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Abstract: Fractional differential operators provide an attractive mathematical
tool to model effects with limited regularity properties. Particular examples are
image processing and phase field models in which jumps across lower dimensional
subsets and sharp transitions across interfaces are of interest. The numerical
solution of corresponding model problems via a spectral method is analyzed.
Its efficiency and features of the model problems are illustrated by numerical
experiments.
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1 Introduction
Let T𝑑, 𝑑 ≥ 1, be the 𝑑-dimensional torus. The purpose of this paper is to study
the approximation of problems involving the fractional Laplace operator of order
2𝑠

(−Δ)𝑠 ≡ (−ΔT𝑑)𝑠

using the Fourier spectral method and to illustrate the importance of fractional
differential operators. Such operators appear in various models with periodic
boundary conditions, see [19, 29, 33]. The approach discussed here extends to
problems with other boundary conditions such as Dirichlet or Neumann boundary
conditions. For a discussion on nonhomogeneous boundary conditions we refer
to [2].
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Motivated by applications including fracture mechanics and turbulence,
see [25, 17, 22], problems with fractional derivatives have recently gained a lot of
interest. Several experiments suggest the presence of fractional derivatives, for
instance, the electrical signal propagation in a cardiac tissue [10]. The appearance
of fractional derivatives there is attributed to the heterogeneity of the underlying
medium. A question arises: can one, for example, tailor the diffusion coefficient
in [10] to get the same effects as the fractional model? Indeed to arrive at a
direct evidence justifying the presence of fractional derivatives is a difficult
question to address. This paper is an attempt to partially address this question
by considering two specific applications where the presence of spectral fractional
operators makes a significant difference. In particular, we illustrate the effect and
advantages of fractional derivatives on two, by now, classical problems: image
denoising and phase field modeling.

A well-known total variation based image denoising model is the so-called
Rudin–Osher–Fatemi (ROF) model [34] which seeks a minimizer 𝑢 ∈ 𝐵𝑉 (T𝑑) ∩
𝐿2(T𝑑) for

𝐸(𝑢) = |𝐷𝑢|(T𝑑) + 𝛼

2 ‖𝑢− 𝑔‖2. (1.1)

Here T𝑑 denotes the image domain, ‖ · ‖ is the norm in 𝐿2(T𝑑;C) with cor-
responding inner product (·, ·), and 𝛼 > 0 is a regularization parameter. The
function 𝑔 : T𝑑 → C represents the given observed possibly noisy image. The
first term in 𝐸 is the total variation |𝐷𝑢|(T𝑑) which has a regularizing effect
but at the same time allows for discontinuities which may represent edges in
the image. The second term is the fidelity term which measures the distance
to the given image. Often, weaker norms such as the 𝐻−1 norm are considered
to define the latter term. While the existence and uniqueness of a minimizer
can be established via the direct method of calculus of variations, the non-
differentiability of the total variation is challenging from a computational point
of view. In fact, a non-exhaustive list of papers that have attempted to resolve
this are [5, 7, 16, 28, 20, 26, 31, 6]. Another question to ask is, whether natural
images belong to 𝐵𝑉 (T𝑑) ∩ 𝐿2(T𝑑). The paper [27] shows that natural images
are incompletely represented by 𝐵𝑉 (T𝑑) functions. We will handle both these
shortcomings by replacing the total variation term in (1.1) by a squared fractional
Sobolev norm. In other words, we propose to minimize

𝐸(𝑢) = 1
2‖(−Δ)𝑠/2𝑢‖2 + 𝛼

2 ‖(−Δ)−𝛽/2(𝑢− 𝑔)‖2, (1.2)

with 0 < 𝑠 < 1 and 𝛽 ∈ [0, 1]. The first order necessary and sufficient optimality
condition determines the unique minimizer 𝑢 via

(−Δ)𝑠𝑢+ 𝛼(−Δ)−𝛽(𝑢− 𝑔) = 0 in T𝑑, (1.3)
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which is a linear elliptic partial differential equation (PDE) that can be efficiently
solved using, for instance, the Fourier spectral method (which is the focus of this
paper) or the so-called Caffarelli-Silvestre extension (in R𝑛) [11] and the Stinga-
Torrea extension (in bounded domains) [33, 38], see also [32]. Our experiments
reveal that the fractional model (1.3) leads to results which are comparable to
those provided by the ROF model but at a significantly reduced computational
effort (see Section 4). We remark that fractional derivatives have been used in
image processing before; see [13, 14], where the authors use spectral methods,
and [24], where the authors use the finite element method. However, in both these
cases the authors solve a fractional dynamical system with initial condition given
by 𝑔. For completeness, we also refer to [4] where the authors consider a fractional
norm equivalent regularization in the context of optimal control problems and
parameter identification problems – this equivalent norm was realized using a
mutilevel approach.

A mathematical justification of our choice of (1.2) as a substitute to (1.1)
is given next. We seek 𝑢 solving (1.3) in a fractional Sobolev space 𝐻𝑠(T𝑑).
Moreover, we notice that if 𝑔 ∈ 𝐿∞(T𝑑) then following Theorem 3.5 part (1)(b)
of [39] it is possible to show that 𝑢 ∈ 𝐿∞(T𝑑), see also [3]. We will next see that
𝐵𝑉 (T𝑑) ∩ 𝐿∞(T𝑑) is contained in 𝐻𝑠(T𝑑) for 𝑠 < 1/2. Indeed by Lemma 38.1
of [40] we have the following continuous embedding

𝐵𝑉 (T𝑑) ∩ 𝐿∞(T𝑑) ⊂ 𝐵
1/2
2,∞(T𝑑)

where 𝐵1/2
2,∞(T𝑑) is a Besov space. In addition, using Proposition 1.2 of [21],

see also [30, pg. 1222] and [42, Section 3], we have the following continuous
embedding

𝐵
1/2
2,∞(T𝑑) ⊂ 𝐻𝑠(T𝑑)

provided that 𝑠 < 1/2. Finally, combining the inclusions we arrive at

𝐵𝑉 (T𝑑) ∩ 𝐿∞(T𝑑) ⊂ 𝐻𝑠(T𝑑),

which justifies our energy functional (1.2). We remark that the regularizing
quadratic term in (1.2) does not have the gradient sparsity property of the total
variation norm. This effect however cannot be proven for the ROF model in
general due the presence of the quadratic fidelity term but is certainly visible in
experiments.

As a second example we consider gradient flows of the energy functional

𝐸𝜀(𝑢) = 1
2‖(−Δ)𝑠/2𝑢‖2 + 𝜀−2

∫︁
T𝑑

𝐹 (𝑢) 𝑑𝑥 (1.4)
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with initial condition 𝑢(0) = 𝑢0. The 𝐿2-gradient flow of (1.4) leads to the
fractional Allen–Cahn equation

𝜕𝑡𝑢+ (−Δ)𝑠𝑢+ 𝜀−2𝑓(𝑢) = 0 in (0, 𝑇 ) × T𝑑,

𝑢(0, ·) = 𝑢0 in T𝑑,
(1.5)

where 0 < 𝑠 < 1, 𝑇 > 0, and 𝑓 = 𝐹 ′ is typically nonlinear in 𝑢. Moreover,

𝜀−2 :=

⎧⎨⎩
̃︀𝜀−2𝑠 if 𝑠 ∈ (0, 1/2),
| log ̃︀𝜀| if 𝑠 = 1/2,̃︀𝜀1−2𝑠 if 𝑠 ∈ (1/2, 1)

where 0 < ̃︀𝜀 < 1. When 𝑠 = 1, we set 𝜀−2 := ̃︀𝜀−2. The 𝐻−𝛼 gradient flow, with
𝛼 ∈ (0, 1] leads to the fractional Cahn–Hilliard equation

(−Δ)−𝛼𝜕𝑡𝑢+ (−Δ)𝑠𝑢+ 𝜀−2𝑓(𝑢) = 0 in (0, 𝑇 ) × T𝑑,

𝑢(0, ·) = 𝑢0 in T𝑑,
(1.6)

By testing (1.6) with a constant function it is easy to check that (1.6) is mass
conserving. We note that throughout this article we consider ̃︀𝜀 as a fixed small
number. The aforementioned scaling of ̃︀𝜀 is the right scaling to obtain a sharp
interface limit as ̃︀𝜀 → 0 we refer the reader to [36]. We remark that even though
the optimality system in case of image denoising is linear (1.3), the system for the
fractional phase field model is nonlinear (1.6) and controlling these nonlinearities
in the presence of fractional derivatives turned out to be a nonobvious task.

