
A CONVERGENT IMPLICIT DISCRETIZATION OF THEMAXWELL-LANDAU-LIFSHITZ-GILBERT EQUATION�UBOMÍR BA�AS∗, SÖREN BARTELS†, AND ANDREAS PROHLAbstrat. We propose an impliit, fully disrete sheme for the numerial solution of the Landau-Lifshitz-Gilbert equation whih is based on linear �nite elements and satis�es a disrete sphereonstraint as well as a disrete energy law. As numerial parameters tend to zero, solutions weaklyaumulate at weak solutions of the Maxwell-Landau-Lifshitz-Gilbert equation. A pratial lin-earization of the nonlinear sheme is proposed and shown to onverge for ertain salings of numer-ial parameters. Computational studies are presented to indiate �nite-time blow-up behavior andto study ombined eletromagneti phenomena in ferromagnets for benhmark problems.1. IntrodutionThe Maxwell-Landau-Lifshitz-Gilbert equation (MLLG) desribes ertain eletromagneti phe-nomena in a ferromagnet oupying the domain ω ⋐ Ω ⊆ R
d, d = 2, 3. For a parameter α > 0whih serves as a damping fator, the magnetization �eld m : (0, T ) × ω → S

2, where S
2 = {x ∈

R
3| |x | = 1} is the unit sphere, and the eletri and magneti �elds (E,H ) : (0, T ) × Ω → R

3satisfy for all T > 0

mt + αm× mt = (1 + α2)m × Heff in ωT := (0, T ) × ω ,(1.1)
ε0 Et −∇× H + σ χωE = −J in ΩT := (0, T ) × Ω ,(1.2)
µ0 Ht + ∇× E = −µ0 mt in ΩT ,(1.3)for the (simpli�ed) e�etive �eld Heff = ∆m + H. This hoie of Heff omprises the most relevantontributions to the more general version (5.1) below. The onstants ε0, µ0 ≥ 0 denote respetivelythe eletri and magneti permeability of free spae while σ ≥ 0 desribes the ondutivity of theferromagnet. The �eld J : ΩT → R

3 denotes an applied urrent density and χω : Ω → {0, 1} isthe harateristi funtion of ω. For simpliity we suppose that Ω ⊂ R
3 is a bounded avity with aperfetly onduting outer surfae ∂Ω into whih the ferromagnet ω ⋐ Ω is embedded, and Ω \ ω isassumed to be vauum [14℄. The system (1.1)�(1.3) is supplemented with initial onditions(1.4) m(0, ·) = m0 in ω , E(0, ·) = E0 , H(0, ·) = H0 in Ωand boundary onditions(1.5) ∂nm = 0 on ∂ωT , E × n = 0 on ∂ΩT .We remark that the inlusion of a damping term is neessary to permit the magneti �eld to alignwith the e�etive �eld and refer the reader to [5, 23, 11℄ for a more detailed disussion of themathematial model. Interesting omputational studies of the model (1.1)�(1.5) an be found in[14, 21℄.1991 Mathematis Subjet Classi�ation. 35K55, 65M12, 65M15, 68U10, 94A08.Key words and phrases. ferromagnetism, Maxwell-Landau-Lifshitz-Gilbert equation, �nite elements, onvergene.
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The onstrution of onvergent numerial shemes for the Maxwell-Landau-Lifshitz-Gilbert sys-tem (1.1)�(1.5) is di�ult due to the nonlinear harater of (1.1). Moreover, the limited �exibilityof pieewise polynomial �nite elements and the arti�ial damping of impliit time-disretizationshemes make it hard to appropriately aount for the onstraint |m | = 1 a.e. in ωT . The semi-disrete sheme proposed in [14℄ uses numerial integration to guarantee that the onstraint is sat-is�ed at the nodes of a triangulation. Stability of that sheme is proved in [14℄ but its onvergenehas not been disussed in the literature so far.Aording to Landau & Lifshitz [10℄, damped preession (α > 0) of the magnetization m : ωT →
S

2 is governed by(1.6) mt = m× Heff − αm× (m × Heff) .Gilbert's approah modi�es the undamped preession equation by a damping term whih is propor-tional to the rate of hange of magnetization, see (1.1). Both approahes are analytially equivalentfor smooth magnetization �elds and weak solutions to (MLLG) exist in both ases [23, 6℄. Thenumerial analysis di�ers signi�antly and Gilbert's approah turns out attrative from a numerialviewpoint. Expliit and impliit disretizations for the simplest hoie Heff = ∆m have been pro-posed and analyzed in [2, 4, 3℄ and approximations are known to respetively onverge onditionallyand unonditionally with respet to disretization parameters to weak solutions of (1.1). Corre-sponding results for (1.6) are so far only available for (loally existing) strong solutions, f. [18, 7℄.The artiles [13, 20℄ study onvergene for the simpli�ation Heff = H for ases where smoothsolutions to (1.1)�(1.5) exist. Convergene of iterates of the following sheme to weak solutions of(1.1) for Heff = ∆m is veri�ed in [3℄; the proof relies on onservation of |mj
h | = 1 at all meshpoints and for all j ≥ 0 as well as a disrete energy law.Algorithm 1.1. Let m0

h ∈ Vh. Given j ≥ 0 and m
j
h ∈ Vh, let m

j+1
h ∈ Vh solve

(dtm
j+1
h ,φφφh)h + α (mj

h × dtm
j+1
h ,φφφh)h = (1 + α2)(m

j+1/2
h × ∆̃hm

j+1/2
h ,φφφh)h ∀φφφh ∈ Vh .Here, Vh ⊂ W 1,2(ω; R3) is the �nite element spae subordinate to a triangulation Th of ω on-sisting of pieewise linear funtions and (·, ·)h denotes a disrete version (numerial integration)of the inner produt in L2(ω; R3). Moreover, ∆̃h : W 1,2(ω; R3) → Vh is an approximation of theLaplae operator. For a time step size k > 0 we write dtϕ

j := k−1
(

ϕj − ϕj−1
) for j ≥ 1, and

ϕj+1/2 := 1
2

(

ϕj+1 + ϕj) for j ≥ 0 and a sequene {ϕj}j≥0; we refer the reader to Setion 2 fordetails.The goal of this work is (i) to propose a disretization of (1.1)�(1.3) based on linear �nite elementswhih satis�es a disrete sphere onstraint and a disrete energy identity, (ii) to verify onvergeneof iterates towards a weak solution of (1.1)�(1.3), and (iii) to propose a reliable solver for thenonlinear system of equations in eah time step. This program is motivated by possible �nite-timeblow-up behaviour of solutions to (1.1)�(1.3), see Setion 5, whose numerial simulation requiresreliable numerial shemes. Our strategy is to appropriately modify Algorithm 1.1 and to extendits analysis from [3℄.The disretization of (1.1)�(1.3) requires a proper hoie of Ansatz spaes for the approximation of
(E,H ). Suitable pairs an be found in [13, 14℄ and we let Xh ⊂ H0(curl; Ω) and Yh ⊂ L2(Ω, R3)be �nite dimensional spaes satisfying ∇ × Xh ⊂ Yh. We then aim at analyzing the followingalgorithm for the numerial approximation of (MLLG).2



Algorithm 1.2. Let (m0
h,E0

h,H0
h ) ∈ Vh×Xh×Yh. For j ≥ 0 and (mj

h,Ej
h,Hj

h ) ∈ Vh×Xh×Yh,let (mj+1
h ,Ej+1

h ,Hj+1
h ) ∈ Vh × Xh × Yh solve

(dtm
j+1
h ,φφφh)h + α (mj

h × dtm
j+1
h ,φφφh)h(1.7)

