A CONVERGENT IMPLICIT DISCRETIZATION OF THE
MAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATION

LUBOMIR BANAS*, SOREN BARTELS', AND ANDREAS PROHL

ABSTRACT. We propose an implicit, fully discrete scheme for the numerical solution of the Landau-
Lifshitz-Gilbert equation which is based on linear finite elements and satisfies a discrete sphere
constraint as well as a discrete energy law. As numerical parameters tend to zero, solutions weakly
accumulate at weak solutions of the Maxwell-Landau-Lifshitz-Gilbert equation. A practical lin-
earization of the nonlinear scheme is proposed and shown to converge for certain scalings of numer-
ical parameters. Computational studies are presented to indicate finite-time blow-up behavior and
to study combined electromagnetic phenomena in ferromagnets for benchmark problems.

1. INTRODUCTION

The Maxwell-Landau-Lifschitz-Gilbert equation (MLLG) describes certain electromagnetic phe-
nomena in a ferromagnet occupying the domain w € Q C R? d = 2,3. For a parameter o > 0
which serves as a damping factor, the magnetization field m : (0,T) x w — S?, where §? = {x €

R3||x| = 1} is the unit sphere, and the electric and magnetic fields (E,H) : (0,T) x Q — R?
satisfy for all "> 0

(1.1) m; +famxm;=(1+a*)mxHeyg in wp:=(0,T) X w,

(1.2) e0E,—VxH+ox,E=-J in Qr:=(0,T7) xQ,

(1.3) poHy +V X E = —pomy in Qr,

for the (simplified) effective field Heg = Am + H. This choice of Heg comprises the most relevant
contributions to the more general version (5.1) below. The constants g, g > 0 denote respectively
the electric and magnetic permeability of free space while ¢ > 0 describes the conductivity of the
ferromagnet. The field J : Qp — R3 denotes an applied current density and x,, : @ — {0,1} is
the characteristic function of w. For simplicity we suppose that  C R3 is a bounded cavity with a
perfectly conducting outer surface 92 into which the ferromagnet w € 2 is embedded, and Q \ @ is
assumed to be vacuum [14]|. The system (1.1)—(1.3) is supplemented with initial conditions

(14) m(O, ) =1y in w, E(O, ) = Eo, H(O, ) = Ho in
and boundary conditions
(1.5) Onm =0 on Jwr, Exn=0 ondQr.

We remark that the inclusion of a damping term is necessary to permit the magnetic field to align
with the effective field and refer the reader to [5, 23, 11] for a more detailed discussion of the

mathematical model. Interesting computational studies of the model (1.1) (1.5) can be found in
14, 21].
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The construction of convergent numerical schemes for the Maxwell-Landau-Lifshitz-Gilbert sys-
tem (1.1) (1.5) is difficult due to the nonlinear character of (1.1). Moreover, the limited flexibility
of piecewise polynomial finite elements and the artificial damping of implicit time-discretization
schemes make it hard to appropriately account for the constraint |[m| = 1 a.e. in wp. The semi-
discrete scheme proposed in [14] uses numerical integration to guarantee that the constraint is sat-
isfied at the nodes of a triangulation. Stability of that scheme is proved in [14] but its convergence
has not been discussed in the literature so far.

According to Landau & Lifshitz [10], damped precession (« > 0) of the magnetization m : wp —
S? is governed by

(1.6) m; =m x Heg —am x (m x Heg) .

Gilbert’s approach modifies the undamped precession equation by a damping term which is propor-
tional to the rate of change of magnetization, see (1.1). Both approaches are analytically equivalent
for smooth magnetization fields and weak solutions to (MLLG) exist in both cases [23, 6]. The
numerical analysis differs significantly and Gilbert’s approach turns out attractive from a numerical
viewpoint. Explicit and implicit discretizations for the simplest choice Heg = Am have been pro-
posed and analyzed in |2, 4, 3] and approximations are known to respectively converge conditionally
and unconditionally with respect to discretization parameters to weak solutions of (1.1). Corre-
sponding results for (1.6) are so far only available for (locally existing) strong solutions, cf. [18, 7].
The articles [13, 20] study convergence for the simplification Heg = H for cases where smooth
solutions to (1.1) (1.5) exist. Convergence of iterates of the following scheme to weak solutions of
(1.1) for Heg = Am is verified in [3]; the proof relies on conservation of |mj | = 1 at all mesh
points and for all j > 0 as well as a discrete energy law.

Algorithm 1.1. Let m?Z € V. Given j > 0 and m?l € Vy, let m{l—H € Vy, solve

(dym)™ dp)p + o (m] x dym) ™ @), = (1 + 02)(ﬁi+1/2 X Ahﬁfflﬂ@h)h Vi € Vy.

Here, V; € WH2(w;R3) is the finite element space subordinate to a triangulation 7j, of w con-
sisting of piecewise linear functions and (-,-); denotes a discrete version (numerical integration)
of the inner product in L%(w;R3). Moreover, Ay : Wh2(w; R3) — V), is an approximation of the
Laplace operator. For a time step size k > 0 we write dyp’ := k~! (gpj — goj’l) for 5 > 1, and
P2 = %(g&j“ + ¢7) for j > 0 and a sequence {¢’};>o; we refer the reader to Section 2 for
details.

