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Sören Bartels, Mario Bebendorf, and Michael Bratsch

Abstract We present a fast and accurate numerical method to compute unstable mi-
cromagnetic configurations. The proposed scheme, which combines various state of
the art methods, is able to treat the pointwise unit-length constraint of the magneti-
zation field and to efficiently compute the stray field energy. Furthermore, numerical
results are presented which are in agreement with the expected results in simple sit-
uations and allow predictions beyond theory.
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1 Introduction

The computation of minimal switching energies between two given stable states and the detection
of a corresponding unstable critical configuration is an important task in the mathematical mod-
eling of many physical phenomena [2, 12, 23]. In this paper we address this problem and thereby
aim at contributing to the understanding of the energy landscape for a mathematically challenging
and well established model energy functional in micromagnetics; cf. [9, 25]. Its particular features
are that it involves a unit-length constraint for the magnetization field and requires the computation
of a stray field.

The finite element treatment of minimization problems and partial differential equations with
pointwise constraints has been investigated intensively in recent years [1, 2]. Reliable and efficient
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methods are now available that typically impose the constraint at the nodes of a triangulation [4, 5].
In iterative schemes the constraint is linearized and afterwards updates are made which consist of
corrections of tangent spaces and a subsequent nodewise nearest-neighbor projection onto the given
target manifold which lead to linear systems of equations.

Computing the solution of an exterior domain problem is often formulated as a boundary equa-
tion with a non-local operator and then requires the solution of linear systems of equations with
large, fully populated matrices. This is can be done efficiently with the technique of so-called H -
matrices which can approximate the arising matrices with almost linear complexity, cf. [19, 7, 27].

Various methods are available to compute unstable critical points, i.e., saddle points, of energy
functionals known as mountain pass algorithms [8]. They typically assume that the functional
under consideration is defined on a linear space and therefore cannot be employed if this is not
the case, i.e., if the linear interpolation between admissible configurations does not belong to the
domain of the functional. A method that is capable to cope with related difficulties is the recently
developed string method, see [11, 13], that evolves an entire path that connects two given states in
the set of admissible configurations.

For the Landau-Lifschitz energy in micromagnetics certain stable critical configurations such
as the so-called flower and vortex state are known [29, 22]. To efficiently switch between such
states, e.g., by an applied field, it is important to determine the minimal energy required to achieve
this change. We use the string method in combination with finite element methods to deal with the
pointwise unit-length constraint and the H -matrix technology to efficiently compute this energy
and to identify a corresponding magnetization. The resulting numerical method is verified for a
standard problem [26] and a so-called minimum energy path connecting the flower and vortex
state is presented.

2 The Landau-Lifschitz model

Let Ω ⊂R3 be a domain and let the magnetization m : R3→R3 satisfying ‖m(x)‖2 = 1 in Ω and
m(x) = 0 for all x 6∈Ω be given. The energy associated with m is

E(m) :=
1
2

∫
Ω

‖Dm‖2
F dx+

∫
Ω

φ(m)− f ·mdx+Es(m), (1)

where φ(m) := 1− (e ·m)2 with given e, f ∈ R3 satisfying ‖e‖2 = 1 and

Es(m) :=
µ0

2

∫
R3
‖H‖2

2 dx, µ0 := 4π ·10−7,

denotes the energy of the stray field H corresponding to m. H can be computed from the Maxwell
equations in the absence of electrical currents and charges

divB = 0, (2a)

curl H = 0. (2b)

H and the magnetic induction B are coupled by the equation B = µ0(H +m).
From equation (2b) it follows that there is the so-called magnetostatic potential um : R3 → R

satisfying H =−∇um. Then (2a) becomes

∆um = divm,

which is equivalent with the weak formulation
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∇um ·∇wdx =
∫

Ω

m ·∇wdx for all w ∈ H1(R3). (3)

Notice that this defines a linear mapping m 7→ um with

‖∇um‖L2(R3) ≤ ‖m‖L2(Ω). (4)

Using w = um in (3), it follows that

Es(m) =
µ0

2

∫
Ω

m ·∇um dx. (5)

In addition to the energy E(m) also its derivative E ′(m)[v] will be important. Let the direction v
be given such that v(x) ·m(x) = 0 for almost every x ∈Ω . Then we obtain that

E ′(m)[v] =
∫

Ω

trace(Dm)T (Dv)dx−2
∫

Ω

(e ·m)(e ·v)dx−
∫

Ω

f ·vdx+E ′s(m)[v],

where
E ′s(m)[v] = µ0

∫
R3

H(v)H(m)dx = µ0

∫
Ω

v ·∇um dx

due to (3).

