
A CONVERGENT IMPLICIT DISCRETIZATION OF THEMAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATION�UBOMÍR BA�AS∗, SÖREN BARTELS†, AND ANDREAS PROHLAbstra
t. We propose an impli
it, fully dis
rete s
heme for the numeri
al solution of the Landau-Lifshitz-Gilbert equation whi
h is based on linear �nite elements and satis�es a dis
rete sphere
onstraint as well as a dis
rete energy law. As numeri
al parameters tend to zero, solutions weaklya

umulate at weak solutions of the Maxwell-Landau-Lifshitz-Gilbert equation. A pra
ti
al lin-earization of the nonlinear s
heme is proposed and shown to 
onverge for 
ertain s
alings of numer-i
al parameters. Computational studies are presented to indi
ate �nite-time blow-up behavior andto study 
ombined ele
tromagneti
 phenomena in ferromagnets for ben
hmark problems.1. Introdu
tionThe Maxwell-Landau-Lifs
hitz-Gilbert equation (MLLG) des
ribes 
ertain ele
tromagneti
 phe-nomena in a ferromagnet o

upying the domain ω ⋐ Ω ⊆ R
d, d = 2, 3. For a parameter α > 0whi
h serves as a damping fa
tor, the magnetization �eld m : (0, T ) × ω → S

2, where S
2 = {x ∈

R
3| |x | = 1} is the unit sphere, and the ele
tri
 and magneti
 �elds (E,H ) : (0, T ) × Ω → R

3satisfy for all T > 0

mt + αm× mt = (1 + α2)m × Heff in ωT := (0, T ) × ω ,(1.1)
ε0 Et −∇× H + σ χωE = −J in ΩT := (0, T ) × Ω ,(1.2)
µ0 Ht + ∇× E = −µ0 mt in ΩT ,(1.3)for the (simpli�ed) e�e
tive �eld Heff = ∆m + H. This 
hoi
e of Heff 
omprises the most relevant
ontributions to the more general version (5.1) below. The 
onstants ε0, µ0 ≥ 0 denote respe
tivelythe ele
tri
 and magneti
 permeability of free spa
e while σ ≥ 0 des
ribes the 
ondu
tivity of theferromagnet. The �eld J : ΩT → R

3 denotes an applied 
urrent density and χω : Ω → {0, 1} isthe 
hara
teristi
 fun
tion of ω. For simpli
ity we suppose that Ω ⊂ R
3 is a bounded 
avity with aperfe
tly 
ondu
ting outer surfa
e ∂Ω into whi
h the ferromagnet ω ⋐ Ω is embedded, and Ω \ ω isassumed to be va
uum [14℄. The system (1.1)�(1.3) is supplemented with initial 
onditions(1.4) m(0, ·) = m0 in ω , E(0, ·) = E0 , H(0, ·) = H0 in Ωand boundary 
onditions(1.5) ∂nm = 0 on ∂ωT , E × n = 0 on ∂ΩT .We remark that the in
lusion of a damping term is ne
essary to permit the magneti
 �eld to alignwith the e�e
tive �eld and refer the reader to [5, 23, 11℄ for a more detailed dis
ussion of themathemati
al model. Interesting 
omputational studies of the model (1.1)�(1.5) 
an be found in[14, 21℄.1991 Mathemati
s Subje
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The 
onstru
tion of 
onvergent numeri
al s
hemes for the Maxwell-Landau-Lifshitz-Gilbert sys-tem (1.1)�(1.5) is di�
ult due to the nonlinear 
hara
ter of (1.1). Moreover, the limited �exibilityof pie
ewise polynomial �nite elements and the arti�
ial damping of impli
it time-dis
retizations
hemes make it hard to appropriately a

ount for the 
onstraint |m | = 1 a.e. in ωT . The semi-dis
rete s
heme proposed in [14℄ uses numeri
al integration to guarantee that the 
onstraint is sat-is�ed at the nodes of a triangulation. Stability of that s
heme is proved in [14℄ but its 
onvergen
ehas not been dis
ussed in the literature so far.A

ording to Landau & Lifshitz [10℄, damped pre
ession (α > 0) of the magnetization m : ωT →
S

2 is governed by(1.6) mt = m× Heff − αm× (m × Heff) .Gilbert's approa
h modi�es the undamped pre
ession equation by a damping term whi
h is propor-tional to the rate of 
hange of magnetization, see (1.1). Both approa
hes are analyti
ally equivalentfor smooth magnetization �elds and weak solutions to (MLLG) exist in both 
ases [23, 6℄. Thenumeri
al analysis di�ers signi�
antly and Gilbert's approa
h turns out attra
tive from a numeri
alviewpoint. Expli
it and impli
it dis
retizations for the simplest 
hoi
e Heff = ∆m have been pro-posed and analyzed in [2, 4, 3℄ and approximations are known to respe
tively 
onverge 
onditionallyand un
onditionally with respe
t to dis
retization parameters to weak solutions of (1.1). Corre-sponding results for (1.6) are so far only available for (lo
ally existing) strong solutions, 
f. [18, 7℄.The arti
les [13, 20℄ study 
onvergen
e for the simpli�
ation Heff = H for 
ases where smoothsolutions to (1.1)�(1.5) exist. Convergen
e of iterates of the following s
heme to weak solutions of(1.1) for Heff = ∆m is veri�ed in [3℄; the proof relies on 
onservation of |mj
h | = 1 at all meshpoints and for all j ≥ 0 as well as a dis
rete energy law.Algorithm 1.1. Let m0

h ∈ Vh. Given j ≥ 0 and m
j
h ∈ Vh, let m

j+1
h ∈ Vh solve

(dtm
j+1
h ,φφφh)h + α (mj

h × dtm
j+1
h ,φφφh)h = (1 + α2)(m

j+1/2
h × ∆̃hm

j+1/2
h ,φφφh)h ∀φφφh ∈ Vh .Here, Vh ⊂ W 1,2(ω; R3) is the �nite element spa
e subordinate to a triangulation Th of ω 
on-sisting of pie
ewise linear fun
tions and (·, ·)h denotes a dis
rete version (numeri
al integration)of the inner produ
t in L2(ω; R3). Moreover, ∆̃h : W 1,2(ω; R3) → Vh is an approximation of theLapla
e operator. For a time step size k > 0 we write dtϕ

j := k−1
(

ϕj − ϕj−1
) for j ≥ 1, and

ϕj+1/2 := 1
2

(

ϕj+1 + ϕj) for j ≥ 0 and a sequen
e {ϕj}j≥0; we refer the reader to Se
tion 2 fordetails.The goal of this work is (i) to propose a dis
retization of (1.1)�(1.3) based on linear �nite elementswhi
h satis�es a dis
rete sphere 
onstraint and a dis
rete energy identity, (ii) to verify 
onvergen
eof iterates towards a weak solution of (1.1)�(1.3), and (iii) to propose a reliable solver for thenonlinear system of equations in ea
h time step. This program is motivated by possible �nite-timeblow-up behaviour of solutions to (1.1)�(1.3), see Se
tion 5, whose numeri
al simulation requiresreliable numeri
al s
hemes. Our strategy is to appropriately modify Algorithm 1.1 and to extendits analysis from [3℄.The dis
retization of (1.1)�(1.3) requires a proper 
hoi
e of Ansatz spa
es for the approximation of
(E,H ). Suitable pairs 
an be found in [13, 14℄ and we let Xh ⊂ H0(curl; Ω) and Yh ⊂ L2(Ω, R3)be �nite dimensional spa
es satisfying ∇ × Xh ⊂ Yh. We then aim at analyzing the followingalgorithm for the numeri
al approximation of (MLLG).2



