Prof. Dr. S. Bartels M.Sc. C. Palus

Praktikum zur Einführung in Theorie und Numerik partieller Differentialgleichungen

Wintersemester 2018/2019 – Blatt 2

Abgabe: Per E-Mail bis Montag, den 12.11.2018 um 12:00 Uhr

Projekt 1 (10 Punkte). Wir betrachten zu T > 0 die Wärmeleitungsgleichung $\partial_t u - \kappa \partial_x^2 u = 0$ in $(0,T) \times (-1,1)$ mit $u(0,x) = \cos((\pi/2)x)$, u(t,-1) = u(t,1) = 0 und der Temperaturleitzahl $\kappa = 1/200$.

- (i) Implementieren Sie ein θ -Verfahren zur approximativen Lösung des obigen Anfgangsrandwertproblems. Wählen Sie $\Delta x = 1/20$ und bestimmen Sie experimentell die größte Zeitschrittweite Δt , für die das Verfahren für $\theta = 0$ stabil ist.
- (ii) Weisen Sie nach, dass die exakte Lösung durch $u(t,x) = \cos((\pi/2)x)e^{-(\kappa\pi^2/4)t}$ gegeben ist. Bestimmen Sie für das jeweilige Verfahren mit dem Parameter $\theta = 1/2$, $\theta = 3/4$ und $\theta = 1$ den Approximationsfehler im Punkt (t,x) = (1,0) bei der Wahl von $\Delta x = \Delta t = 2^{-j}/10$ für $j=2,3,\ldots,5$. Erstellen Sie einen Plot aller Fehler in einem Fenster. Verwenden Sie dabei den Befehl semilogy anstatt des Befehls plot, um eine logarithmische Skalierung der y-Achse zu erhalten. Interpretieren Sie Ihre Ergebnisse.
- (iii) Modifizieren Sie Ihren Code, sodass nun eine Wärmeleitungsgleichung mit Quellterm f auf der rechten Seite gelöst wird, d.h. $\partial_t u \kappa \partial_x^2 u = f$ in $(0,T) \times (-1,1)$, wobei $f(t,x) = (1/20)x^2$. Berechnen Sie approximative Lösungen zu homogenen Dirichlet-Randbedingungen und dem Anfangswert $u_0(x) = 1$, falls $-0.1 \le x \le 0.1$, und $u_0(x) = 0$, sonst. Vergleichen Sie die numerischen Lösungen für verschiedene Diskretisierungsparameter jeweils für die Verfahren mit $\theta = 0$, $\theta = 1/2$ und $\theta = 1$.

Projekt 2 (10 Punkte). (i) Passen Sie Ihr Matlab-Programm aus Projekt 1 derart an, dass nun die homogene Wärmeleitungsgleichung $\partial_t u - \kappa \partial_x^2 u = 0$ in $(0,5) \times (-1,1)$ mit $\kappa = 1/10$, dem Anfangswert

$$u_0(x) = \begin{cases} \exp(-\frac{1}{4(0.5+x)(0.5-x)}), & \text{falls } |x| < 0.5, \\ 0, & \text{sonst,} \end{cases}$$

und Neumann-Randbedingungen $\partial_x u(t,-1) = g_l(t)$ und $\partial_x u(t,1) = g_r(t)$ für $t \in (0,5]$ mit dem Crank-Nicolson-Verfahren $(\theta=1/2)$ gelöst wird. Verwenden Sie dazu die Differenzenquotienten $\partial_x^+ U_0^{k+1}$ bzw. $\partial_x^- U_J^{k+1}$, um die Ableitungen $\partial_x u(t_{k+1},-1)$ bzw. $\partial_x u(t_{k+1},1)$ zu approximieren. Testen Sie Ihr Programm mit homogenen Neumann-Randdaten und den Diskretisierungsparametern $\Delta x = \Delta t = 2^{-j}/10$ für $j=2,3,\ldots,5$. Ist die numerische Lösung sinnvoll? Berechnen Sie die anfängliche Gesamtmasse $\int_{-1}^1 u_0(x) \, \mathrm{d}x$ mit Hilfe der Matlab-Funktion trapz mit 10^3+1 Stützstellen. Vergleichen Sie diese jeweils mit der Gesamtmasse der diskreten Lösungen zum Zeitpunkt t=5. Benutzen Sie dazu das Anzeigeformat long.

(ii) Verwenden Sie jetzt die zentralen Differenzenquotienten $\widehat{\partial}_x U_0^{k+1}$ bzw. $\widehat{\partial}_x U_J^{k+1}$ als Diskretisierung der Ableitungen $\partial_x u(t_{k+1},-1)$ bzw. $\partial_x u(t_{k+1},1)$. Damit diese Approximation an den Randpunkten definiert ist, führen Sie sogenannte Geisterpunkte $x_{-1} = -1 - \Delta x$ und $x_{J+1} = 1 + \Delta x$ ein. Die Werte U_{-1}^0 und U_{J+1}^0 ergeben sich aus den bekannten Werten $(U_j^0)_{j=0,\dots,J}$ zusammen mit den diskretisierten Neumann-Bedingungen zur Zeit t=0. Berechnen Sie wie in Aufgabenteil (i) die Gesamtmassen der diskreten Lösungen mit Parametern $\Delta x = \Delta t = 2^{-j}/10$ für $j=2,3,\dots,5$ zum Zeitpunkt T=5, sowie die Abweichung von der anfänglichen Gesamtmasse. Vergleichen Sie die Abweichungen aus diesem Schema mit den entsprechenden Abweichungen aus Aufgabenteil (i). Was fällt Ihnen auf? Warum ist es sinnvoll, $\widehat{\partial}_x U_0^{k+1}$ und $\widehat{\partial}_x U_J^{k+1}$ anstelle von $\partial_x^+ U_0^{k+1}$ und $\partial_x^- U_J^{k+1}$ zu verwenden, um die Neumann-Randbedingungen zu realisieren?