The goal of this work is (i) to propose a discretization of (1.1)—(1.3) based on linear finite elements
which satisfies a discrete sphere constraint and a discrete energy identity, (ii) to verify convergence
of iterates towards a weak solution of (1.1)—(1.3), and (iii) to propose a reliable solver for the
nonlinear system of equations in each time step. This program is motivated by possible finite-time
blow-up behaviour of solutions to (1.1)—(1.3), see Section 5, whose numerical simulation requires
reliable numerical schemes. Our strategy is to appropriately modify Algorithm 1.1 and to extend
its analysis from [3].

The discretization of (1.1) (1.3) requires a proper choice of Ansatz spaces for the approximation of
(E,H). Suitable pairs can be found in [13, 14] and we let X;, C Hy(curl; Q) and Y} C L?(Q2,R3)
be finite dimensional spaces satisfying V x X C Y. We then aim at analyzing the following
algorithm for the numerical approximation of (MLLG).



Algorithm 1.2. Let (m%,E%,H%) €V xX,xYy. Forj>0and (m{l,Ei,H%) eV xX,xYy,
let (m ]Jrl E]Jrl HJH) €V, x X, x Yy, solve

(1.7)  (dem] ™, dp)n + a (m) x dym) ™ p),
= (1+a?) (_?1/2 (AhﬁjH/2 + Pv, ﬁ?flp)’%) Vi € Vi,

1/2 12 12

(1.8)  co (B, on) — (%, V x 1) + 0 (x B, Ven € Xp,

(1.9) o (dEEITY 30) + (V x B 72 30) = —pio (dymi ™, 3) v3h €Y.

Here, Py, : L*(w,R3) — Vy,, with (Pv,u,¢n)n = (u,¢4) for all ¢, € Vj, denotes the L2-
projection into Vj,. '

Lemma 3.1 below establishes conservation of |mj | = 1, j > 0, at nodes of the triangulation
Th, and a discrete energy law for solutions to Algorithm 1.2. Our first main result is Theorem 3.1
which states unconditional convergence of subsequences of outputs of Algorithm 1.2. A simple
fixed-point iteration for the approximate solution of the nonlinear system of equations in each
step of Algorithm 1.2 which preserves the unit-length constraint is proposed in Algorithm 4.1.
Its convergence is proved under the mesh constraint k = O(h?) in Lemma 4.1. Numerical studies
which indicate possible finite-time blow-up of weak solutions of (1.1) (1.5) are reported in Section 5.
Simulations of benchmark problems from [16] are also reported.

2. PRELIMINARIES

Throughout this paper we assume that 7}, is a regular triangulation of the polygonal or polyhedral
bounded Lipschitz domain @ C R? into triangles or tetrahedra of maximal mesh-size (maximal
diameter of triangles or tetrahedra) h > 0 for d = 2 or d = 3, respectively, and Th‘w denotes its
restriction to w € Q. We define the lowest order conforming finite element space Vj, C W12(w; R?)
by

Vi, = {¢n € C@;R?) : |k € PL(K;R?) VK €T, },
where P;(K;R?) denotes the set of polynomials of total degree less or equal to one if restricted
to the element K € 7;,. Given the set of nodes {Xg VNS L} of the triangulation %‘w, the nodal
interpolation operator Zy, : C(w;R3) — V), satisfies Ty, ¢(x,) = ¢(x,) for all £ € L. We let (-, )
denote the inner product in R% and we define

(£,8) = /Q (fg)dx  and (9, 3), = / Tv, ((6.3) dx = 3" Buld(x0), 3(x0))

lel

for £, g € L?(; R%), certain weights 3, > 0, £ € L, and continuous functions ¢, 3 € C(@; R3). Note
that we use the notation (-,-) for the inner product in L?(Q) as well as in L?(w) — it will always be
clear from the context which of them it represents. For each ¢ € L we let ¢, € C'(w) denote the
nodal basis function in Vj, which is 7,-elementwise affine and satisfies @y(x,,) = dgp, for all m, ¢ € L
and we define 3y = [ @y dx. We write |||} = (@, ), and notice that

(2.1) I¢nlze <llonli < (d+2)9nlla  VYone Vi
Basic interpolation estimates yield for all ¢y,, 3 € V), that

(2.2) |(b1,30)n — (b1, 31)| < Chllnll V3]
We define a discrete Laplace operator A, : Wh2(w;R3) — Vj, by

(2.3) (—And, xn)n = (Vé,Vxn) Vxn € V.
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It is well-known that there exist constants c¢j,co > 0 such that for all ¢, € Vp, and all £ € L we
have, see, e.g., [3],

(2.4) 1ARdnIIn < c1hy | [Vénlle < cahy 2 [ldnllze
(2.5) | A (x0)| < eshy 3o llénllLe .

where hpin, > 0 is the minimal diameter of elements in 7},.

To discretize Maxwell’s equations, we employ finite element spaces X; C Hy(curl;Q2), Y, C
L?(£; R?) subordinate to 7, such that V x X, C Y},; common examples are Nédélec’s first and
second family of edge elements on tetrahedra, where we choose the latter subsequently; cf. [12,
Chapter 8,5],

Xy, = {@n € Ho(curl; Q) : @4|x € P1(K;R?) VK €T},
and
Y, = {31 € L* (G R?) : 34| € Po(K;R?) VK €T},
where global interpolants of sufficiently smooth functions (§ > 0, p > 2)
Ix, : W2 R nWHP(Q,R?) — X;,, and Ty, : WY2H2(QR%) - Y,
exist and satisfy [12, Theorem 8.15, Remark 8.8§|
(2.6) le —Ix,@llz +hlIV x (¢ —Ix,9) |2 < CR* (| V0|2,
(2.7) 13 =2y, 32 < Ch[|3 ||
for all p € W22(Q,R3) and 3 € Wh2(Q,R3).