Algorithm 1.2. Let (m0
h,E0

h,H0
h ) ∈ Vh×Xh×Yh. For j ≥ 0 and (mj

h,Ej
h,Hj

h ) ∈ Vh×Xh×Yh,let (mj+1
h ,Ej+1

h ,Hj+1
h ) ∈ Vh × Xh × Yh solve

(dtm
j+1
h ,φφφh)h + α (mj

h × dtm
j+1
h ,φφφh)h(1.7)

= (1 + α2)
(

m
j+1/2
h × (∆̃hm

j+1/2
h + PVh

H
j+1/2
h ),φφφh

)

h
∀φφφh ∈ Vh ,

ε0 (dtE
j+1
h ,ϕϕϕh) − (H

j+1/2
h ,∇×ϕϕϕh) + σ (χωE

j+1/2
h ,ϕϕϕh) = −(J

j+1/2
h ,ϕϕϕh) ∀ϕϕϕh ∈ Xh ,(1.8)

µ0 (dtH
j+1
h ,ZZZh) + (∇×E

j+1/2
h ,ZZZh) = −µ0 (dtm

j+1
h ,ZZZh) ∀ZZZh ∈ Yh .(1.9)Here, PVh

: L2(ω, R3) → Vh, with (PVh
u,ϕϕϕh)h = (u,ϕϕϕh) for all ϕϕϕh ∈ Vh denotes the L2-proje
tion into Vh.Lemma 3.1 below establishes 
onservation of |mj

h | = 1, j ≥ 0, at nodes of the triangulation
Th, and a dis
rete energy law for solutions to Algorithm 1.2. Our �rst main result is Theorem 3.1whi
h states un
onditional 
onvergen
e of subsequen
es of outputs of Algorithm 1.2. A simple�xed-point iteration for the approximate solution of the nonlinear system of equations in ea
hstep of Algorithm 1.2 whi
h preserves the unit-length 
onstraint is proposed in Algorithm 4.1.Its 
onvergen
e is proved under the mesh 
onstraint k = O(h2) in Lemma 4.1. Numeri
al studieswhi
h indi
ate possible �nite-time blow-up of weak solutions of (1.1)�(1.5) are reported in Se
tion 5.Simulations of ben
hmark problems from [16℄ are also reported.2. PreliminariesThroughout this paper we assume that Th is a regular triangulation of the polygonal or polyhedralbounded Lips
hitz domain Ω ⊂ R

d into triangles or tetrahedra of maximal mesh-size (maximaldiameter of triangles or tetrahedra) h > 0 for d = 2 or d = 3, respe
tively, and Th

∣

∣

ω
denotes itsrestri
tion to ω ⋐ Ω. We de�ne the lowest order 
onforming �nite element spa
e Vh ⊂ W 1,2(ω; R3)by

Vh =
{

φφφh ∈ C(ω; R3) : φφφh|K ∈ P1(K; R3) ∀K ∈ Th

∣

∣

ω

}

,where P1(K; R3) denotes the set of polynomials of total degree less or equal to one if restri
tedto the element K ∈ Th. Given the set of nodes {

xℓ : ℓ ∈ L
} of the triangulation Th

∣

∣

ω
, the nodalinterpolation operator IIIVh

: C(ω; R3) → Vh satis�es IIIVh
φφφ(xℓ) = φφφ(xℓ) for all ℓ ∈ L. We let 〈·, ·〉denote the inner produ
t in R

d and we de�ne
(

f ,g
)

=

∫

Ω
〈f ,g〉dx and (

φφφ, ZZZ
)

h
=

∫

ω
IIIVh

(

〈φφφ,ZZZ〉
)

dx =
∑

ℓ∈L

βℓ〈φφφ(xℓ),ZZZ(xℓ)〉 ,for f ,g ∈ L2(Ω; Rd), 
ertain weights βℓ > 0, ℓ ∈ L, and 
ontinuous fun
tions φφφ, ZZZ ∈ C(ω; R3). Notethat we use the notation (·, ·) for the inner produ
t in L2(Ω) as well as in L2(ω) � it will always be
lear from the 
ontext whi
h of them it represents. For ea
h ℓ ∈ L we let ϕℓ ∈ C(ω) denote thenodal basis fun
tion in Vh whi
h is Th-elementwise a�ne and satis�es ϕℓ(xm) = δℓm for all m, ℓ ∈ Land we de�ne βℓ =
∫

ω ϕℓ dx. We write ||φφφ||2h =
(

φφφ, φφφ
)

h
and noti
e that(2.1) ‖φφφh ‖2

L2 ≤ ‖φφφh ‖2
h ≤ (d + 2) ‖φφφh ‖2

L2 ∀φφφh ∈ Vh .Basi
 interpolation estimates yield for all φφφh,ZZZh ∈ Vh that(2.2) ∣

∣(φφφh,ZZZh)h − (φφφh,ZZZh)
∣

∣ ≤ Ch‖φφφh‖ ‖∇ZZZh‖ .We de�ne a dis
rete Lapla
e operator ∆̃h : W 1,2(ω; R3) → Vh by(2.3) (−∆̃hφφφ,χχχh)h = (∇φφφ,∇χχχh) ∀χχχh ∈ Vh .3



It is well-known that there exist 
onstants c1, c2 > 0 su
h that for all φφφh ∈ Vh and all ℓ ∈ L wehave, see, e.g., [3℄,
||∆̃hφφφh||h ≤ c1h

−1
min||∇φφφh||L2 ≤ c2h

−2
min||φφφh||L2 ,(2.4)

|∆̃hφφφh(xℓ)| ≤ c3h
−2
min||φφφh||L∞ ,(2.5)where hmin > 0 is the minimal diameter of elements in Th.To dis
retize Maxwell's equations, we employ �nite element spa
es Xh ⊂ H0(curl; Ω), Yh ⊂

L2(Ω; R3) subordinate to Th su
h that ∇ × Xh ⊂ Yh; 
ommon examples are Nédéle
's �rst andse
ond family of edge elements on tetrahedra, where we 
hoose the latter subsequently; 
f. [12,Chapter 8,5℄,
Xh =

{

ϕϕϕh ∈ H0(curl; Ω) : ϕϕϕh|K ∈ P1(K; R3) ∀K ∈ Th

}

,and
Yh =

{

ZZZh ∈ L2(Ω; R3) : ZZZh|K ∈ P0(K; R3) ∀K ∈ Th

}

,where global interpolants of su�
iently smooth fun
tions (δ > 0, p > 2)
IIIXh

: W 1/2+δ,2(Ω, R3) ∩ W 1,p(Ω, R3) → Xh , and IIIYh
: W 1/2+δ,2(Ω, R3) → Yhexist and satisfy [12, Theorem 8.15, Remark 8.8℄

‖ϕϕϕ −IIIXh
ϕϕϕ ‖L2 + h ‖∇ × (ϕϕϕ −IIIXh

ϕϕϕ) ‖L2 ≤ Ch2 ‖∇2ϕϕϕ ‖L2 ,(2.6)
‖ZZZ −IIIYh

ZZZ ‖L2 ≤ Ch ‖ZZZ ‖H1(2.7)for all ϕϕϕ ∈ W 2,2(Ω, R3) and ZZZ ∈ W 1,2(Ω, R3).To de�ne weak solutions of (1.1)�(1.3), we assume that the given data satisfy(2.8) m0 ∈ W 1,2(ω, S2) , H0, E0 ∈ L2(Ω, R3) , J ∈ L2(ΩT , R3) .We assume that the set of initial data satis�es divH0 = 0 and is 
onsistent in the sense that(2.9) div(H0 + χωm0) = 0 in Ω , 〈H0 + χωm0,n〉 = 0 on ∂Ω .De�nition 2.1. Suppose (2.8)�(2.9). Then (m,E,H ) is 
alled a weak solution to (MLLG), if forall T > 0,(1) m ∈ L∞
(