3 Efficient computation of the stray field energy

The stray field energy represents the non-local effects of the magnetization. Hence, it is the nu-
merically most challenging part of the computation of the Landau-Lifschitz model; see (1). In the
following, a reformulation will be shown so that H -matrices can be applied to approximate the
local and non-local parts of the stray field energy.

3.1 Different formulations

Our aim is to find an explicit expression for the magnetostatic potential um. Equation (3) is equiv-
alent to the following boundary value problem

∆um =

{
divm, in Ω ,

0, in Ω c := R3 \Ω ,
(6a)

[um] = 0 on ∂Ω , (6b)

[∂ν um] =−m ·ν on ∂Ω , (6c)

which has the solution
um(x) =

∫
Ω

∇S(x− y) ·m(y)dy,

where S(x) := − 1
4π
‖x‖−1

2 denotes the singularity function of the Laplacian. Note that [·] in (6)
denotes the jump across the boundary ∂Ω .

The computation of the stray field energy using the latter representation of um in combination
with hierarchical matrices was already done in [27]. We favor the following representation (see
[14]), because it leads to the interaction of Ω with its boundary ∂Ω . Let u1 and u2 satisfy the
following boundary value problems
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∆u1 = divm in Ω ,

u1 = 0 on ∂Ω

and

∆u2 = 0 in Ω ∪Ω
c, (7a)

[u2] = 0 on ∂Ω , (7b)

[∂ν u2] = g on ∂Ω , (7c)

where g := (∇u1−m) ·ν . Then um = u1 +u2 and the solution of the homogeneous problem (7) is

u2(x) =
∫

∂Ω

S(x− y)g(y)dsy.

Hence, from (5)

Es(m) =
µ0

2

∫
Ω

m ·∇u1 dx+
µ0

2

∫
Ω

∫
∂Ω

m(x) ·∇S(x− y)g(y)dsy dx.

From ∫
Ω

m(x) ·∇S(x− y)dx =−
∫

Ω

S(x− y)(divm)(x)dx+
∫

∂Ω

S(x− y)m(x) ·νx dsx

we obtain that

Es(m) =
µ0

2

∫
Ω

m ·∇u1 dx− µ0

2

∫
Ω

∫
∂Ω

S(x− y)(divm)g(y)dsy dx

+
µ0

2

∫
∂Ω

∫
∂Ω

S(x− y)m(x) ·νx g(y)dsy dsx.

3.2 Discretization

We assume that the computational domain Ω is decomposed into a set of tetrahedra Th such
that Ω = ∪τ∈Th τ . The finite element space consisting of linear ansatz functions Φ = (ϕi)i∈I is
denoted by S 1(Th), the corresponding set of nodes will be referred to as Nh. We discretize the
magnetization mh ∈S 1(Th)

3 such that

mh = ∑
i∈I

αiϕi, αi ∈ R3.

Then Dmh = ∑i∈I αi(∇ϕi)
T , and the first term in (1) can be computed from∫

Ω

‖Dmh‖2
F dx =

∫
Ω

trace(Dmh)
T (Dmh)dx = ∑

i, j∈I

∫
Ω

trace∇ϕiα
T
i α j(∇ϕ j)

T dx

= ∑
i, j∈I

αi ·α j

∫
Ω

trace∇ϕi(∇ϕ j)
T dx = ∑

i, j∈I
αi ·α j

∫
Ω

∇ϕi ·∇ϕ j dx.

The second and the third term in (1) have the values∫
Ω

φ(mh)dx =
∫

Ω

1− (e ·mh)
2 dx = vol(Ω)− ∑

i, j∈I
(e ·αi)(e ·α j)

∫
Ω

ϕiϕ j dx
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and ∫
Ω

f ·mh dx = ∑
i∈I

f ·αi

∫
Ω

ϕi dx.

Since u1 vanishes on ∂Ω , for the discretization of u1 only the inner degrees of freedom are
used, i.e.,

uh
1 = ∑

j∈Iin

β jϕ j

with Iin := I \ Ibd , where Ibd are the boundary indices. Let Ilay ⊂ Iin be the vertices which have a
neighbor in the set of boundary indices Ibd . Then the restriction of uh

1 to the boundary ∂Ω reads
(∇uh

1)|∂Ω = ∑i∈Ilay
βi∇ϕi and

gh = ∑
j∈Ilay

β jν ·∇ϕ j− ∑
j∈Ibd

ν ·α jϕ j.