To define weak solutions of (1.1) (1.3), we assume that the given data satisfy

(2.8) my € WH(w,S?), Hy, Eg € L*(Q,R3), Je L*(Qp,R3).
We assume that the set of initial data satisfies div Hy = 0 and is consistent in the sense that
(2.9) div(Hg 4+ x,mp) =0 in Q, (Hp + xwmg,n) =0 on 99.

Definition 2.1. Suppose (2.8)—(2.9). Then (m,E H) is called a weak solution to (MLLG), if for
allT >0,
(1) m € L*®(0,T; W %(w,R?)), such that m;y € L*(wr,R3) and |m| = 1 a.e. in wr, and
E,H e L>(0,T; L*(Q,R%));
(2) for all ¢ € C*(wr;R?)), and 3 € D([0,T); C>°(2, R?) N Hy(curl, ©)),

(2.10) / (mt,¢>dxdt+a/ (m x my, ¢) dx dt
—_( —|—a2)[/ (m x Vm,V¢>dxdt—/ (m x H, ¢) dxdt} ,
(2.11) _50/ (E,3t>dxdt—/ (H,V x 3) dxdt
Qr Qp
+a/wT<E,3>dxdt:—/QT(J,3>dxdt+so/Q<Eo,3(O, ) dx,
(2.12) —,uo/ (H+me,3t>dxdt—i—/ (E,V x 3)dxdt
Qp Qr

— 1o /Q (FLy, 3(0,)) dx + g / (mg, 3(0,)) dx:

w

(3) we have m(0,-) = my in the sense of traces;
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(4) for almost all T' € (0,T) we have

(6%
S(myﬂ,E)(T/)Jr/ (1+’”L02 |my >+ 0| E|?) dx dt < Em ) (0) — /Q (J,E)dxdt,
Wt !

where
/ 2 Ho r N2, C0 roy 2
Emny(T) = [ 19m(T ) Pt [ (BT P+ IR P dx,
Existence of weak solutions has first been shown in [6].

3. STABILITY AND CONVERGENCE

The following lemma provides a discrete counterpart of (4) in Definition 2.1 for Algorithm 1.2.
Solvability of (1.7)—(1.9) follows from a contraction argument, which employs (i) discrete energy
law (Lemma 3.1), (ii) isomorphism property of the mapping v +— v —u x v in R? (cf. [1, p. 1079]),
and (iii) in particular, isomorphism property for the linear problem (1.8)—(1.9). For a less general
proof of existence of a solution, see Section 4.

Lemma 3.1. Suppose that |m)(x¢)| = 1 for all ¢ € L. Then the sequence {(mh,E H )}jzo
produced by Algorithm 1.2 satisfies for all j >0

() |miT(x)|=1 vleL,

. 1 1 1 alo =0+1/2
() & ({mg B BT +k2 3 demi R o 1B

€+12 f+12
&, ({m, HY, EY}) —kZJ / 2,

where

& ({md, 1} B} }) = o /\v h|2dx+/[“°\H ? + 0|Ei\2}dx.

Proof. Verification of (i) follows from choosing ¢, = @,m ” /2 (x¢) € Vp, for £ € L in (1.7): with
the properties of the discrete inner product and the cross product we infer

By |, (x0)|” = Beldimng ™ (xe) 13,72 (x0)) = (dmi ™ oo, (x0)) , = 0
Hence, if ‘mgz(xf)‘ = 1 then also ‘m{l“(xeﬂ = 1. To verify (ii), we first choose ¢}, = _(Ahmﬁlm—%

thﬁiﬂﬂ) to obtain

1 i +1/2 —_j+1/2 X —jt1/2 =i +1/2
Sell Vg e — (@ Py, ) = (@ x dnd T A P Py, L),
Choosing ¢, = d; ?f yields to

_ X w=j+1/2 j
sl g = (T x (AT 4 Py, HYT), di] )
Adding the last two identities and using the definition of Py, lead to

1 i1 i+1 i1 i +1/2
§dt||v m) " 7. + |dym) ™ |17 = (dymd T H, ).

a
e TTaz
In a second step, we choose (@p,3n) = (E]Jrl/2 H]+1/2) (1.8) (1.9) and add resulting identities,

j+1/2 j+1/2 =Jj+1/2 =j+1/2

de (S IE I+ S IEL ) + o BV e = —po (dpmf %) — (@12 D).

Summatlon of last two identities then proves assertion (ii). O
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Definition 3.1. For x € Q and t € [t;,tj41) define for ¢l = mﬁ,HfL,EfL,Jﬁ, and = 73,7+ 1,
z t=1j 1 +1
() = g ) + e o),
+

£ (t,x):=€(x), & (t,x) :zszﬂx), E(t,x) =&,

Given any T” > 0, equation (ii) in Lemma 3.1 may be rewritten as
y y

—j+1/2

, Qo r ~ 2 T = 2
(3.1) 5(ﬁ1+,ﬁ+,ﬁ;+)(T)+ 1+a2 ), [, dt + o 0 HEHLQ(UJ) dt
Tl _ =~
< g(rﬁo,l-io,EO)(O) +/O (J’E) dt.

