

Theorie und Numerik partieller Differentialgleichungen III

Blatt 6 - 25.11.2019

Abgabe: Briefkästen RZ bis Montag, den 02.12.2019, 10:00 Uhr

Aufgabe 1 (5 Punkte). (i) Sei \mathcal{T}_0 eine reguläre Triangulierung des Lipschitz-Gebiets $\Omega \subset \mathbb{R}^2$ welche nur aus halbierten Quadraten besteht. Beweisen Sie, dass jede Verfeinerung welche aus der Rot-Grün-Blau-Verfeinerungsstrategie resultiert auf eine Triangulierung führt, welche nur aus rechtwinkligen Dreiecken besteht.

(ii) Zeigen Sie, dass die Triangulierungen, welche man mit dieser Strategie aus einer beliebigen Triangulierung \mathcal{T}_0 von $\Omega \subset \mathbb{R}^2$ erhält eine Winkelbedingung erfüllen.

Aufgabe 2 (5 Punkte). Sei \mathcal{T}_* eine Verfeinerung von \mathcal{T}_h , das heißt jedes Element aus \mathcal{T}_h ist eine Vereinigung von Elementen aus \mathcal{T}_* . Sei $u_h \in \mathcal{S}_0^1(\mathcal{T}_h)$ und $u_* \in \mathcal{S}_0^1(\mathcal{T}_*)$ die zugehörige Galerkin-Approximations des Poisson-Problems. Beweisen Sie, dass $\mathcal{S}^1(\mathcal{T}_h) \subset \mathcal{S}^1(\mathcal{T}_*)$ und

$$\|\nabla(u - u_h)\|^2 = \|\nabla(u - u_*)\|^2 + \|\nabla(u_* - u_h)\|^2.$$

Aufgabe 3 (5 Punkte). Für eine reguläre Triangulierung \mathcal{T}_h sei $\mathcal{T}_{h/2}$ die Triangulierung, welche aus \mathcal{T}_h duch eine uniforme Rot-Verfeinerung entsteht. Es existiere 0 < q < 1, sodass die zugehörigen Galerkin-Approximationen des Poisson-Problems

$$\|\nabla(u - u_{h/2})\| \le q\|\nabla(u - u_h)\|$$

erfüllen. Zeigen Sie, dass der Schätzer

$$\eta_{h \to h/2}(u_h) = \|\nabla(u_h - u_{h/2})\|$$

zuverlässig und effizient ist und formulieren Sie einen auf diesem Schätzer basierenden adaptiven Algorithmus.

Aufgabe 4 (5 Punkte). Sei $u \in H_0^1(\Omega)$ die Lösung des Poisson-Problems mit rechter Seite $f \in L^2(\Omega)$ und Sei $u_h \in \mathcal{S}_0^1(\mathcal{T}_h)$ die zugehörige Galerkin-Approximation. Für $v \in H_0^1(\Omega)$ definiere

$$\langle \mathcal{R}_{u_h}, v \rangle = \int_{\Omega} \nabla u_h \cdot \nabla v \, \mathrm{d}x - \int_{\Omega} f v \, \mathrm{d}x.$$

Beweisen Sie, dass für die Operatornorm

$$\|\mathcal{R}_{u_h}\|_* = \sup_{v \in H_0^1(\Omega) \setminus \{0\}} \frac{\langle \mathcal{R}_{u_h}, v \rangle}{\|\nabla v\|}$$

gilt $\|\mathcal{R}_{u_h}\|_* = \|\nabla(u - u_h)\|.$