INHOMOGENEOUS DIRICHLET CONDITIONS IN
A PRIORI AND A POSTERIORI
FINITE ELEMENT ERROR ANALYSIS

S. BARTELS, C. CARSTENSEN, AND G. DOLZMANN

ABSTRACT. The numerical solution of elliptic boundary value problems with
finite element methods requires the approximation of given Dirichlet data up
by functions up 5 in the trace space of a finite element space on I'p. In this
paper, quantitative a priori and a posteriori estimates are presented for two
choices of up p, namely the nodal interpolation and the orthogonal projection
in L?(Tp) onto the trace space. The main result states that the orthogonal
projection leads to better estimates in the sense that the influence of the
approximation error on the estimates is of higher order than for the nodal
interpolation.

1. INTRODUCTION

In this paper we investigate the influence of approximation errors in the Dirich-
let boundary data for finite element approximations of elliptic partial differential
equations. For simplicity we restrict our attention to the model problem

(1.1) —Au=finQ, u=uponlp, dou=Vu-n=gonIy.

Here 2 is an open and bounded Lipschitz domain in R, d = 2 or d = 3, with
polygonal or polyhedral boundary, respectively, and n is the unit outer normal to
0. We suppose that 9Q = I'p U Ty where the Dirichlet boundary T'p is a closed
subset of 02 with positive surface measure and the Neumann boundary is given
by 'y = 0Q\ I'p. The basis for finite element approximations of (1.1) is its weak
form given by

(1.2) (Vu; V) = (f;v) —+—/ guds for all v € H(Q)
T'n

where H},(Q) is the subspace of the Sobolev space H'(2) given by
Hp(Q) = {ve H'(Q) : v|r, =0},
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and where (-;-) denotes the L? scalar product. Let 7 be a regular triangulation
of  into triangles (d = 2) or tetrahedra (d = 3) in the sense of Ciarlet [Ci]. We
consider the simplest conformal finite element space S*(7) of all continuous and
piecewise affine functions on 7. Moreover, we denote by Sk (7)) the subspace of all
functions in S*(7) that vanish on T'p, and by S*(T'p) the trace space of functions
in S1(7) on I'p. In order to formulate the finite element approximation of (1.1),
we fix a function up,, € S*(I'p). Then uj, € S(T) is the finite element solution
of (1.1) if Up = Uup,p, ON FD and

(1.3) (Vup; Vop) = (f;vn) +/ gupds for all v, € SH(T).

I'n
We assume that f € L?(Q), that ¢ € L?(T'y), and that up is continuous on
I'p. More regularity of up on the faces of the elements in I'p will be required
for some of the estimates. Then the model problem (1.1) and its finite element
approximation (1.3) have unique solutions u and up, respectively.

The focus of this paper is to derive a priori and a posteriori estimates for the
error e = u — up, in H' and L? and to analyze in particular the effect of the choice
of the discrete Dirichlet data up , on the estimates. A standard choice for the
Dirichlet data up,p, in finite element spaces is the nodal interpolation Ipup of the
given function up. This does not influence the a priori H' error estimates since the
approximation error does not appear explicitly. As for a posteriori estimates, the
results in [BC, CB, CBJ, Cal] show that this choice affects the estimates only in
a higher order term. Surprisingly, this situation is different for the corresponding
L2 error estimates based on duality techniques (Aubin-Nitsche trick). As a remedy
we propose to use up,, = llpup where Ilp is the L2 projection of the Dirichlet
data up onto S(I'p). The main result in this paper establishes that this choice
means that the resulting contributions to a priori and a posteriori error estimates
are always of higher order, see Section 2 for an informal overview of our results and
Sections 6 and 7 for the precise statements.

2. FORMULATION OF THE PROBLEM AND MAIN RESULTS

In order to formulate our results, we recall the following general framework for
a posteriori error estimates. Let w be the solution of

—Aw =0 in Q,
w =up —up,, onlp,

Opw =0 onI'y.

Equivalently, w is the minimizer of the Dirichlet integral subject to the given Dirich-
let conditions. Thus

I Vell72(q) = Res(e —w) + /Q Ve - Vw dz

where we define for a function v € Hj,(2) the residuum by

Res(v)z/Ve-Vvdmz/fvdx—}—/ gvds—/Vuh-Vvda:.
Q Q T Q
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This identity and the orthogonality [|Vel|2, = ||[Vw||22 + ||V (e — w)||3. allow us to
estimate

(2.1) IVellz2) < [IRes || -1 +np"
where
(2:2) no/? = IVwlla@) = inf Vol
| ’UEH ()
and
(2.3) Res| x= sup 0 ko1
verr @)\ {o} IvllmE(e)

U\FDZO

The L? estimates are based on duality techniques and we define correspondingly z
to be the solution of the dual problem

—Az =e, inf§,
(2.4) z=0 onDp,
Onz =0 onTy.