We define Py, : L?(,R3) — Y}, through (u — Py,u,¢;) = 0 for all ¢, € Y, and all u €
L2(Q,R3?). Letting (@n,0n,3n)(t, ") == (Iv,0,Ix,¢,Py,3)(t,) for € C®(wp;R?) and 3,¢ €
D([0,T); C>° (2, R*) N Hy(curl,Q)) we may rewrite Algorithm 1.2 as follows:

T

T T o —
(3.2) /0 (ﬁ’lt;(ph)h dt—l—Oé/O (l’hi X ﬁ’lt;(ph)h dt = (1 +Oé2)/0 (ﬁ’l X (Ahﬁl+PVhH),¢h)hdt

T T _ T _ T _
33) @ [ Buendi- [ @V xediro [ (WBendi= [ G,
0 0 0 0

34 o [ @30 [ (7B 3= [ (h3)a
The a priori bounds in Lemma 3.1 provide the existence of a triple

(m,H,E) € [L®(0,T; W'2(w,S?)) N Wh2(wr; R?)] x [L(0, T; L2(Q;R?))]?,
which is the weak limit (as k, h — 0) of a subsequence {(rh, H, E)}k,h’ such that

m,m*,m - m in L0, 7; W (w,R?), m—m in W"?(wp,R?),
m,m*m — m in L3(wp,R?),
(H,H* H;E,E5E) & (H;E) in [L°((0,7); L*(Q,R%)]?

Since |m™*(x¢)| =1 forall £ € L, and all ¢ € (0,7) by Lemma 3.1, (i), we deduce with a discrete
Poincaré inequality that

1502 = 1] 2 gy < ORIV [P = 1] || oy < CRIERT) VY [Zo() < OBIIVIRT 224
for all K € 7;, and hence that [m™| — 1 almost everywhere in Qp. In particular, we deduce that
|m| = 1 almost everywhere in Q7. Owing to item (ii) of Lemma 3.1 and weak lower semicontinuity
of norms we verify that (m, H, E) satisfies part (4) of Definition 2.1. If m) — mg in L?(w;R3) as
h — 0 then weak continuity of the trace operator yields that m(0,-) = my in the sense of traces.

Identification of limits in (3.2) apart from the last term can be done as in [3] and we discuss the

term which involves thI:I. By definition of Py, ,

(E X thﬁ, ¢h)h = —(E X ¢0h, thﬁ)h = —(Ivh(ﬁ X ¢h), PVhI:I)h

= —(Zv,(mx ¢3),H)

= —((@v, —1d)(@ x ¢,). H) — (@ x ¢, H).
6



Noting that

(@Tv, —1d)@ x ¢4), H) < Ch? Y (| D20 x é1) Il a0 H [l 2 )
KeT,

< CR* || Vi | g2 || V|| | H || 2

we deduce that
T _ T
/ (ﬁ’l X thH,¢h)hdt — / (m X H,¢0)
0 0

as h,k — 0. To identify the limit in (3.3), we use the identity

T 5 T _
/O (B o) dt = — /0 (E. (gn)r) dt + (BT, ).on(T,)) — (B0, ), 01(0, )

and a passage to the limits in the terms on the right-hand side is straightforward owing to their
linearity and the convergence properties of E; we proceed accordingly with the leading term in (3.3).
It remains to consider the second term in (3.4). Owing to V x X} C Yy, 35 = Py, 3, and the

properties of E we verify

T _ T _ T _ T
/O(VXE,z,h)dt:/o (VxE,3)dt:/ (E,Vx3)dt—>/0 (E,V x 3)dt

0

Finally, weak lower semicontinuity of norms and strong convergence of discrete initial data implies
the energy inequality in item (4) of Definition 2.1 for the limit (m,E,H). We have thus proved
the following theorem.

Theorem 3.1. Let (2.8) (2.9) be valid. Suppose that we have |mf(x,)| = 1 for all { € L and
let {(mh,E] H’ 1 )}j>0 solve Algorithm 1.2. Assume that m{) — mg in W?(w) and (H) EY) —
(Ho,Eq) in L2(Q,]R3) as h — 0 and let T > 0 be a fized constant. As k,h — 0, a subse-
quence of (M, H,E) converges weakly to (m, H,E) in [LOO (O,T; WLZ(Q,SQ)) N WLZ(wT,R:S)] X
[LOO((O,T);LQ(Q,R?’))]Q, and (m,H,E) is a weak solution of (1.1) (1.3).

In fact, every weak accumulation point of (1, H, E ) solves (1.1)~(1.3). Note also that no discrete
version of the compatibility assumption (2.9) is assumed for (H),E) m) ).

4. SOLVING THE NONLINEAR SYSTEM

We employ a fixed-point iteration to solve the nonlinear system in each step of Algorithm 1.2:
Given mh7 HJ an;i2EJ (or approxnn?lxt;onq mh7 HJ and EJ) we'alm at approximating wy, =
_?1“/2, Fy, = E?f / , and Gy, := H?f / . The time derivative dtmgfl

and similar expressions for thjH and dtHj+1 A linearization of the nonlinear term (Wh X (Ahwh—i—

Pye Gh),¢h) and the identity mh X cltm]Jrl = %ﬁgflﬂ X mh lead to the following algorithm.

is replaced by 2(wy, — mgl)