When 𝑠 = 1, a standard numerical method requires a fine mesh resolution
around interfaces to capture sharp transitions [8]. The fully discrete scheme
proposed in this paper is unconditionally stable and supported by a rigorous
error analysis. In our experiments we observe that using the spectral method and
choosing small values for 𝑠, it is possible to obtain sharp interfaces on relatively
coarse meshes and moderate values for ̃︀𝜀.

We remark that the use of spectral methods in the context of phase field
models (when 𝑠 = 1, 𝛼 = 0 or 𝛼 = 1) has been considered before, see [9, 18]. We
further remark that the recent paper [37] also investigates a fractional Allen–Cahn
equation and uses the fractional Riemann-Liouville derivative which is different
from our definition. In addition, few analytical details are provided. We also refer
to [1] which discusses analytical properties of a fractional Cahn–Hilliard equation
with fixed 𝑠 = 1. The authors report that the dynamics in case 𝛼 > 0 and
𝑠 = 1 are closer to the classical Cahn-Hilliard equation than to the Allen-Cahn
equation. The error analysis provided there is restricted to spatial discretizations
while the used fully discrete scheme treats the nonlinearity explicitly and is hence
only conditionally stable.
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We remark that the goal of this article is to show possible applications of
fractional PDEs. The simple image denoising problem serves as a model problem
in which the effect of fractional derivatives of different order becomes directly
apparent. The nonlinear evolution model defined by the fractional phase field
equation combines different effects so that an interpretation of the effect of
fractional derivatives of different order requires a more careful interpretation.
Our experiments are meant to illustrate these effects for different parameters 𝑠.

This paper is organized as follows: In Section 2 we recall facts about spectral
interpolation estimates in fractional Sobolev spaces. The fractional Laplace
operator and its discretization by the spectral method are addressed in Section 3.
We present the details on the fractional image denoising problem in Section 4.
Section 5 is devoted to a general error analysis for a numerical scheme covering
both the fractional Allen–Cahn and Cahn–Hilliard equations. We conclude with
several illustrative numerical examples in Section 6.

2 Spectral approximation
In this section we specify notation needed to define the discrete Fourier trans-
formation and recall elementary approximation results in fractional Sobolev
spaces.
2.1 Discrete Fourier transformation

We consider the 2𝜋-periodic torus T𝑑 and the set of grid points (𝑥𝑗 : 𝑗 ∈ N𝑑
𝑛) on

T𝑑 defined by 𝑥𝑗 = (𝑗1, . . . , 𝑗𝑑) 2𝜋
𝑛 , where N𝑑

𝑛 =
{︀
𝑗 = (𝑗1, . . . , 𝑗𝑑) ∈ Z𝑑 : 0 ≤ 𝑗𝑖 ≤

𝑛− 1
}︀
. A family of grid functions (Φ𝑘 : 𝑘 ∈ Z𝑑

𝑛) is defined by

Φ𝑘 =
(︀
𝑒i𝑘·𝑥𝑗 : 𝑗 ∈ N𝑑

𝑛

)︀
,

where Z𝑑
𝑛 =

{︀
𝑘 = (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑑 : −𝑛/2 ≤ 𝑘𝑖 ≤ 𝑛/2 − 1

}︀
and i2 = −1. For

grid functions 𝑉 = (𝑣𝑗 : 𝑗 ∈ N𝑑
𝑛) and 𝑊 = (𝑤𝑗 : 𝑗 ∈ N𝑑

𝑛) we define the discrete
scalar product

(𝑉,𝑊 )𝑛 = (2𝜋)𝑑

𝑛𝑑

∑︁
𝑗∈N𝑑

𝑛

𝑣𝑗𝑤𝑗 .

The associated norm is denoted ‖ · ‖𝑛. Notice that the family (Φ𝑘 : 𝑘 ∈ Z𝑑
𝑛)

defines an orthogonal basis for the space of grid functions with ‖Φ𝑘‖𝑛 = (2𝜋)𝑑/2.
The discrete Fourier transform of a grid function 𝑉 = (𝑣𝑗 : 𝑗 ∈ N𝑑

𝑛) is the
coefficient vector ̃︀𝑉 = (̃︀𝑣𝑘 : 𝑘 ∈ Z𝑑

𝑛) with

̃︀𝑣𝑘 = (𝑉,Φ𝑘)𝑛.
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With these coefficients we have 𝑉 = (2𝜋)−𝑑
∑︀

𝑘∈Z𝑑
𝑛

̃︀𝑣𝑘Φ𝑘.

2.2 Trigonometric interpolation

We consider the space of trigonometric polynomials defined via

𝒮𝑛 =
{︀
𝑣𝑛 ∈ 𝐶(T𝑑;C) : 𝑣𝑛(𝑥) =

∑︁
𝑘∈Z𝑑

𝑛

𝑐𝑘𝜙
𝑘(𝑥), 𝑐𝑘 ∈ C

}︀
,

with the functions 𝜙𝑘(𝑥) = 𝑒i𝑘·𝑥 which define an orthogonal basis for 𝒮𝑛 with
respect to the inner product in 𝐿2(T𝑑;C). With 𝑣 ∈ 𝐶(T𝑑;C) we associate a grid
function 𝑉 = (𝑣𝑗 : 𝑗 ∈ N𝑑

𝑛) via 𝑣𝑗 = 𝑣(𝑥𝑗), 𝑗 ∈ N𝑑
𝑛. Notice that for 𝑣𝑛, 𝑤𝑛 ∈ 𝒮𝑛

with associated grid functions 𝑉,𝑊 we have

(𝑣𝑛, 𝑤𝑛) = (𝑉,𝑊 )𝑛.

The discrete Fourier transformation gives rise to a nodal interpolation operator.
Definition 1. Given 𝑣 ∈ 𝐶(T𝑑;C) with nodal values 𝑉 = (𝑣𝑗 : 𝑗 ∈ N𝑑

𝑛) and
discrete Fourier coefficients ̃︀𝑉 = (̃︀𝑣𝑘 : 𝑘 ∈ Z𝑑

𝑛), the trigonometric interpolant
𝐼𝑛𝑣 ∈ 𝒮𝑛 of 𝑣 is defined via

𝐼𝑛𝑣 = 1
(2𝜋)𝑑

∑︁
𝑘∈Z𝑑

𝑛

̃︀𝑣𝑘𝜙
𝑘.

Remark 2. (i) Note that 𝐼𝑛𝑣(𝑥𝑗) = 𝑣(𝑥𝑗) for all 𝑗 ∈ N𝑑
𝑛.

(ii) We have ̃︀𝑣𝑘 = (𝑣, 𝜙𝑘)𝑛 for all 𝑘 ∈ Z𝑑
𝑛.

(iii) We have (𝐼𝑛𝑣, 𝑤𝑛)𝑛 = (𝑣, 𝑤𝑛)𝑛 for all 𝑤𝑛 ∈ 𝒮𝑛 and 𝑣 ∈ 𝐶(T𝑑;C).

The (continuous) Fourier transform of a function 𝑣 ∈ 𝐿2(T𝑑;C) is the coefficient
vector ̂︀𝑉 = (̂︀𝑣𝑘 : 𝑘 ∈ Z𝑑) defined by

̂︀𝑣𝑘 = (𝑣, 𝜙𝑘).

Note that here the 𝐿2 inner product is used instead of its discrete approximation.
With respect to convergence in 𝐿2(T𝑑;C) we have that 𝑣 = (2𝜋)−𝑑

∑︀
𝑘∈Z𝑑 ̂︀𝑣𝑘𝜙

𝑘,

and, in particular, Plancherel’s formula (𝑣, 𝑤) = (2𝜋)−𝑑(̂︀𝑣, ̂︀𝑤)ℓ2(Z𝑑).