We obtain by integration by parts

M%@ZMW%/

I'p

(2.5) (up — up,p) Onzds.

In the following we assume that the dual problem is H? regular, i.e., that z € H2(12)
and that the elliptic estimate

(2.6)

holds with a constant ¢; that only depends on 2 and T'p. A sufficient condition for
this estimate to hold is for example that the domain € is convex and that I'p = 91).
Then

lzll a2y < cillellz2)

llell2) < e1(||Res||l—2 + n(D*1/2))_
Here
- 1
(2.7) né, 1/2) _ sup 7/ (up — up.p) Opopds
ez @\fo} [9lla2 @) Jr,
where

Hpn(Q) = {¢ € H*(Q) N Hp(Q) : Onglry = 0}.

The foregoing representations of the error in L? and H' have the important feature
that they separate terms that depend on the given boundary data, the expressions
ngcl/ 2), and terms that only depend on T'p, namely the negative norms of the
residuals given by (2.3). Estimates for these residuals are well established and can
be found in the literature, see [AO, BS, BC, CB, CBJ, CV, EEHJ, V] for details.
For completeness of the presentation, we quote a few results in Section 3. The
main focus of this paper is therefore to establish bounds on the additional error
terms that reflect directly the influence of the boundary data and their approxi-
mation. We give an overview of our results in Table 1. The crucial observation
is that the L2 projection of the given Dirichlet data onto the trace space of the
finite element functions on the boundary gives always higher order contributions in
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Error Estimate ng):tlﬁ) for Ip ng:lﬂ) for TIp
A priori H! 0 O(h3/?)
A posteriori H! O(h3/?) O(h3/?)
A priori L? O(h?) O(h3/?)
A posteriori L? O(h?) O(h%/?)

TABLE 1. Overview of main results: Approximation of the Dirich-
let data by nodal interpolation (Ip) and by L? projection (Ilp) and
the corresponding contributions ngﬂ/ ? in the global L? and H!
a priori and a posteriori error estimates.

a posteriori estimates than the nodal interpolation. The key to this result is the
representation (2.7) in which we can rewrite the boundary integral as

/ (up —up,n) Ongds = / (up — up,n) (Ond — Pn) ds
FD FD
for all ¢, € S'(T'p), see the proof of Theorem 7.1.

These results can be easily extended in several directions.

Remark 2.1. The computation of Il pup involves the solution of a linear system of
equations of the size of the number of nodes on I'p. Other definitions of up , based
on piecewise L? projections are possible and reduce the amount of work for the
computation of the projection. One obtains the same bounds as for up,, = Ilpup.
For example, let F' be a connected face of 012, i.e., the intersection of 92 with a
d — 1 dimensional plane in R?, and let P be a connected component of F N T'p.
Then one can define up x|p € S*(I'p)|p by upilsp\or, = Ipup and

/ (’LI,D7h - 'LLD)'l}h ds=0 forall v, € St (FD) with 'Uh|8P\81"D =0.
P

In this case up,j is defined by local L? projections on (maximally) affine parts of
I'p. The error up p — up is then L?(I'p) orthogonal to functions in S'(T'p) that
vanish on the intersections of maximally affine subsets of I'p. This orthogonality
is sufficient for the proofs of our estimates (cf. proof of Theorem 7.1).

Remark 2.2. The estimates in L? and H! can be extended to estimates in H?,
0 < s <1, by standard interpolation techniques.

We conclude this introduction with an overview of the paper. Section 3 summa-
rizes well-known facts that will be used in the sequel without proofs and introduces
the relevant notation. The proofs of the H' and L? estimates rely essentially on ex-
tension theorems for functions and vector fields that we obtain in Sections 4 and 5,
respectively. The precise statements of our results are then given in Sections 6
and 7. We conclude the paper with an explicit example showing that the choice of
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up,n = [Ipup leads genuinely to higher order contributions in the estimates which
is not the case for up , = Ipup.

3. PRELIMINARIES

In this section we introduce the notation used throughout the paper and we
collect some auxiliary results.

Notation. We say that a constant ¢ in a given inequality depends only on the
geometric properties of the triangulation if it depends only on the space dimension
d and the constant co > 0 that relates the maximal radius of a ball B(z,r) C K
and the minimal radius of a ball By, R) D K via

cor < hg = diam(K) < cz_lR forall K e T.

For simplicity we write frequently a < b for a < ¢b where the constant ¢ depends
only on the geometric properties of the given triangulation 7.

The lowest order conforming finite element space of piecewise affine and contin-
uous functions is given by

SY(T) = {vn € C(Q) : vp|r is affine on all elements T € T}.

We define NV to be the set of all nodes (or vertices) of 7 and we write (¢, : z € )
for the nodal basis of S1(7"). The subspace of all functions that vanish on I'p is
given by

(3.1) SID(T) = {’Uh € Sl(T) : 'Uh|FD = 0}.