Algorithm 4.1. Set (w9, F9 GY):= (mh,EJ H]) and ¢ := 0.
(i) Compute (WiJrl,Fffl,Gf;H) €V, X X X Yy, such that for all (¢n,en,3n) € Vi X X(})Z x Y,
7



there holds

2 .
_ 2 .
@1) —(1+ 042)(""?rl X (Apwi, + PyrGh),én), = %(mh,%)h,
4.1
2¢e 2¢e —j+1/2
0 (FLn) = (G V < on) + o (xFyon) = =7 (B]on) — <JJ+ " en),

%(ijl’3 )+ (V x FZ+1 ,31) + 2:0( 2+1 \3n) = 2Z0 (I:IJ 3+ k; (

(ii) Stop and set (m ]Jrl E]Jrl HJH) 2(w Hl,Ff?l,fol) - (rhgl,Ei,I:I?l), once

7.35).

l l 4 l
(4.2) 1An (Wi = wi)lln + [|GL" = Gl <e.
(113) Set £ := L+ 1 and go to (i).

For ¢ — 0, the output of the iteration converges to the solution of (1.7) (1.9) (in case rhfl = m?l
E) = E}, and H} = H}) provided that k < ch2,,, /(1 + a?) with a factor ¢ > 0 that only depends
on the geometry of 7p,.

Lemma 4.1. Suppose that Hﬁl%HLoo < c¢y. For all £ > 0 there erists a unique (wiﬂ,Fffl,Giﬂ)
solving (4.1) and there holds

Vi 20| wit = whln -+ V2ol [ = B[+ ol G - Gl
< (V21w = wi ™l + Vil GF — G712z )

with © = ceoV/15(1 + o®)kh, 2 provided that c2\/5h,5 > 1. Let (i ]Jrl E]Jrl HJH) be the

min

output of Algorithm 4.1. There ezxists a function R? € V), satisfying HRJHh < € such that for all
(Dh,Yn,3n) € Vi, X XO X Y}, there holds

(dymx ¢h)h + a(mh x dym’ H,th)h
(1 o) @) x A Py, )60, = (L o) @ < R 4),,
() N @B n) (B, x o)+ o0 o) =~ ),
M0 (@B 30+ (V B, 304 K0 (g ™ 31) = 0.

Moreover, if \mh(xm)| =1 for all m € L then there holds \m]+1(xm)| =1 for allm € L.

Proof. Step 1. For (@, pn,3n) = (wffl,Ff;‘H, fol) the sum of the left-hand sides in (4.1) (after
multiplication of the first equation by pug) equals

200, ¢ 220 ||t 0 2Mo ¢ 2p0 g ¢
20 1 2 4 ol B+ G+ 2 e G,
Since 2(w), b+l fol) va”lﬂh—ﬂ(}fflHL2 the bilinear form defined by the left-hand side of (4.1)
is positive deﬁnite on [Vh X X% X Yh]2 and (4.1) admits a unique solution.

Step 2. We next control Hwe ||zee uniformly for all £ > 0: Let m € L be such that HwiHHLoo =
\wi+1(xm)|. Putting ¢y, = mwiﬂ(xm) in the first equation of (4.1) leads to

(4.5) w5, e = W™ ()| < v ()| < (100 || 2= < co.
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Step 3. Subtraction of two subsequent equations of iteration (4.1) shows

2w wh B — (W wh) < i ),
—(14a?)((w}, S wh) x (Apw), + PynGh), ¢h)
—(1+a®)(wj, x [(Apw), + PynGy) — (Apw} ' + Pyn Gl 1)), én), =

2e

70 (Ft —F),0n) — (G = G,V x @p) + o (xw(FiT — F)), 1) = 0,
9 9

PG =GB+ (Vo (BT = F),30) + =0 (wi - wi3,) =,

Adding the three identities (after multiplying the first equation by p) and choosing (én,@n,3r) =
(wffl — wh,Fe+1 Ffl, fol — sz) provides

200t w2 + 2R B + ol (P~ BRI + 220 iGE — Gl
—%(wff1 — wh, Ge"'1 - Ge)
+ po(1 4 a®) (W), x [(Apw), + Py Gj) — (Apwy, ' + Pyn Gy )] wy ™! — Wi)h
< 0) it wi 2 4+ 2 jGE — Gl

Ho X — _ 2
+k7(1+a2)203(HAh(wi—Wﬁ s+ Pva(Gl, — G, HIl) ™

The estimates ||Apdp||n < 3VER 2 ||dnlln and [|[Pyr3alln < [|35]|22 imply (4.3).
Step 4. In order to prove (4.4) we replace dtmﬁ'1 = k(wffl rh?l), rhgfl/Q = fj’l, etc. in (4.1)
to verify with R/ := (Apwf + PynGY) — (A wf;“ + Py G

o 200 —j+1/2  _
(dtmﬁl@h)h - ?(m?f % x my, @ )n

= ~ =7 *J+/ =
—(14a?)( ?f % x x (Ap ?z+1/2+PVhHh ) @), = (1+ o) (m, YARAIS : ¥ b)) 5

€ - =j+1/2 =j+1/2 —j+1/2
?O (GEL on) — (B .V xon) +o(wE, | on) =3 o),
- =j+1/2 .
LU (@ 3) + (V< By 30) + 2 (@] 3,) = 0.
Using 2 zm J+ /2 Ih?Z = —mh X dtm]+ we verify (4.4) and the stopping criterion implies ||R||;, < e.
Step 5. We choose ¢, = gomrh?lﬂ/ (Xp,) in (4.4) to verify dt\m]+1(xm)|2 =0. O