= (1 + α2)
(

m
j+1/2
h × (∆̃hm

j+1/2
h + PVh

H
j+1/2
h ),φφφh

)

h
∀φφφh ∈ Vh ,

ε0 (dtE
j+1
h ,ϕϕϕh) − (H

j+1/2
h ,∇×ϕϕϕh) + σ (χωE

j+1/2
h ,ϕϕϕh) = −(J

j+1/2
h ,ϕϕϕh) ∀ϕϕϕh ∈ Xh ,(1.8)

µ0 (dtH
j+1
h ,ZZZh) + (∇×E

j+1/2
h ,ZZZh) = −µ0 (dtm

j+1
h ,ZZZh) ∀ZZZh ∈ Yh .(1.9)Here, PVh

: L2(ω, R3) → Vh, with (PVh
u,ϕϕϕh)h = (u,ϕϕϕh) for all ϕϕϕh ∈ Vh denotes the L2-projetion into Vh.Lemma 3.1 below establishes onservation of |mj

h | = 1, j ≥ 0, at nodes of the triangulation
Th, and a disrete energy law for solutions to Algorithm 1.2. Our �rst main result is Theorem 3.1whih states unonditional onvergene of subsequenes of outputs of Algorithm 1.2. A simple�xed-point iteration for the approximate solution of the nonlinear system of equations in eahstep of Algorithm 1.2 whih preserves the unit-length onstraint is proposed in Algorithm 4.1.Its onvergene is proved under the mesh onstraint k = O(h2) in Lemma 4.1. Numerial studieswhih indiate possible �nite-time blow-up of weak solutions of (1.1)�(1.5) are reported in Setion 5.Simulations of benhmark problems from [16℄ are also reported.2. PreliminariesThroughout this paper we assume that Th is a regular triangulation of the polygonal or polyhedralbounded Lipshitz domain Ω ⊂ R

d into triangles or tetrahedra of maximal mesh-size (maximaldiameter of triangles or tetrahedra) h > 0 for d = 2 or d = 3, respetively, and Th

∣

∣

ω
denotes itsrestrition to ω ⋐ Ω. We de�ne the lowest order onforming �nite element spae Vh ⊂ W 1,2(ω; R3)by

Vh =
{

φφφh ∈ C(ω; R3) : φφφh|K ∈ P1(K; R3) ∀K ∈ Th

∣

∣

ω

}

,where P1(K; R3) denotes the set of polynomials of total degree less or equal to one if restritedto the element K ∈ Th. Given the set of nodes {

xℓ : ℓ ∈ L
} of the triangulation Th

∣

∣

ω
, the nodalinterpolation operator IIIVh

: C(ω; R3) → Vh satis�es IIIVh
φφφ(xℓ) = φφφ(xℓ) for all ℓ ∈ L. We let 〈·, ·〉denote the inner produt in R

d and we de�ne
(

f ,g
)

=

∫

Ω
〈f ,g〉dx and (

φφφ, ZZZ
)

h
=

∫

ω
IIIVh

(

〈φφφ,ZZZ〉
)

dx =
∑

ℓ∈L

βℓ〈φφφ(xℓ),ZZZ(xℓ)〉 ,for f ,g ∈ L2(Ω; Rd), ertain weights βℓ > 0, ℓ ∈ L, and ontinuous funtions φφφ, ZZZ ∈ C(ω; R3). Notethat we use the notation (·, ·) for the inner produt in L2(Ω) as well as in L2(ω) � it will always belear from the ontext whih of them it represents. For eah ℓ ∈ L we let ϕℓ ∈ C(ω) denote thenodal basis funtion in Vh whih is Th-elementwise a�ne and satis�es ϕℓ(xm) = δℓm for all m, ℓ ∈ Land we de�ne βℓ =
∫

ω ϕℓ dx. We write ||φφφ||2h =
(

φφφ, φφφ
)

h
and notie that(2.1) ‖φφφh ‖2

L2 ≤ ‖φφφh ‖2
h ≤ (d + 2) ‖φφφh ‖2

L2 ∀φφφh ∈ Vh .Basi interpolation estimates yield for all φφφh,ZZZh ∈ Vh that(2.2) ∣

∣(φφφh,ZZZh)h − (φφφh,ZZZh)
∣

∣ ≤ Ch‖φφφh‖ ‖∇ZZZh‖ .We de�ne a disrete Laplae operator ∆̃h : W 1,2(ω; R3) → Vh by(2.3) (−∆̃hφφφ,χχχh)h = (∇φφφ,∇χχχh) ∀χχχh ∈ Vh .3



It is well-known that there exist onstants c1, c2 > 0 suh that for all φφφh ∈ Vh and all ℓ ∈ L wehave, see, e.g., [3℄,
||∆̃hφφφh||h ≤ c1h

−1
min||∇φφφh||L2 ≤ c2h

−2
min||φφφh||L2 ,(2.4)

|∆̃hφφφh(xℓ)| ≤ c3h
−2
min||φφφh||L∞ ,(2.5)where hmin > 0 is the minimal diameter of elements in Th.To disretize Maxwell's equations, we employ �nite element spaes Xh ⊂ H0(curl; Ω), Yh ⊂

L2(Ω; R3) subordinate to Th suh that ∇ × Xh ⊂ Yh; ommon examples are Nédéle's �rst andseond family of edge elements on tetrahedra, where we hoose the latter subsequently; f. [12,Chapter 8,5℄,
Xh =

{

ϕϕϕh ∈ H0(curl; Ω) : ϕϕϕh|K ∈ P1(K; R3) ∀K ∈ Th

}

,and
Yh =

{

ZZZh ∈ L2(Ω; R3) : ZZZh|K ∈ P0(K; R3) ∀K ∈ Th

}

,where global interpolants of su�iently smooth funtions (δ > 0, p > 2)
IIIXh

: W 1/2+δ,2(Ω, R3) ∩ W 1,p(Ω, R3) → Xh , and IIIYh
: W 1/2+δ,2(Ω, R3) → Yhexist and satisfy [12, Theorem 8.15, Remark 8.8℄

‖ϕϕϕ −IIIXh
ϕϕϕ ‖L2 + h ‖∇ × (ϕϕϕ −IIIXh

ϕϕϕ) ‖L2 ≤ Ch2 ‖∇2ϕϕϕ ‖L2 ,(2.6)
‖ZZZ −IIIYh

ZZZ ‖L2 ≤ Ch ‖ZZZ ‖H1(2.7)for all ϕϕϕ ∈ W 2,2(Ω, R3) and ZZZ ∈ W 1,2(Ω, R3).To de�ne weak solutions of (1.1)�(1.3), we assume that the given data satisfy(2.8) m0 ∈ W 1,2(ω, S2) , H0, E0 ∈ L2(Ω, R3) , J ∈ L2(ΩT , R3) .We assume that the set of initial data satis�es divH0 = 0 and is onsistent in the sense that(2.9) div(H0 + χωm0) = 0 in Ω , 〈H0 + χωm0,n〉 = 0 on ∂Ω .De�nition 2.1. Suppose (2.8)�(2.9). Then (m,E,H ) is alled a weak solution to (MLLG), if forall T > 0,(1) m ∈ L∞
(

0, T ;W 1,2(ω, R3)
), suh that mt ∈ L2(ωT , R3) and |m | = 1 a.e. in ωT , and

E,H ∈ L∞
(

0, T ;L2(Ω, R3)
);(2) for all φφφ ∈ C∞

(

ωT ; R3)
), and ZZZ ∈ D

(

[0, T );C∞(Ω, R3) ∩ H0(curl,Ω)
),

∫

ωT

〈mt,φφφ〉dxdt + α

∫

ωT

〈m× mt,φφφ〉dxdt(2.10)
= −(1 + α2)

[

∫

ωT

〈m ×∇m,∇φφφ〉dxdt −
∫

ωT

〈m× H,φφφ〉dxdt
]

