

Numerik 1

Blatt 5 - 13.12.2021

Benötigte Kapitel in 'Numerik 3x9': 1 bis 6. Abgabe: 7.1.2022, 10:00 Uhr

Homepage zur Vorlesung:

https://aam.uni-freiburg.de/agba/lehre/ws21/num

Aufgabe 1. Bestimmen Sie eine Singulärwertzerlegung der Matrix

$$A = \frac{1}{4} \begin{bmatrix} 3 & -1 \\ 1 & -3 \\ -1 & 3 \\ -3 & 1 \end{bmatrix}.$$

Berechnen Sie A^+ mit Hilfe der Singulärwertzerlegung sowie mittels der Identität A^+ $(A^{\top}A)^{-1}A^{\top}$. Verwenden Sie A^{+} , um das durch A und $b = [4, 1, 2, 3]^{\top}$ definierte Ausgleichsproblem zu lösen.

Aufgabe 2. (i) Sei $V \subset \mathbb{R}^n$ ein Unterraum und V^{\perp} sein orthogonales Komplement. Zeigen Sie, dass eine eindeutig bestimmte Matrix $P_V \in \mathbb{R}^{n \times n}$ existiert mit $P_V v = v$ für alle $v \in V$ und $P_V w = 0$ für alle $w \in V^{\perp}$.

(ii) Sei $A \in \mathbb{R}^{m \times n}$. Zeigen Sie, dass $A^+A = P_{(\ker A)^{\perp}}$ und $AA^+ = P_{\operatorname{Im} A}$.

Aufgabe 3. Seien $(\lambda_i, v_i) \in \mathbb{R} \times \mathbb{R}^n$, $i = 1, \dots, n$, Eigenwerte und zugehörige linear unabhängige Eigenvektoren der Matrix $A \in \mathbb{R}^{n \times n}$. Zeigen Sie, dass A die Darstellung $A = VDV^{-1}$ mit $V = [v_1, \dots, v_n]$ und $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ besitzt.

Aufgabe 4. Entscheiden Sie für jede der nachfolgenden Aussagen, ob sie wahr oder falsch ist. Sie sollten Ihre Antwort begründen können.

- (1) Ein stabiler Algorithmus impliziert eine gute Konditionierung.
- (2) Für $A = \begin{bmatrix} -2 & 4 \\ 0 & 5 \end{bmatrix}$ gilt $||A||_{\infty} = 6$ und $||A||_{1} = 9$. (3) Für $A \in \mathbb{R}^{m \times n}$ und $B \in \mathbb{R}^{n \times p}$ gilt $\ker AB = \ker A$.
- (4) Besitzt A eine LU-Zerlegung und ist A symmetrisch, so folgt $U = L^{\top}$.
- (5) Das Gaußsche Eliminationsverfahren ist durchführbar für Matrizen, die eine Cholesky-Zerlegung besitzen.
- (6) Permutationsmatrizen erhält man durch Zeilenvertauschungen in der Einheits-
- (7) Durch $I_n 2(v^{\top}v)^{-1}vv^{\top}$ wird eine Householder-Transformation definiert, sofern $v \in \mathbb{R}^n \setminus \{0\}.$
- (8) Für jede Vektornorm $\|\cdot\|$ auf \mathbb{R}^n , jede orthogonale Matrix $Q \in O(n)$ und jeden Vektor $x \in \mathbb{R}^n$ gilt ||Qx|| = ||x||.