0, T ;W 1,2(ω, R3)
), su
h that mt ∈ L2(ωT , R3) and |m | = 1 a.e. in ωT , and

E,H ∈ L∞
(

0, T ;L2(Ω, R3)
);(2) for all φφφ ∈ C∞

(

ωT ; R3)
), and ZZZ ∈ D

(

[0, T );C∞(Ω, R3) ∩ H0(curl,Ω)
),

∫

ωT

〈mt,φφφ〉dxdt + α

∫

ωT

〈m× mt,φφφ〉dxdt(2.10)
= −(1 + α2)

[

∫

ωT

〈m ×∇m,∇φφφ〉dxdt −
∫

ωT

〈m× H,φφφ〉dxdt
]

,

−ε0

∫

ΩT

〈E,ZZZt〉dxdt −
∫

ΩT

〈H,∇×ZZZ〉dxdt(2.11)
+σ

∫

ωT

〈E,ZZZ〉dxdt = −
∫

ΩT

〈J,ZZZ〉dxdt + ε0

∫

Ω
〈E0,ZZZ(0, ·)〉dx ,

−µ0

∫

ΩT

〈H + χωm,ZZZt〉dxdt +

∫

ΩT

〈E,∇×ZZZ〉dxdt(2.12)
= µ0

∫

Ω
〈H0,ZZZ(0, ·)〉dx + µ0

∫

ω
〈m0,ZZZ(0, ·)〉dx ;(3) we have m(0, ·) = m0 in the sense of tra
es;4



(4) for almost all T ′ ∈ (0, T ) we have
E(m,H,E)(T

′) +

∫

ω
T ′

( αµ0

1 + α2
|mt |2 + σ|E |2

)

dxdt ≤ E(m,H,E)(0) −
∫

Ω
T ′

(J,E) dxdt ,where
E(m,H,E)(T

′) =
µ0

2

∫

ω
|∇m(T ′, ·) |2 dx +

∫

Ω

[µ0

2
|H(T ′, ·) |2 +

ε0

2
|E(T ′, ·) |2

]

dx .Existen
e of weak solutions has �rst been shown in [6℄.3. Stability and Convergen
eThe following lemma provides a dis
rete 
ounterpart of (4) in De�nition 2.1 for Algorithm 1.2.Solvability of (1.7)�(1.9) follows from a 
ontra
tion argument, whi
h employs (i) dis
rete energylaw (Lemma 3.1), (ii) isomorphism property of the mapping v 7→ v− u× v in R
3 (
f. [1, p. 1079℄),and (iii) in parti
ular, isomorphism property for the linear problem (1.8)�(1.9). For a less generalproof of existen
e of a solution, see Se
tion 4.Lemma 3.1. Suppose that |m0

h(xℓ)| = 1 for all ℓ ∈ L. Then the sequen
e {(mj
h,Ej

h,Hj
h)}j≥0produ
ed by Algorithm 1.2 satis�es for all j ≥ 0

(i) |mj+1
h (xℓ) | = 1 ∀ ℓ ∈ L ,

(ii) Eh

(

{mj+1
h ,Hj+1

h ,Ej+1
h }

)

+ k

j
∑

ℓ=0

αµ0

1 + α2
‖ dtm

ℓ+1
h ‖2

h + σ ‖E
ℓ+1/2
h ‖2

L2(ω)

= Eh

(

{m0
h,H0

h,E0
h}

)

− k

j
∑

ℓ=0

(J
ℓ+1/2
h ,E

ℓ+1/2
h ) ,where

Eh

(

{mj
h,Hj

h,Ej
h}

)

=
µ0

2

∫

ω
|∇m

j
h |2 dx +

∫

Ω

[µ0

2
|Hj

h |2 +
ε0

2
|Ej

h |2
]

dx .Proof. Veri�
ation of (i) follows from 
hoosing φφφh = ϕℓm
j+1/2
h (xℓ) ∈ Vh for ℓ ∈ L in (1.7): withthe properties of the dis
rete inner produ
t and the 
ross produ
t we infer

βℓdt

∣

∣m
j+1
h (xℓ)

∣

∣

2
= βℓ〈dtm

j+1
h (xℓ),m

j+1/2
h (xℓ)〉 =

(

dtm
j+1
h , ϕℓm

j+1/2
h (xℓ)

)

h
= 0.Hen
e, if ∣

∣m
j
h(xℓ)

∣

∣ = 1 then also ∣

∣m
j+1
h (xℓ)

∣

∣ = 1. To verify (ii), we �rst 
hoose φφφh = −
(

∆̃hm
j+1/2
h +

PVh
H

j+1/2
h

) to obtain
1

2
dt‖∇m

j+1
h ‖2

L2 − (dtm
j+1
h ,PVh

H
j+1/2
h )h = α

(

m
j+1/2
h × dtm

j+1
h , ∆̃hm

j+1/2
h + PVh

H
j+1/2
h

)

h
.Choosing φφφh = dtm

j+1
h yields to

α

1 + α2
‖ dtm

j+1
h ‖2

h = α
(

m
j+1/2
h × (∆̃hm

j+1/2
h + PVh

H
j+1/2
h ), dtm

j+1
h

)

h
.Adding the last two identities and using the de�nition of PVh

lead to
1

2
dt‖∇m

j+1
h ‖2

L2 +
α

1 + α2
‖ dtm

j+1
h ‖2

h = (dtm
j+1
h ,H

j+1/2
h ) .In a se
ond step, we 
hoose (ϕϕϕh,ZZZh ) = (E

j+1/2
h ,H

j+1/2
h ) in (1.8)�(1.9) and add resulting identities,

dt

(µ0

2
‖H

j+1
h ‖2

L2 +
ε0

2
‖E

j+1
h ‖2

L2

)

+ σ ‖χωE
j+1/2
h ‖2

L2 = −µ0 (dtm
j+1
h ,H

j+1/2
h ) − (J

j+1/2
h ,E

j+1/2
h ) .Summation of last two identities then proves assertion (ii). �5



De�nition 3.1. For x ∈ Ω and t ∈ [tj, tj+1) de�ne for ξξξℓ = mℓ
h,Hℓ

h,Eℓ
h,Jℓ

h, and ℓ = j, j + 1,
ξ̃ξξ(t,x) :=

t − tj
k

ξξξj+1
h (x) +

tj+1 − t

k
ξξξj

h(x) ,

ξ̃ξξ
−
(t,x) := ξξξj

h(x) , ξ̃ξξ
+
(t,x) := ξξξj+1

h (x) , ξ̃ξξ(t,x) := ξξξ
j+1/2
h .Given any T ′ ≥ 0, equation (ii) in Lemma 3.1 may be rewritten as

E(m̃+,H̃+,Ẽ+)(T
′) +

αµ0

1 + α2

∫ T ′

0
||m̃t||2h dt + σ

∫ T ′

0
‖ Ẽ ‖2

L2(ω) dt(3.1)
≤ E(m̃0,H̃0,Ẽ0)(0) +

∫ T ′

0
(J̃, Ẽ) dt .We de�ne PYh

: L2(Ω, R3) → Yh through (u − PYh
u,ϕϕϕh) = 0 for all ϕϕϕh ∈ Yh and all u ∈

L2(Ω, R3). Letting (

φφφh,ϕϕϕh,ZZZh

)

(t, ·) :=
(

IIIVh
φφφ,IIIXh

ϕϕϕ,PYh
ZZZ

)

(t, ·) for φφφ ∈ C∞(ωT ; R3) and ZZZ,ϕϕϕ ∈
D

(

[0, T );C∞(Ω, R3) ∩ H0(curl,Ω)
) we may rewrite Algorithm 1.2 as follows:

∫ T

0
(m̃t,φφφh)h dt + α

∫ T

0
(m̃− × m̃t,φφφh)h dt = (1 + α2)

∫ T

0

(

m̃ × (∆̃hm̃ + PVh
H̃),φφφh

)

h
dt ,(3.2)