The open patches w, = {z € Q:0 < ¢,(x)} form an open cover {w, : 2 € N'} of Q
with finite overlap and diameter h, = diam(w,). Let £ denote the set of all edges
(d = 2) or faces (d = 3) of elements in T, i.e.,

& ={conv{z1,...,2q} : IT € T such that TNN = {21,...,24} }.

For simplicity, we refer to the edges of the triangles in two dimensions also as faces.
We suppose that I'p is matched exactly by edges or faces of the triangulation, that
is, there exist subsets £p, Ex C & such that

o= |JE Tn= ] E
Ecép Ecén
In particular, 7 induces regular triangulations of I'p and I'y. Then the set of
interior faces £q is defined by £q = £ \ (€p U En). The lowest order conforming
finite element space on £p is given by

SI(FD) = {’Uh c C(FD) : 'Uh|E is affine for all E € ED}

We denote the mesh-size function which is piecewise constant on the elements of T
by hr, i.e., hr|r = hy = diam(T'). Similarly, hg € L*°(UE) describes the size of
the edges of the triangulation by he|g = hp = diam(FE); here UE = Upe70T is the
set of points on the faces of the elements.

In this paper, we analyze two particular approximations of the given boundary
data up in S}(T'p): The nodal interpolation Ipup, given by Ipup(z) = up(z) for
all nodes z on I'p, and the L? projection IIpup which is the unique function in
St (FD) with

/ (up —Hpup)vyds =0 for all v, € S*(T'p).
I'p
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We now define Sobolev spaces on the Dirichlet boundary I'p.

Definition 3.1. For an edge or a face E € £ and a function g € C'(E) we denote
by Ogg the surface gradient along E (with respect to a proper Cartesian coordinate
system along the flat d— 1 dimensional manifold E). We then say that v|p € H(E)
if v has weak derivatives on E and if ||v||%1(E) = ||v||2L2(E) + ||(9g’l}||%2(E) < oo.
Similarly, we denote by d%g the edgewise second derivative of g along I'p if g|g €
H?(E) for all E € &p.

Definition 3.2. We define H'(I'p) = {v € C(I'p) : VE € Ep,v|r € HY(E)} with
the norm

”U”%P(I‘D) = Z ||”||%11(E)-
Ecép

Some of the proofs require the projection IIp to be stable.
Definition 3.3. The operator I : H!(T'p) — SY(T'p) is said to be H! stable if
”HDU”Hl(I‘D) 5 ||U||H1(I‘D) for all v € HI(FD)

Stability results can for example be found in [CT, BPS, Ca2]. A particular
version of a red-green-blue refinement strategy on surfaces (such as I'p) allows for
local refinements and guarantees that

||68HD'U||L2(1"D) < C||6g’l)||L2(pD) for all v € Hl(FD).

Here the constant C' does not depend on the mesh-size or the number of refinement
levels, but depends on the shape of the elements [Ca3]. Thus, the assumption that
IIp be H! stable on I'p is indeed satisfied for a large class of meshes used in practise
in two and three dimensional problems. We finally recall the following estimate for
stable projections.

Lemma 3.4 ([CV], Lemma 3.3). Assume that IIp is H' stable. Then
||hgl(1) — HD’U)”LZ(FD) 'S ||88U||L2(FD) for allv € HI(FD).

We frequently use Poincaré-type inequalities in the estimates. In particular, if
D is a Lipschitz domain and @ is the mean value of u on D, then

/ lu— T dz < c(D)diam2(D)/ \Dul? de.
D D

Moreover, a scaling argument proves the following version for functions defined on
the open patches w,. If u € H'(w,) with u = 0 on at least one face E € £ with
FE C dw,, then

(3.2) / |u|? dz < c(T)h? | Dul|? dz.

Wz
The next estimate of Poincaré-type is used in the proof of the extension theorems
below.

Proposition 3.5. Let K € T be a triangle or tetrahedron of diameter hx with
nodes py,...,pay1 € R, Then

(53 | 1ok az snic [ 100 as,
K K

(3.4) [ Vo as St [ D70 do
K K
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for all $ € H*(K) with ¢(p;) =0 for j=1,...,d+ 1.