Hence,

Es(mh) =
µ0

2 ∑
i∈I

(
∑
j∈Iin

β jαi ·
∫

Ω

ϕi∇ϕ j dx−αi ·
∫

Ω

∫
∂Ω

∇ϕi(x)S(x− y)g(y)dsy dx

)

+
µ0

2 ∑
i∈Ibd

αi ·
∫

∂Ω

∫
∂Ω

νxϕi(x)S(x− y)g(y)dsy dx

=
µ0

2 ∑
i∈I

(
∑
j∈Iin

β jαi ·
∫

Ω

ϕi∇ϕ j dx− ∑
j∈Ilay

β jαi ·ai j + ∑
j∈Ibd

αi · (Bi jα j)

)

+
µ0

2 ∑
i∈Ibd

(
∑

j∈Ilay

β jαi · ci j− ∑
j∈Ibd

αi · (Di jα j)

)
,

where

ai j =
∫

Ω

∫
∂Ω

∇ϕi(x)S(x− y)ν ·∇ϕ j(y)dsy dx, (8)

Bi j =
∫

Ω

∫
∂Ω

∇ϕi(x)S(x− y)ϕ j(y)νT
y dsy dx, (9)

and

ci j =
∫

∂Ω

∫
∂Ω

νxϕi(x)S(x− y)νy ·∇ϕ j(y)dsy dsx, (10)

Di j =
∫

∂Ω

∫
∂Ω

νxϕi(x)S(x− y)ϕ j(y)νT
y dsy dsx. (11)

The efficient numerical evaluation of the singular integrals (8), (9), (10), and (11) using the Duffy
transformation is described in the appendix.

4 Hierarchical matrices

For the computation of the different energies in (1) it is necessary to efficiently treat fully populated
matrices arising from the discretization of non-local operators, e.g. finite or boundary element
discretizations of integral operators and inverses or the factors of the LU decomposition of FE
discretizations of elliptic partial differential operators. For this purpose, Tyrtyshnikov [30] and
Hackbusch et al. [18, 20, 19] introduced the structure of mosaic skeleton matrices or hierarchical
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(H -) matrices. A similar approach, which is designed towards only the fast multiplication of a
matrix by a vector, are the earlier developed fast summation methods tree code [3], fast multipole
methods [16, 17], and panel clustering [21].

Many existing fast methods are based on multi-level structures. In contrast to multigrid meth-
ods, the efficiency of H -matrices is based on a suitable hierarchy of partitions of the matrix in-
dices. Let I = {1, . . . ,M} and J = {1, . . . ,N} be sets of indices corresponding to the rows and
columns of a matrix A ∈ RM×N . The efficiency of hierarchical matrices is based on the low-rank
representation of sub-blocks from an appropriate partition P of the set of matrix indices I×J; see
Fig. 1. The construction of P is usually done in the following way. First, cluster trees TI and TJ
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Fig. 1 A hierarchical matrix with its rank distribution.

are constructed by recursive subdivision of I and J. Each subdivision step is done such that indices
that in some sense are close to each other are grouped into two clusters. In a second step the block
cluster tree TI×J is built by recursive subdivision of I× J. Each block t× s is subdivided into the
sons t ′× s′, where t ′ and s′ are taken from the list of sons of t and s in TI and TJ , respectively. The
recursion stops at blocks t × s which either are small enough or satisfy a so-called admissibility
condition. This condition guarantees that the restriction Ats of A to t× s can be approximated by
a matrix of low rank. It usually takes into account the geometry that is associated with the rows t
and the columns s. The partition P is found as the leaves of TI×J . The set of hierarchical matrices
on the partition P and blockwise rank k is then defined as

H (P,k) = {A ∈ RI×J : rank Ab ≤ k for all b ∈P}.

The elements of this set can be stored with logarithmic-linear complexity and hence provide data-
sparse representations of fully populated matrices. Additionally, exploiting the hierarchical struc-
ture of the partition, an approximate algebra can be defined [15] which is based on divide-and-
conquer versions of the usual arithmetic operations. At least for discretizations of elliptic opera-
tors, these approximate operations have logarithmic-linear complexity (see [7]) and can be used to
define substitutes for higher level matrix operations such as inversion, LU factorization, and QR
factorization.

Using hierarchical matrices, we are able to efficiently compute the local and non-local parts of
the energy functional (1) with almost optimal complexity. Especially approximations to the fully



Fast and accurate computation of unstable micromagnetic configurations 7

populated matrices (8), (9), (10), and (11) can be constructed with logarithmic-linear complexity
via adaptive cross approximation (ACA) [6].