ε0

∫ T

0
(Ẽt,ϕϕϕh) dt −

∫ T

0
(H̃,∇×ϕϕϕh) dt + σ

∫ T

0
(χωẼ,ϕϕϕh) dt =

∫ T

0
(J̃,ϕϕϕh) dt ,(3.3)

µ0

∫ T

0
(H̃t,ZZZh) dt +

∫ T

0
(∇× Ẽ,ZZZh) dt = −µ0

∫ T

0
(m̃t,ZZZh) dt .(3.4)The a priori bounds in Lemma 3.1 provide the existen
e of a triple

(m,H,E ) ∈
[

L∞
(

0, T ;W 1,2(ω, S2)
)

∩ W 1,2(ωT ; R3)
]

×
[

L∞
(

0, T ;L2(Ω; R3)
)]2

,whi
h is the weak limit (as k, h → 0) of a subsequen
e {

( m̃, H̃, Ẽ )
}

k,h
, su
h that

m̃, m̃±, m̃
∗
⇀ m in L∞

(

0, T ;W 1,2(ω, R3
)

, m̃ ⇀ m in W 1,2(ωT , R3) ,

m̃, m̃± m̃ → m in L2(ωT , R3) ,

( H̃, H̃±, H̃; Ẽ, Ẽ±, Ẽ )
∗
⇀ (H;E ) in [

L∞
(

(0, T );L2(Ω, R3)
)]2

.Sin
e | m̃+(xℓ) | = 1 for all ℓ ∈ L, and all t ∈ (0, T ) by Lemma 3.1, (i), we dedu
e with a dis
retePoin
aré inequality that
∥

∥|m̃+|2 − 1
∥

∥

L2(K)
≤ Ch

∥

∥∇
[

|m̃+|2 − 1
]
∥

∥

L2(K)
≤ Ch ‖(m̃+)T∇m̃+‖2

L2(K) ≤ Ch ‖∇m̃+‖2
L2(K)for all K ∈ Th and hen
e that |m̃+| → 1 almost everywhere in ΩT . In parti
ular, we dedu
e that

|m| = 1 almost everywhere in ΩT . Owing to item (ii) of Lemma 3.1 and weak lower semi
ontinuityof norms we verify that (m,H,E ) satis�es part (4) of De�nition 2.1. If m0
h → m0 in L2(ω; R3) as

h → 0 then weak 
ontinuity of the tra
e operator yields that m(0, ·) = m0 in the sense of tra
es.Identi�
ation of limits in (3.2) apart from the last term 
an be done as in [3℄ and we dis
uss theterm whi
h involves PVh
H̃. By de�nition of PVh

,
(m̃ × PVh

H̃,φφφh)h = −(m̃ × φφφh,PVh
H̃)h = −

(

IIIVh
(m̃× φφφh),PVh

H̃
)

h

= −
(

IIIVh
(m̃× φφφh), H̃

)

= −
(

(IIIVh
− Id)(m̃ × φφφh), H̃

)

−
(

m̃× φφφh, H̃
)

.6



Noting that
(

(IIIVh
− Id)(m̃ × φφφh), H̃

)

≤ Ch2
∑

K∈Th

‖D2(m̃ × φφφh) ‖L2(K)‖ H̃ ‖L2(K)

≤ Ch2 ‖∇m̃ ‖L2 ‖∇φφφh ‖L∞ ‖ H̃ ‖L2we dedu
e that
∫ T

0

(

m̃× PVh
H̃,φφφh

)

h
dt →

∫ T

0
(m× H,φφφ)as h, k → 0. To identify the limit in (3.3), we use the identity

∫ T

0
(Ẽt,ϕϕϕh) dt = −

∫ T

0

(

Ẽ, (ϕϕϕh)t
)

dt +
(

E(T, ·),ϕϕϕh(T, ·)
)

−
(

E(0, ·),ϕϕϕh(0, ·)
)

,and a passage to the limits in the terms on the right-hand side is straightforward owing to theirlinearity and the 
onvergen
e properties of Ẽ; we pro
eed a

ordingly with the leading term in (3.3).It remains to 
onsider the se
ond term in (3.4). Owing to ∇ × Xh ⊂ Yh, ZZZh = PYh
ZZZ, and theproperties of Ẽ we verify

∫ T

0

(

∇× Ẽ,ZZZh

)

dt =

∫ T

0

(

∇× Ẽ,ZZZ
)

dt =

∫ T

0
(Ẽ,∇×ZZZ) dt →

∫ T

0
(E,∇×ZZZ) dt .Finally, weak lower semi
ontinuity of norms and strong 
onvergen
e of dis
rete initial data impliesthe energy inequality in item (4) of De�nition 2.1 for the limit (m,E,H ). We have thus provedthe following theorem.Theorem 3.1. Let (2.8)�(2.9) be valid. Suppose that we have |m0

h(xℓ)| = 1 for all ℓ ∈ L andlet {(mj
h,Ej

h,Hj
h )}j≥0 solve Algorithm 1.2. Assume that m0

h → m0 in W 1,2(ω) and ( H̃0
h, Ẽ0

h ) →
(H0,E0 ) in L2(Ω, R3) as h → 0 and let T > 0 be a �xed 
onstant. As k, h → 0, a subse-quen
e of ( m̃, H̃, Ẽ ) 
onverges weakly to (m,H,E ) in [

L∞
(

0, T ;W 1,2(Ω, S2)
)

∩ W 1,2(ωT , R3)
]

×
[

L∞
(

(0, T );L2(Ω, R3)
)]2, and (m,H,E ) is a weak solution of (1.1)�(1.3).In fa
t, every weak a

umulation point of ( m̃, H̃, Ẽ ) solves (1.1)�(1.3). Note also that no dis
reteversion of the 
ompatibility assumption (2.9) is assumed for ( H̃0

h, Ẽ0
h,m0

h ).4. Solving the nonlinear systemWe employ a �xed-point iteration to solve the nonlinear system in ea
h step of Algorithm 1.2:Given m
j
h, H

j
h, and E

j
h (or approximations m̃

j
h, H̃

j
h, and Ẽ

j
h) we aim at approximating wh :=

m
j+1/2
h , Fh := E

j+1/2
h , and Gh := H

j+1/2
h . The time derivative dtm

j+1
h is repla
ed by 2

k (wh − m
j
h)and similar expressions for dtE

j+1
h and dtH

j+1
h . A linearization of the nonlinear term (

wh×(∆̃hwh+

PL2Gh),φφφh

)

h
and the identity m

j
h × dtm

j+1
h = − 2

km
j+1/2
h × m

j
h lead to the following algorithm.Algorithm 4.1. Set (w0

h,F0
h,G0

h) := (m̃j
h, Ẽj

h, H̃j
h) and ℓ := 0.(i) Compute (wℓ+1

h ,Fℓ+1
h ,Gℓ+1

h ) ∈ Vh × X0
h × Yh su
h that for all (φφφh,ϕϕϕh,ZZZh) ∈ Vh × X0

h × Yh7



there holds
2

k
(wℓ+1

h ,φφφh)h − 2α

k
(wℓ+1

h × m̃
j
h,φφφh)h

−(1 + α2)
(

wℓ+1
h × (∆̃hw

ℓ
h + PVhG

ℓ
h),φφφh

)

h
=

2

k
(m̃j

h,φφφh)h,

2ε0

k
(Fℓ+1

h ,ϕϕϕh) − (Gℓ+1
h ,∇×ϕϕϕh) + σ(χωFℓ+1

h ,ϕϕϕh) =
2ε0

k
(Ẽj

h,ϕϕϕh) − (J
j+1/2
h ,ϕϕϕh),

2µ0

k
(Gℓ+1

h ,ZZZh) + (∇× Fℓ+1
h ,ZZZh) +

2µ0

k
(wℓ+1

h ,ZZZh) =
2µ0

k
(H̃j

h,ZZZh) +
2µ0

k
(m̃j

h,ZZZh).

