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Projekt 1 (10 points). For T > 0 we consider the heat equation ∂tu − κ∂2
xu = 0 on (0, T ) ×

(−1, 1) with initial value u(0, x) = cos((π/2)x), boundary conditions u(t, −1) = u(t, 1) = 0
and thermal diffusivity κ = 1/200.
(i) Implement the θ-method to solve the heat equation. Choose ∆x = 1/20 and experimentally
determine the larges time step size ∆t, for which the θ-method is stable with θ = 0.
(ii) Prove that the exact solution to the problem is given by u(t, x) = cos((π/2)x)e−(κπ2/4)t.
Compute the approximation error of the θ-method at (t, x) = (1, 0) for θ = 1/2, 3/4, 1 and
∆x = ∆t = 2−j/10, j = 2, 3, . . . , 5. Plot all the results in one window. Use semilogy instead
of plot, to get logarithmic scaling of the y-axis. Interpret the results.
(iii) Modify your code to solve the heat equation with source term f on the right-hand side,
i.e. ∂tu − κ∂2

xu = f on (0, T ) × (−1, 1), where f(t, x) = (1/20)x2. Compute the approxima-
te solutions for homogeneous Dirichlet boundary conditions and starting value u0(x) = 1, if
−0.1 ≤ x ≤ 0.1, and u0(x) = 0, else. Compare the numerical solutions for various discretiza-
tion parameters and for θ = 0, θ = 1/2 and θ = 1.

Projekt 2 (10 Punkte). (i) Modify your Matlab-program from Projekt 1 to solve the homo-
geneous heat equation ∂tu − κ∂2

xu = 0 on (0, 5) × (−1, 1) with κ = 1/10, starting value

u0(x) =
{

exp(− 1
4(0.5+x)(0.5−x)), if |x| < 0.5,

0, else,
and Neumann boundary conditions ∂xu(t, −1) = gl(t) and ∂xu(t, 1) = gr(t) for t ∈ (0, 5] using
the Crank-Nicolson scheme (θ = 1/2). Use the difference quotients ∂+

x Uk+1
0 and ∂−

x Uk+1
J

to approximate the partial derivatives ∂xu(tk+1, −1) and ∂xu(tk+1, 1). Test your program
with homogeneous Neumann boundary conditions and discretization parameters ∆x = ∆t =
2−j/10 for j = 2, 3, . . . , 5. Does the numerical scheme yield a sensible solution? Compute the
initial total mass

∫ 1
−1 u0(x) dx using the Matlab-function trapz with 103 + 1 grid points.

Compare it with the total mass of the discrete solutions at t = 5. For this use the display
format long.
(ii) Now use the central difference quotients ∂̂xUk+1

0 and ∂̂xUk+1
J to approximate the de-

rivatives ∂xu(tk+1, −1) and ∂xu(tk+1, 1). For this approximation to be well defined on the
boundary, so-called ghost points x−1 = −1 − ∆x and xJ+1 = 1 + ∆x have to be introduced.
The values U0

−1 and U0
J+1 are calculated from the given initial values (U0

j )j=0,...,J and the
discrete Neumann boundary conditions at t = 0. Just like in (i), compute the total mass of
the discrete solutions for ∆x = ∆t = 2−j/10 for j = 2, 3, . . . , 5 at T = 5, as well as the
difference from the initial total mass. Compare the results with the results from (i). What do
you notice? Why is it sensible to use ∂̂xUk+1

0 and ∂̂xUk+1
J instead of ∂+

x Uk+1
0 and ∂−

x Uk+1
J to

realize Neumann boundary conditions?