,

−ε0

∫

ΩT

〈E,ZZZt〉dxdt −
∫

ΩT

〈H,∇×ZZZ〉dxdt(2.11)
+σ

∫

ωT

〈E,ZZZ〉dxdt = −
∫

ΩT

〈J,ZZZ〉dxdt + ε0

∫

Ω
〈E0,ZZZ(0, ·)〉dx ,

−µ0

∫

ΩT

〈H + χωm,ZZZt〉dxdt +

∫

ΩT

〈E,∇×ZZZ〉dxdt(2.12)
= µ0

∫

Ω
〈H0,ZZZ(0, ·)〉dx + µ0

∫

ω
〈m0,ZZZ(0, ·)〉dx ;(3) we have m(0, ·) = m0 in the sense of traes;4



(4) for almost all T ′ ∈ (0, T ) we have
E(m,H,E)(T

′) +

∫

ω
T ′

( αµ0

1 + α2
|mt |2 + σ|E |2

)

dxdt ≤ E(m,H,E)(0) −
∫

Ω
T ′

(J,E) dxdt ,where
E(m,H,E)(T

′) =
µ0

2

∫

ω
|∇m(T ′, ·) |2 dx +

∫

Ω

[µ0

2
|H(T ′, ·) |2 +

ε0

2
|E(T ′, ·) |2

]

dx .Existene of weak solutions has �rst been shown in [6℄.3. Stability and ConvergeneThe following lemma provides a disrete ounterpart of (4) in De�nition 2.1 for Algorithm 1.2.Solvability of (1.7)�(1.9) follows from a ontration argument, whih employs (i) disrete energylaw (Lemma 3.1), (ii) isomorphism property of the mapping v 7→ v− u× v in R
3 (f. [1, p. 1079℄),and (iii) in partiular, isomorphism property for the linear problem (1.8)�(1.9). For a less generalproof of existene of a solution, see Setion 4.Lemma 3.1. Suppose that |m0

h(xℓ)| = 1 for all ℓ ∈ L. Then the sequene {(mj
h,Ej

h,Hj
h)}j≥0produed by Algorithm 1.2 satis�es for all j ≥ 0

(i) |mj+1
h (xℓ) | = 1 ∀ ℓ ∈ L ,

(ii) Eh

(

{mj+1
h ,Hj+1

h ,Ej+1
h }

)

+ k

j
∑

ℓ=0

αµ0

1 + α2
‖ dtm

ℓ+1
h ‖2

h + σ ‖E
ℓ+1/2
h ‖2

L2(ω)

= Eh

(

{m0
h,H0

h,E0
h}

)

− k

j
∑

ℓ=0

(J
ℓ+1/2
h ,E

ℓ+1/2
h ) ,where

Eh

(

{mj
h,Hj

h,Ej
h}

)

=
µ0

2

∫

ω
|∇m

j
h |2 dx +

∫

Ω

[µ0

2
|Hj

h |2 +
ε0

2
|Ej

h |2
]

dx .Proof. Veri�ation of (i) follows from hoosing φφφh = ϕℓm
j+1/2
h (xℓ) ∈ Vh for ℓ ∈ L in (1.7): withthe properties of the disrete inner produt and the ross produt we infer

βℓdt

∣

∣m
j+1
h (xℓ)

∣

∣

2
= βℓ〈dtm

j+1
h (xℓ),m

j+1/2
h (xℓ)〉 =

(

dtm
j+1
h , ϕℓm

j+1/2
h (xℓ)

)

h
= 0.Hene, if ∣

∣m
j
h(xℓ)

∣

∣ = 1 then also ∣

∣m
j+1
h (xℓ)

∣

∣ = 1. To verify (ii), we �rst hoose φφφh = −
(

∆̃hm
j+1/2
h +

PVh
H

j+1/2
h

) to obtain
1

2
dt‖∇m

j+1
h ‖2

L2 − (dtm
j+1
h ,PVh

H
j+1/2
h )h = α

(

m
j+1/2
h × dtm

j+1
h , ∆̃hm

j+1/2
h + PVh

H
j+1/2
h

)

h
.Choosing φφφh = dtm

j+1
h yields to

α

1 + α2
‖ dtm

j+1
h ‖2

h = α
(

m
j+1/2
h × (∆̃hm

j+1/2
h + PVh

H
j+1/2
h ), dtm

j+1
h

)

h
.Adding the last two identities and using the de�nition of PVh

lead to
1

2
dt‖∇m

j+1
h ‖2

L2 +
α

1 + α2
‖ dtm

j+1
h ‖2

h = (dtm
j+1
h ,H

j+1/2
h ) .In a seond step, we hoose (ϕϕϕh,ZZZh ) = (E

j+1/2
h ,H

j+1/2
h ) in (1.8)�(1.9) and add resulting identities,

dt

(µ0

2
‖H

j+1
h ‖2

L2 +
ε0

2
‖E

j+1
h ‖2

L2

)

+ σ ‖χωE
j+1/2
h ‖2

L2 = −µ0 (dtm
j+1
h ,H

j+1/2
h ) − (J

j+1/2
h ,E

j+1/2
h ) .Summation of last two identities then proves assertion (ii). �5



De�nition 3.1. For x ∈ Ω and t ∈ [tj, tj+1) de�ne for ξξξℓ = mℓ
h,Hℓ

h,Eℓ
h,Jℓ

h, and ℓ = j, j + 1,
ξ̃ξξ(t,x) :=

t − tj
k

ξξξj+1
h (x) +

tj+1 − t

k
ξξξj

h(x) ,

ξ̃ξξ
−
(t,x) := ξξξj

h(x) , ξ̃ξξ
+
(t,x) := ξξξj+1

h (x) , ξ̃ξξ(t,x) := ξξξ
j+1/2
h .Given any T ′ ≥ 0, equation (ii) in Lemma 3.1 may be rewritten as

E(m̃+,H̃+,Ẽ+)(T
′) +

αµ0

1 + α2

∫ T ′

0
||m̃t||2h dt + σ

∫ T ′

0
‖ Ẽ ‖2

L2(ω) dt(3.1)
≤ E(m̃0,H̃0,Ẽ0)(0) +

∫ T ′

0
(J̃, Ẽ) dt .We de�ne PYh

: L2(Ω, R3) → Yh through (u − PYh
u,ϕϕϕh) = 0 for all ϕϕϕh ∈ Yh and all u ∈

L2(Ω, R3). Letting (

φφφh,ϕϕϕh,ZZZh

)

(t, ·) :=
(

IIIVh
φφφ,IIIXh

ϕϕϕ,PYh
ZZZ

)

(t, ·) for φφφ ∈ C∞(ωT ; R3) and ZZZ,ϕϕϕ ∈
D

(

[0, T );C∞(Ω, R3) ∩ H0(curl,Ω)
) we may rewrite Algorithm 1.2 as follows:

∫ T

0
(m̃t,φφφh)h dt + α

∫ T

0
(m̃− × m̃t,φφφh)h dt = (1 + α2)

∫ T

0

(

m̃ × (∆̃hm̃ + PVh
H̃),φφφh

)

h
dt ,(3.2)

ε0

∫ T

0
(Ẽt,ϕϕϕh) dt −

∫ T

0
(H̃,∇×ϕϕϕh) dt + σ

∫ T

0
(χωẼ,ϕϕϕh) dt =

∫ T

0
(J̃,ϕϕϕh) dt ,(3.3)

µ0

∫ T

0
(H̃t,ZZZh) dt +

∫ T

0
(∇× Ẽ,ZZZh) dt = −µ0

∫ T

0
(m̃t,ZZZh) dt .(3.4)The a priori bounds in Lemma 3.1 provide the existene of a triple

(m,H,E ) ∈
[

L∞
(

0, T ;W 1,2(ω, S2)
)

∩ W 1,2(ωT ; R3)
]

×
[

L∞
(

0, T ;L2(Ω; R3)
)]2

,whih is the weak limit (as k, h → 0) of a subsequene {

( m̃, H̃, Ẽ )
}

k,h
, suh that

m̃, m̃±, m̃
∗
⇀ m in L∞

(

0, T ;W 1,2(ω, R3
)