(4.1)
(ii) Stop and set (m̃j+1

h , Ẽj+1
h , H̃j+1

h ) := 2(wℓ+1
h ,Fℓ+1

h ,Gℓ+1
h ) − (m̃j

h, Ẽj
h, H̃j

h), on
e(4.2) ||∆̃h(wℓ+1
h − wℓ

h)||h + ||Gℓ+1
h − Gℓ

h||L2 ≤ ε.(iii) Set ℓ := ℓ + 1 and go to (i).For ε → 0, the output of the iteration 
onverges to the solution of (1.7)�(1.9) (in 
ase m̃
j
h = m

j
h,

Ẽ
j
h = E

j
h, and H̃

j
h = H

j
h) provided that k ≤ ch2

min/(1 + α2) with a fa
tor c > 0 that only dependson the geometry of Th.Lemma 4.1. Suppose that ||m̃j
h||L∞ ≤ c0. For all ℓ ≥ 0 there exists a unique (wℓ+1

h ,Fℓ+1
h ,Gℓ+1

h )solving (4.1) and there holds
√

µ0/2||wℓ+1
h − wℓ

h||h +
√

2ε0||Fℓ+1
h − Fℓ

h||L2 +
√

µ0||Gℓ+1
h − Gℓ

h||L2

≤ Θ
(

√

µ0/2||wℓ
h − wℓ−1

h ||h +
√

µ0||Gℓ
h − Gℓ−1

h ||L2

)(4.3)with Θ = c2
1c0

√
15(1 + α2)kh−2

min provided that c2
1

√
5h−2

min ≥ 1. Let (m̃j+1
h , Ẽj+1

h , H̃j+1
h ) be theoutput of Algorithm 4.1. There exists a fun
tion Rj ∈ Vh satisfying ||Rj ||h ≤ ε su
h that for all

(φφφh,ϕϕϕh,ZZZh) ∈ Vh × X0
h × Yh there holds

(dtm̃
j+1
h ,φφφh)h + α(m̃j

h × dtm̃
j+1
h ,φφφh)h

−(1 + α2)
(

m̃
j+1/2
h × (∆̃hm̃

j+1/2
h + PVhH̃

j+1/2

h ),φφφh

)

h
= (1 + α2)

(

m̃
j+1/2
h × Rj ,φφφh

)

h
,

ε0

k
(dtẼ

j+1
h ,ϕϕϕh) − (Ẽ

j+1/2

h ,∇×ϕϕϕh) + σ(χωẼ
j+1/2

h ,ϕϕϕh) = −(J
j+1/2
h ,ϕϕϕh),

µ0

k
(dtH̃

j+1
h ,ZZZh) + (∇× Ẽ

j+1/2

h ,ZZZh) +
µ0

k
(dtm̃

j+1
h ,ZZZh) = 0.

(4.4)
Moreover, if |m̃j

h(xm)| = 1 for all m ∈ L then there holds |m̃j+1
h (xm)| = 1 for all m ∈ L.Proof. Step 1. For (φφφh,ϕϕϕh,ZZZh) = (wℓ+1

h ,Fℓ+1
h ,Gℓ+1

h ) the sum of the left-hand sides in (4.1) (aftermultipli
ation of the �rst equation by µ0) equals
2µ0

k
||wℓ+1

h ||2h +
2ε0

k
||Fℓ+1

h ||2L2 + σ||χωFℓ+1
h ||2L2 +

2µ0

k
||Gℓ+1

h ||2L2 +
2µ0

k
(wℓ+1

h ,Gℓ+1
h ).Sin
e 2(wℓ+1

h ,Gℓ+1
h ) ≥ −||wℓ+1

h ||2h−||Gℓ+1
h ||2L2 the bilinear form de�ned by the left-hand side of (4.1)is positive de�nite on [

Vh × X0
h × Yh

]2 and (4.1) admits a unique solution.Step 2. We next 
ontrol ||wℓ+1
h ||L∞ uniformly for all ℓ ≥ 0: Let m ∈ L be su
h that ||wℓ+1

h ||L∞ =

|wℓ+1
h (xm)|. Putting φφφh = ϕmwℓ+1

h (xm) in the �rst equation of (4.1) leads to(4.5) ||wℓ+1
h ||L∞ = |wℓ+1

h (xm)| ≤ |m̃j
h(xm)| ≤ ||m̃j

h||L∞ ≤ c0.8



Step 3. Subtra
tion of two subsequent equations of iteration (4.1) shows
2

k
(wℓ+1

h − wℓ
h,φφφh)h − 2α

k

(

(wℓ+1
h − wℓ

h) × m̃
j
h,φφφh

)

h

−(1 + α2)
(

(wℓ+1
h − wℓ

h) × (∆̃hw
ℓ
h + PVhG

ℓ
h),φφφh

)

h

−(1 + α2)
(

wℓ
h × [(∆̃hw

ℓ
h + PVhG

ℓ
h) − (∆̃hw

ℓ−1
h + PVhG

ℓ−1
h )],φφφh

)

h
= 0,

2ε0

k
(Fℓ+1

h − Fℓ
h,ϕϕϕh) − (Gℓ+1

h − Gℓ
h,∇×ϕϕϕh) + σ

(

χω(Fℓ+1
h −Fℓ

h),ϕϕϕh

)

= 0,

2µ0

k
(Gℓ+1

h − Gℓ
h,ZZZh) +

(

∇× (Fℓ+1
h − Fℓ

h),ZZZh

)

+
2µ0

k
(wℓ+1

h − wℓ
h,ZZZh) = 0.Adding the three identities (after multiplying the �rst equation by µ0) and 
hoosing (φφφh,ϕϕϕh,ZZZh ) =

(wℓ+1
h − wℓ

h,Fℓ+1
h − Fℓ

h,Gℓ+1
h − Gℓ

h ) provides
2µ0

k
||wℓ+1

h − wℓ
h||2h +

2ε0

k
||Fℓ+1

h − Fℓ
h||2L2 + σ||χω(Fℓ+1

h − Fℓ
h)||2L2 +

2µ0

k
||Gℓ+1

h − Gℓ
h||2L2

= −2µ0

k
(wℓ+1

h − wℓ
h,Gℓ+1

h − Gℓ
h)

+ µ0(1 + α2)
(

wℓ
h × [(∆̃hw

ℓ
h + PVhG

ℓ
h) − (∆̃hw

ℓ−1
h + PVhG

ℓ−1
h )],wℓ+1

h − wℓ
h

)

h

≤ 3µ0

2k
||wℓ+1

h − wℓ
h||2h +

µ0

k
||Gℓ+1

h − Gℓ
h||2L2

+ k
µ0

2
(1 + α2)2c2

0

(

||∆̃h(wℓ
h − wℓ−1

h )||h + ||PVh(Gℓ
h − Gℓ−1

h )||h
)2

.The estimates ||∆̃hφφφh||h ≤ c2
1

√
5h−2

min||φφφh||h and ||PVhZZZh||h ≤ ||ZZZh||L2 imply (4.3).Step 4. In order to prove (4.4) we repla
e dtm̃
j+1
h = 2

k (wℓ+1
h − m̃

j
h), m̃

j+1/2
h = wℓ+1

h , et
. in (4.1)to verify with Rj := (∆̃hw
ℓ
h + PVhGℓ

h) − (∆̃hw
ℓ+1
h + PVhG

ℓ+1
h )

(dtm̃
j+1
h ,φφφh)h − 2α

k
(m̃

j+1/2
h × m̃

j
h,φφφh)h

−(1 + α2)
(

m̃
j+1/2
h × (∆̃hm̃

j+1/2
h + PVhH̃

j+1/2

h ),φφφh

)

h
= (1 + α2)