5 Iterative minimization of the energy

The numerical computation of local energy minima of the functional (1) is a challenging task due
to the pointwise restriction ‖m(x)‖2 = 1 for almost every x ∈ Ω . In this section we will see how
this constraint can be treated efficiently.

5.1 The minimization algorithm

We describe and analyze in this section our method to iteratively minimize the energy func-
tional (1). To simplify the presentation, we consider the Dirichlet energy and a lower order term,
i.e., the model functional

E(m) =Θ(m)+
1
2

∫
Ω

‖Dm‖2
F dx (12)

with a smooth functional Θ : H1(Ω ;R3)→R. The following algorithm realizes a discrete H1 flow
for E with time-step size α > 0 and employs ideas from [1, 2, 4].

Algorithm (minimization algorithm): Given m0
h such that ‖m0

h(z)‖2 = 1 for all z∈Nh iterate for
n = 0,1,2, . . . the following steps:

(1) Compute wn
h ∈S 1(Th)

3 with
∫

Ω
wn

h dx = 0 such that wn
h(z) ·mn

h(z) = 0 for all z ∈Nh and∫
Ω

trace [(Dwn
h)

T (Dvh)]dx =−Θ
′(mn

h)[vh]−
∫

Ω

trace [(Dmn
h)

T (Dvh)]dx

for all vh ∈S 1(Th)
3 with

∫
Ω

vh dx = 0.
(2) Define mh ∈S 1(Th)

3 through

mn+1
h (z) =

mn
h(z)+αwn

h(z)
‖mn

h(z)+αwn
h(z)‖2

for all z ∈Nh with a suitable α > 0.

To ensure that the iteration is energy decreasing, we assume that the underlying triangulation
Th is weakly acute, i.e., that the off-diagonal entries of the corresponding P1 stiffness matrix are
non-positive, cf. [4] for details.

Lemma 1 ([4]). Assume that Th is weakly acute and suppose that mh,wh ∈ S 1(Th)
3 are such

that ‖mh(z)‖2 = 1 and mh(z) ·wh(z) = 0 for all z ∈Nh. Then∥∥∥∥D
(

mh +αwh

‖mh +αwh‖2

)∥∥∥∥
L2(Ω)

≤ ‖D(mh +αwh)‖L2(Ω)

for every α ∈ R.

To show convergence of the iterative algorithm, we argue as in [1, 2, 4]. For mn
h and wn

h as in
the algorithm we have, upon choosing vh = wn

h that
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Ω

trace[(Dmn
h)

T (Dwn
h)]dx =−Θ

′(mn
h)[w

n
h]−

∫
Ω

‖Dwn
h‖2

F dx.

Lemma 1 implies that

1
2

∫
Ω

‖Dmn+1
h ‖2

F −‖Dmn
h‖2

F dx≤ 1
2

∫
Ω

‖D(mn
h +αwn

h)‖2
F −‖Dmn

h‖2
F dx

= α

∫
Ω

trace[(Dmn
h)

T (Dwn
h)]+

α2

2
‖Dwn

h‖2
F dx

=−αΘ
′(mn

h)[w
n
h]+ (α2/2−α)

∫
Ω

‖Dwn
h‖2

F dx.

Hence, it follows that

E(mn+1
h )−E(mn

h) =Θ(mn+1
h )−Θ(mn

h)+
1
2

∫
Ω

‖Dmn+1
h ‖2

F −‖Dmn
h‖2

F dx

=Θ(mn+1
h )−Θ(mn

h)−αΘ
′(mn

h)[w
n
h]+

+(α2/2−α)
∫

Ω

‖Dwn
h‖2

F dx.

We assume here and will show below for the specification of Θ that corresponds to the model
problem that we have∣∣Θ(mn+1

h )−Θ(mn
h)−αΘ

′(mn
h)[w

n
h]
∣∣≤CΘ α

2‖wn
h‖2

H1(Ω). (13)

This estimate may be regarded as a Taylor expansion of Θ but its proof also requires to bound the
difference between mn+1

h and mn
h +αwn

h. With a Poincaré inequality in (13) we thus have

E(mn+1
h )−E(mn

h)≤ (−α +α
2/2+CPCΘ α

2)
∫

Ω

‖Dwn
h‖2

F dx

≤−α(1−α/2−CPCΘ α)
∫

Ω

‖Dwn
h‖2

F dx.