2.3 Approximation in Sobolev spaces

We analyze the approximation properties of the interpolation operator 𝐼𝑛 in
terms of Sobolev norms and with the help of the 𝐿2 projection onto 𝒮𝑛 which is
obtained by truncation of the Fourier series of a function.
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Definition 3. The 𝐿2 projection 𝑃𝑛 : 𝐿2(T𝑑;C) → 𝒮𝑛 is for 𝑣 ∈ 𝐿2(T𝑑;C)
defined by the condition that for all 𝑤𝑛 ∈ 𝒮𝑛 we have

(𝑃𝑛𝑣, 𝑤𝑛) = (𝑣, 𝑤𝑛).

Note that for every 𝑣 ∈ 𝐿2(T𝑑;C) we have 𝑃𝑛𝑣 =
∑︀

𝑘∈Z𝑑
𝑛

̂︀𝑣𝑘𝜙
𝑘. The following

definition is motivated by the fact that (̂︂𝜕𝛼𝑣)𝑘 = i|𝛼|𝑘𝛼̂︀𝑣𝑘 for every 𝛼 ∈ N𝑑
0.

Definition 4. Given 𝜇 ≥ 0 the Sobolev space 𝐻𝜇(T𝑑;C) consists of all functions
𝑣 ∈ 𝐿2(T𝑑;C) with

|𝑣|2𝜇 =
∑︁

𝑘∈Z𝑑

|𝑘|2𝜇|̂︀𝑣𝑘|2 < ∞.

Its dual 𝐻−𝜇(T𝑑;C) consists of all linear functionals 𝜓 : 𝐻𝜇(T𝑑;C) → C with

|𝜓|2−𝜇 =
∑︁

𝑘∈Z𝑑∖{0}

|𝑘|−2𝜇| ̂︀𝜓𝑘|2 < ∞,

where ̂︀𝜓𝑘 = 𝜓(𝜑𝑘).

The Sobolev spaces allow us to quantify approximation properties of the operators
𝑃𝑛 and 𝐼𝑛. We refer the reader to Chapter 8 in [35] for details.

Lemma 5 (Projection error). For 𝜆, 𝜇 ∈ R with 𝜆 ≤ 𝜇 and 𝑣 ∈ 𝐻𝜇(T𝑑;C) we
have

|𝑣 − 𝑃𝑛𝑣|𝜆 ≤
(︁𝑛

2

)︁−(𝜇−𝜆)
|𝑣|𝜇.

By comparing 𝑃𝑛 and 𝐼𝑛 we obtain a trigonometric interpolation estimate. It is
shown in Remark 8.3.1 of [35] that the conditions of the following result cannot
be improved in general.

Lemma 6 (Interpolation error). If 𝜇 > 𝑑/2, 0 ≤ 𝜆 ≤ 𝜇, and 𝑣 ∈ 𝐻𝜇(T𝑑;C) we
have

|𝑣 − 𝐼𝑛𝑣|𝜆 ≤ 𝑐𝑑,𝜆,𝜇

(︁𝑛
2

)︁−(𝜇−𝜆)
|𝑣|𝜇

with a constant 𝑐𝑑,𝜆,𝜇 > 0 that is independent of 𝑣 and 𝑛.

We conclude the section with an inverse estimate. Particularly, for every function
𝑣𝑛 ∈ 𝒮𝑛 and 𝑟 ≥ 𝑠 we have that

|𝑣𝑛|𝑟 ≤ max
𝑘∈Z𝑑

𝑛

|𝑘|𝑟−𝑠|𝑣𝑛|𝑠 ≤
(︁𝑛

2

)︁𝑟−𝑠

|𝑣𝑛|𝑠. (2.1)
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3 Fractional Laplace operator
We define subspaces of Sobolev spaces via

∘
𝐻𝑟(T𝑑;C) =

{︀
𝑣 ∈ 𝐻𝑟(T𝑑;C) : ̂︀𝑣0 = 0

}︀
.

For 𝑟 ≥ 0 the subspaces consist of Sobolev functions with vanishing mean. On
the subspaces

∘
𝐻𝑟(T𝑑;C) the corresponding seminorms | · |𝑟 are norms.

Definition 7. For 𝑠, 𝜇 ≥ 0 and 𝑣 ∈ 𝐻𝜇(T𝑑;C) the fractional Laplacian of 𝑣 is
the (generalized) function (−Δ)𝑠𝑣 ∈

∘
𝐻𝜇−2𝑠(T𝑑;C) defined by

(−Δ)𝑠𝑣 = 1
(2𝜋)𝑑

∑︁
𝑘∈Z𝑑∖{0}

|𝑘|2𝑠̂︀𝑣𝑘𝜙
𝑘.

Given 𝑓 ∈ 𝐿2(T𝑑;C) with vanishing mean the fractional Poisson problem seeks
𝑢 ∈

∘
𝐻𝑠(T𝑑;C) with

(−Δ)𝑠𝑢 = 𝑓. (3.1)

The unique solution to (3.1) is given by

𝑢 = 1
(2𝜋)𝑑

∑︁
𝑘∈Z𝑑∖{0}

|𝑘|−2𝑠 ̂︀𝑓𝑘𝜙
𝑘, (3.2)

and in fact satisfies 𝑢 ∈
∘
𝐻2𝑠(T𝑑;C). More generally, for 𝑓 ∈

∘
𝐻𝜇(T𝑑;C) we have

|𝑢|𝜇+2𝑠 = |𝑓 |𝜇,

i.e., the fractional Laplacian defines an isometric isomorphism

(−Δ)𝑠 :
∘
𝐻𝑟(T𝑑;C) →

∘
𝐻𝑟−2𝑠(T𝑑;C).

We define the fractional Laplace operator of negative order as the inverse of
(−Δ)𝑠, i.e.,

(−Δ)−𝑠 =
(︀
(−Δ)𝑠

)︀−1 :
∘
𝐻𝑟(T𝑑;C) →

∘
𝐻𝑟+2𝑠(T𝑑;C).

Note that for 𝑟, 𝑠 ∈ R and 𝑣 ∈
∘
𝐻𝑟(T𝑑;C) with (−Δ)𝑠𝑣 ∈ 𝐿2(T𝑑;C) we have

|𝑣|𝑠 = ‖(−Δ)𝑠/2𝑣‖.

If 𝑠 ≤ 𝑟 we have the continuous embedding property

|𝑣|𝑠 ≤ |𝑣|𝑟. (3.3)
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The discretized fractional Poisson problem seeks for a given 𝑓𝑛 ∈ 𝒮𝑛 with
vanishing mean a function 𝑢𝑛 ∈ 𝒮𝑛 with

(−Δ)𝑠𝑢𝑛 = 𝑓𝑛. (3.4)

The uniquely defined solution is given by

𝑢𝑛 = 1
(2𝜋)𝑑

∑︁
𝑘∈Z𝑑

𝑛∖{0}

|𝑘|−2𝑠 ̃︀𝑓𝑘𝜙
𝑘. (3.5)

There are two noticeable differences between the continuous (3.2) and the discrete
solutions (3.5). Besides the finite and the infinite sums, 𝑢𝑛 contains the discrete
Fourier coefficients ̃︀𝑓𝑘 and 𝑢 contains the continuous Fourier coefficients ̂︀𝑓𝑘. The
following a priori error estimates hold.

Theorem 8. Let 𝑢 and 𝑢𝑛 solve the continuous (3.1) and the discrete (3.4)
problems, respectively. We have

|𝑢− 𝑢𝑛|𝑠 ≤ |𝑓 − 𝑓𝑛|−𝑠.

In particular, if 𝑓 ∈
∘
𝐻𝜇(T𝑑;C) and 𝑓𝑛 = 𝑃𝑛𝑓 we have

|𝑢− 𝑢𝑛|𝑠 ≤
(︁𝑛

2

)︁−(𝜇+𝑠)
|𝑓 |𝜇,

while if 𝑓 ∈
∘
𝐻𝜈(T𝑑;C) with 𝜈 > 𝑑/2 and 𝑓𝑛 = 𝐼𝑛𝑓 we have

|𝑢− 𝑢𝑛|𝑠 ≤ 𝑐𝑑,0,𝜈

(︁𝑛
2

)︁−𝜈

|𝑓 |𝜈 .

