Prof. Dr. Sören Bartels 19.11.2024 M.Sc. Vera Jackisch

Exercises for the lecture

Introduction to Theory and Numerics of Partial Differential Equations

WS $2024/25$ – Exercise Sheet 6

Exercise 1 (1+1+1+2 points)

Let $\Omega \subset \mathbb{R}^3$ be open and let $v : \Omega \to \mathbb{R}^3$ and $f : \Omega \to \mathbb{R}$ be twice continuously (partially) differentiable. We denote with $\partial_i = \partial_{x_i}$ the *i*-th partial derivative. Use the definitions

$$
\text{div } v = \sum_{i} \partial_i v_i, \text{ grad } f = [\partial_1 f, \partial_2 f, \partial_3 f]^\top, \Delta f = \sum_{i} \partial_i^2 f,
$$

rot
$$
v = [\partial_2 v_3 - \partial_3 v_2, \partial_3 v_1 - \partial_1 v_3, \partial_1 v_2 - \partial_2 v_1]^\top, \Delta v = [\Delta v_1, \Delta v_2, \Delta v_3]^\top,
$$

to prove the following identities:

(i) div grad $f = \Delta f$, (ii) rot grad $f = 0$, (iii) div rot $v = 0$, (iv) rot rot $v = \text{grad div } v - \Delta v$.

Exercise 2 (2+3 points)

(i) For a domain $\Omega \subset \mathbb{R}^d$ let *n* be the outer unit normal on $\partial \Omega$. Use Gauss's theorem to show that for $u, v \in C^2(\overline{\Omega})$, we have

$$
\int_{\partial\Omega} v \nabla u \cdot n \mathrm{d}s = \int_{\Omega} (\nabla u \cdot \nabla v + v \Delta u) \mathrm{d}x,
$$

$$
\int_{\Omega} (u \Delta v - v \Delta u) \mathrm{d}x = \int_{\partial\Omega} (u \nabla v \cdot n - v \nabla u \cdot n) \mathrm{d}s.
$$

(ii) Let $u_1, u_2 \in C^2(\overline{\Omega})$ be solutions of the boundary value problem $-\Delta u = f$ in Ω and $u = 0$ on $\partial\Omega$. Show that

$$
\int_{\Omega} |\nabla (u_1 - u_2)|^2 \mathrm{d}x = 0
$$

and conclude that $u_1 = u_2$.

Exercise 3 (5 points)

Let S^n be the area of the *n*-dimensional unit sphere (e.g. we have $S^1 = 2\pi$ for the circumference of the unit circle and $S^2 = 4\pi$ for the surface area of the unit sphere). For $n \geq 2$ let the function $s_n : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be defined by

$$
s_n(x) = -\frac{1}{S^{n-1}} \begin{cases} \ln|x| & \text{if } n = 2, \\ \frac{|x|^{2-n}}{(2-n)} & \text{if } n > 2. \end{cases}
$$

Show that $\Delta s_n = 0$ pointwise in $\mathbb{R}^n \setminus \{0\}.$

Exercise 4 (5 points)

Let $A \in \mathbb{R}^{n \times n}$ be the system matrix corresponding to the finite difference discretization of the Poisson problem with homogeneous boundary conditions. Use the discrete maximum principle to show that all entries of the matrix A^{-1} are non-negative.

Deadline: Tuesday, 26.11.2024, 10 am (in the postbox).