If α is sufficiently small so that (1−α/2−CPCΘ α)≥ 1/2 then it follows that

E(mn+1
h )−E(mn

h)≤−
α

2

∫
Ω

‖Dwn
h‖2

F dx

and after summation over n = 0,1, ...,N

E(mN+1
h )+

α

2

N

∑
n=0

∫
Ω

‖Dwn
h‖2

F dx≤ E(m0
h).

This proves the stability and convergence of our numerical method.

5.2 Application to the model problem

In our model (12), the functional Θ(m) is given by

Θ(m) =
∫

Ω

1− (e ·m)2− f ·m+
µ0

2
m ·∇um dx.

We claim that for this functional the estimate (13) is satisfied. For this we first show that
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|Θ(m)−Θ(m̃)| ≤C1‖m− m̃‖L2(Ω) (14)

provided that ‖m‖L2(Ω), ‖m̃‖L2(Ω) ≤C. With Hölder’s inequality we verify that

Θ(m)−Θ(m̃)≤
∫

Ω

(e ·m)2− (e · m̃)2 dx+‖f‖L2(Ω)‖m− m̃‖L2(Ω)

+
µ0

2

∫
Ω

∇um ·m−∇um̃ · m̃dx.

Using Cauchy-Schwarz inequality and ‖e‖2 = 1, the first term on the right-hand side can be
bounded by ∫

Ω

(e ·m)2− (e · m̃)2 dx≤ ‖m− m̃‖L2(Ω)‖m+ m̃‖L2(Ω).

Similarly, we have with (4) that∫
Ω

∇um ·m−∇um̃ · m̃dx =
∫
R3
‖∇um‖2

2−‖∇um̃‖2
2 dx

≤ ‖∇(um−um̃)‖L2(R3)‖∇(um +um̃)‖L2(R3)

≤ ‖m− m̃‖L2(Ω)(‖m‖L2(Ω)+‖m̃‖L2(Ω)).

Hence, the property (14) follows from the assumed bounds on m and m̃. We next show that∣∣Θ(m+αw)−Θ(m)−αΘ
′(m)[w]

∣∣≤C2α
2‖w‖2

L2(Ω). (15)

Straightforward calculations lead to

Θ(m+αw)−Θ(m)−αΘ
′(m)[w]

=
∫

Ω

(e · (m+αw))2− (e ·m)2−2α(e ·m)(e ·w)dx

+
µ0

2

∫
Ω

∇um+αw · (m+αw)−∇um ·m−2α∇um ·wdx

= α
2
∫

Ω

(e ·w)2 dx+
µ0

2

∫
Ω

∇um+αw · (m+αw)−∇um ·m−2α∇um ·wdx

≤ α
2‖w‖2

L2(Ω)+
µ0

2

∫
Ω

∇um+αw · (m+αw)−∇um ·m−2α∇um ·wdx.

Using (3) and ∇um+αw = ∇um +α∇uw, we find that the second integral on the right-hand side of
the previous estimate satisfies∫

R3
‖∇um+αw‖2

2−‖∇um‖2
2 dx−2α

∫
Ω

∇um ·wdx

=
∫
R3
‖∇um‖2

2 +2α∇um ·∇uw +‖∇uαw‖2
2−‖∇um‖2

2 dx−2α

∫
Ω

∇um ·wdx

=
∫
R3
‖∇uαw‖2

2 dx≤ α
2
∫

Ω

‖w‖2
2 dx.

This leads to the estimate (15). The combination of (14) and (15) implies that for iterates mn
h, wn

h,
and mn+1

h we have, noting that ‖mn
h‖L2(Ω), ‖wn

h‖L2(Ω) ≤C,
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h )−Θ(mn

h)−αΘ
′(mn

h)[wh]
∣∣

≤
∣∣Θ(mn+1

h )−Θ(mn
h +αwn

h)
∣∣+C2α

2‖wn
h‖2

L2(Ω)

≤C1‖mn+1
h − (mn

h +αwn
h)‖L2(Ω)+C2α

2‖wn
h‖2

L2(Ω).

For every node z ∈Nh we have

‖mn+1
h (z)−mn

h(z)−αwn
h(z)‖2 =

∥∥∥∥ mn
h(z)+αwn

h(z)
‖mn

h(z)+αwn
h(z)‖2

−mn
h(z)−αwn

h(z)
∥∥∥∥

2

= ‖mn
h(z)+αwn

h(z)‖2−1

=
(
1+α

2‖wn
h(z)‖2

2)
1/2−1≤ α2

2
‖wn

h(z)‖2
2

and the continuous embedding H1(Ω) ↪→ L4(Ω) yields

‖mn+1
h − (mn

h +αwn
h)‖L2(Ω) ≤Cα

2‖wn
h‖2

L4(Ω) ≤C′α2‖wn
h‖2

H1(Ω).