, m̃ ⇀ m in W 1,2(ωT , R3) ,

m̃, m̃± m̃ → m in L2(ωT , R3) ,

( H̃, H̃±, H̃; Ẽ, Ẽ±, Ẽ )
∗
⇀ (H;E ) in [

L∞
(

(0, T );L2(Ω, R3)
)]2

.Sine | m̃+(xℓ) | = 1 for all ℓ ∈ L, and all t ∈ (0, T ) by Lemma 3.1, (i), we dedue with a disretePoinaré inequality that
∥

∥|m̃+|2 − 1
∥

∥

L2(K)
≤ Ch

∥

∥∇
[

|m̃+|2 − 1
]
∥

∥

L2(K)
≤ Ch ‖(m̃+)T∇m̃+‖2

L2(K) ≤ Ch ‖∇m̃+‖2
L2(K)for all K ∈ Th and hene that |m̃+| → 1 almost everywhere in ΩT . In partiular, we dedue that

|m| = 1 almost everywhere in ΩT . Owing to item (ii) of Lemma 3.1 and weak lower semiontinuityof norms we verify that (m,H,E ) satis�es part (4) of De�nition 2.1. If m0
h → m0 in L2(ω; R3) as

h → 0 then weak ontinuity of the trae operator yields that m(0, ·) = m0 in the sense of traes.Identi�ation of limits in (3.2) apart from the last term an be done as in [3℄ and we disuss theterm whih involves PVh
H̃. By de�nition of PVh

,
(m̃ × PVh

H̃,φφφh)h = −(m̃ × φφφh,PVh
H̃)h = −

(

IIIVh
(m̃× φφφh),PVh

H̃
)

h

= −
(

IIIVh
(m̃× φφφh), H̃

)

= −
(

(IIIVh
− Id)(m̃ × φφφh), H̃

)

−
(

m̃× φφφh, H̃
)

.6



Noting that
(

(IIIVh
− Id)(m̃ × φφφh), H̃

)

≤ Ch2
∑

K∈Th

‖D2(m̃ × φφφh) ‖L2(K)‖ H̃ ‖L2(K)

≤ Ch2 ‖∇m̃ ‖L2 ‖∇φφφh ‖L∞ ‖ H̃ ‖L2we dedue that
∫ T

0

(

m̃× PVh
H̃,φφφh

)

h
dt →

∫ T

0
(m× H,φφφ)as h, k → 0. To identify the limit in (3.3), we use the identity

∫ T

0
(Ẽt,ϕϕϕh) dt = −

∫ T

0

(

Ẽ, (ϕϕϕh)t
)

dt +
(

E(T, ·),ϕϕϕh(T, ·)
)

−
(

E(0, ·),ϕϕϕh(0, ·)
)

,and a passage to the limits in the terms on the right-hand side is straightforward owing to theirlinearity and the onvergene properties of Ẽ; we proeed aordingly with the leading term in (3.3).It remains to onsider the seond term in (3.4). Owing to ∇ × Xh ⊂ Yh, ZZZh = PYh
ZZZ, and theproperties of Ẽ we verify

∫ T

0

(

∇× Ẽ,ZZZh

)

dt =

∫ T

0

(

∇× Ẽ,ZZZ
)

dt =

∫ T

0
(Ẽ,∇×ZZZ) dt →

∫ T

0
(E,∇×ZZZ) dt .Finally, weak lower semiontinuity of norms and strong onvergene of disrete initial data impliesthe energy inequality in item (4) of De�nition 2.1 for the limit (m,E,H ). We have thus provedthe following theorem.Theorem 3.1. Let (2.8)�(2.9) be valid. Suppose that we have |m0

h(xℓ)| = 1 for all ℓ ∈ L andlet {(mj
h,Ej

h,Hj
h )}j≥0 solve Algorithm 1.2. Assume that m0

h → m0 in W 1,2(ω) and ( H̃0
h, Ẽ0

h ) →
(H0,E0 ) in L2(Ω, R3) as h → 0 and let T > 0 be a �xed onstant. As k, h → 0, a subse-quene of ( m̃, H̃, Ẽ ) onverges weakly to (m,H,E ) in [

L∞
(

0, T ;W 1,2(Ω, S2)
)

∩ W 1,2(ωT , R3)
]

×
[

L∞
(

(0, T );L2(Ω, R3)
)]2, and (m,H,E ) is a weak solution of (1.1)�(1.3).In fat, every weak aumulation point of ( m̃, H̃, Ẽ ) solves (1.1)�(1.3). Note also that no disreteversion of the ompatibility assumption (2.9) is assumed for ( H̃0

h, Ẽ0
h,m0

h ).4. Solving the nonlinear systemWe employ a �xed-point iteration to solve the nonlinear system in eah step of Algorithm 1.2:Given m
j
h, H

j
h, and E

j
h (or approximations m̃

j
h, H̃

j
h, and Ẽ

j
h) we aim at approximating wh :=

m
j+1/2
h , Fh := E

j+1/2
h , and Gh := H

j+1/2
h . The time derivative dtm

j+1
h is replaed by 2

k (wh − m
j
h)and similar expressions for dtE

j+1
h and dtH

j+1
h . A linearization of the nonlinear term (

wh×(∆̃hwh+

PL2Gh),φφφh

)

h
and the identity m

j
h × dtm

j+1
h = − 2

km
j+1/2
h × m

j
h lead to the following algorithm.Algorithm 4.1. Set (w0

h,F0
h,G0

h) := (m̃j
h, Ẽj

h, H̃j
h) and ℓ := 0.(i) Compute (wℓ+1

h ,Fℓ+1
h ,Gℓ+1

h ) ∈ Vh × X0
h × Yh suh that for all (φφφh,ϕϕϕh,ZZZh) ∈ Vh × X0

h × Yh7



there holds
2

k
(wℓ+1

h ,φφφh)h − 2α

k
(wℓ+1

h × m̃
j
h,φφφh)h

−(1 + α2)
(

wℓ+1
h × (∆̃hw

ℓ
h + PVhG

ℓ
h),φφφh

)

h
=

2

k
(m̃j

h,φφφh)h,

2ε0

k
(Fℓ+1

h ,ϕϕϕh) − (Gℓ+1
h ,∇×ϕϕϕh) + σ(χωFℓ+1

h ,ϕϕϕh) =
2ε0

k
(Ẽj

h,ϕϕϕh) − (J
j+1/2
h ,ϕϕϕh),

2µ0

k
(Gℓ+1

h ,ZZZh) + (∇× Fℓ+1
h ,ZZZh) +

2µ0

k
(wℓ+1

h ,ZZZh) =
2µ0

k
(H̃j

h,ZZZh) +
2µ0

k
(m̃j

h,ZZZh).