Remark 4.1. Convergence to a weak solution of (MLLG) of approximations satisfying (4.4) as

(k,h,e) — O such that e = o(h%,,) is verified as in Section 3. The only difference is a perturbed
9



energy law: instead of (1) in Lemma 3.1 one has

J
~ 1 il fgtl Qfo = g2
En({og, " BB k) (1= o) Sl domg o By 1
/=0

i _ —={+1/2
Sgh({mh7H07E } —]{JZ £+1/27
J ~(+1/2
+EY {1+ a?)| R I (eshy2, + I HT2 ) +
=0

1
—(1+a%)al R I},

5. COMPUTATIONAL EXPERIMENTS

5.1. Physical model. In below, let j =, h = and e= W denote the scaled electric current,
magnetic and electric fields, respectively

In practical computations, the following physical constants have to be included in the model: the
permeability of vacuum pg, the permittivity of vacuum €, the exchange constant A*, the anisotropy
constant K*, the saturation magnetization My, and the gyromagnetic ratio . The direction of the
uniaxial anisotropy is characterized by a unit vector p € S?>. Without loss of generality, we assume
that p is parallel to one of the coordinate axes. The effective field then becomes

(5.1) h.g = AAm + K(m,p)p + h,
with constants
B 2A* _ 2K*
po M2’ M2

The LLG equation, which after rescaling in time, takes a dimensionless form
(5.2) mt—i—amxmt:(l—i—aQ)mxheg in wr,

now corresponds to a fully physical situation with time measured in units of (yM,)™!s, cf., e.g. [19].

To have the same time scales for the whole MLLG system, the Maxwell’s equations have to be
rescaled in time appropriately. After a change of the time variable and an additional scaling by
factor M ! we obtain

(5.3) coer+Vxh+oyx,e=—-j on Qps,
(54) Mo ht —Vxe= — o 1M on QT* s

where g9 = YMeg, o = yMspl and T = M T.
A counterpart of Lemma 3.1, for (5.2)-(5.4) reads as follows.

Lemma 5.1. Suppose that |m)(x,)| = 1 for all ¢ € L. Then the sequence {(mi,Ei,H%)}jzo
produced by Algorithm 1.2 satisfies for all j >0

() Imix)|=1 vleL,

. aqu _0+1/2
() Erim & ((md it el +kz 2l dimf ™ 2+ o |8, 2,

J
= (. b of)) k3G 7).

10



where
HOMS

& ({mj b)) = E5 /[A\ Vi, 2+ KTy, (1 - (mf,p)?) | dx
Bo pi2 , €0 52
+/Q[2 B2+ e [2] ax
= ECext+ Eanis + €+ &k .

In the following we refer to Ep as the total energy and to the terms &g, Eqn, €, Ep as the
exchange energy, anisotropy energy, magnetic field energy, and electric field energy, respectively.

Remark 5.1. To obtain physically relevant results, the initial condition for the Mazwell-LLG system,
should satisfy the “divergence-free” constraint from, i.e., divh(hg—i—xwm%) = 0. This can be achieved
by taking h9 = h? — v, (Pim}), with hY € Y}, s.t. div,h) = 0. The projection P} : Vi, — Yy is
foray, € Vy, defined through (Pjup,3s) = (up,3) for all 3, € Y. Since myj, is piecewise linear,
we have that the value of P;‘lmf1 on an element K € Th‘w corresponds to the value of m?l in the
barycenter of K. Further, we have from (1.9) that

Ko 1 41 Ho j+1 j+1/2 Ho 1 Ho j

(0 3) + B2 (Pmy T 30) = —(V < 072 30) + B2 (0] 30) + 2 (Pim] 31) V3 € Y
From the previous equation, it can be deduced by induction, that divh(hgfl + XW(PYhmgfl)) =0
is satisfied pointwise in 2. The above arguments remain valid for (4.1). In our experiments, we
simply take h to be a constant vector field.

5.2. Solution of the discrete system. Without loss of generality, we consider the discrete system
with o = 0. The first equation from (4.1), corresponding to the discrete LLG equation, is efficiently
solved by the biconjugate gradient stabilized (BiCGStab) method. The solution of the second and
third equations from (4.1) is equivalent to solving a discrete algebraic system of the form

(2 )(3)-()

where

2g0 i 210 (2i 2j Y
7(%7‘/’%), B = 7(3h=3?1)= Cij = (V x¢3,,31)

and the vectors of unknowns @ = {e;}, h = {h;} are defined through
Fj = Zeisofw Gy = Zhi:ﬁ.
i

Aij =

7

Similarly, we define f = {f;}, 8 = {g;}, where f =}, fipl and g = Y, 9:3} represent the right-hand
sides of the discrete problem.
The system (5.5) can be effectively solved by a preconditioned inexact Uzawa method which
consists of two steps:
(1) Hn = Bil(g - Cén)’
(2) et =@ + pS~1(f+ CTh" — Ae").
Here, p > 0 is a constant (we set p = 1 below), and S~! is a suitably chosen preconditioner, that
can considerably speed up the convergence of the Uzawa iterations. Note that the computation of
B! in the first step of the above Uzawa algorithm is trivial, since the matrix B is diagonal, owing
to the choice of piecewise constant functions.
The preconditioner S is an approximation of the Schur complement, i.e.,

S~ (CTB7'C)+A.
11



The construction of the preconditioner is motivated by the fact that our formulation can be (for-
mally) considered as a mixed approximation of an eddy current problem of the form

2 k k
Z0OF o)+ (VX FLV xp) = (f,0) + —(V xg,9) Vg € Hy(curl; Q).
k 2410 240

In matrix notation we have S = M 4+ R, with matrices

S Bhel), Riy=5-(Vx g,V xg)).
We compute the approximation of S~ by the BiCGstab algorithm with at most 50 iterations for
every sub-step. A better approximation of S™! can be obtained by using a multigrid method for
eddy current equations, see e.g. [8]|, which together with the moderate number of outer Uzawa
iterations gives an effective method with multigrid complexity.