Hence, the model problem fulfills the desired property (13).

6 The string method

We aim at computing an unstable critical configuration whose energy is minimal among all maxima
of curves connecting two given states, i.e., we compute a saddle point. For this, we adopt a method
proposed in [13] that does not require an energy that is defined on a linear space as it is needed for
classical mountain pass algorithms. The difficulty for the energy functional under consideration is
the appropriate incorporation of the pointwise unit length constraint.

To describe the problem in a continuous setting, we assume that we are given two local minima
m0 ∈A and m1 ∈A of the energy functional E : A →R, where the space of admissible magnetic
configurations A is defined by

A = {m ∈ H1(Ω ;R3) : ‖m(x)‖2 = 1 for almost every x ∈Ω}.

We then consider a family of curves connecting m0 and m1 parametrized by t ≥ 0, i.e., a continuous
mapping

ϕ(t, ·) : [0,1]→A

such that ϕ(t,0) = m0 and ϕ(t,1) = m1.
Our aim is it to compute a curve connecting m0,m1 ∈A such that the component of ∇E normal

to ϕ vanishes, i.e.
(∇E)⊥(ϕ) = 0, (16)

where
(∇E)⊥(ϕ) = ∇E(ϕ)− (∇E(ϕ) · τ)τ

and τ denotes the unit tangent vector of ϕ . A path ϕ satisfying (16) is called a minimum energy
path (MEP).

To numerically evaluate such a path, we deploy the string method which was proposed in [11,
12] and modified in [13]. The modified string method stands out due its simplicity. Another known
method to compute MEPs is the nudged elastic band (NEB) method; cf. [24].

Algorithm (modified string method): Let two local minima m0,m1 ∈A of the energy functional
E be given. Define a path ϕ0 : {0, . . . ,N} → A as a collection of N + 1 points with ϕ0(0) = m0
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and ϕ0(N) = m1. The points ϕ0(i), i = 1, . . . ,N− 1, are computed via interpolation. Iterate for
n = 0,1,2, . . . the following steps:

(1) Let ϕn
∗ (0) = ϕn(0) and ϕn

∗ (N) = ϕn(N). Compute for each configuration ϕn(i) with i =
1, . . . ,N− 1 a single iteration step of the minimization algorithm as proposed in Sect. 5.1 and
assign the result to ϕn

∗ (i).
(2) Compute via interpolation the new path

(
ϕn+1(i)

)
i=0,...,N as a reparametrization of

(
ϕn
∗ (i)
)

i=0,...,N .

The interpolation used in the modified string method can be done in arbitrary ways. We choose
to interpolate geodesically on the sphere to obtain a reparametrization of the string.

The advantage of the modified string method is that the point-wise constraint ‖m(x)‖2 = 1,
x ∈Ω , is inherited from the above minimization algorithm. In Figure 2, an initial path and an MEP
as the result of the modified string method are shown.

m1

m0

mS

Fig. 2 A scheme for the modified string method showing the initial path (blue line) and the MEP
(red line) connecting the two energy minima m0 and m1. The configuration mS is the saddle point
on the MEP.

7 Numerical examples

In this section, we first verify our implementation using a standard problem, afterwards we inves-
tigate the overall complexity of the presented numerical method and finally we compute an MEP
for a cubic magnetic particle.

All tests were performed on a single core of an Intel Xeon X5482 processor with 3.2 GHz and
64 GB of RAM. The programming was done in C++ and is based on the hierarchical matrix library
AH MED1. Furthermore, we set the minimal block cluster size of the created H -matrices to 50
and the relative blockwise approximation accuracy to 1e−3.

7.1 Validation of implementation

A problem proposed by A. Hubert, University of Erlangen-Nuremberg, to check the computation
of the different energies in (1) is to calculate the single domain limit of a cubic magnetic particle.
This is the length of the cube for which the so-called flower and vortex state have equal energies.
The test is also known as the µ-mag standard problem #3; see [26].

In our tests, the cube was discretized into 24576 tetrahedra and 3072 triangles. Fig. 3 shows the
reduced energy, as proposed in [26], relative to the size of the cube. Our numerical tests show a
single domain limit of 8.23, which represents the theoretically expected value of approximately 8.