(4.1)
(ii) Stop and set (m̃j+1

h , Ẽj+1
h , H̃j+1

h ) := 2(wℓ+1
h ,Fℓ+1

h ,Gℓ+1
h ) − (m̃j

h, Ẽj
h, H̃j

h), one(4.2) ||∆̃h(wℓ+1
h − wℓ

h)||h + ||Gℓ+1
h − Gℓ

h||L2 ≤ ε.(iii) Set ℓ := ℓ + 1 and go to (i).For ε → 0, the output of the iteration onverges to the solution of (1.7)�(1.9) (in ase m̃
j
h = m

j
h,

Ẽ
j
h = E

j
h, and H̃

j
h = H

j
h) provided that k ≤ ch2

min/(1 + α2) with a fator c > 0 that only dependson the geometry of Th.Lemma 4.1. Suppose that ||m̃j
h||L∞ ≤ c0. For all ℓ ≥ 0 there exists a unique (wℓ+1

h ,Fℓ+1
h ,Gℓ+1

h )solving (4.1) and there holds
√

µ0/2||wℓ+1
h − wℓ

h||h +
√

2ε0||Fℓ+1
h − Fℓ

h||L2 +
√

µ0||Gℓ+1
h − Gℓ

h||L2

≤ Θ
(

√

µ0/2||wℓ
h − wℓ−1

h ||h +
√

µ0||Gℓ
h − Gℓ−1

h ||L2

)(4.3)with Θ = c2
1c0

√
15(1 + α2)kh−2

min provided that c2
1

√
5h−2

min ≥ 1. Let (m̃j+1
h , Ẽj+1

h , H̃j+1
h ) be theoutput of Algorithm 4.1. There exists a funtion Rj ∈ Vh satisfying ||Rj ||h ≤ ε suh that for all

(φφφh,ϕϕϕh,ZZZh) ∈ Vh × X0
h × Yh there holds

(dtm̃
j+1
h ,φφφh)h + α(m̃j

h × dtm̃
j+1
h ,φφφh)h

−(1 + α2)
(

m̃
j+1/2
h × (∆̃hm̃

j+1/2
h + PVhH̃

j+1/2

h ),φφφh

)

h
= (1 + α2)

(

m̃
j+1/2
h × Rj ,φφφh

)

h
,

ε0

k
(dtẼ

j+1
h ,ϕϕϕh) − (Ẽ

j+1/2

h ,∇×ϕϕϕh) + σ(χωẼ
j+1/2

h ,ϕϕϕh) = −(J
j+1/2
h ,ϕϕϕh),

µ0

k
(dtH̃

j+1
h ,ZZZh) + (∇× Ẽ

j+1/2

h ,ZZZh) +
µ0

k
(dtm̃

j+1
h ,ZZZh) = 0.

(4.4)
Moreover, if |m̃j

h(xm)| = 1 for all m ∈ L then there holds |m̃j+1
h (xm)| = 1 for all m ∈ L.Proof. Step 1. For (φφφh,ϕϕϕh,ZZZh) = (wℓ+1

h ,Fℓ+1
h ,Gℓ+1

h ) the sum of the left-hand sides in (4.1) (aftermultipliation of the �rst equation by µ0) equals
2µ0

k
||wℓ+1

h ||2h +
2ε0

k
||Fℓ+1

h ||2L2 + σ||χωFℓ+1
h ||2L2 +

2µ0

k
||Gℓ+1

h ||2L2 +
2µ0

k
(wℓ+1

h ,Gℓ+1
h ).Sine 2(wℓ+1

h ,Gℓ+1
h ) ≥ −||wℓ+1

h ||2h−||Gℓ+1
h ||2L2 the bilinear form de�ned by the left-hand side of (4.1)is positive de�nite on [

Vh × X0
h × Yh

]2 and (4.1) admits a unique solution.Step 2. We next ontrol ||wℓ+1
h ||L∞ uniformly for all ℓ ≥ 0: Let m ∈ L be suh that ||wℓ+1

h ||L∞ =

|wℓ+1
h (xm)|. Putting φφφh = ϕmwℓ+1

h (xm) in the �rst equation of (4.1) leads to(4.5) ||wℓ+1
h ||L∞ = |wℓ+1

h (xm)| ≤ |m̃j
h(xm)| ≤ ||m̃j

h||L∞ ≤ c0.8



Step 3. Subtration of two subsequent equations of iteration (4.1) shows
2

k
(wℓ+1

h − wℓ
h,φφφh)h − 2α

k

(

(wℓ+1
h − wℓ

h) × m̃
j
h,φφφh

)

h

−(1 + α2)
(

(wℓ+1
h − wℓ

h) × (∆̃hw
ℓ
h + PVhG

ℓ
h),φφφh

)

h

−(1 + α2)
(

wℓ
h × [(∆̃hw

ℓ
h + PVhG

ℓ
h) − (∆̃hw

ℓ−1
h + PVhG

ℓ−1
h )],φφφh

)

h
= 0,

2ε0

k
(Fℓ+1

h − Fℓ
h,ϕϕϕh) − (Gℓ+1

h − Gℓ
h,∇×ϕϕϕh) + σ

(

χω(Fℓ+1
h −Fℓ

h),ϕϕϕh

)

= 0,

2µ0

k
(Gℓ+1

h − Gℓ
h,ZZZh) +

(

∇× (Fℓ+1
h − Fℓ

h),ZZZh

)

+
2µ0

k
(wℓ+1

h − wℓ
h,ZZZh) = 0.Adding the three identities (after multiplying the �rst equation by µ0) and hoosing (φφφh,ϕϕϕh,ZZZh ) =

(wℓ+1
h − wℓ

h,Fℓ+1
h − Fℓ

h,Gℓ+1
h − Gℓ

h ) provides
2µ0

k
||wℓ+1

h − wℓ
h||2h +

2ε0

k
||Fℓ+1

h − Fℓ
h||2L2 + σ||χω(Fℓ+1

h − Fℓ
h)||2L2 +

2µ0

k
||Gℓ+1

h − Gℓ
h||2L2

= −2µ0

k
(wℓ+1

h − wℓ
h,Gℓ+1

h − Gℓ
h)

+ µ0(1 + α2)
(

wℓ
h × [(∆̃hw

ℓ
h + PVhG

ℓ
h) − (∆̃hw

ℓ−1
h + PVhG

ℓ−1
h )],wℓ+1

h − wℓ
h

)

h

≤ 3µ0

2k
||wℓ+1

h − wℓ
h||2h +

µ0

k
||Gℓ+1

h − Gℓ
h||2L2

+ k
µ0

2
(1 + α2)2c2

0

(

||∆̃h(wℓ
h − wℓ−1

h )||h + ||PVh(Gℓ
h − Gℓ−1

h )||h
)2

.The estimates ||∆̃hφφφh||h ≤ c2
1

√
5h−2

min||φφφh||h and ||PVhZZZh||h ≤ ||ZZZh||L2 imply (4.3).Step 4. In order to prove (4.4) we replae dtm̃
j+1
h = 2

k (wℓ+1
h − m̃

j
h), m̃

j+1/2
h = wℓ+1

h , et. in (4.1)to verify with Rj := (∆̃hw
ℓ
h + PVhGℓ

h) − (∆̃hw
ℓ+1
h + PVhG

ℓ+1
h )

(dtm̃
j+1
h ,φφφh)h − 2α

k
(m̃

j+1/2
h × m̃

j
h,φφφh)h

−(1 + α2)
(

m̃
j+1/2
h × (∆̃hm̃

j+1/2
h + PVhH̃

j+1/2

h ),φφφh

)

h
= (1 + α2)

(

m̃
j+1/2
h × Rj ,φφφh

)

h
,

ε0

k
(dtẼ

j+1
h ,ϕϕϕh) − (Ẽ

j+1/2

h ,∇×ϕϕϕh) + σ(χωẼ
j+1/2

h ,ϕϕϕh) = −(J
j+1/2
h ,ϕϕϕh),

µ0

k
(dtH̃

j+1
h ,ZZZh) + (∇× Ẽ

j+1/2

h ,ZZZh) +
µ0

k
(dtm̃

j+1
h ,ZZZh) = 0.Using 2

km̃
j+1/2
h ×m̃

j
h = −m̃

j
h×dtm̃

j+1
h we verify (4.4) and the stopping riterion implies ||R||h ≤ ε.Step 5. We hoose φφφh = ϕmm̃

j+1/2
h (xm) in (4.4) to verify dt|m̃j+1

h (xm)|2 = 0. �Remark 4.1. Convergene to a weak solution of (MLLG) of approximations satisfying (4.4) as
(k, h, ε) → 0 suh that ε = o(h2

min) is veri�ed as in Setion 3. The only di�erene is a perturbed9



energy law: instead of (ii) in Lemma 3.1 one has
Eh

(

{m̃j+1
h , H̃j+1

h , Ẽj+1
h }

)

