

Abteilung für Wintersemester 2024/25 Angewandte Mathematik Prof. Dr. Sören Bartels Vera Jackisch, Stefan Kater, Dominik Schneider

Practical Course: Introduction to Theory and Numerics of Partial Differential Equations

Exercise Sheet 2 – 06.11.2024

Submission: via E-Mail to the tutor until Wednesday, 20.11.24, 09:00

Projekt 1 (10 points). For $T > 0$ we consider the heat equation $\partial_t u - \kappa \partial_x^2 u = 0$ on $(0,T) \times$ $(−1,1)$ with initial value $u(0, x) = cos((π/2)x)$, boundary conditions $u(t, -1) = u(t, 1) = 0$ and thermal diffusivity $\kappa = 1/200$.

(i) Implement the θ -method to solve the heat equation. Choose $\Delta x = 1/20$ and experimentally determine the larges time step size Δt , for which the θ -method is stable with $\theta = 0$.

(ii) Prove that the exact solution to the problem is given by $u(t,x) = \cos((\pi/2)x)e^{-(\kappa \pi^2/4)t}$. Compute the approximation error of the θ -method at $(t, x) = (1, 0)$ for $\theta = 1/2$, $3/4$, 1 and $\Delta x = \Delta t = 2^{-j}/10$, $j = 2, 3, \ldots, 5$. Plot all the results in one window. Use semilogy instead of plot, to get logarithmic scaling of the *y*-axis. Interpret the results.

(iii) Modify your code to solve the heat equation with source term *f* on the right-hand side, i.e. $\partial_t u - \kappa \partial_x^2 u = f$ on $(0,T) \times (-1,1)$, where $f(t,x) = (1/20) x^2$. Compute the approximate solutions for homogeneous Dirichlet boundary conditions and starting value $u_0(x) = 1$, if $-0.1 \le x \le 0.1$, and $u_0(x) = 0$, else. Compare the numerical solutions for various discretization parameters and for $\theta = 0$, $\theta = 1/2$ and $\theta = 1$.

Projekt 2 (10 Punkte). (i) Modify your MATLAB-program from Projekt 1 to solve the homogeneous heat equation $\partial_t u - \kappa \partial_x^2 u = 0$ on $(0,5) \times (-1,1)$ with $\kappa = 1/10$, starting value

$$
u_0(x) = \begin{cases} \exp(-\frac{1}{4(0.5+x)(0.5-x)}), & \text{if } |x| < 0.5, \\ 0, & \text{else,} \end{cases}
$$

and Neumann boundary conditions $\partial_x u(t, -1) = g_l(t)$ and $\partial_x u(t, 1) = g_r(t)$ for $t \in (0, 5]$ using the Crank-Nicolson scheme $(\theta = 1/2)$. Use the difference quotients $\partial_x^+ U^{k+1}_0$ and $\partial_x^- U^{k+1}_J$ to approximate the partial derivatives *∂xu*(*tk*+1*,* −1) and *∂xu*(*tk*+1*,* 1). Test your program with homogeneous Neumann boundary conditions and discretization parameters ∆*x* = ∆*t* = $2^{-j}/10$ for $j=2,3,\ldots,5.$ Does the numerical scheme yield a sensible solution? Compute the initial total mass $\int_{-1}^1 u_0(x) \,\mathrm{d} x$ using the MATLAB-function $\tt trapz$ with 10^3+1 grid points. Compare it with the total mass of the discrete solutions at $t=5$. For this use the display format long.

(ii) Now use the central difference quotients $\partial_x U_0^{k+1}$ and $\partial_x U_J^{k+1}$ to approximate the derivatives $\partial_x u(t_{k+1}, -1)$ and $\partial_x u(t_{k+1}, 1)$. For this approximation to be well defined on the boundary, so-called *ghost points* $x_{-1} = -1 - \Delta x$ and $x_{J+1} = 1 + \Delta x$ have to be introduced. The values U_{-1}^0 and U_{J+1}^0 are calculated from the given initial values $(U_j^0)_{j=0,...,J}$ and the discrete Neumann boundary conditions at $t=0$. Just like in (i), compute the total mass of the discrete solutions for $\Delta x = \Delta t = 2^{-j}/10$ for $j = 2, 3, ..., 5$ at $T = 5$, as well as the difference from the initial total mass. Compare the results with the results from (i). What do you notice? Why is it sensible to use $\widehat\partial_xU_0^{k+1}$ and $\widehat\partial_xU_J^{k+1}$ instead of $\partial_x^+U_0^{k+1}$ and $\partial_x^-U_J^{k+1}$ to realize Neumann boundary conditions?