1 http://bebendorf.ins.uni-bonn.de/AHMED.html

http://bebendorf.ins.uni-bonn.de/AHMED.html
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Fig. 3 The resulting energy minima of the µ-mag standard problem #3.

7.2 Time and memory consumption

To demonstrate the almost linear behavior of the presented numerical algorithms in terms of mem-
ory and time consumption, we chose different discretizations of the unit cube which were created
using netgen2.

As a first test, we look at the construction of the matrices (8), (9), (10), and (11). These matrices
have to be set up only once for a certain geometry and approximation accuracy in an initialization
step. Fig. 4 shows that the time and memory needed to construct the matrices (8) and (9) is linear
up to logarithmic terms with respect to the number of tetrahedra. Furthermore, from Fig. 5 it can be
seen that the construction of (10) and (11) is quasi-optimal with respect to the number of triangles.

For the string method, the minimization algorithm from Sect. 5.1 is the dominant part of the
computational time. As can be seen from Fig. 6, these minimization steps of the algorithm pre-
sented in Section 5.1 are almost linear in terms of the number of tetrahedra. Hence, using H -
matrices to compute the different energies results in a numerical scheme which has logarithmic-
linear complexity.

7.3 Minimum energy paths

In the following test, we use the simplified string method from Sect. 6 to compute an MEP. The
geometry and the parameter configuration are chosen as in the µ-mag standard problem #3 with a
cube edge length of 8.2. Hence, the two energy minima are the flower and the vortex state. For the

2 http://www.hpfem.jku.at/netgen/

http://www.hpfem.jku.at/netgen/
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Fig. 4 The time and memory consumption of the matrices A and B; cf. (8) and (9).
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Fig. 5 The time and memory consumption of the matrices C and D; cf. (10) and (11).
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Fig. 6 The time needed for a single minimization step.

tests, the cube was discretized into 24576 tetrahedra and 3072 triangles. For each iteration step the
discretized path consists of 41 single magnetization points.

In Fig. 7, the two energy minima (flower and vortex state) which are used to define our initial
path are depicted. Different colors of the arrows representing the magnetization indicate different
directions in space. The initial magnetization points in between the energy minima were computed
using geodesical interpolation.

A comparison of the reduced energies of the initialized path and the MEP is shown in Fig. 8.
Here, the magnetization point 25 maximizes the reduced energy of the MEP and is about 28.5%
lower than the energy barrier of the initial path. Furthermore, in Table 1 slides of selected magne-
tization states of the MEP are shown. It is remarkable that in the magnetization point 40 the vortex
is opening on the front side and closing on the back.

The limiting factor of the numerical experiments is the computational time since all the single
magnetization points along the discretized path need to be minimized consecutively. Even with the
employed fast methods approximately two days were needed to perform the computations.
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(a) Flower state (b) Vortex state

Fig. 7 A model of the two energy minima used to compute the MEP.
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Fig. 8 The reduced energy of the magnetization points of the initial path and the MEP connecting
the flower (left) and the vortex state (right).
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point # magnetization of the cube
front mid back

0

5

10

15

20

25
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point # magnetization of the cube
front mid back

30

35

40

Table 1: The different magnetization states of the MEP connecting the vortex and the
flower state.
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Appendix

The efficient numerical evaluation of the singular integrals from Sect. 3; see (8), (9), (10) and (11),
is a challenging task. One way to overcome difficulties is to use spherical coordinates, which has
the disadvantage of awkward integration bounds.

Another way is to use the Duffy transformation as proposed in [10]. The general principle is to
transform a triangle onto a square to get rid of the singularity. The following example demonstrates
this approach. Using the transformation x = ξ and y = ξ η , one obtains that∫ 1

0

∫ x

0

1
x+ y

dydx =
∫ 1

0

∫ 1

0

1
1+η

dη dξ

and integration can be done by using standard methods.
This principle has already been applied to the integration on pairs of triangles in [28] and can

be used to evaluate the integrals in (10) and (11). Similar ideas can be applied to the combination
of a triangle and a tetrahedron. For the kernel function κ : R3×R2 → R we need to evaluate the
following integration on the reference triangle and tetrahedron

I :=
1∫

0

1−x1∫
0

1−x1−x2∫
0

1∫
0

1−y1∫
0

κ(x,y)dydx

with x = (x1,x2,x3) and y = (y1,y2). By introducing relative coordinates, the integral I can be
transformed to

I =
1∫

0

x̃1∫
0

x̃1−x̃2∫
0

1−x̃1∫
−x̃1

ỹ1+x̃1−x̃2∫
−x̃2

κ

1− x̃1
x̃2
x̃3

 ,

1− ỹ1− x̃1
ỹ2 + x̃2

0

 dỹdx̃.