+ k

j
∑

ℓ=0

(1 − ε)
αµ0

1 + α2
‖ dtm̃

ℓ+1
h ‖2

h + σ ‖ Ẽ
ℓ+1/2

h ‖2
L2(ω)

≤ Eh

(

{m̃0
h, H̃0

h, Ẽ0
h}

)

− k

j
∑

ℓ=0

(J
ℓ+1/2
h , Ẽ

ℓ+1/2

h )

+ k

j
∑

ℓ=0

{

(1 + α2)‖Rℓ ‖h

(

c3h
−2
min + ‖ H̃

ℓ+1/2
h ‖

)

+
1

4ε
(1 + α2)α‖Rℓ ‖2

h

}

.5. Computational Experiments5.1. Physial model. In below, let j = J

Ms
, h = H

Ms
and e = E

Ms
denote the saled eletri urrent,magneti and eletri �elds, respetively.In pratial omputations, the following physial onstants have to be inluded in the model: thepermeability of vauum µ∗

0, the permittivity of vauum ε∗0, the exhange onstant A∗, the anisotropyonstant K∗, the saturation magnetization Ms, and the gyromagneti ratio γ. The diretion of theuniaxial anisotropy is haraterized by a unit vetor p ∈ S
2. Without loss of generality, we assumethat p is parallel to one of the oordinate axes. The e�etive �eld then beomes(5.1) heff = A∆m + K〈m,p〉p + h,with onstants

A =
2A∗

µ∗
0M

2
s

, K =
2K∗

µ∗
0M

2
s

.The LLG equation, whih after resaling in time, takes a dimensionless form(5.2) mt + αm× mt = (1 + α2)m × heff in ωT ,now orresponds to a fully physial situation with time measured in units of (γMs)
−1s, f., e.g. [19℄.To have the same time sales for the whole MLLG system, the Maxwell's equations have to beresaled in time appropriately. After a hange of the time variable and an additional saling byfator M−1

s we obtain
ε0 et + ∇× h + σ χωe = −j on ΩT ∗ ,(5.3)
µ0 ht −∇× e = −µ0 mt on ΩT ∗ ,(5.4)where ε0 = γMsε

∗
0, µ0 = γMsµ

∗
0 and T ∗ = γMs T .A ounterpart of Lemma 3.1, for (5.2)-(5.4) reads as follows.Lemma 5.1. Suppose that |m0
h(xℓ)| = 1 for all ℓ ∈ L. Then the sequene {(mj

h,Ej
h,Hj

h)}j≥0produed by Algorithm 1.2 satis�es for all j ≥ 0

(i) |mj+1
h (xℓ) | = 1 ∀ ℓ ∈ L ,

(ii) ET := E∗
h

(

{mj+1
h ,hj+1

h , ej+1
h }

)

+ k

j
∑

ℓ=0

αµ0Ms

1 + α2
‖ dtm

ℓ+1
h ‖2

h + σ ‖ e
ℓ+1/2
h ‖2

L2(ω)

= E∗
h

(

{m0
h,h0

h, e0
h}

)

− k

j
∑

ℓ=0

(j
ℓ+1/2
h , e

ℓ+1/2
h ) ,10



where
E∗

h

(

{mj
h,hj

h, ej
h}

)

=
µ0Ms

2

∫

ω

[

A|∇m
j
h |2 + K IIIVh

(

1 − 〈mj
h,p〉2

)]

dx

+

∫

Ω

[µ0

2
|hj

h |2 +
ε0

2
| ej

h |2
]

dx

:= Eex + Eanis + EH + EE .In the following we refer to ET as the total energy and to the terms Eex, Ean, EH , EE as theexhange energy, anisotropy energy, magneti �eld energy, and eletri �eld energy, respetively.Remark 5.1. To obtain physially relevant results, the initial ondition for the Maxwell-LLG systemshould satisfy the �divergene-free� onstraint from, i.e., divh(h0
h +χωm0

h) = 0. This an be ahievedby taking h0
h = h0

∗ − χω(P∗
hm

0
h), with h0

∗ ∈ Yh, s.t. divhh
0
∗ = 0. The projetion P∗

h : Vh → Yh isfor uh ∈ Vh de�ned through (P∗
huh,ZZZh) = (uh,ZZZh) for all ZZZh ∈ Yh. Sine m

j
h is pieewise linear,we have that the value of P∗

hm
j
h on an element K ∈ Th

∣

∣

ω
orresponds to the value of m

j
h in thebaryenter of K. Further, we have from (1.9) that

µ0

k
(hj+1

h ,ZZZh) +
µ0

k
(P∗

hm
j+1
h ,ZZZh) = −(∇× e

j+1/2
h ,ZZZh) +

µ0

k
(hj

h,ZZZh) +
µ0

k
(P∗

hm
j
h,ZZZh) ∀ZZZh ∈ Yh.From the previous equation, it an be dedued by indution, that divh(hj+1

h + χω(PYh
m

j+1
h )) = 0is satis�ed pointwise in Ω. The above arguments remain valid for (4.1). In our experiments, wesimply take h0

∗ to be a onstant vetor �eld.5.2. Solution of the disrete system. Without loss of generality, we onsider the disrete systemwith σ = 0. The �rst equation from (4.1), orresponding to the disrete LLG equation, is e�ientlysolved by the bionjugate gradient stabilized (BiCGStab) method. The solution of the seond andthird equations from (4.1) is equivalent to solving a disrete algebrai system of the form(5.5) (

A −CT

C B

)(

e

h

)

=

(

f

g

)

,where
Aij =

2ε0

k
(ϕϕϕi

h,ϕϕϕj
h) , Bij =

2µ0

k
(ZZZi

h,ZZZj
h) , Cij = (∇×ϕϕϕj

h,ZZZi
h) ,and the vetors of unknowns e = {ei}, h = {hi} are de�ned through

Fh =
∑

i

eiϕϕϕ
i
h , Gh =

∑

i

hiZZZ
i
h .Similarly, we de�ne f = {fi}, g = {gi}, where f =

∑

i fiϕϕϕ
i
h and g =

∑

i giZZZ
i
h represent the right-handsides of the disrete problem.The system (5.5) an be e�etively solved by a preonditioned inexat Uzawa method whihonsists of two steps:(1) h

n
= B−1(g − Cen) ,(2) en+1 = en + ρS−1(f + CTh

n − Aen) .Here, ρ > 0 is a onstant (we set ρ = 1 below), and S−1 is a suitably hosen preonditioner, thatan onsiderably speed up the onvergene of the Uzawa iterations. Note that the omputation of
B−1 in the �rst step of the above Uzawa algorithm is trivial, sine the matrix B is diagonal, owingto the hoie of pieewise onstant funtions.The preonditioner S is an approximation of the Shur omplement, i.e.,

S ≈ (CTB−1C) + A .11



The onstrution of the preonditioner is motivated by the fat that our formulation an be (for-mally) onsidered as a mixed approximation of an eddy urrent problem of the form
2ε0

k
(F∗

h,ϕϕϕ) +
k

2µ0
(∇× F∗

h,∇×ϕϕϕ) = (f ,ϕϕϕ) +
k

2µ0
(∇× g,ϕϕϕ) ∀ϕϕϕ ∈ H0(curl; Ω).In matrix notation we have S = M + R, with matries

Mij =
2ε0

k
(ϕϕϕi

h,ϕϕϕj
h) , Rij =

k

2µ0
(∇×ϕϕϕi

h,∇×ϕϕϕj
h) .We ompute the approximation of S−1 by the BiCGstab algorithm with at most 50 iterations forevery sub-step. A better approximation of S−1 an be obtained by using a multigrid method foreddy urrent equations, see e.g. [8℄, whih together with the moderate number of outer Uzawaiterations gives an e�etive method with multigrid omplexity.It is possible to eliminate h from (5.5), whih leads to a system of equations in the Shur om-plement form(5.6) (