Proof. In view of (3.1) and (3.4) we have

|𝑢− 𝑢𝑛|2𝑠 =
(︀
(−Δ)𝑠(𝑢− 𝑢𝑛), 𝑢− 𝑢𝑛

)︀
=

(︀
𝑓 − 𝑓𝑛, 𝑢− 𝑢𝑛

)︀
≤ |𝑓 − 𝑓𝑛|−𝑠|𝑢− 𝑢𝑛|𝑠.

This implies the general estimate and in combination with Lemma 5 the estimate
in case 𝑓𝑛 = 𝑃𝑛𝑓 . With (3.3) and Lemma 6 we deduce that

|𝑓 − 𝐼𝑛𝑓 |−𝑠 ≤ ‖𝑓 − 𝐼𝑛𝑓‖ ≤ 𝑐𝑑,0,𝜈

(︁𝑛
2

)︁−𝜈

|𝑓 |𝜈

which implies the estimate.
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4 Fractional image denoising
Our second problem is a replacement of the ROF image denoising model (1.1).
Given an image 𝑔 ∈ 𝐿2(T𝑑;C) we propose to minimize

𝐸(𝑢) = 1
2‖(−Δ)𝑠/2𝑢‖2 + 𝛼

2 ‖(−Δ)−𝛽/2(𝑢− 𝑔)‖2, (4.1)

with 0 < 𝑠 < 1 and 𝛽 ∈ [0, 1]. The minimization is carried out over 𝐻𝑠(T𝑑;C)
when 𝛽 = 0 and over

∘
𝐻𝑠(T𝑑;C) when 𝛽 is positive. In the latter case we assume

that 𝑔 has a vanishing mean. The existence and uniqueness of a minimizer follows
by using the direct method in the calculus of variations. The first order necessary
and sufficient optimality condition determines the unique minimizer 𝑢 via

(−Δ)𝑠𝑢+ 𝛼(−Δ)−𝛽𝑢 = 𝛼(−Δ)−𝛽𝑔 in T𝑑. (4.2)

We note that since 𝑔 ∈ 𝐿2(T𝑑;C), we have 𝑢 ∈ 𝐻2(𝑠+𝛽)(T𝑑;C). In particular,
the solution to (4.2) is

𝑢 = 𝛼

(2𝜋)𝑑

∑︁
𝑘∈Z𝑑

(︀
|𝑘|2(𝑠+𝛽) + 𝛼

)︀−1̂︀𝑔𝑘𝜙
𝑘.

The discretized problem seeks for a given 𝑔𝑛 ∈ 𝒮𝑛 a function 𝑢𝑛 ∈ 𝒮𝑛 with

(−Δ)𝑠𝑢𝑛 + 𝛼(−Δ)−𝛽𝑢𝑛 = 𝛼(−Δ)−𝛽𝑔𝑛. (4.3)

The uniquely defined solution is given by

𝑢𝑛 = 𝛼

(2𝜋)𝑑

∑︁
𝑘∈Z𝑑

𝑛

(︀
|𝑘|2(𝑠+𝛽) + 𝛼

)︀−1̃︀𝑔𝑘𝜙
𝑘

Theorem 9. Let 𝑢 and 𝑢𝑛 solve the continuous and the discrete problems (4.3)
and (4.2), respectively. We have that

|𝑢− 𝑢𝑛|2𝑠 + 𝛼

2 |𝑢− 𝑢𝑛|2−𝛽 ≤ 𝛼

2 |𝑔 − 𝑔𝑛|2−𝛽 .

In particular, if 𝑔 ∈ 𝐻𝜇(T𝑑;C) and 𝑔𝑛 = 𝑃𝑛𝑔 we have

|𝑢− 𝑢𝑛|𝑠 + (𝛼/2)1/2|𝑢− 𝑢𝑛|−𝛽 ≤ 𝛼1/2
(︁𝑛

2

)︁−(𝜇+𝛽)
|𝑔|𝜇,

while if 𝑔 ∈ 𝐻𝜈(T𝑑;C) with 𝜈 > 𝑑/2 and 𝑔𝑛 = 𝐼𝑛𝑔 we have

|𝑢− 𝑢𝑛|𝑠 + (𝛼/2)1/2|𝑢− 𝑢𝑛|−𝛽 ≤ 𝛼1/2𝑐𝑑,0,𝜈

(︁𝑛
2

)︁−𝜈

|𝑔|𝜈 .
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Proof. Testing the difference of (4.2) and (4.3) by 𝑢− 𝑢𝑛 implies that

|𝑢− 𝑢𝑛|2𝑠 + 𝛼|𝑢− 𝑢𝑛|2−𝛽 = 𝛼
(︀
(−Δ)−𝛽(𝑔 − 𝑔𝑛), 𝑢− 𝑢𝑛

)︀
≤ 𝛼

2 |𝑔 − 𝑔𝑛|2−𝛽 + 𝛼

2 |𝑢− 𝑢𝑛|2−𝛽 .

The estimates follow from using (𝑎+ 𝑏)2 ≤ 2(𝑎2 + 𝑏2) and arguing as in the proof
of Theorem 8.

5 Fractional phase field equations
Given parameters 𝛼, 𝑠 ≥ 0 we recall the fractional Cahn-Hilliard equation (1.6)

(−Δ)−𝛼𝜕𝑡𝑢+ (−Δ)𝑠𝑢 = −𝜀−2𝑓(𝑢) (5.1)

on a 𝑑-dimensional torus T𝑑 and with initial condition 𝑢(0) = 𝑢0. We recall
that 𝛼 = 0 gives rise to the fractional Allen–Cahn equation (1.5). Below we will
impose the restrictions 𝑠 > 0 and 𝑠 ≥ 𝛼.

We assume a splitting of the nonnegative potential 𝐹 into convex and concave
parts 𝐹 𝑐𝑥 and 𝐹 𝑐𝑣 which induces a decomposition of 𝑓 = 𝐹 ′ into a monotone
and an antimonotone part

𝑓 = 𝑓𝑐𝑥 + 𝑓𝑐𝑣.

We assume for simplicity that 𝑓𝑐𝑥 and 𝑓𝑐𝑣 are smooth and Lipschitz continuous.
The latter condition is justified by a maximum principle in the case for the
Allen–Cahn equation and 𝐿∞ bounds for solutions of the Cahn–Hilliard equation
[12] corresponding to (𝛼, 𝑠) = (0, 1) and (𝛼, 𝑠) = (1, 1), respectively.

5.1 Numerical scheme and error analysis

The numerical scheme computes iterates (𝑢𝑘
𝑛)𝑘=0,...,𝐾 ⊂ 𝒮𝑛 via

(−Δ)−𝛼𝑑𝑡𝑢
𝑘
𝑛 + (−Δ)𝑠𝑢𝑘

𝑛 + 𝜀−2𝐼𝑛𝑓
𝑐𝑥(𝑢𝑘

𝑛) = −𝜀−2𝐼𝑛𝑓
𝑐𝑣(𝑢𝑘−1

𝑛 ). (5.2)

where 𝑑𝑡𝑤
𝑘 = (𝑤𝑘 − 𝑤𝑘−1)/𝜏 with 𝜏 > 0 being the time step-size and 𝑢0

𝑛 is
a suitable approximation of 𝑢0. By applying the operator (−Δ)𝛼 and testing
the resulting identity with constant functions we observe the mass conservation
property (𝑑𝑡𝑢

𝑘
𝑛, 1) = 0 if 𝛼 > 0. Existence of the iterates is established via

convex minimization problems; if the convex part of 𝐹 is quadratic then 𝑓𝑐𝑥 is
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linear and the scheme (5.2) defines a linear system of equations. The scheme is
unconditionally energy stable in the sense that we have

|𝑑𝑡𝑢
𝑘
𝑛|2−𝛼 + 𝜏

2 |𝑑𝑡𝑢
𝑘
𝑛|2𝑠 + 𝑑𝑡𝐸

𝑛
𝜀 (𝑢𝑘

𝑛) ≤ 0,

with the discrete energy functional

𝐸𝑛
𝜀 (𝑣𝑛) = 1

2‖(−Δ)𝑠/2𝑣𝑛‖2 + 𝜀−2(︀
𝐹 (𝑣𝑛), 1

)︀
𝑛
.

