Prof. Dr. Sören Bartels 21.05.2025

M.Sc. Vera Jackisch

Übung zur Vorlesung

Numerik II

SS 2025 — Blatt 3

Aufgabe 1 (4 Punkte)

Verwenden Sie das Neville-Schema, um

(a) das Interpolationspolynom $p \in \mathcal{P}_3$, welches durch die Stützpunkte (x_i, y_i)

für i = 0, ..., 3 gegeben ist, an der Stelle x = 5 auszuwerten.

(b) das Interpolationspolynom $p \in \mathcal{P}_4$, welches sich durch Hinzufügen des Stützpunktes $(x_4, y_4) = (6, 10)$ ergibt, an der Stelle x = 5 auszuwerten.

Aufgabe 2 (6 Punkte)

(a) Seien $0 \le a < b$ und $x \mapsto g(x)$ die lineare Funktion, die die Funktion $f(x) = x^{1/2}$ an den Stützstellen a und b interpoliert. Zeigen Sie, dass für den Fehler

$$e = \max_{x \in [a,b]} |g(x) - f(x)|$$

die Abschätzungen $e \leq (b-a)^2 a^{-3/2}/8$ für a>0 und $e \leq b^{1/2}/4$ für a=0 gelten.

(b) Für $n \in \mathbb{N}$ und $x_i = i/n$, i = 0, 1, ..., n, sei $f_n \in \mathcal{S}^{1,0}(\mathcal{T}_n)$ die interpolierende Spline-Funktion von $f(x) = x^{1/2}$ im Intervall [0, 1]. Zeigen Sie die Abschätzung

$$\max_{x \in [0,1]} |f_n(x) - f(x)| \le n^{-1/2}/4.$$

(c) In welchen Bereichen ist die Fehlerabschätzung suboptimal?

Aufgabe 3 (4 Punkte)

Bestimmen Sie explizit die interpolierenden kubischen Splines mit natürlichen sowie Hermite-Randbedingungen s'(-1) = 0, s'(1) = 3, für die Stützstellen $x_i = -1 + i/2$ und Stützwerte $y_i = (-1)^i$, i = 0, 1, 2, ..., 4, und zeichnen Sie diese.

Aufgabe 4 (6 Punkte)

Es sei \mathcal{T}_n eine Partitionierung des Intervalls [a, b] und es seien $s \in \mathcal{S}^{1,0}(\mathcal{T}_n)$ und $g \in C^1([a, b])$, sodass $s(x_i) = g(x_i)$ für $i = 0, 1, \ldots, n$ gilt. Beweisen Sie die Ungleichung

$$\sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |s'|^2 \mathrm{d}x \le \int_{a}^{b} |g'|^2 \mathrm{d}x.$$

Abgabe: Mittwoch, 4.6., 14:00 Uhr (in den Briefkästen im Rechenzentrum).