CTB−1C + A
)

e = f + CTB−1g .An alternative approah to the Uzawa algorithm is to solve equation (5.6) by the onjugate gradientmethod, see e.g. [17℄ and the referenes therein. The onjugate gradient algorithm needs to evaluate
B−1, whih is trivial, sine B is diagonal. We an speed up the onvergene of the onjugate gradientalgorithm by using a suitable preonditioner. In our ase, one ould use the same preonditioner asfor the Uzawa algorithm. We use the onjugate gradient algorithm for (5.6) without preonditioningin our experiments, sine it proves to be slightly faster than the preonditioned Uzawa algorithm.We expet both methods to have omparable performane with e�etive multigrid preonditioners,f. [17℄.Remark 5.2. We observe slow onvergene of the algebrai solvers for domains of size O(10−6), i.e.,in pratial appliations. The onvergene properties of the solvers improve for larger values of thegyromagneti ratio γ or for smaller size of the time step k. We believe that the onvergene rates anbe substantially improved with a suitable multigrid preonditioner. Note that similar problems withsolver onvergene in miromagneti appliations are reported in [21℄, where a onjugate gradientalgorithm is applied to the eddy urrent formulation of Maxwell's equations.5.3. Computational results. Our omputational ode is based on the �nite element pakageALBERT, see [22℄, with tetrahedral meshes in 3D. We use standard pieewise linear elements forthe disretization of mh, with degrees of freedom (DOFs) loated at the vorties of the mesh, andpieewise onstant elements for hh with DOFs loated at the baryenters of the mesh elements. Wedisretize eh by edge elements of the �rst kind, with one DOF per every edge of the mesh. The edgeelements of the �rst kind have only slightly worse approximation properties than the edge elementof the seond kind, however the latter need two DOFs per edge. In our ode we replae (4.2) inAlgorithm 4.1 by a slightly more pratial stopping riterion for the �xed-point iterations, i.e.,

||wℓ+1
h − wℓ

h||h ≤ h2ε,

||Gℓ+1
h − Gℓ

h||L2 ≤ ε.We hoose ε = 10−8 in our omputations. The onvergene of the �xed-point iterations is at-tained after at most 6 steps in all presented experiments. We observe monotone derease of thedisrete energy from Lemma 5.1 in all experiments, whih on�rms good numerial onvergene ofAlgorithm 4.1.The �rst example is aademi whih studies possible �nite-time blow-up behavior of weak so-lutions to (1.1)�(1.5) with the help of Algorithm 1.2. We say that (disrete) �nite-time blow-upours if the sequene {

||∇m
j
h||L∞

}

j
attains the maximum value of the mapping vh 7→ ||∇vh||L∞12



among funtions vh ∈ Vh satisfying |vh(xℓ)| = 1 for all ℓ ∈ L. Corresponding studies are reportedin [3, 4℄ for heff = ∆m and ω ⊂ R
2, where blow-up is omputationally evidened for superritial(initial) data. Here, we study the in�uene of the eletromagneti �eld ( e0,h0 ) : Ω → R

3 on thesuperritial m0 : ω → S
2.Example 5.1. Let (0, 1)3 = ω = Ω and j ≡ 0. Let m0 : ω → S

2 and ( e0,h0 ) : Ω →
[

R
3
]2 bede�ned by

m0(x) =

{

(0, 0,−1) for |x∗| ≥ 1/2,
(2x∗A,A2 − |x∗|2)/(A2 + |x∗|2) for |x∗| ≤ 1/2 and x∗ ∈ ω

h0
∗(x) = (0, 0,Hs) in Ω ,

e0(x) = (0, 0, 0) in Ωwith x∗ = (x1 −0.5, x2 −0.5, 0) and A = (1−2|x∗|)4/4. The omputational domain Ω = ω = (0, 1)3is partitioned into uniform ubes with side h, eah ube onsists of six tetrahedra. We hoose thetime step k = 10−5 and set the other parameters α = γ = Ms = µ0 = 1, ε0 = 10−6, K = 0.The onstant Hs represents the strength of initial �eld in the x3-diretion. We omputed theexperiments for Hs = −30, 0, 30 on meshes with h = 1/24 and h = 1/25. The evolution of ‖∇mh‖∞is depited in Figure 1. The evolution of the exhange energy an be found in Figure 2. Figure 3displays the evolution of ‖hh‖∞/Hs. We dedue from the Figures 1 and 3 that variations of ‖∇mh‖∞lose to a ertain time T ∗ > 0 (`blow-up time') orrespond to variations of ‖hh‖∞ lose to the sametime T ∗. A similar behavior is found for the evolution of ‖eh‖∞ whih is depited in Figure 4.Further, we observe that the mesh size not only determines the quantity maxt ‖∇mh(t, ·)‖∞, f. [3,4℄, but in�uenes the evolution of ‖hh‖∞, ‖eh‖∞. The omputations with Hs = −30 show thatnegative initial magneti �eld aelerates the blow-up of the solution. The evolution beomes moreomplex for Hs = 30; the blow-up time is slightly delayed. Beyond the instability, when themagnetization is aligned along the (0, 0,−1) diretion, the in�uene of the magneti �eld on theevolution prevails and the magnetization starts to rotate in the opposite diretion, i.e. (0, 0, 1), seeFigure 5 for h = 2−4. We did not ompute beyond the time t = 0.214 however it is reasonableto expet that the magnetization will be aligned in the (0, 0, 1) diretion after the steady state isreahed. The detail of the solution for Hs = 30, h = 2−4 near x = (0.5, 0.5, 0.5) is depited inFigure 6. There was only little variation of the magnetization in the x3 diretion, we thereforepresent all results on the ross-ut through the domain at x3 = 0.5.The following example is derived from a benhmark problem [16, Problem # 1℄ of a thin uniaxialferromagneti �lm, for whih long-time dynamis is studied in [14℄, in the ase d = 2. Here, westudy the dynamis of the problem for d = 3. Aording to our knowledge, there are no omparablestudies for d = 3 in the existing literature.Example 5.2. Let ω = (0, 2) × (0, 1) × (0, 0.02), and Ω = (−0.2, 2.2) × (−0.2, 1.2) × (−0.04, 0.06)(the domain dimensions are in µm), with
α = 0.5, γ = 2.2 × 109, Ms = 8 × 105, K∗ = 5 × 102, A∗ = 1.3 × 10−11,
p = (1, 0, 0), ε∗0 = 0.88422 × 10−11, µ∗

0 = 1.25667 × 10−6, σ = 0and (j ≡ 0)
( e0,h0 ) = (0,0) in Ω .The initial ondition m0

h is de�ned by assigning unit vetors with random orientation to every vortexof the mesh.The domains Ω and ω are partitioned into briks of dimension 0.04×0.04×0.02. Subsequently, theorresponding omputational meshes are obtained by subdivision of eah brik into six tetrahedra.This partition results in 7956 degrees of freedom for mh on ω and 189000, 81325 degrees of freedom13



for eh, hh on Ω, respetively. We ompute on a time interval (0, 8000), using a uniform time step
k = 0.1.The evolution of the disrete energies ET , Eex, Ean, EH , EE (i.e., the total, exhange, anisotropy,magneti �eld and eletri �eld energy) from Lemma 5.1 is depited in Figure 7. Snapshots of themagnetization at di�erent time levels an be found in Figure 8; the vetors are olored aording tothe value of the x2-omponent of the magnetization vetor. For omparison, Figure 9 shows theevolution of magnetization with the same initial ondition omputed without taking the ouplingwith Maxwell's equations into aount. The evolution of the disrete energies ET , Eex, Ean isdisplayed in Figure 10 (note that, EH = EE ≡ 0). The �gures show a lear di�erene between thetwo ases.The data for the last example are taken from [16, Problem # 4℄. Here we study the evolution ofthe magnetization towards a steady state, the so alled S-state, f. [16, Problem # 4℄.Example 5.3. Let ω = (0, 0.5)×(0, 0.125)×(0, 0.003), and Ω = (−0.75, 1.25)×(−0.9375, 1.0625)×
(−0.7665, 0.7695) (in µm), with