Proof. Assume first that K = K is the standard simplex in R? with 1 < hg <1,
and that (3.3) does not hold. Then there exists a sequence ¢, € H2(K) with
¢r(p;) =0for j=1,....d+ 1 and ||¢[[;2(g) = 1 such that

k/A D2, 2 do < /A w2 da.
K K

It follows that the sequence ¢; is uniformly bounded in H? and that ¢, — ¢
(weakly) in H2. The compact Sobolev embedding theorem implies that ¢, — ¢ in
H! with l¢ll 2zy = 1 and ¢(p;) = 0 for j = 1,...,d + 1. Moreover, we obtain
from the weak lower semicontinuity of the norm that

1
/ |D2¢|? dz < liminf/ |D?¢y|* de < limsup - =0,

and thus ¢ is an affine function. Since ¢(p;) = 0, we deduce that ¢ = 0 and this
contradicts ||¢|| k) = 1- A scaling argument completes the proof of (3.3). The
proof of (3.4) is analogous. O

We finish the preliminaries by quoting some estimates for the residuals. For
instance, if f € H'(Q), then [CV, CB]

[ Res[l-1 S [1h7V £llz2()

. 1/2
e {IIVun — prllzz) + lhg'“ (9 = pr - m)llz2en) }

and

I Res |1 < [1M7V £l
1/2
+ (Y hall[Vun - nglllizm) 24 > hpllg = Vun -1} 2(m)

Ecé&q Ecén

1/2

Local problem solving techniques, equilibrium estimators and other implicit a pos-
teriori error estimation techniques [AO, BS] can also be applied. Moreover, if the L?
projection onto S*(7') is H! stable, then we have the following bound for || Res || _2
(see [CV])

Res|l-2 < inf _[IK%(f — fa)llz2(

FhEeSH(T)
BBV - 2 1/2 B3lla — Vur - nll2 1/2
+ ( Z ull[Vun "E]”LZ(E)) + ( Z ullg Up, n||L2(E))
Ecéq Eeén

4. THE EXTENSION OPERATOR FOR FUNCTIONS

The H' estimates require good bounds on the quantities ng/ ? in (2.2). They
rely on the construction of functions with given values on the Dirichlet boundary
I'p which we describe in this section. Our first result is valid in any dimensions.

Proposition 4.1. Let K € T be a simplez in R? and let hy = diam(K). Assume
that the nodes of K are given by py, . ..,par1 € R? and that the faces of K are labeled
Fi,...,Fyy1. Suppose that g € C(OK) with g|lp, € H' (F;) for j = 1,...,d+1,
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B

F1GURE 1. Construction of the extension of the boundary data
into the simplex in two dimensions.

and define w to be the harmonic extension of g to K. Then there exists a constant
c3 that only depends on the geometric properties of K such that

IVwllZs k) < es{hg 9l1220x) + Pr 109l Z2(0k) } -

Proof. Since the harmonic extension of g minimizes the Dirichlet integral, it suffices
to construct a function v € H'(K) with v|sx = g and

(4.1) IVollZe(rey < ea{hi 9017201 + hicllOegll T2 (or) }-

In order to construct v, let xx denote the barycenter of K and define the simplices

K; = conv{zk,F;} for j = 1,...,d + 1. The idea is to interpolate the boundary

data linearly along rays connecting the boundary points and xg, see Figure 1.

For each z € K \ {zk} there exist unique A\, € (0,1] and &, € OK such that
= (1-X)zk + Az&;. Define v on K by

| A9(&) ifzre K,z # 2k,
U(m)_{ 0 ifr=xk.

It remains to prove (4.1). It suffices to show that
||V”||L2(K ) S d+ 1 {hx 1||g||L2(F) + hK“aé'g”L?(F )} forj=1,...,d+1.

We may assume that j = 1, that Fi = conv{py,...,ps} C {z € R" : z,, = p} with
p > 0 and that zx = 0. In the following we write Z for the first n — 1 coordinates
of z,ie.,T=(x1,...,Zp-1)- Then

ITng( L g ifre Ky,v#x
1}(.’12')2 pg(g;n ;p) 1, 7& K,

0 ife=zk.

Thus fori=1,...,n—1

0 : 0 - :
[ v = [ |—’i<ﬁw,p)|2dw

g
= [ [ 12 () 0@ drn < L
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Finally,
[ @ltas = [ ol - e =p>§—i|2d$
s%llgllﬁzmﬁ / 1“”' |Zax, o) de
= ol + dhamfEZH Noageny

This implies the assertion since the regularity of the triangulation implies the exis-
tence of a constant ¢4 > 0 such that

cshgk < diam(Fj) < ¢; ' hg, cathi < p < ¢ hk.
This concludes the proof of the proposition. O

The main result in this section is the following extension result that is crucial
in the proofs of the H! estimates. For simplicity of the exposition, we state this
result only for d =2 and d =3

Theorem 4.2. Assumed =2 or d =3, and that up € C(I'p) with up|r € H*(E)
for all faces E € Ep. Let up,p, = Ipup. Then there exists a w € H'(Y) such that
wlr, =up —up,p, suppw C{T € T:TNTp # 0}, and

(4.2) IVollza) S 1 *03unllrar,)-

Proof. The idea of the proof is to extend functions from lower dimensional objects
(faces) to higher dimensional ones (elements) by harmonic extension. In order to
accomplish this, we define first the function w on all edges of the triangulation and
then on all simplices.

