Prof. Dr. Sören Bartels 03.12.2024 bl. 2022 M.Sc. Vera Jackisch

Exercises for the lecture

Introduction to Theory and Numerics of Partial Differential Equations

WS 2024/25 — Exercise Sheet 8

Exercise 1 (5 points)

Let $\Omega = (0, 1)^2$ and let $f \in C(\overline{\Omega})$ be given by

 $f(x_1, x_2) = \sum$ *m,n*∈N $\alpha_{m,n}$ sin($m\pi x_1$) sin($n\pi x_2$)*.*

Compute $-\Delta u_{m,n}$ for $u_{m,n}(x_1, x_2) = \sin(\pi m x_1) \sin(\pi n x_2)$ and construct the solution of the Poisson problem $-\Delta u = f$ in Ω and $u = 0$ on $\partial \Omega$.

Exercise 2 (3+2 points)

(i) Show that the function

$$
\phi(x) = \begin{cases} e^{-1/(1-|x|^2)} & \text{for } |x| < 1, \\ 0 & \text{for } |x| \ge 1 \end{cases}
$$

satisfies $\phi \in C^{\infty}(\mathbb{R}^d)$.

(ii) The support of a function is defined by $supp(v) = \{x \in \Omega : v(x) \neq 0\}$. Let $u \in C(\Omega)$ and assume that

$$
\int_{\Omega} uv \, \mathrm{d}x = 0
$$

for all $v \in C^{\infty}(\Omega)$ with supp $(v) \subset \Omega$. Prove that $u = 0$ in Ω .

Exercise 3 (3+2 points)

For $\Omega \subset \mathbb{R}^2$ and $u \in C^2(\Omega)$, let $\tilde{u}(r,\phi) = u(r \cos \phi, r \sin \phi)$.

(i) Show that the Laplace operator in polar coordinates can be written as

$$
\Delta u(r\cos\phi, r\sin\phi) = \partial_r^2 \tilde{u}(r,\phi) + r^{-1}\tilde{u}(r,\phi) + r^{-2}\partial_\phi^2 \tilde{u}(r,\phi).
$$

(ii) Verify that the function $\tilde{u}(r, \phi) = r^{2/3} \sin(\frac{2}{3})$ $\frac{2}{3}\phi$) is harmonic. Is it a classical solution of the Poisson equation on $\Omega = \{r(\cos \phi, \sin \phi) : 0 \le r \le 1, 0 \le \phi \le \frac{3}{2}\}$ $\frac{3}{2}\pi$ ²? Justify your answer.

Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. (i) Show that $x \in \mathbb{R}^n$ satisfies $Ax = b$ if and only if

$$
(Ax)^{\top}y = b^{\top}y
$$

for all $y \in \mathbb{R}^n$.

(ii) Assume that *A* is symmetric and positive definite. Show that there exists a matrix $B \in \mathbb{R}^{n \times n}$ such that *x* is the unique minimizer of the mapping

$$
z\mapsto \frac{1}{2}|Bz|^2-b\cdot z
$$

if and only if x is a solution of $Ax = b$.

Deadline: Tuesday, 10.12.2024, 10 am (in the postbox).

$$
\rm 03.12.2024
$$

Exercise 4 (2+3 points)