It is possible to eliminate h from (5.5), which leads to a system of equations in the Schur com-
plement form

(5.6) (c"B'C+A)e=f+C'B'g.

An alternative approach to the Uzawa algorithm is to solve equation (5.6) by the conjugate gradient
method, see e.g. [17] and the references therein. The conjugate gradient algorithm needs to evaluate
B!, which is trivial, since B is diagonal. We can speed up the convergence of the conjugate gradient
algorithm by using a suitable preconditioner. In our case, one could use the same preconditioner as
for the Uzawa algorithm. We use the conjugate gradient algorithm for (5.6) without preconditioning
in our experiments, since it proves to be slightly faster than the preconditioned Uzawa algorithm.
We expect both methods to have comparable performance with effective multigrid preconditioners,

cf. [17].

Mij =

Remark 5.2. We observe slow convergence of the algebraic solvers for domains of size O(107°), i.e.,
in practical applications. The convergence properties of the solvers improve for larger values of the
gyromagnetic ratio v or for smaller size of the time step k. We believe that the convergence rates can
be substantially improved with o suitable multigrid preconditioner. Note that similar problems with
solver convergence in micromagnetic applications are reported in [21], where a conjugate gradient
algorithm is applied to the eddy current formulation of Mazwell’s equations.

5.3. Computational results. Our computational code is based on the finite element package
ALBERT, see 22|, with tetrahedral meshes in 3D. We use standard piecewise linear elements for
the discretization of my, with degrees of freedom (DOFs) located at the vortices of the mesh, and
piecewise constant elements for hy, with DOFs located at the barycenters of the mesh elements. We
discretize ey, by edge elements of the first kind, with one DOF per every edge of the mesh. The edge
elements of the first kind have only slightly worse approximation properties than the edge element
of the second kind, however the latter need two DOFs per edge. In our code we replace (4.2) in
Algorithm 4.1 by a slightly more practical stopping criterion for the fixed-point iterations, i.e.,

lwitt —will, < hZ,
G, = Ghlle < e

We choose ¢ = 107® in our computations. The convergence of the fixed-point iterations is at-
tained after at most 6 steps in all presented experiments. We observe monotone decrease of the
discrete energy from Lemma 5.1 in all experiments, which confirms good numerical convergence of
Algorithm 4.1.

The first example is academic which studies possible finite-time blow-up behavior of weak so-
lutions to (1.1)—(1.5) with the help of Algorithm 1.2. We say that (discrete) finite-time blow-up
occurs if the sequence {||Vmj || }j attains the maximum value of the mapping v, — ||Vvy||Le
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among functions v, € Vy, satisfying |vj,(x¢)| = 1 for all £ € L. Corresponding studies are reported
in [3, 4] for heg = Am and w C R?, where blow-up is computationally evidenced for supercritical
(initial) data. Here, we study the influence of the electromagnetic field (e, h?) : @ — R3 on the
supercritical m® : w — S2.

Example 5.1. Let (0,1 =w =Q and j =0. Let m® : w — S? and (e’,h%) : Q — [R3]2 be
defined by
mO(X) — (0’07 _1) fOT |X*‘ > 1/27
(2x* A, A% — [x*|?) /(A2 + |x*[?)  for |x*| < 1/2 and x* € w
h(x) = (0,0,Hy)  in <,
e’(x) = (0,0,0)  inQ

with x* = (x1 —0.5,29 — 0.5,0) and A = (1—2|x*|)*/4. The computational domain Q = w = (0,1)3
15 partitioned into uniform cubes with side h, each cube consists of six tetrahedra. We choose the
time step k = 1075 and set the other parameters o« =~ = My = g =1, ¢ = 1075, K = 0.

The constant Hg represents the strength of initial field in the x3-direction. We computed the
experiments for Hy, = —30, 0, 30 on meshes with h = 1/2% and h = 1/2°. The evolution of ||[Vmy,||so
is depicted in Figure 1. The evolution of the exchange energy can be found in Figure 2. Figure 3
displays the evolution of ||hy,||oo/Hs. We deduce from the Figures 1 and 3 that variations of ||Vmy||oo
close to a certain time 7% > 0 (‘blow-up time’) correspond to variations of ||hy| o close to the same
time 7. A similar behavior is found for the evolution of ||ey||s which is depicted in Figure 4.
Further, we observe that the mesh size not only determines the quantity max; [|[Vmy(¢,-)|leo, cf. [3,
4], but influences the evolution of ||hy|leo, ||€r]/cc- The computations with Hy = —30 show that
negative initial magnetic field accelerates the blow-up of the solution. The evolution becomes more
complex for Hy = 30; the blow-up time is slightly delayed. Beyond the instability, when the
magnetization is aligned along the (0,0, —1) direction, the influence of the magnetic field on the
evolution prevails and the magnetization starts to rotate in the opposite direction, i.e. (0,0, 1), see
Figure 5 for h = 274 We did not compute beyond the time ¢t = 0.214 however it is reasonable
to expect that the magnetization will be aligned in the (0,0,1) direction after the steady state is
reached. The detail of the solution for H, = 30, h = 274 near x = (0.5,0.5,0.5) is depicted in
Figure 6. There was only little variation of the magnetization in the x3 direction, we therefore
present all results on the cross-cut through the domain at x3 = 0.5.