Recall that we denote by dg the (tangential) derivative of a function on the d—1
dimensional faces of the tetrahedra. Moreover, we use J¢ for the derivative of a
function along a one-dimensional edge (the line segment formed by the intersection
of two faces) of a tetrahedron in three dimensions.

Step 1: Definition of w on the faces of the triangulation 7. Let g = up —up,n €
C(Tp) and note that g(z) = 0 for all z € N NT'p. For each E € £ we define a
function wg € C(E) as follows.
() TENTp ={z1,...,2z} for 1 <£<dand z1,...,2¢ € Nor ENTp =0,
then we set wg = 0.
(b) If E CTp, then we set wg = g|&.
(c) Suppose that d = 3 and that either (¢c;) ENTp = Uj_,; conv{a;,b;} with
J €{1,2,3}, a;,b; € N, and a; # bj, or (c2) ENTp = conv{as,bs } U {z}
with a1, b € N, and z € N\ {a1, b1 }. Let zg denote the barycenter of E
and define S; = conv{a;,b;} and G; = conv{zg,a;,b;}. For j =1,...,J,
let wg|g; be the harmonic extension of g|s;, such that wg|sg,\s; = 0.
Finally we set wg = 0 on E \ U/, Gj.
Here case (c) describes the situation that in three dimensions some (or all) of the
edges of a face of a tetrahedron may be contained in the Dirichlet boundary even
though the face is not a subset of I'p.
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Step 2: An auxiliary estimate in case (c). We have
J
hptlwelliam) S heldewslliam S D (hellgllin ) + hgl9llEe,)-
j=1

Note that by construction wg € H(E) N C(E). Moreover, we obtain from Propo-
sition 4.1 (with d = 2 applied to the triangles G; whose union is the face E) and
the one-dimensional Poincaré inequality for wg on the line segment S; that

(4.3) 10ewEl2q,) S belldcwElt206,) = helldcgllias;)

To estimate the derivative of g along S; choose a face F; € £p with S; C OFj,
j=1,...,J. It follows by scaling from the trace inequality in W1 (K),

/A | ds < C(R) /A (jo] + |Do]) da,
OK K
applied to v = ¢? that

61720m) S P 19172 (xc) + N0ll2(x) IV@llL2xy  for all ¢ € H' (K).
This estimate applied to K = F}; and the Poincaré inequality in Proposition 3.5
imply
(4.4) hEll0cglliacs,) S 19l r) + bEN9I ) -

Since wg vanishes on two of the three sides of the triangles G; we may use Poincaré’s
inequality and we obtain

J J
hp' lwellism = he' D lwslig,) S he Y 10swsllizq,):
j=1 j=1

The combination this inequality with (4.3) and (4.4) implies the assertion of Step 2.
Step 3: Proof of the theorem. We extend the function wg (defined so far for all
E € &) to a function wr on T € T in the following way. For all T' € T let wr be

the harmonic function with wr = wg on OT. From the construction of wg we have
wr Z 0 only if TNTp # 0. By Proposition 4.1 we deduce

IVwr|[2iry S bzt llwrllzaar) + brlldswr|Z2 o

S Y (hFlwslliagm) + helldcwsliam)-
Eeé,BECOT

Recall that wg is different from zero only if E € Ep or (this applies only to the
three-dimensional situation) if E is the face of a tetrahedron and at least one of
the edges of this face is contained in I'p. In the former case, wg = g|g, and in the
latter case wg and its derivatives have been estimated above. Hence

YoIVerliam S Do (hE N9lizam) + helleglltsm) + hEI029lI72 () ) -
TeT E€&,ECTp
Let xr be the characteristic function of the element 7'. Then,

w = Z XTWT € HI(Q) with  w|r, =g=up —up.
TeT
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Proposition 3.5 shows, for all E € £p,
nt [ loPds+ o [ (ocoPas Sug [ 18P as = n [ |0Eunas
E E E E
These estimates allow us to rewrite the foregoing estimate as
IVolliz S D WEl02unllizis -

Ecép
This finishes the proof of the theorem. O

We conclude this section with the construction of a suitable extension of the
difference IIpup — Ipup on I'p onto €.