This follows from testing (5.2) with 𝑑𝑡𝑢
𝑘
𝑛, using(︀

(−Δ)𝑠𝑢𝑘
𝑛, 𝑑𝑡𝑢

𝑘
𝑛

)︀
= 1

2𝑑𝑡‖(−Δ)𝑠/2𝑢𝑘
𝑛‖2 + 𝜏

2 ‖(−Δ)𝑠/2𝑑𝑡𝑢
𝑘
𝑛‖2,

and noting that as a consequence of convexity and concavity we have(︀
𝑓𝑐𝑥(𝑢𝑘

𝑛), 𝑑𝑡𝑢
𝑘
𝑛

)︀
𝑛

≥
(︀
𝑑𝑡𝐹

𝑐𝑥(𝑢𝑘
𝑛), 1

)︀
𝑛
,(︀

𝑓𝑐𝑣(𝑢𝑘−1
𝑛 ), 𝑑𝑡𝑢

𝑘
𝑛

)︀
𝑛

≥
(︀
𝑑𝑡𝐹

𝑐𝑣(𝑢𝑘
𝑛), 1

)︀
𝑛
.

Assuming initial data with 𝐸𝑛
𝜀 (𝑢0

𝑛) ≤ 𝑐 as 𝑛 → ∞, the energy estimate provides
a priori bounds on interpolants of the approximations which allows us to select
an accumulation point

𝑢 ∈ 𝐻1([0, 𝑇 ];𝐻−𝛼(T𝑑)) ∩ 𝐿∞([0, 𝑇 ];𝐻𝑠(T𝑑))

as 𝜏 → 0 and 𝑛 → ∞. Its identification as a solution for the fractional Cahn–
Hilliard equation follows from the Aubin–Lions lemma provided that 𝑠 > 0.
Uniqueness of solutions is a consequence of the assumed Lipschitz continuity of
𝑓 . For an error analysis we note that 𝑢 ∈ 𝐶([0, 𝑇 ];𝐿2(T𝑑)), let 𝑢𝑘 = 𝑢(𝑡𝑘) with
𝑡𝑘 = 𝑘𝜏 , and define

𝑒𝑘
𝑛 = 𝑢𝑘

𝑛 − 𝑃𝑛𝑢
𝑘,

where 𝑃𝑛 is the orthogonal projection given in Definition 3. Note that we have
(𝑃𝑛𝑣, 𝑤𝑛)𝑛 = (𝑃𝑛𝑣, 𝑤𝑛) but (𝑣, 𝑤𝑛)𝑛 ̸= (𝑣, 𝑤𝑛) unless 𝑣 belongs to 𝒮𝑛. We omit
the subscript 𝑛 whenever the scalar product is applied to two functions belonging
to 𝒮𝑛. For ease of readability we abbreviate

𝑓𝜀 = 𝜀−2𝑓, 𝑓𝑐𝑥
𝜀 = 𝜀−2𝑓𝑐𝑥, 𝑓𝑐𝑣

𝜀 = 𝜀−2𝑓𝑐𝑣.

The sequences (𝑢𝑘
𝑛) and (𝑢𝑘) satisfy the discrete equations

(−Δ)−𝛼𝑑𝑡𝑢
𝑘
𝑛 + (−Δ)𝑠𝑢𝑘

𝑛 = −𝐼𝑛𝑓𝜀(𝑢𝑘
𝑛) − 𝐼𝑛

(︀
𝑓𝑐𝑣

𝜀 (𝑢𝑘−1
𝑛 ) − 𝑓𝑐𝑣

𝜀 (𝑢𝑘
𝑛)

)︀
,

(−Δ)−𝛼𝑑𝑡𝑃𝑛𝑢
𝑘 + (−Δ)𝑠𝑃𝑛𝑢

𝑘 = −𝑃𝑛𝑓𝜀(𝑢𝑘) + (−Δ)−𝛼𝑃𝑛(𝑑𝑡𝑢
𝑘 − 𝜕𝑡𝑢

𝑘),
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where we used that 𝑃𝑛 commutes with (−Δ)𝑟 for every 𝑟 ∈ R. Subtracting the
identities leads to the error equation

(−Δ)−𝛼𝑑𝑡𝑒
𝑘
𝑛 + (−Δ)𝑠𝑒𝑘

𝑛 = 𝐴𝑘
𝑛 +𝐵𝑘

𝑛 + 𝐶𝑘
𝑛,

with the discretization errors

𝐴𝑘
𝑛 = −𝐼𝑛𝑓𝜀(𝑢𝑘

𝑛) + 𝑃𝑛𝑓𝜀(𝑢𝑘),
𝐵𝑘

𝑛 = −𝐼𝑛

(︀
𝑓𝑐𝑣

𝜀 (𝑢𝑘−1
𝑛 ) − 𝑓𝑐𝑣

𝜀 (𝑢𝑘
𝑛)

)︀
,

𝐶𝑘
𝑛 = −(−Δ)−𝛼𝑃𝑛(𝑑𝑡 − 𝜕𝑡)𝑢𝑘.

Testing the error equation with 𝑒𝑘
𝑛 shows that we have

1
2𝑑𝑡|𝑒𝑘

𝑛|2−𝛼 + 𝜏

2 |𝑑𝑡𝑒
𝑘
𝑛|2−𝛼 + |𝑒𝑘

𝑛|2𝑠 = (𝐴𝑘
𝑛, 𝑒

𝑘
𝑛) + (𝐵𝑘

𝑛, 𝑒
𝑘
𝑛) + (𝐶𝑘

𝑛, 𝑒
𝑘
𝑛).

To bound the first term on the right-hand side we insert 𝑓𝜀(𝑢𝑘
𝑛), use Lemma 6, the

inverse estimate (2.1), and insert 𝑃𝑛𝑢
𝑘 to deduce with the Lipschitz continuity

of 𝑓𝜀 that

(𝐴𝑘
𝑛, 𝑒

𝑘
𝑛) = −

(︀
𝐼𝑛𝑓𝜀(𝑢𝑘

𝑛) − 𝑓𝜀(𝑢𝑘
𝑛) + 𝑓𝜀(𝑢𝑘

𝑛) − 𝑓𝜀(𝑢𝑘), 𝑒𝑘
𝑛

)︀
≤ 𝑐𝑑,0,1𝑛

−1|𝑓𝜀(𝑢𝑘
𝑛)|1‖𝑒𝑘

𝑛‖ + |𝑓𝜀|Lip‖𝑢𝑘
𝑛 − 𝑢𝑘‖‖𝑒𝑘

𝑛‖
≤ 𝑐𝑑,0,1𝑛

−1|𝑓𝜀|Lip|𝑢𝑘
𝑛|1‖𝑒𝑘

𝑛‖ + |𝑓𝜀|Lip
(︀
‖𝑢𝑘

𝑛 − 𝑃𝑛𝑢
𝑘‖ + ‖𝑃𝑛𝑢

𝑘 − 𝑢𝑘‖
)︀
‖𝑒𝑘

𝑛‖
≤ |𝑓𝜀|Lip

(︀
𝑐𝑑,0,1𝑛

−𝑠|𝑢𝑘
𝑛|𝑠 + ‖𝑃𝑛𝑢

𝑘 − 𝑢𝑘‖
)︀
‖𝑒𝑘

𝑛‖ + |𝑓𝜀|Lip‖𝑒𝑘
𝑛‖2.