(

m̃
j+1/2
h × Rj ,φφφh

)

h
,

ε0

k
(dtẼ

j+1
h ,ϕϕϕh) − (Ẽ

j+1/2

h ,∇×ϕϕϕh) + σ(χωẼ
j+1/2

h ,ϕϕϕh) = −(J
j+1/2
h ,ϕϕϕh),

µ0

k
(dtH̃

j+1
h ,ZZZh) + (∇× Ẽ

j+1/2

h ,ZZZh) +
µ0

k
(dtm̃

j+1
h ,ZZZh) = 0.Using 2

km̃
j+1/2
h ×m̃

j
h = −m̃

j
h×dtm̃

j+1
h we verify (4.4) and the stopping 
riterion implies ||R||h ≤ ε.Step 5. We 
hoose φφφh = ϕmm̃

j+1/2
h (xm) in (4.4) to verify dt|m̃j+1

h (xm)|2 = 0. �Remark 4.1. Convergen
e to a weak solution of (MLLG) of approximations satisfying (4.4) as
(k, h, ε) → 0 su
h that ε = o(h2

min) is veri�ed as in Se
tion 3. The only di�eren
e is a perturbed9



energy law: instead of (ii) in Lemma 3.1 one has
Eh

(

{m̃j+1
h , H̃j+1

h , Ẽj+1
h }

)

+ k

j
∑

ℓ=0

(1 − ε)
αµ0

1 + α2
‖ dtm̃

ℓ+1
h ‖2

h + σ ‖ Ẽ
ℓ+1/2

h ‖2
L2(ω)

≤ Eh

(

{m̃0
h, H̃0

h, Ẽ0
h}

)

− k

j
∑

ℓ=0

(J
ℓ+1/2
h , Ẽ

ℓ+1/2

h )

+ k

j
∑

ℓ=0

{

(1 + α2)‖Rℓ ‖h

(

c3h
−2
min + ‖ H̃

ℓ+1/2
h ‖

)

+
1

4ε
(1 + α2)α‖Rℓ ‖2

h

}

.5. Computational Experiments5.1. Physi
al model. In below, let j = J

Ms
, h = H

Ms
and e = E

Ms
denote the s
aled ele
tri
 
urrent,magneti
 and ele
tri
 �elds, respe
tively.In pra
ti
al 
omputations, the following physi
al 
onstants have to be in
luded in the model: thepermeability of va
uum µ∗

0, the permittivity of va
uum ε∗0, the ex
hange 
onstant A∗, the anisotropy
onstant K∗, the saturation magnetization Ms, and the gyromagneti
 ratio γ. The dire
tion of theuniaxial anisotropy is 
hara
terized by a unit ve
tor p ∈ S
2. Without loss of generality, we assumethat p is parallel to one of the 
oordinate axes. The e�e
tive �eld then be
omes(5.1) heff = A∆m + K〈m,p〉p + h,with 
onstants

A =
2A∗

µ∗
0M

2
s

, K =
2K∗

µ∗
0M

2
s

.The LLG equation, whi
h after res
aling in time, takes a dimensionless form(5.2) mt + αm× mt = (1 + α2)m × heff in ωT ,now 
orresponds to a fully physi
al situation with time measured in units of (γMs)
−1s, 
f., e.g. [19℄.To have the same time s
ales for the whole MLLG system, the Maxwell's equations have to beres
aled in time appropriately. After a 
hange of the time variable and an additional s
aling byfa
tor M−1

s we obtain
ε0 et + ∇× h + σ χωe = −j on ΩT ∗ ,(5.3)
µ0 ht −∇× e = −µ0 mt on ΩT ∗ ,(5.4)where ε0 = γMsε

∗
0, µ0 = γMsµ

∗
0 and T ∗ = γMs T .A 
ounterpart of Lemma 3.1, for (5.2)-(5.4) reads as follows.Lemma 5.1. Suppose that |m0
h(xℓ)| = 1 for all ℓ ∈ L. Then the sequen
e {(mj

h,Ej
h,Hj

h)}j≥0produ
ed by Algorithm 1.2 satis�es for all j ≥ 0

(i) |mj+1
h (xℓ) | = 1 ∀ ℓ ∈ L ,

(ii) ET := E∗
h

(

{mj+1
h ,hj+1

h , ej+1
h }

)

+ k

j
∑

ℓ=0

αµ0Ms

1 + α2
‖ dtm

ℓ+1
h ‖2

h + σ ‖ e
ℓ+1/2
h ‖2

L2(ω)

= E∗
h

(

{m0
h,h0

h, e0
h}

)

− k

j
∑

ℓ=0

(j
ℓ+1/2
h , e

ℓ+1/2
h ) ,10



where
E∗

h

(

{mj
h,hj

h, ej
h}

)

=
µ0Ms

2

∫

ω

[

A|∇m
j
h |2 + K IIIVh

(

1 − 〈mj
h,p〉2

)]

dx

+

∫

Ω

[µ0

2
|hj

h |2 +
ε0

2
| ej

h |2
]

dx

:= Eex + Eanis + EH + EE .In the following we refer to ET as the total energy and to the terms Eex, Ean, EH , EE as theex
hange energy, anisotropy energy, magneti
 �eld energy, and ele
tri
 �eld energy, respe
tively.Remark 5.1. To obtain physi
ally relevant results, the initial 
ondition for the Maxwell-LLG systemshould satisfy the �divergen
e-free� 
onstraint from, i.e., divh(h0
h +χωm0

h) = 0. This 
an be a
hievedby taking h0
h = h0

∗ − χω(P∗
hm

0
h), with h0

∗ ∈ Yh, s.t. divhh
0
∗ = 0. The proje
tion P∗

h : Vh → Yh isfor uh ∈ Vh de�ned through (P∗
huh,ZZZh) = (uh,ZZZh) for all ZZZh ∈ Yh. Sin
e m

j
h is pie
ewise linear,we have that the value of P∗

hm
j
h on an element K ∈ Th

∣

∣

ω

orresponds to the value of m

j
h in thebary
enter of K. Further, we have from (1.9) that

µ0

k
(hj+1

h ,ZZZh) +
µ0

k
(P∗

hm
j+1
h ,ZZZh) = −(∇× e

j+1/2
h ,ZZZh) +

µ0

k
(hj

h,ZZZh) +
µ0

k
(P∗

hm
j
h,ZZZh) ∀ZZZh ∈ Yh.From the previous equation, it 
an be dedu
ed by indu
tion, that divh(hj+1

h + χω(PYh
m

j+1
h )) = 0is satis�ed pointwise in Ω. The above arguments remain valid for (4.1). In our experiments, wesimply take h0

∗ to be a 
onstant ve
tor �eld.5.2. Solution of the dis
rete system. Without loss of generality, we 
onsider the dis
rete systemwith σ = 0. The �rst equation from (4.1), 
orresponding to the dis
rete LLG equation, is e�
ientlysolved by the bi
onjugate gradient stabilized (BiCGStab) method. The solution of the se
ond andthird equations from (4.1) is equivalent to solving a dis
rete algebrai
 system of the form(5.5) (

A −CT

C B

)(

e

h

)

=

(

f

g

)

,where
Aij =

2ε0

k
(ϕϕϕi

h,ϕϕϕj
h) , Bij =

2µ0

k
(ZZZi

h,ZZZj
h) , Cij = (∇×ϕϕϕj

h,ZZZi
h) ,and the ve
tors of unknowns e = {ei}, h = {hi} are de�ned through

Fh =
∑

i

eiϕϕϕ
i
h , Gh =

∑

i

hiZZZ
i
h .Similarly, we de�ne f = {fi}, g = {gi}, where f =

∑

i fiϕϕϕ
i
h and g =

∑

i giZZZ
i
h represent the right-handsides of the dis
rete problem.The system (5.5) 
an be e�e
tively solved by a pre
onditioned inexa
t Uzawa method whi
h
onsists of two steps:(1) h

n
= B−1(g − Cen) ,(2) en+1 = en + ρS−1(f + CTh

n − Aen) .Here, ρ > 0 is a 
onstant (we set ρ = 1 below), and S−1 is a suitably 
hosen pre
onditioner, that
an 
onsiderably speed up the 
onvergen
e of the Uzawa iterations. Note that the 
omputation of
B−1 in the �rst step of the above Uzawa algorithm is trivial, sin
e the matrix B is diagonal, owingto the 
hoi
e of pie
ewise 
onstant fun
tions.The pre
onditioner S is an approximation of the S
hur 
omplement, i.e.,