Proposition 4.3. Assume that Ilp is H' stable and that up € C(T'p) withup|r €
H?(E) for all E € Ep. Then there exists a v, € S (T) such that vp|r, = Mpup —
Ipup, suppvy, C{T € T : TNTp # 0}, and

1/2
IVonllza@) S hell /2 ) 1hed2unllrar,)-
Proof. Let g, = llpup — Ipup. We define vy, = )\ v.. where v, = gp(2) if
z € NNTp and v, = 0 otherwise. Then suppv, C U{w, : 2z € N NTp}, and the
quantities ||vs||12(.,) and hi/2||gh||L2(3wznpD) are equivalent norms for gn|sw.nrp,-

We conclude from inverse estimates that

IVunllre.) S bt lonllze(.) S b2 2 M pup — Ipupllre(sw.arp)

for all z € N NT'p. We now take the sum for all z € N NT'p . Since the patches
w, have finite overlap and since h, < hg < h, for E € £ and z € ENN we obtain
that

IVonllzg) S Ihellf ) bz Moun = Ipup)llzay)-
It follows from the triangle inequality and Lemma 3.4 in view of IlIpIpup = Ipup
that
IVonllzay S el o) llhg T (un — Ipup)||zar.,)

S Mkelli2 o) (196 (up — Ipup) |z ) + lIhg (up — Ipup)||z(rp) )

The assertion of the lemma follows now with standard interpolation inequalities. O

5. THE EXTENSION OPERATOR FOR VECTOR FIELDS

In the case of the L2 estimates, one needs good bounds on the quantities n(D 1/2)
defined in (2.7). The idea here is to write 8, = p-n with p = V¢, and to use
integration by parts to rewrite the boundary integral as a volume integral. This
leads to the question of how to construct vector fields p, that are suitably close to

p; the answer is given in Theorem 5.2 below.

Definition 5.1. For each E € &p let n|g,th,...,t% " € R? be an orthonormal
basis of R?. For p € H1(Q)? and E € Ep let v, (p) € L?(E)? denote the tangential
component of p|g, i.e., ple = Y5 (P) + (n|E - plE) nlE-

Theorem 5.2. Let p € H'(Q)? satisfy v, (p) =0 for all E€ Ep andp-n =0 on

T'y. Then there exists py, € S'(T)¢ with v, (pr) =0 for all E € Ep, pp,-n =10 on
Ty, and

(5.1) Ih7 (= p)ll2) + IV (0 — pr)ll2 @) S IVDllL2@)-
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Proof. For z € N\ 99 set p, = |w,|~! [ p dz. We need a more sophisticated con-
struction for nodes on 8Q. For z € N'N 0N define p, = |w.|~ [, p da. Moreover,
let vf,...,vi_, 1 <k, <d, be an orthonormal basis of

V. =span{n|g:2 € E€Ex}Uspan{ty,:2€ Ec€&p,t=1,...,d -1},
and let (v{,...,v7 ,sf,...,83_;.) be an orthonormal basis of R¢. Set

d—k-
b = Z (P- Sj)Sj

j=

—_

and define p, = )7\ P2z By construction, v, (pr) = 0 for all E € £p and
pr-n =0 on I'y. To see this, consider for example a face E € £p. The spaces V,
contain the tangential directions for all nodes z € E and thus p, is normal to E
for all nodes z € E. Consequently, the tangential component of p, vanishes on all
E € Ep. The argument for £y is analogous. Since ) .. =1land h, Shr S h;
if TeT and z€ NNT, we have

6:2) 7' o=plie = 3 [ helo=p) - (=) do

2EN VW=
_ 1/2), —
S (32 122 = palliaey) 1B 0 = Pl
2eN
Moreover (¢, : z € N) is a locally finite partition of unity and therefore
1/2
(5.3) IV = p)llzao) (ZN IV (-0 = ) 3o )
zE

If we expand the gradient using product rule we obtain a term similar to (5.2) and
a term proportional to ||Vp|| L2() since p, is constant on the patch w,. It thus
suffices to show that ||p—p.[lz2(w,) S Rzl VPllL2(w,)- Suppose first that z € N\ 99
Since p, is the mean value of p, on w, we obtain with Poincaré’s inequality that

(5.4) 1P = pzllze.) < RellVPlL2(w.)-

It therefore remains to estimate this local norm for z € N’ N 8Q. By construction,
p.-vi =0for j =1,...,k;, and this implies in view of the orthogonality of the
vectors vi and s that

k. d—k.
(5.5 = pelopy = D Mo vl apy + D 0 =p:) - 55 [2200.)-
j=1 j=1

The second term can be estimated by Poincaré’s inequality since
(5.6)
o —p2) - S§llL2(w.) = [l(P—DP2) - $fllL2(w.) S hellVPllL2@,) forj=1,....d—k..

In order to justify the application of the Poincaré inequality (3.2) in the first term,
consider first z € E € Ey. Then E C dw, and (p-n|g)|p = 0. Hence

(5.7) Ip-nlell2w.) S h:llVPnlElL2.) S h:lIVPlL2w.)-

Similarly, for z € E € £p we have that (p-t%)|E =0for{=1,...,d—1 and
consequently

(5.8) lp - t5llr2(w.) S h:llVPtEll2(w.) S halIVPIl2(w.)-
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Finally note that for all z € N N Q the vectors v; € V; are linear combinations
of the vectors n|  and t, and this allows us to find coefficients o o, i% with
lod gl 182%] < C(Q) such that

d—1
, 2 '
v = Z o pnle+ Z Z,BZ’Et%, j=1,...,k,.

