Prof. Dr. Sören Bartels M.Sc. Vera Jackisch

Introduction to Theory and Numerics of Partial Differential Equations

Exercises for the lecture

WS 2024/25 — Exercise Sheet 13

Exercise 1

(5 points)

(5 points)

Let $W = V + V_h$, and assume that $a : W \times W \to \mathbb{R}$ is bilinear and continuous with respect to a norm $\|\cdot\|_h$, and assume that a_h is coercive on V_h . Let $u_h \in V_h$ satisfy $a_h(u_h, v_h) = \ell_h(v_h)$ for all $v_h \in V_h$, and let $u \in V$ be such that $a(u, v) = \ell(v)$ for all $v \in V$. Show there exists c > 0 such that

 $c^{-1} \|u - u_h\|_h \le \inf_{v_h \in V_h} \|u - v_h\|_h + \|a_h(u, \cdot) - \ell_h\|_{V'_h}.$

Exercise 2

Let V be a Hilbert space, $a: V \times V \to \mathbb{R}$ a bounded and coercive bilinear form, which is also symmetric, and let $b: V \to \mathbb{R}$ be a continuous, linear functional. Further assume that $V_h \subset V$ is a finite-dimensional subspace and $u_h \in V_h$ is the unique Galerkin approximation of $u \in V$ with a(u, v) = b(v) for all $v \in V$. Show that in this case, the quasi best-approximation property in Céa's Lemma holds with the constant $(k_a/\alpha)^{\frac{1}{2}}$, i.e.

$$||u - u_h||_V \le (k_a/\alpha)^{\frac{1}{2}} \inf_{w_h \in V_h} ||u - w_h||_V.$$

The variables k_a and α are the boundedness and coercivity constant of bilinear form a, respectively.

Exercise 3

Let $\Omega \subset \mathbb{R}^d$ be a bounded, convex Lipschitz domain. Provide a constructive proof that there exists a constant $c_p > 0$ such that

$$\|v\|_{L^2(\Omega)} \le c_p \|\nabla v\|_{L^2(\Omega)}$$

for all $v \in H^1(\Omega)$ with $\int_{\Omega} v \, dx = 0$.

Exercise 4

(5 points)

(5 points)

Let $S \in S_h$ be an inner side in a triangulation \mathcal{T}_h with endpoints $z, y \in \mathcal{N}_h$ and neighboring triangles $T_1, T_2 \in \mathcal{T}_h$. Let α_1 and α_2 be the inner angles of T_1 and T_2 opposite to S, respectively. Prove that

$$A_{zy} = \int_{T_1 \cup T_2} \nabla \varphi_z \cdot \nabla \varphi_y dx = -\frac{1}{2} (\cot \alpha_1 + \cot \alpha_2) = -\frac{1}{2} \frac{\sin(\alpha_1 + \alpha_2)}{\sin(\alpha_1)\sin(\alpha_2)}$$

and formulate precise conditions which imply $A_{zy} \leq 0$.

Deadline: Tuesday, 28.01.2025, 10 am (in the postbox).

21.01.2025