

Praktische Übungen zu Numerik 1

Blatt 3 - 22.11.2021

Abgabe: 3.12.2021, 10:00 Uhr

Homepage zur Vorlesung:

https://aam.uni-freiburg.de/agba/lehre/ws21/num

Projekt 1. i) Schreiben Sie ein Programm, das für eine LU-zerlegbare Matrix $A \in \mathbb{R}^{n \times n}$ und einen Vektor $b \in \mathbb{R}^n$ das lineare Gleichungssystem Ax = b mittels Gauß-Elimination löst und dabei die LU-Zerlegung von A bestimmt.

Verwenden Sie Ihr Programm zur Lösung von Gleichungssystemen mit oberer Dreiecksmatrix, um das resultierende System $A^{(n)}x = b^{(n)}$ zu lösen. Testen Sie das Programm mit der folgenden Matrix A und dem Vektor b.

$$A = \begin{bmatrix} 1 & 7 & -2 & 3 \\ 5 & -1 & -4 & 0 \\ 8 & 1 & 3 & 5 \\ 4 & -4 & 4 & -4 \end{bmatrix}, \ b = \begin{bmatrix} 21 \\ -9 \\ 39 \\ -8 \end{bmatrix}.$$

ii) Stören Sie die rechte Seite des nachfolgenden Gleichungssystems mit dem Vektor $d \in \mathbb{R}^n$, $d_i = 10^{-5}\cos(i\pi/n)$ für $i = 1, 2, \dots, n$ und n = 10:

$$a_{ij} = (i+j-1)^{-1}, b_i = \sum_{k=1}^{n} (-1)^{k-1}/(i+k-1), x_i = (-1)^{i-1}, i, j = 1, 2, \dots, n.$$

Berechnen Sie die Lösung x_d des gestörten Gleichungssystems mithilfe Ihres Programms aus i), betrachten Sie den relativen Fehler $||x-x_d||_2/||x||_2$ und vergleichen Sie diesen mit der Konditionszahl der Matrix, die Sie mit dem Matlab-Befehl cond(A,2) bestimmen können. Kommentieren Sie kurz die Ergebnisse.

Projekt 2. Erweitern Sie Ihr Programm aus Projekt 1, i) um eine Spalten-Pivotsuche. Führen Sie dazu einen Vektor $p \in \mathbb{N}^n$ ein, der die Zeilenvertauschungen berücksichtigt. Implementieren Sie zudem ein Abbruchkriterium, das das Verfahren beendet, sofern für das Pivotelement die Abschätzung $|a_{\pi(k),k}^{(k)}| \leq 10^{-10}$ gilt. Beim Lösen des resultierenden Gleichungssystems sind in der Rückwärtssubstitution die Zeilenvertauschungen zu beachten. Testen Sie das Verfahren für das Gleichungssystem aus Projekt 1 sowie $A \in \mathbb{R}^{3 \times 3}$ und $b \in \mathbb{R}^3$ definiert durch

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right], \ b = \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right].$$