2€E€EN zEE€E€Ep =1
By (5.7)—(5.8) we then have
- vjllL2(w.) < h=lIVDllL2(w.)-
By (5.5)—(5.8) one obtains (5.4) for z € N'N QN as well. Since |V, ||pe(.) S ot
for all z € N, the assertion of the theorem follows from (5.2)—(5.3). O
Lemma 5.3. Let p, € SY(T)? be such that v, (pr) = 0 for all E € Ep. Then
(Pn-n)|rp, € S'(Tp).

Proof. We have to show that (pp - n)|r, is continuous across interfaces Ey N Ey of
neighbouring faces E;, Es € Ep with n|g, # n|g,. Since pp|g,nE, is perpendicular

1 d—1 41 d—1y __ d _ .
to span{ty, ,...,t5 tw,,---,tg, } = R® wehave py|p,nE, = 0 and hence pp, - n is
continuous across E; N Es. O

6. A PRIORI AND A POSTERIORI ESTIMATES IN H'!
In this section we state and prove the asymptotic estimates for the a priori and
a posteriori estimates in H'.

Theorem 6.1 (A priori estimate in H'). Under the foregoing assumptions,

IVellL2@) S inf IV (u = w)l2(0)

wh €SY(T), wn|rp=Ipup

0 if up,n = Ipup,
+ 1/2 o .
||h5||Loo(rD)||h565UD||L2(FD) if up,n = Hpup.

Remark 6.2. If u € H?(f), then standard interpolation estimates imply that
IV (u— wh)||L2(Q) S ||hTD2U||L2(Q)-

wh€SY(T), wn|r,=Ipup
Proof. The Galerkin orthogonality
(6.1) (Ve;Vop) =0 for all v, € SH(T)
and Holder’s inequality yield

||V6||%2(Q) = (Ve,V(e—w)) < ||V6||L2(Q)||V(e - Uh)||L2(Q)
for all v, € SH(T). If up,n, = Ipup, then the assertion follows immediately by
choosing vy, = wp,—up, where wy, € S*(T) satisfies wi|r, = Ipup. ffupp = Hpup,
then let vy, = wy, — up + yn, where wy, y, € SY(T) satisfy yn|r, = Hpup — Ipup
and wp|r, = Ipup. It follows that

IV(e = vn)llzz) S IV (u —wi)llz2e) + IVynllzz@),
and the proof is an immediate consequence of Proposition 4.3. O
The a posteriori estimate relies on a good estimate of the contribution ng/ 2)

which is based on the extension results in Section 4. More precisely, we have the
following theorem.



14 S. BARTELS, C. CARSTENSEN, AND G. DOLZMANN

Theorem 6.3 (A posteriori estimate in H'). Under the foregoing assumptions,

hg/*82upl|ra(r if up,n = Ipup

Vellza S IResll 1 + 4 1E JEeplws funs = Iouo,

I S||Leo(rD)|| £ gUD||L2(1“D) if Up,n = Hpup.
Proof. In view of the representation (2.1) it suffices to estimate the terms ng/ D,
Suppose first that up = Ipup. Since w minimizes the Dirichlet integral subject
to the given Dirichlet conditions, we deduce from Theorem 4.2 that

IVwllz@y =~ min  [[Vollizg) S 10 *dzunllzay)-
v|rp =uD—UD,hn

This proves the assertion for the nodal interpolation. Assume next that upp =
Opup and that IIp is H! stable. Note that for all y, € SY(T) with yu|r, =
HDuD - ID'LLD

min ||VU||L2(Q)
v|lrp=uDp—UuD,n

min IV —yn)ll2e) + [ VynllL2 @)
h

vlrp=up—up,

min IVyllz2) + [[Vynllrz(e)-

ylrp=up—Ip

IVw|L2(0)

IN

The statement of the theorem follows now in view of the estimate for ||Vy||.2(q)
and ||Vyg||L2(q) with Theorem 4.2 and Proposition 4.3, respectively. O

7. A PRIORI AND A POSTERIORI ESTIMATES IN L2
In this section we present the corresponding L? estimates.

Theorem 7.1 (A priori estimate in L?). Suppose that the dual problem (2.4) is
H? regular and that TIp is H' stable if up,, = Hpup. Then

Ihz0%upl|L2(rp) if up,n = Ipup,

2 <||hrVe|lr2q) + .
llellz2@) SIIhrVella ) { helly/2 o Whed2upllizwy) i upn = Mpup.

Proof. We first derive a representation of the error based on duality techniques.
Let z € H*(Q) satisfy (2.4) and (2.6). Then

(7.1) ||e||2L2(Q) = (e; —Az) = (Ve; V2) —/F € Opzds.