S ≈ (CTB−1C) + A .11



The 
onstru
tion of the pre
onditioner is motivated by the fa
t that our formulation 
an be (for-mally) 
onsidered as a mixed approximation of an eddy 
urrent problem of the form
2ε0

k
(F∗

h,ϕϕϕ) +
k

2µ0
(∇× F∗

h,∇×ϕϕϕ) = (f ,ϕϕϕ) +
k

2µ0
(∇× g,ϕϕϕ) ∀ϕϕϕ ∈ H0(curl; Ω).In matrix notation we have S = M + R, with matri
es

Mij =
2ε0

k
(ϕϕϕi

h,ϕϕϕj
h) , Rij =

k

2µ0
(∇×ϕϕϕi

h,∇×ϕϕϕj
h) .We 
ompute the approximation of S−1 by the BiCGstab algorithm with at most 50 iterations forevery sub-step. A better approximation of S−1 
an be obtained by using a multigrid method foreddy 
urrent equations, see e.g. [8℄, whi
h together with the moderate number of outer Uzawaiterations gives an e�e
tive method with multigrid 
omplexity.It is possible to eliminate h from (5.5), whi
h leads to a system of equations in the S
hur 
om-plement form(5.6) (

CTB−1C + A
)

e = f + CTB−1g .An alternative approa
h to the Uzawa algorithm is to solve equation (5.6) by the 
onjugate gradientmethod, see e.g. [17℄ and the referen
es therein. The 
onjugate gradient algorithm needs to evaluate
B−1, whi
h is trivial, sin
e B is diagonal. We 
an speed up the 
onvergen
e of the 
onjugate gradientalgorithm by using a suitable pre
onditioner. In our 
ase, one 
ould use the same pre
onditioner asfor the Uzawa algorithm. We use the 
onjugate gradient algorithm for (5.6) without pre
onditioningin our experiments, sin
e it proves to be slightly faster than the pre
onditioned Uzawa algorithm.We expe
t both methods to have 
omparable performan
e with e�e
tive multigrid pre
onditioners,
f. [17℄.Remark 5.2. We observe slow 
onvergen
e of the algebrai
 solvers for domains of size O(10−6), i.e.,in pra
ti
al appli
ations. The 
onvergen
e properties of the solvers improve for larger values of thegyromagneti
 ratio γ or for smaller size of the time step k. We believe that the 
onvergen
e rates 
anbe substantially improved with a suitable multigrid pre
onditioner. Note that similar problems withsolver 
onvergen
e in mi
romagneti
 appli
ations are reported in [21℄, where a 
onjugate gradientalgorithm is applied to the eddy 
urrent formulation of Maxwell's equations.5.3. Computational results. Our 
omputational 
ode is based on the �nite element pa
kageALBERT, see [22℄, with tetrahedral meshes in 3D. We use standard pie
ewise linear elements forthe dis
retization of mh, with degrees of freedom (DOFs) lo
ated at the vorti
es of the mesh, andpie
ewise 
onstant elements for hh with DOFs lo
ated at the bary
enters of the mesh elements. Wedis
retize eh by edge elements of the �rst kind, with one DOF per every edge of the mesh. The edgeelements of the �rst kind have only slightly worse approximation properties than the edge elementof the se
ond kind, however the latter need two DOFs per edge. In our 
ode we repla
e (4.2) inAlgorithm 4.1 by a slightly more pra
ti
al stopping 
riterion for the �xed-point iterations, i.e.,

||wℓ+1
h − wℓ

h||h ≤ h2ε,

||Gℓ+1
h − Gℓ

h||L2 ≤ ε.We 
hoose ε = 10−8 in our 
omputations. The 
onvergen
e of the �xed-point iterations is at-tained after at most 6 steps in all presented experiments. We observe monotone de
rease of thedis
rete energy from Lemma 5.1 in all experiments, whi
h 
on�rms good numeri
al 
onvergen
e ofAlgorithm 4.1.The �rst example is a
ademi
 whi
h studies possible �nite-time blow-up behavior of weak so-lutions to (1.1)�(1.5) with the help of Algorithm 1.2. We say that (dis
rete) �nite-time blow-upo

urs if the sequen
e {

||∇m
j
h||L∞

}

j
attains the maximum value of the mapping vh 7→ ||∇vh||L∞12



among fun
tions vh ∈ Vh satisfying |vh(xℓ)| = 1 for all ℓ ∈ L. Corresponding studies are reportedin [3, 4℄ for heff = ∆m and ω ⊂ R
2, where blow-up is 
omputationally eviden
ed for super
riti
al(initial) data. Here, we study the in�uen
e of the ele
tromagneti
 �eld ( e0,h0 ) : Ω → R

3 on thesuper
riti
al m0 : ω → S
2.Example 5.1. Let (0, 1)3 = ω = Ω and j ≡ 0. Let m0 : ω → S

2 and ( e0,h0 ) : Ω →
[

R
3
]2 bede�ned by

m0(x) =

{

(0, 0,−1) for |x∗| ≥ 1/2,
(2x∗A,A2 − |x∗|2)/(A2 + |x∗|2) for |x∗| ≤ 1/2 and x∗ ∈ ω

h0
∗(x) = (0, 0,Hs) in Ω ,

e0(x) = (0, 0, 0) in Ωwith x∗ = (x1 −0.5, x2 −0.5, 0) and A = (1−2|x∗|)4/4. The 
omputational domain Ω = ω = (0, 1)3is partitioned into uniform 
ubes with side h, ea
h 
ube 
onsists of six tetrahedra. We 
hoose thetime step k = 10−5 and set the other parameters α = γ = Ms = µ0 = 1, ε0 = 10−6, K = 0.The 
onstant Hs represents the strength of initial �eld in the x3-dire
tion. We 
omputed theexperiments for Hs = −30, 0, 30 on meshes with h = 1/24 and h = 1/25. The evolution of ‖∇mh‖∞is depi
ted in Figure 1. The evolution of the ex
hange energy 
an be found in Figure 2. Figure 3displays the evolution of ‖hh‖∞/Hs. We dedu
e from the Figures 1 and 3 that variations of ‖∇mh‖∞
lose to a 
ertain time T ∗ > 0 (`blow-up time') 
orrespond to variations of ‖hh‖∞ 
lose to the sametime T ∗. A similar behavior is found for the evolution of ‖eh‖∞ whi
h is depi
ted in Figure 4.Further, we observe that the mesh size not only determines the quantity maxt ‖∇mh(t, ·)‖∞, 
f. [3,4℄, but in�uen
es the evolution of ‖hh‖∞, ‖eh‖∞. The 
omputations with Hs = −30 show thatnegative initial magneti
 �eld a

elerates the blow-up of the solution. The evolution be
omes more
omplex for Hs = 30; the blow-up time is slightly delayed. Beyond the instability, when themagnetization is aligned along the (0, 0,−1) dire
tion, the in�uen
e of the magneti
 �eld on theevolution prevails and the magnetization starts to rotate in the opposite dire
tion, i.e. (0, 0, 1), seeFigure 5 for h = 2−4. We did not 
ompute beyond the time t = 0.214 however it is reasonableto expe
t that the magnetization will be aligned in the (0, 0, 1) dire
tion after the steady state isrea
hed. The detail of the solution for Hs = 30, h = 2−4 near x = (0.5, 0.5, 0.5) is depi
ted inFigure 6. There was only little variation of the magnetization in the x3 dire
tion, we thereforepresent all results on the 
ross-
ut through the domain at x3 = 0.5.The following example is derived from a ben
hmark problem [16, Problem # 1℄ of a thin uniaxialferromagneti
 �lm, for whi
h long-time dynami
s is studied in [14℄, in the 
ase d = 2. Here, westudy the dynami
s of the problem for d = 3. A

ording to our knowledge, there are no 
omparablestudies for d = 3 in the existing literature.Example 5.2. Let ω = (0, 2) × (0, 1) × (0, 0.02), and Ω = (−0.2, 2.2) × (−0.2, 1.2) × (−0.04, 0.06)(the domain dimensions are in µm), with
α = 0.5, γ = 2.2 × 109, Ms = 8 × 105, K∗ = 5 × 102, A∗ = 1.3 × 10−11,
p = (1, 0, 0), ε∗0 = 0.88422 × 10−11, µ∗

