

Numerik 1

Blatt 6 - 10.1.2022

Benötigte Kapitel in 'Numerik 3x9': 1 bis 8. Abgabe: 21.1.2022, 10:00 Uhr

Homepage zur Vorlesung:

https://aam.uni-freiburg.de/agba/lehre/ws21/num

Aufgabe 1. Seien $A = [4, 2, 1], b = 4 \text{ und } c = [1, 1, 1]^{\top}$.

- (i) Bestimmen Sie die Ecken der Menge $\{x \in \mathbb{R}^3 : x \geq 0, Ax = b\}$ und untersuchen Sie, ob diese entartet sind.
- (ii) Führen Sie das Simplex-Verfahren zur Minimierung von $f(x) = c^{\top}x$ unter der Nebenbedingung Ax = b und $x \ge 0$ mit der Startecke $x^0 = [0, 0, 4]^{\top}$ durch.

Aufgabe 2. Konstruieren Sie Matrizen $A \in \mathbb{R}^{2\times 3}$ und Vektoren $b \in \mathbb{R}^2$, sodass die Menge $M = \{x \in \mathbb{R}^3 : Ax = b, x \geq 0\}$

- i) leer
- ii) unbeschränkt
- iii) beschränkt und nichtleer ist.

Aufgabe 3. Zeigen Sie, dass das charakteristische Polynom $p(\lambda) = \det(A - \lambda I_n)$ der $n \times n$ -Matrix

$$A = \begin{bmatrix} 0 & & & -a_0 \\ 1 & 0 & & -a_1 \\ & \ddots & \ddots & & \vdots \\ & & 1 & 0 & -a_{n-2} \\ & & & 1 & -a_{n-1} \end{bmatrix}$$

gegeben ist durch $p(\lambda) = (-1)^n (\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0).$

Aufgabe 4. (i) Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch mit Eigenwerten $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ und sei $v_1 \in \mathbb{R}^n \setminus \{0\}$ ein Eigenvektor zum Eigenwert λ_1 . Zeigen Sie, dass

$$\lambda_2 = \max \left\{ \frac{x^{\top} A x}{\|x\|_2^2} : x \in \mathbb{R}^n \setminus \{0\}, x \cdot v_1 = 0 \right\}.$$

(ii) Zeigen Sie, dass der Vektor $x^* \in \mathbb{R}^n \setminus \{0\}$ genau dann ein Eigenvektor der Matrix $A \in \mathbb{R}^{n \times n}$ ist, wenn $\nabla r(x^*) = 0$ gilt mit der Funktion

$$r: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}, \quad x \mapsto \frac{x^\top A x}{\|x\|_2^2}.$$