The kernel is singular only for ỹ = 0, x̃3 = 0, which we can be eliminated using a Duffy transfor-
mation. Similar to the approach in [28], we split the integral into six different domains.

−1≤ ỹ1 ≤ 0
−1≤ ỹ2 ≤ ỹ1
−ỹ2 ≤ x̃1 ≤ 1
−ỹ2 ≤ x̃2 ≤ x̃1

0≤ x̃3 ≤ x̃1− x̃2

∪


−1≤ ỹ1 ≤ 0
ỹ1 ≤ ỹ2 ≤ 0
−ỹ1 ≤ x̃1 ≤ 1

−ỹ2 ≤ x̃2 ≤ x̃1 + ỹ1− ỹ2
0≤ x̃3 ≤ x̃1− x̃2

∪


−1≤ z1 ≤ 0
0≤ ỹ2 ≤ 1+ ỹ1
ỹ2− ỹ1 ≤ x̃1 ≤ 1

0≤ x̃2 ≤ x̃1 + ỹ1− ỹ2
0≤ x̃3 ≤ x̃1− x̃2



∪


0≤ ỹ1 ≤ 1

−1+ ỹ1 ≤ ỹ2 ≤ 0
−ỹ2 ≤ x̃1 ≤ 1− ỹ1
−ỹ2 ≤ x̃2 ≤ x̃1

0≤ x̃3 ≤ x̃1− x̃2

∪


0≤ ỹ1 ≤ 1
0≤ ỹ2 ≤ ỹ1

0≤ x̃1 ≤ 1− ỹ1
0≤ x̃2 ≤ x̃1

0≤ x̃3 ≤ x̃1− x̃2

∪


0≤ ỹ1 ≤ 1
ỹ1 ≤ ỹ2 ≤ 1

ỹ2− ỹ1 ≤ x̃1 ≤ 1− ỹ1
0≤ x̃2 ≤ ỹ1− ỹ2 + x̃1

0≤ x̃3 ≤ x̃1− x̃2

 .

The resulting integrals I := I1 + . . .+ I6, can be transformed onto a five-dimensional unit cube.
The single terms are given in the following way.

• I1:

I1 =
∫

(0,1)5

p1κ

 1−η5
η5(1−η1 +η1η2)

η1η4η5(1−η2)

 ,

(
1−η5 +η1η2η3η5

η5(1−η1)

) dη ,

p1 := η
3
1 η2η

4
5 (1−η2)

• I2:
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I2 =
∫

(0,1)5

p2κ

 1−η5
η1η5(1−η2 +η2η3)

η4η5(1−η1 +η1η2−η1η2η3)

 ,

(
1−η5 +η1η2η5

η1η5(1−η2)

) dη ,

p2 := η
2
1 η2η

4
5 (1−η1 +η1η2−η1η2η3)

• I3:

I3 =
∫

(0,1)5

p3κ

 1−η5
η1η5(1−η2)

η4η5(1−η1 +η1η2)

 ,

(
1−η5 +η1η2η3η5

η1η5(1−η2η3)

) dη ,

p3 := η
2
1 η2η

4
5 (1−η1 +η1η2),

• I4:

I4 =
∫

(0,1)5

p4κ

1−η5 +η1η2η3η5
η1η5(1−η2η3)

η4η5(1−η1)

 ,

(
1−η5

η1η5(1−η2)

) dη ,

p4 := η
2
1 η2η

4
5 (1−η1)

• I5:

I5 =
∫

(0,1)5

p5κ

1−η5 +η1η2η5
η1η5(1−η2)
η4η5(1−η1)

 ,

(
1−η5

η1η5(1−η2 +η2η3)

) dη ,

p5 := η
2
1 η2η

4
5 (1−η1)

• I6:

I6 =
∫

(0,1)5

p6κ

1−η5 +η1η2η3η5
η5(1−η1)

η1η4η5(1−η2η3)

 ,

(
1−η5

η5(1−η1 +η1η2)

) dη ,

p6 := η
3
1 η2η

4
5 (1−η2η3)

The integrals I1, . . . , I6, can be evaluated efficiently using standard quadrature formulas, e.g., Gaus-
sian quadrature.
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