α = 1., γ = 2.2 × 109, Ms = 8 × 105, K∗ = 0, A∗ = 1.3 × 10−11,
ε∗0 = 0.88422 × 10−11, µ∗

0 = 1.25667 × 10−6, σ = 0and (j ≡ 0)
m0 = (1, 0, 0 ) in ω ,
h0
∗ = (0.01, 0.01, 0.01), e0 = 0 in Ω .The domain ω is partitioned uniformly into ubes of dimensions 0.00390625 × 0.00390625 × 0.003,where eah ube onsists of six tetrahedra. The non-uniform mesh for the domain Ω is onstrutedin suh a way that it is idential to the mesh for ω in the region Ω ∩ ω and the mesh size graduallyinreases away from the overlapping region. A ross-ut through the mesh at x3 = 0 is displayed inFigure 11.The above disretization of the omputational domains results in 25, 542 DOFs for mh on ω and

138, 302, 353, 568 DOFs for eh, hh, respetively. We employ a uniform time stepping, with k = 0.01.The magnetization at time T = 300 is displayed in Figure 12, the vetors are olored aordingto the x2-omponent of the magnetization. Convergene towards the S-state (f. [16, Problem # 4℄)an be observed from the results. No steady state has yet been reahed at the �nal time, howeverthe onvergene towards the steady state after the time T = 300 has been very slow. The evolutionof the disrete energies from Lemma 5.1 is depited in Figure 13.6. Conluding RemarksWe devised an impliit disretization of the Maxwell-Landau-Lifshitz-Gilbert system whih isbased on linear �nite elements. For pairs of time-step sizes and mesh-sizes tending simultaneouslybut independently to zero, we showed that every aumulation point of the sequene of numerialapproximations is a weak solution of the ontinuous equations satisfying an energy inequality. Aniterative solver for the solution of the nonlinear system of equations in eah time step is proposedand its onvergene is proved under the time-step restrition k ≤ Ch2. The onvergene of thenonlinear solver is robust for small values of the damping parameters α. Owing to expeted non-uniqueness and possible ourrene of singularities, strong onvergene of the (whole) sequene orerror estimates annot be expeted unless additional assumptions on an exat solution are made.The use of higher order �nite elements for the disretization of m are beyond the sope of thispaper and remain to be analyzed in future work. Our numerial experiments on�rm the theo-retial results and indiate that �nite-time blow-up for MLLG is possible and hene that singularsolutions an develop from smooth initial data. Two examples based on standard miromagneti14



benhmark problems are omputed to demonstrate the potential of the method for pratial appli-ations. Further, we onstruted a Shur omplement preonditioner for a saddle point system ofalgebrai equations whih arise in every iteration of the nonlinear solver. We observed, that thepreonditioning dramatially redued the number of iterations needed for the onvergene of thelinear solver on strutured and unstrutured meshes. A multigrid type preonditioner, whih isrobust with respet to the time step size, is subjet to our urrent researh.Referenes[1℄ F. Alouges, A. Soyeur, On global weak solutions for Landau-Lifshitz equations: existene and nonuniqueness,Nonl. Analysis, Theory, Meth. & Appl. 18, pp. 1071�1084 (1992).[2℄ F. Alouges, P. Jaisson Convergene of a �nite elements disretization for the Landau Lifshitz equations,Math. Models Methods Appl. Si. 16, pp. 299�316 (2006).[3℄ S. Bartels, A. Prohl Convergene of an impliit �nite element method for the Landau-Lifshitz-Gilbert Equation,SIAM J. Numer. Anal. 44, pp. 175�199 (2006).[4℄ S. Bartels, J. Ko, A. Prohl, Numerial approximation of Landau-Lifshitz equations and �nite time blow up ofweak solutions, Math. Comp. (aepted) (2007).[5℄ W. Brown, Miromagnetis, Trats of Physis, Wiley Intersiene (1963).[6℄ G. Carbou, P. Fabrie, Time average in miromagnetism, J. Di�. Eqn.s 147, pp. 383�409 (1998).[7℄ I. Cimrák, Error estimates for a semi-impliit numerial sheme solving the Landau-Lifshitz equatoin with anexhange �eld, IMA J. Numer. Anal. 25, pp. 611�634 (2005).[8℄ R. Hiptmair Multigrid method for Maxwell's equations SIAM J. Numer. Anal. 36, pp. 204�225 (1998).[9℄ M. Kruºík, A. Prohl, Reent Developments in Modeling, Analysis and Numeris of Ferromagnetism, SIAMReview 48, pp. 439�483 (2006).[10℄ L.D. Landau, E.M. Lifshitz, On the theory of the dispersion of magneti permeability in ferromagneti bodies,Phys. Z. Sowjetunion 8, pp. 153�169 (1935).[11℄ B. Lax, K. Button, Mirowave Ferrites and Ferrimagnetis, MGraw-Hill (1962).[12℄ P.B. Monk, Finite element methods for Maxwell's equations, Oxford University Press (2003).[13℄ P.B. Monk, O. Vaus, Error estimates for a numerial sheme for ferromagneti problems, SIAM J. Nu-mer. Anal. 36, pp. 696�716 (1999).[14℄ P.B. Monk, O. Vaus, Aurate disretization of a non-linear miromagneti problem, Com-put. Meth. Appl. Meh. Engrg. 190, pp. 5243�5269 (2001).[15℄ J. Nédéle, A new family of mixed �nite elements in R
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Figure 1. Example 5.1: Plot of t 7→ ‖∇mh(t, ·)‖∞
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Figure 2. Example 5.1: Plot of t 7→ ‖∇mh(t, ·)‖2

16



 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  0.01  0.02  0.03  0.04  0.05

Hs=-30
Hs=30

Hs=-30, fine mesh
Hs=30, fine mesh

Figure 3. Example 5.1: Plot of t 7→ ‖hh(t, ·)‖∞/|Hs|
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Figure 4. Example 5.1: Plot of t 7→ ‖eh(t, ·)‖∞
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Figure 5. Example 5.1: Magnetization for Hs = 30 at times t =
0, 0.01, 0.015, 0.020, 0.030, 0.214 for h = 1/24 (from left to right, from top to bot-tom).

Figure 6. Example 5.1: Details of the magnetization for Hs = 30 near x =
(0.5, 0.5, 0.5) at times t = 0, 0.01, 0.015, 0.020, 0.030, 0.214 for h = 1/24 (from leftto right, from top to bottom).
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Figure 7. Example 5.2: Evolution of the energies, log(t) 7→ ET (t)/22, Eex(t)/11,
Ean(t)/0.04, EH(t)/7, EE(t)/4.
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Figure 8. Example 5.2: Magnetization at times t = 0, 100, 200, 2500, 5000, 8000(from left to right, from top to bottom).
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Figure 9. Example 5.2: Magnetization without the magneti �eld at times t =
0, 10, 50, 100, 200, 2500 (from left to right, from top to bottom).
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Figure 10. Example 5.2: Evolution of the energies, log(t) 7→ ET (t)/11, Eex(t)/11, Ean(t)/0.04.

Figure 11. Example 5.3: Mesh for the domain Ω at x3 = 0 (left) and zoom at themesh for the domain ω at x3 = 0 (right).
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Figure 12. Example 5.3: Magnetization at time t = 300, near the S-state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.01  0.1  1  10  100

total energy
exchange energy

H energy
E energy

Figure 13. Example 5.3: Evolution of the energies, log(t) 7→ ET (t)/2.3,
Eex(t)/0.0004, EH(t)/2, EE(t)/0.09.
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