For the second term we have that

(𝐵𝑘
𝑛, 𝑒

𝑘
𝑛) ≤ 𝜏 |𝑓𝜀|Lip‖𝑑𝑡𝑢

𝑘
𝑛‖‖𝑒𝑘

𝑛‖ ≤ 𝜏𝑛𝛼|𝑓𝜀|Lip|𝑑𝑡𝑢
𝑘
𝑛|−𝛼‖𝑒𝑘

𝑛‖,

where we used the inverse estimate ‖𝑤𝑛‖ ≤ 𝑛𝛼|𝑤𝑛|−𝛼 if 𝛼 > 0. For the third
term we assume that 𝑢 ∈ 𝐶2([0, 𝑇 ];𝐻−𝛼(T𝑑)) and estimate

(𝐶𝑘
𝑛, 𝑒

𝑘
𝑛) = ((−Δ)−𝛼[𝜕𝑡 − 𝑑𝑡]𝑢𝑘, 𝑒𝑘

𝑛) ≤ 𝜏

2 sup
𝑡∈[0,𝑇 ]

|𝜕2
𝑡 𝑢(𝑡)|−𝛼|𝑒𝑘

𝑛|𝛼

A combination of the estimates, multiplication by 𝜏 , and summation over 𝑘 =
1, 2, . . . ,𝐾, yield that

1
2 |𝑒𝐾

𝑛 |2−𝛼 + 𝜏

𝐾∑︁
𝑘=1

|𝑒𝑘
𝑛|2𝑠 ≤ 1

2 |𝑒0
𝑛|2−𝛼 +𝐾𝜏 |𝑓𝜀|Lip max

𝑘=1,...,𝐾

(︀
𝑐𝑑,0,1𝑛

−𝑠|𝑢𝑘
𝑛|𝑠 + ‖𝑢𝑘 − 𝑃𝑛𝑢

𝑘‖
)︀2

+𝐾𝜏3𝑛2𝛼|𝑓𝜀|Lip max
𝑘=1,...,𝐾

|𝑑𝑡𝑢
𝑘
𝑛|2−𝛼 +𝐾𝜏3 sup

𝑡∈[0,𝑇 ]
|𝜕2

𝑡 𝑢(𝑡)|2−𝛼

+ 3|𝑓𝜀|Lip𝜏

𝐾∑︁
𝑘=1

‖𝑒𝑘
𝑛‖2 + 𝜏

4

𝐾∑︁
𝑘=1

|𝑒𝑘
𝑛|2𝛼.
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If 𝛼 = 0 we may directly apply the discrete Gronwall lemma to obtain an error
estimate. If 𝛼 > 0 we assume 𝛼 ≤ 𝑠, require that (𝑢0

𝑛, 1) = (𝑢0, 1) so that
(𝑒𝑘

𝑛, 1) = 0, and use the bound

‖𝑒𝑘
𝑛‖2 ≤ |𝑒𝑘

𝑛|−𝑠|𝑒𝑘
𝑛|𝑠 ≤ |𝑒𝑘

𝑛|−𝛼|𝑒𝑘
𝑛|𝑠,

to deduce with Young’s inequality the estimate

𝐸𝐾
𝑛 = 1

2 |𝑒𝐾
𝑛 |2−𝛼 + 𝜏

2

𝐾∑︁
𝑘=1

|𝑒𝑘
𝑛|2𝑠 ≤ 𝐷0 +𝐷1𝜏

𝐾∑︁
𝑘=1

𝐸𝑘
𝑛.

Here, 𝐷0 is the sum of the first four terms on the right-hand side of the above
estimate and 𝐷1 = 2(3|𝑓𝜀|Lip)2. The discrete Gronwall lemma leads to the
estimate

𝐸𝐾
𝑛 ≤ 2𝐷0 exp(𝐷1𝑇 )

for all 𝐾 with 𝐾𝜏 ≤ 𝑇 provided that 𝜏𝐷1 ≤ 1/2. With the triangle inequality
and approximation estimates for 𝑃𝑛 we obtain the following error estimate.

Theorem 10. Let 𝑢 ∈ 𝐶([0, 𝑇 ];𝐻𝑠(T𝑑)) ∩ 𝐶2([0, 𝑇 ];𝐻−𝛼(T𝑑)) solve (1.6) and
let the sequence (𝑢𝑘

𝑛)𝑘=0,...,𝐾 ⊂ 𝒮𝑛 be defined via (5.2). There exists a constant
𝑐𝜀 > 0 such that we have

max
𝑘=1,...,𝐾

|𝑢(𝑡𝑘) − 𝑢𝑘
𝑛|−𝛼 ≤ 𝑐𝜀(𝜏 + 𝜏𝑛𝛼 + 𝑛−𝑠)

for all 𝜏 > 0 and 𝑛 ∈ N.

The constant 𝑐𝜀, in general, depends exponentially on 𝜀−1. For the derivation of
this estimate we used the indicated regularity assumption. By standard arguments,
see [41] the regularity assumption on the exact solution can be weakened to the
conditions

𝑢 ∈ 𝐿∞([0, 𝑇 ];𝐻𝑠(T𝑑)), 𝜕2
𝑡 𝑢 ∈ 𝐿2([0, 𝑇 ];𝐻−𝛼(T𝑑)).

The suboptimal term 𝜏𝑛𝛼 corresponds to the semi-implicit treatment of the
nonlinearity which makes the scheme (5.2) fully practical.

5.2 Improved error estimate via spectral bounds

A significantly improved error estimate can be obtained if additional analytical
knowledge about the evolution is available, e.g., in the form of lower bounds for
the principal eigenvalue

𝜆(𝑡) = min
𝑣∈𝐻𝑠(T𝑑)

|𝑣|2𝑠 + 𝜀−2(︀
𝑓 ′(𝑢(𝑡))𝑣, 𝑣

)︀
|𝑣|2−𝛼

.
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For ease of presentation we only consider the fractional Allen–Cahn equation
with 𝛼 = 0 and outline the main arguments following [23, 8]. We focus on the
contribution to the error equation resulting from the nonlinearity and write it
with abstract consistency functionals 𝒞𝑘

𝑛 as

𝑑𝑡𝑒
𝑘
𝑛 + (−Δ)𝑠𝑒𝑘

𝑛 = 𝒞𝑘
𝑛 + 𝜀−2𝑃𝑛

(︀
𝑓(𝑢𝑘) − 𝑓(𝑢𝑘

𝑛)
)︀
.

A precise formula for 𝒞𝑘
𝑛 is obtained from subtracting the projected partial

differential equation evaluated at 𝑡𝑘 onto 𝒮𝑛 from the numerical scheme as above,
e.g., in case of a fully implicit numerical scheme with a nodal interpolation of
the nonlinear term we have

𝒞𝑘
𝑛 = −𝜀−2(︀

𝑃𝑛𝑓(𝑢𝑘
𝑛) − 𝐼𝑛𝑓(𝑢𝑘

𝑛)
)︀

+ 𝜀−2𝑃𝑛𝑓(𝑢𝑘) + 𝑑𝑡𝑃𝑛𝑢
𝑘 + (−Δ)𝑠𝑃𝑛𝑢

𝑘

= −𝜀−2(︀
𝑃𝑛𝑓(𝑢𝑘

𝑛) − 𝐼𝑛𝑓(𝑢𝑘
𝑛)

)︀
+ 𝑃𝑛

(︀
𝑑𝑡𝑢

𝑘 − 𝜕𝑡𝑢(𝑡𝑘)
)︀
.

To relate the error equation to the principal eigenvalue we require a controlled
failure of monotonicity for 𝑓 in the sense that there exists a constant 𝑐𝑓 > 0 such
that for all 𝑎, 𝑏 ∈ R we have(︀

𝑓(𝑎) − 𝑓(𝑏)
)︀
(𝑎− 𝑏) ≥ 𝑓 ′(𝑎)(𝑎− 𝑏)2 − 𝑐𝑓 |𝑎− 𝑏|3.

