sin(\pi x)$ für $x \in [0, 1]$, $x_0 = 0$ sowie $x_i = i/n$, i = 0, 1, ..., n sofern n > 0 gilt. Berechnen und skizzieren Sie das Interpolationspolynom von f für n = 0, 1, ..., 4.

Aufgabe 2 (Tschebyscheff-Polynome)

(1+4+4 Punkte)

Beweisen Sie folgende Eigenschaften der für $t \in [-1, 1]$ durch $T_n(t) = \cos(n \arccos t)$ definierten Funktionen:

- (i) Es gilt $|T_n(t)| \leq 1$ für alle $t \in [-1, 1]$.
- (ii) Mit $T_0(t) = 1$ und $T_1(t) = t$ gilt

$$T_{n+1}(t) = 2tT_n(t) - T_{n-1}(t)$$

für alle $t \in [-1, 1]$. Insbesondere gilt $T_n \in \mathcal{P}_n|_{[-1, 1]}$ und für $n \ge 1$ folgt $T_n(t) = 2^{n-1}t^n + q_{n-1}$ mit $q_{n-1} \in \mathcal{P}_{n-1}|_{[-1, 1]}$.

(iii) Für $n \ge 1$ hat T_n die Nullstellen $t_j = \cos((j+1/2)\pi/n), j \in \{0,1,\ldots,n-1\}$, und die n+1 Extremstellen $s_j = \cos(j\pi/n), j \in \{0,\ldots,n\}$.

Aufgabe 3 (Hermite-Interpolation)

(6 Punkte)

Es seien $a \le x_0 < x_1 < \dots < x_n \le b$ gegebene Stützstellen und sei $f \in C^1([a,b])$. Definiere für $k \in \{0,\dots,n\}$ die Polynome:

$$F_{0,k}(x) = (L_k(x))^2 (1 - 2L'_k(x_k)(x - x_k)), \qquad F_{1,k}(x) = (L_k(x))^2 (x - x_k),$$

wobei $\{L_k\}_{k=0}^n$ die Lagrange-Polynome bezeichnen. Sei nun

$$p(x) = \sum_{k=0}^{n} [F_{0,k}(x)f(x_k) + F_{1,k}(x)f'(x_k)]$$

Beweisen Sie, dass

$$F_{0,k}(x_i) = \delta_{ik}, \qquad F'_{0,k}(x_i) = 0, \qquad F_{1,k}(x_i) = 0, \qquad F'_{1,k}(x_i) = \delta_{ik}.$$

Folgern Sie daraus, dass $f(x_i) = p(x_i)$ und $f'(x_i) = p'(x_i)$ für alle $i \in \{0, ... n\}$ gilt. Zeigen Sie außerdem, dass p das einzige Polynom in \mathcal{P}_{2n+1} ist, das diese Eigenschaft erfüllt.

Abgabe: Mittwoch, 21.5., 14:00 Uhr (in den Briefkästen im Rechenzentrum).