The following example is derived from a benchmark problem [16, Problem # 1] of a thin uniaxial
ferromagnetic film, for which long-time dynamics is studied in [14], in the case d = 2. Here, we
study the dynamics of the problem for d = 3. According to our knowledge, there are no comparable
studies for d = 3 in the existing literature.

Example 5.2. Let w = (0,2) x (0,1) x (0,0.02), and Q = (—0.2,2.2) x (—0.2,1.2) x (—0.04,0.06)
(the domain dimensions are in pm), with
a=05 7=22x10°, M,=8x10°, K*=5x10%? A*=13x10"!,
p=(1,0,0), &}=0.88422x 1071, ¥ =1.25667 x 1075, o=0

and (j=0)

(e, h’)=(0,0) inQ.
The initial condition m% 15 defined by assigning unit vectors with random orientation to every vortex
of the mesh.

The domains €2 and w are partitioned into bricks of dimension 0.04 x 0.04 x 0.02. Subsequently, the
corresponding computational meshes are obtained by subdivision of each brick into six tetrahedra.
This partition results in 7956 degrees of freedom for m; on w and 189000, 81325 degrees of freedom

13



for ey, hy, on Q, respectively. We compute on a time interval (0,8000), using a uniform time step
k=0.1.

The evolution of the discrete energies Er, Eexy Ean, €1, Ep (i.e., the total, exchange, anisotropy,
magnetic field and electric field energy) from Lemma 5.1 is depicted in Figure 7. Snapshots of the
magnetization at different time levels can be found in Figure 8; the vectors are colored according to
the value of the xo-component of the magnetization vector. For comparison, Figure 9 shows the
evolution of magnetization with the same initial condition computed without taking the coupling
with Maxwell’s equations into account. The evolution of the discrete energies Er, Eer, Ean 1S
displayed in Figure 10 (note that, &g = Eg = 0). The figures show a clear difference between the
two cases.

The data for the last example are taken from [16, Problem # 4]. Here we study the evolution of
the magnetization towards a steady state, the so called S-state, cf. [16, Problem # 4].

Example 5.3. Let w = (0,0.5) % (0,0.125) x (0,0.003), and 2 = (—0.75,1.25) x (—0.9375, 1.0625) x
(—0.7665,0.7695) (in pm), with

a=1, y=22x10°, M,=8x10°, K*=0, A*=13x10"'1
g5 =0.88422 x 1071, p# =1.25667 x 1075, o =0

and (j=0)

m’ =(1,0,0) inw,

h? =(0.01,0.01,0.01), e’=0 inQ.
The domain w is partitioned uniformly into cubes of dimensions 0.00390625 x 0.00390625 x 0.003,
where each cube consists of siz tetrahedra. The non-uniform mesh for the domain ) is constructed
in such a way that it is identical to the mesh for w in the region Q Nw and the mesh size gradually

increases away from the overlapping region. A cross-cut through the mesh at x3 = 0 is displayed in
Figure 11.

The above discretization of the computational domains results in 25,542 DOFs for my, on w and
138,302, 353,568 DOFs for ey, hy, respectively. We employ a uniform time stepping, with £ = 0.01.

The magnetization at time 7' = 300 is displayed in Figure 12, the vectors are colored according
to the zo-component of the magnetization. Convergence towards the S-state (cf. [16, Problem # 4])
can be observed from the results. No steady state has yet been reached at the final time, however
the convergence towards the steady state after the time T = 300 has been very slow. The evolution
of the discrete energies from Lemma 5.1 is depicted in Figure 13.

6. CONCLUDING REMARKS

We devised an implicit discretization of the Maxwell-Landau-Lifshitz-Gilbert system which is
based on linear finite elements. For pairs of time-step sizes and mesh-sizes tending simultaneously
but independently to zero, we showed that every accumulation point of the sequence of numerical
approximations is a weak solution of the continuous equations satisfying an energy inequality. An
iterative solver for the solution of the nonlinear system of equations in each time step is proposed
and its convergence is proved under the time-step restriction & < Ch?. The convergence of the
nonlinear solver is robust for small values of the damping parameters o. Owing to expected non-
uniqueness and possible occurrence of singularities, strong convergence of the (whole) sequence or
error estimates cannot be expected unless additional assumptions on an exact solution are made.
The use of higher order finite elements for the discretization of m are beyond the scope of this
paper and remain to be analyzed in future work. Our numerical experiments confirm the theo-
retical results and indicate that finite-time blow-up for MLLG is possible and hence that singular
solutions can develop from smooth initial data. Two examples based on standard micromagnetic
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benchmark problems are computed to demonstrate the potential of the method for practical appli-
cations. Further, we constructed a Schur complement preconditioner for a saddle point system of
algebraic equations which arise in every iteration of the nonlinear solver. We observed, that the
preconditioning dramatically reduced the number of iterations needed for the convergence of the
linear solver on structured and unstructured meshes. A multigrid type preconditioner, which is
robust with respect to the time step size, is subject to our current research.
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