With this estimate we deduce with 𝑐′
𝑓 = ‖𝑓 ′‖𝐿∞(R) that

1
2𝑑𝑡‖𝑒𝑘

𝑛‖2 + 𝜏

2 ‖𝑑𝑡𝑒
𝑛
𝑘 ‖2 + |𝑒𝑘

𝑛|2𝑠

= −𝜀−2(︀
𝑓(𝑢𝑘) − 𝑓(𝑢𝑘

𝑛), 𝑒𝑘
𝑛

)︀
+ (𝒞𝑘

𝑛, 𝑒
𝑘
𝑛)

≤ −𝜀−2(︀
𝑓 ′(𝑢𝑘)𝑒𝑘

𝑛, 𝑒
𝑘
𝑛

)︀
+ 𝑐𝑓𝜀

−2‖𝑒𝑘
𝑛‖3

𝐿3(T𝑑) + 𝜀−2

2 |𝒞𝑘
𝑛|2−𝑠 + 𝜀2

2 |𝑒𝑘
𝑛|2𝑠

≤ −(1 − 𝜃)𝜀−2(︀
𝑓 ′(𝑢𝑘)𝑒𝑘

𝑛, 𝑒
𝑘
𝑛

)︀
+ 𝜃𝜀−2𝑐′

𝑓 ‖𝑒𝑘
𝑛‖2

+ 𝑐𝑓𝜀
−2‖𝑒𝑘

𝑛‖3
𝐿3(T𝑑) + 𝜀−2

2 |𝒞𝑘
𝑛|2−𝑠 + 𝜀2

2 |𝑒𝑘
𝑛|2𝑠.

We incorporate the eigenvalue 𝜆𝑘 = 𝜆(𝑡𝑘) via

−𝜀−2(︀
𝑓 ′(𝑢𝑘)𝑒𝑘

𝑛, 𝑒
𝑘
𝑛

)︀
≤ |𝑒𝑘

𝑛|2𝑠 − 𝜆𝑘‖𝑒𝑘
𝑛‖2.

Choosing 𝜃 = 𝜀2 and letting 𝜇𝑘 = max{−𝜆𝑘, 0} thus leads to the estimate

1
2𝑑𝑡‖𝑒𝑘

𝑛‖2 + |𝑒𝑘
𝑛|2𝑠 ≤(1 − 𝜀2)|𝑒𝑘

𝑛|2𝑠 + 𝜇𝑘‖𝑒𝑘
𝑛‖2

+ 𝑐′
𝑓 ‖𝑒𝑘

𝑛‖2 + 𝑐𝑓𝜀
−2‖𝑒𝑘

𝑛‖3
𝐿3(T𝑑) + 𝜀−2

2 |𝒞𝑘
𝑛|2−𝑠 + 𝜀2

2 |𝑒𝑘
𝑛|2𝑠.

Rearranging terms gives

𝑑𝑡‖𝑒𝑘
𝑛‖2 + 𝜀2|𝑒𝑘

𝑛|2𝑠 ≤ 2
(︀
𝜇𝑘 + 𝑐′

𝑓 )‖𝑒𝑘
𝑛‖2 + 2𝑐𝑓𝜀

−2‖𝑒𝑘
𝑛‖3

𝐿3(T𝑑) + 𝜀−2|𝒞𝑘
𝑛|2−𝑠.
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In an inductive argument we may assume that 𝜀−2‖𝑒𝑘
𝑛‖3

𝐿3(T𝑑) ≤ 𝑐‖𝑒𝑘
𝑛‖2 and

use the discrete Gronwall lemma to obtain an error estimate that depends
exponentially on the principal eigenvalue 𝜆𝑘. Hence, if 𝜆𝑘 is uniformly bounded
from below the resulting error estimate depends only algebraically on 𝜀−1. More
generally, it suffices to assume that a discrete time integral of 𝜆𝑘 is uniformly
bounded from below. This allows us to cover large classes of evolutions including
topological changes.

6 Numerical Examples
In this Section, we present several numerical examples. In Section 6.1 we discuss
the approximation of the fractional Poisson problem. Section 6.2 is devoted to
image denoising problem. In Section 6.3 we study features of the fractional Allen–
Cahn equation. We conclude with experiments for the fractional Cahn–Hilliard
equation in Section 6.4.

6.1 Approximation of the Poisson problem

To construct a nonsmooth solution for the fractional Poisson problem we first let
𝑤 ∈ 𝐶(T) be defined via

𝑤(𝑥) =

{︃
𝑥, 𝑥 ≤ 𝜋,

2𝜋 − 𝑥, 𝑥 ≥ 𝜋.

Since 𝑤(0) = 𝑤(2𝜋) we find for 𝑘 ̸= 0 with an integration-by-parts that

̂︀𝑤𝑘 =
2𝜋∫︁

0

𝑤(𝑥)𝑒−i𝑘·𝑥 d𝑥 = 1
i𝑘 (1 − 𝑒−i𝑘𝑥)

𝜋∫︁
0

𝑒−i𝑘·𝑥 d𝑥 = 1
(i𝑘)2

(︀
1 − (−1)𝑘

)︀2
,

i.e., ̂︀𝑤𝑘 = −4/𝑘2 if 𝑘 is odd and ̂︀𝑤𝑘 = 0 if 𝑘 is even. We have ̂︀𝑤0 = 𝜋2. We then
let 𝑢 ∈ 𝐶(T𝑑) be for 𝑥 ∈ T𝑑 defined via

𝑢(𝑥) =
𝑑∏︁

𝑖=1
𝑤(𝑥𝑖) − 𝜋2𝑑

(2𝜋)𝑑
.

We have ̂︀𝑢𝑘 = ̂︀𝑤𝑘1 · · · ̂︀𝑤𝑘𝑑
if 𝑘 ̸= 0 and ̂︀𝑢0 = 0. We set 𝑓 = (−Δ)𝑠𝑢, i.e., for

𝑘 ∈ Z𝑑
𝑛 let ̂︀𝑓𝑘 = |𝑘|2𝑠̂︀𝑢𝑘. Note that 𝑓 ∈ 𝐿2(T𝑑) if and only if 𝑠 < 1/2. We choose

the approximation 𝑓𝑛 = 𝑃𝑛𝑓 which is explicitly available here. The output for
𝑠 = 1/2 and 𝑛 = 16 is displayed in Figure 1. In contrast to solutions of the
classical Poisson problem we observe here the occurrence of kinks in the solution.
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Fig. 1: Functions 𝑃𝑛𝑓 and 𝑢𝑛 for the fractional Poisson problem with 𝑠 = 1/2 and 𝑛 = 16.

6.2 Fractional image denoising

The fractional Laplacian with 𝑠 < 1/2 is closely related to the total variation
norm (see Section 1) which motivates its application in image processing. Given
a noisy image 𝑔 ∈ 𝐿2(T𝑑) we define a regularized image 𝑢 ∈ 𝐻2𝑠(T𝑑) via

(−Δ)𝑠𝑢+ 𝛼(𝑢− 𝑔) = 0.

The fidelity parameter 𝛼 penalizes the deviation of 𝑢 from 𝑔 in the 𝐿2 metric.
Alternatively, this distance can be taken in the weaker metric of 𝐻−1(T𝑑) which
leads to the equation

(−Δ)𝑠𝑢+ 𝛼(−Δ)−1(𝑢− 𝑔) = 0,

where we assume that 𝑔 has vanishing mean and look for 𝑢 with vanishing mean.
The results of two experiments are displayed in the rows of Figure 2. In the first
experiment we set 𝑠 = 0.42, 𝛼 = 10, and 𝑛 = 1566. In the second experiment we
used 𝑠 = 0.35, 𝛼 = 5 × 103 and 𝑛 = 256. The first and second columns display
the original and noisy images, respectively. The third and fourth columns show
the results of 𝐿2 and 𝐻−1 fidelity. We note that in the first example, where the
additive noise is normally distributed with mean zero and standard deviation
0.15, the 𝐿2-fidelity almost perfectly recovers the original image reflecting the
fact that for Gaussian noise this is statistically the optimal choice. In the second
example where the noise is given by the nodal interpolant of the sinusoidal
function

𝜉(𝑥1, 𝑥2) = 5 sin(20𝜋𝑥1) sin(20𝜋𝑥2)

we obtain better recovery using the 𝐻−1-fidelity. We remark that it took 0.2 sec
and 0.006 sec to solve the first and the second problem in Matlab on a MacBook
Pro with an 2.8 GHz Intel Core i7 processor (16 GB 1600 MHz DDR3 RAM).
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Fig. 2: Original and noisy image, regularized images for 𝐿2 and 𝐻−1 fidelity terms. In the
case of first example we have set 𝑠 = 0.42, 𝛼 = 10, and 𝑛 = 1566. In the second example
we have 𝑠 = 0.35, 𝛼 = 5×103 and 𝑛 = 256. The recovery is satisfactory using the 𝐿2-fidelity
in the first example. In the second example, recovery is better in case of the 𝐻−1-fidelity
term.