0 = 1.25667 × 10−6, σ = 0and (j ≡ 0)
( e0,h0 ) = (0,0) in Ω .The initial 
ondition m0

h is de�ned by assigning unit ve
tors with random orientation to every vortexof the mesh.The domains Ω and ω are partitioned into bri
ks of dimension 0.04×0.04×0.02. Subsequently, the
orresponding 
omputational meshes are obtained by subdivision of ea
h bri
k into six tetrahedra.This partition results in 7956 degrees of freedom for mh on ω and 189000, 81325 degrees of freedom13



for eh, hh on Ω, respe
tively. We 
ompute on a time interval (0, 8000), using a uniform time step
k = 0.1.The evolution of the dis
rete energies ET , Eex, Ean, EH , EE (i.e., the total, ex
hange, anisotropy,magneti
 �eld and ele
tri
 �eld energy) from Lemma 5.1 is depi
ted in Figure 7. Snapshots of themagnetization at di�erent time levels 
an be found in Figure 8; the ve
tors are 
olored a

ording tothe value of the x2-
omponent of the magnetization ve
tor. For 
omparison, Figure 9 shows theevolution of magnetization with the same initial 
ondition 
omputed without taking the 
ouplingwith Maxwell's equations into a

ount. The evolution of the dis
rete energies ET , Eex, Ean isdisplayed in Figure 10 (note that, EH = EE ≡ 0). The �gures show a 
lear di�eren
e between thetwo 
ases.The data for the last example are taken from [16, Problem # 4℄. Here we study the evolution ofthe magnetization towards a steady state, the so 
alled S-state, 
f. [16, Problem # 4℄.Example 5.3. Let ω = (0, 0.5)×(0, 0.125)×(0, 0.003), and Ω = (−0.75, 1.25)×(−0.9375, 1.0625)×
(−0.7665, 0.7695) (in µm), with

α = 1., γ = 2.2 × 109, Ms = 8 × 105, K∗ = 0, A∗ = 1.3 × 10−11,
ε∗0 = 0.88422 × 10−11, µ∗

0 = 1.25667 × 10−6, σ = 0and (j ≡ 0)
m0 = (1, 0, 0 ) in ω ,
h0
∗ = (0.01, 0.01, 0.01), e0 = 0 in Ω .The domain ω is partitioned uniformly into 
ubes of dimensions 0.00390625 × 0.00390625 × 0.003,where ea
h 
ube 
onsists of six tetrahedra. The non-uniform mesh for the domain Ω is 
onstru
tedin su
h a way that it is identi
al to the mesh for ω in the region Ω ∩ ω and the mesh size graduallyin
reases away from the overlapping region. A 
ross-
ut through the mesh at x3 = 0 is displayed inFigure 11.The above dis
retization of the 
omputational domains results in 25, 542 DOFs for mh on ω and

138, 302, 353, 568 DOFs for eh, hh, respe
tively. We employ a uniform time stepping, with k = 0.01.The magnetization at time T = 300 is displayed in Figure 12, the ve
tors are 
olored a

ordingto the x2-
omponent of the magnetization. Convergen
e towards the S-state (
f. [16, Problem # 4℄)
an be observed from the results. No steady state has yet been rea
hed at the �nal time, howeverthe 
onvergen
e towards the steady state after the time T = 300 has been very slow. The evolutionof the dis
rete energies from Lemma 5.1 is depi
ted in Figure 13.6. Con
luding RemarksWe devised an impli
it dis
retization of the Maxwell-Landau-Lifshitz-Gilbert system whi
h isbased on linear �nite elements. For pairs of time-step sizes and mesh-sizes tending simultaneouslybut independently to zero, we showed that every a

umulation point of the sequen
e of numeri
alapproximations is a weak solution of the 
ontinuous equations satisfying an energy inequality. Aniterative solver for the solution of the nonlinear system of equations in ea
h time step is proposedand its 
onvergen
e is proved under the time-step restri
tion k ≤ Ch2. The 
onvergen
e of thenonlinear solver is robust for small values of the damping parameters α. Owing to expe
ted non-uniqueness and possible o

urren
e of singularities, strong 
onvergen
e of the (whole) sequen
e orerror estimates 
annot be expe
ted unless additional assumptions on an exa
t solution are made.The use of higher order �nite elements for the dis
retization of m are beyond the s
ope of thispaper and remain to be analyzed in future work. Our numeri
al experiments 
on�rm the theo-reti
al results and indi
ate that �nite-time blow-up for MLLG is possible and hen
e that singularsolutions 
an develop from smooth initial data. Two examples based on standard mi
romagneti
14



ben
hmark problems are 
omputed to demonstrate the potential of the method for pra
ti
al appli-
ations. Further, we 
onstru
ted a S
hur 
omplement pre
onditioner for a saddle point system ofalgebrai
 equations whi
h arise in every iteration of the nonlinear solver. We observed, that thepre
onditioning dramati
ally redu
ed the number of iterations needed for the 
onvergen
e of thelinear solver on stru
tured and unstru
tured meshes. A multigrid type pre
onditioner, whi
h isrobust with respe
t to the time step size, is subje
t to our 
urrent resear
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Figure 1. Example 5.1: Plot of t 7→ ‖∇mh(t, ·)‖∞
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Figure 2. Example 5.1: Plot of t 7→ ‖∇mh(t, ·)‖2
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Figure 3. Example 5.1: Plot of t 7→ ‖hh(t, ·)‖∞/|Hs|
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Figure 4. Example 5.1: Plot of t 7→ ‖eh(t, ·)‖∞

17



Figure 5. Example 5.1: Magnetization for Hs = 30 at times t =
0, 0.01, 0.015, 0.020, 0.030, 0.214 for h = 1/24 (from left to right, from top to bot-tom).

Figure 6. Example 5.1: Details of the magnetization for Hs = 30 near x =
(0.5, 0.5, 0.5) at times t = 0, 0.01, 0.015, 0.020, 0.030, 0.214 for h = 1/24 (from leftto right, from top to bottom).
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Figure 7. Example 5.2: Evolution of the energies, log(t) 7→ ET (t)/22, Eex(t)/11,
Ean(t)/0.04, EH(t)/7, EE(t)/4.
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Figure 8. Example 5.2: Magnetization at times t = 0, 100, 200, 2500, 5000, 8000(from left to right, from top to bottom).
20



Figure 9. Example 5.2: Magnetization without the magneti
 �eld at times t =
0, 10, 50, 100, 200, 2500 (from left to right, from top to bottom).
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Figure 10. Example 5.2: Evolution of the energies, log(t) 7→ ET (t)/11, Eex(t)/11, Ean(t)/0.04.

Figure 11. Example 5.3: Mesh for the domain Ω at x3 = 0 (left) and zoom at themesh for the domain ω at x3 = 0 (right).

22



Figure 12. Example 5.3: Magnetization at time t = 300, near the S-state.
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Figure 13. Example 5.3: Evolution of the energies, log(t) 7→ ET (t)/2.3,
Eex(t)/0.0004, EH(t)/2, EE(t)/0.09.
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