6.2.1 Comparison between fractional and total variation

We next compare the fractional and the total variation (TV) based models (1.1)
with the help of three examples. This comparison was carried out in Python
which was specifically chosen due to the availability of SciKit-Image toolbox
[43]. In all the examples we assume that original image denoted by 𝑜 (without
noise) is known. For the fractional case we compute the optimal parameters
(𝑠, 𝛼) by solving a minimization problem: min𝑢 ‖𝑢 − 𝑜‖2, subject to 𝑢 solving
(−Δ)𝑠𝑢+ 𝛼(𝑢− 𝑔) = 0. We further assume that (𝑠, 𝛼) lies in a closed convex set,
i.e., 0.05 ≤ 𝑠 ≤ 0.5 and 1 ≤ 𝛼 ≤ 50. We solve this optimization problem using
an in-built optimization algorithm in Python. The corresponding optimization
problem for TV is solved for 𝛼 using a genetic algorithm.

Our first example uses a picture of Gauss (cf. Figure 3, top row). The left
image is the original image with 𝑛 = 𝑛𝑥 = 𝑛𝑦 = 1566. Our second example
(cf. Figure 3, middle row) uses a synthetic image with 𝑛 = 𝑛𝑥 = 𝑛𝑦 = 1500.
Our final example (cf. Figure 3, bottom row) is based on an in-built image from
SciKit with different number of points in the 𝑥 and 𝑦 directions, i.e., 𝑛𝑥 = 400,
𝑛𝑦 = 600. We note that even though the approach discussed in Section 4 assumes
𝑛 = 𝑛𝑥 = 𝑛𝑦 it is directly extended to this case where 𝑛𝑥 ̸= 𝑛𝑦. In the second
column (from the left), in all the examples, we have added a normally distributed
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noise with mean zero and standard deviation 0.15, we denote the resulting noisy
image by 𝑔.

For the fractional case the optimal parameters are (𝑠, 𝛼) = (0.49, 50) for the
first example and (𝑠, 𝛼) = (0.5, 50) for the second and third examples. On the
other hand, for TV case the optimal parameters are 𝛼 = 3.58, 𝛼 = 1.0, and
𝛼 = 8.74, respectively. Using these parameters we solve the corresponding image
denoising problems using the fractional approach (third column from the left) and
compare the results with the in-built TV algorithm from [43]. We observe that
the two approaches give comparable results in all three examples. The fractional
approach is significantly cheaper as only two discrete Fourier transformations
have to be computed. The CPU times for implementations of the fractional and
TV approach in Matlab and Python, respectively, are provided in the caption of
Figure 3. They show a reduction of the computing times by factors 10-100. We
remark that certain aspects in the Chambolle–Pock algorithm [15] implemented
in Scikit such as the specification of a suitable stopping criterion and choice of
step-sizes may lead to different results.

6.3 Fractional Allen–Cahn equation

We consider the fractional Allen-Cahn equation (1.5) with a given initial function
𝑢0 ∈ 𝐿2(T𝑑). The function 𝑓 is the derivative of a double well potential 𝐹 with
quadratic growth, i.e.,

𝐹 (𝑢) = 1
2

(1 − 𝑢2)2

1 + 𝑢2 , 𝑓(𝑢) = 𝑢− 4𝑢
(1 + 𝑢2)2 ,

which leads to linear systems of equations in our semi-implicit time discretization.
Snapshots of the evolutions with ̃︀𝜀 = 1/8, 𝑛 = 512, and Δ𝑡 = 1/100 at 𝑡 = 1,
𝑡 = 4, 𝑡 = 12, and 𝑡 = 20 (rowwise) are shown in Figure 4. The first column
corresponds to 𝑠 = 1, second to 𝑠 = 0.45, third to 𝑠 = 0.30, and finally fourth to
𝑠 = 0.15. Clearly the interface in case of a fractional model is sharper, however
the dynamics are slower.

6.4 Fractional Cahn-Hilliard equation

We next study the fractional Cahn–Hilliard equation specified in (1.6) defining
𝐹 and 𝑓 as in Subsection 6.3. In a first experiment we define the initial condition
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Fig. 3: Original and noisy image, regularized images for 𝐿2 fidelity with fractional and
total variation (TV) approaches. The optimized parameters 𝑠 and 𝛼 are given as follows -
Example 1: (𝑠, 𝛼) = (0.49, 50) (fractional) and 𝛼 = 3.58 (TV); Example 2: (𝑠, 𝛼) = (0.5, 50)

(fractional) and 𝛼 = 1 (TV); Example 3: (𝑠, 𝛼) = (0.5, 50) (fractional) and 𝛼 = 8.74 (TV).
The last two columns are corresponding reconstructions for the fractional and TV method.
While the results are comparable the computing times differ significantly: Example 1: 0.2
sec (fractional) and 2.1 sec (TV); Example 2: 0.1 sec (fractional), 6.1 sec (TV); Example 3:
0.01 sec (fractional) and 0.2 (TV).

𝑢0 as

𝑢0(𝑥1, 𝑥2) =

⎧⎪⎪⎨⎪⎪⎩
1 if (𝑥1 − 2𝜋

3 )2 + (𝑥2 − 𝜋)2 < ( 𝜋
3 )2

or (𝑥1 − 4𝜋
3 )2 + (𝑥2 − 𝜋)2 < ( 𝜋

3 )2,

−1 otherwise.

Snapshots of the evolutions with ̃︀𝜀 = 1/8, 𝑛 = 512, and Δ𝑡 = 1/100 at 𝑡 = 0.25,
𝑡 = 0.50, 𝑡 = 2, and 𝑡 = 3 (rowwise) are shown in Figure 5 for 𝑠 = 1, 𝑠 = 0.45,
𝑠 = 0.30, and 𝑠 = 0.15 (columnwise) with 𝛼 = 1 in all cases.

In a second experiment we focus on the coarsening dynamics of the fractional
phase field equation. As in [1] the initial condition is given by 𝑢0 = 2𝜑− 1 + 𝛿

where 𝛿 is a random perturbation uniformly distributed in [-0.2,0.2]. Snapshots
of the evolutions with 𝜑 = 0.5, ̃︀𝜀 = 1/8, 𝑛 = 512, and Δ𝑡 = 1/100 at 𝑡 = 0.25,
𝑡 = 0.5, 𝑡 = 1, and 𝑡 = 1.5 (rowwise) are shown in Figure 6. The first two columns
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Fig. 4: Snapshots of Allen–Cahn evolutions with 𝑛 = 512 at times 𝑡 = 1, 𝑡 = 4, 𝑡 = 12,
and 𝑡 = 20 (rowwise), respectively. Columns represent 𝑠 = 1, 𝑠 = 0.45, 𝑠 = 0.30, and
𝑠 = 0.15, respectively. In all cases we have set ̃︀𝜀 = 1/8.

correspond to 𝛼 = 1 with 𝑠 = 1 and 𝑠 = 0.20, respectively. The last two columns
are obtained with 𝛼 = 1/2 with 𝑠 = 1 and 𝑠 = 0.20, respectively.
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Fig. 5: Snapshots of Cahn–Hilliard evolutions with 𝑛 = 512 where the rows correspond to
𝑡 = 0.25, 𝑡 = 0.50, 𝑡 = 2, and 𝑡 = 3, respectively. Columns represent 𝑠 = 1, 𝑠 = 0.45,
𝑠 = 0.30, and 𝑠 = 0.15, respectively. In all cases we have set ̃︀𝜀 = 1/8 and 𝛼 = 1.
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