Let 2z, € ShH(T) be the nodal interpolant of z so that the Galerkin orthogonal-
ity (6.1) implies

(72) (Ve; Vz) = (Ve; V(z — 21))

' < ||hrVellrz@) b7V (z = 20)llz2(9) < BT Vellz o) ll2lla20)-

The second term on the right-hand side in (7.1) is bounded by

(7.3) / ednzds < 152 2l e,
I'p
It therefore suffices to estimate the terms 7753—1/ 2, Suppose first that up,, = Ipup.

By the continuity of the trace operator H'(Q) — L*(I'p) we have [|0,¢r2(rp) <
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IVollL2(rp) S l9lla2(q)- Therefore, Holder’s inequality yields for ¢ € H7 5 (92),

[ @wn = up)d.ods S lup ~ upalliacs) el
I'p
and standard nodal interpolation estimates imply that
—1/2 b
77;) /» S 1h202upll2(rp)-

It remains to prove the assertion for up, = Ilpup. Fix v € H'(Q) with v|p, =
up —up,, and ¢ € HE (). Let p = Vp. Then v, (p) = 0 for all E € Ep and
p-n =0 on I'y and we may find a vector field p, € S'(7)¢ with the properties
in Theorem 5.2. Since up — up,, is L?*(I'p) orthogonal to S*(I'p) we have by
Lemma 5.3, integration by parts, and Cauchy’s inequality

/F (uD—uD,h)anﬁds

:/r (up —up,n)(P = pr) -mds

:/ v(p—pp) -nds
a0

:/Vv-(p—ph) dm+/vdiv(p—ph) da
Q Q

< ||hrVoll2e) b7 (P — Pr)llL2(9) + lvlip2) | divip — pr)llr2(q)
1/2 _ ‘ .
< (IhrVollZ2q) + 10l Z2(0)) / (17t (2 = P72y + 1 div(p — pa)l72(0))

The choice v = w — v, with w of Theorem 4.2 and vy, of Proposition 4.3 shows

1/2

IhrVolliz) + 1072y S 1hellferp)lhedzuplliam,,)-

The combination of the previous estimates with Theorem 5.2 and [|Vpl|f2(q) <
||¢||H2(Q) show that

52 S llhelly2 ) Ihed2unllzacr -
This concludes the proof of the theorem. O

The inequality [|0n9llL2(rp) S 4lla2(e) appears suboptimal in the foregoing
proof for upp = Ipup. However, the estimate for ngl/ 2) in the proof of Theo-
rem 7.1 can in general not be improved, see Section 8.

The next theorem describes the corresponding results for a posteriori error esti-

mates.

Theorem 7.2 (A posteriori estimate in L2). Suppose that the dual problem (2.4)
is H? regular. Then
1h202upl|L2(rp) ifup,n, = Ipup,

e S || Res||—2 + ;
Iellez@ I Resll-2 { el oy Ihe0Runlias) #up, = pup.

Proof. With (7.1), (7.3), and (2.6)-(2.7),

llel22(y < (I Res|l—2 + 15 /)12l m20) < er(IIResl—2 + 0% /) llell2(0)-

The assertion follows now as in the proof of Theorem 7.1 O
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8. MODEL EXAMPLE

In this section we discuss an example which demonstrates the different scaling
for the different choices for the approximation of the Dirichlet data. In particular,
the boundary contribution

||e||%2(9) — Res(z) = _/r (up —up,p)Onzds
D

in (2.5) is not of higher order for the discrete boundary data up,, = Ipup. More-
over, the L? error ||e||2,q is significantly reduced if one replaces the discrete Dirichlet
data up,, = Ipup by upr = lpup while the H?' errors are comparable.

For the precise argument consider ! = (0,1)? and I'p = 9. Let h = 1/n for
n € N. We fix the uniform triangulation 7 with nodes N' = {(jh,kh) : j, k =
0,1,..., n} and sides parallel to the z-axis, the y-axis and the direction (1,1). In
this situation, the quadratic function u(z,y) = up(z,y) = z(1 —z) + y(1 —y) is
the solution of —Awu = 4 subject to its own boundary data. The following theorem
describes the asymptotic scaling of the boundary contribution.

Theorem 8.1. Suppose that T and u are as above and that up,, = Ipup. Then

12 5 VB g sy,
2 - 3\/@01 ( ( ))

In order to prove this result, let Iu € S*(7) denote the nodal interpolant of u.
We write e,I1 and elhI for the finite element errors for the choices up,, = Ipup and
up,n = Hpup, respectively. Finally, let z{ and z}! denote the solutions in H}(2)
of the corresponding dual problems

—Azl =¢] inQ, 21 =0 on 89,
—Azil =ejl in Q, 2z}l = 0 on 99.

The following proposition compares the four contributions to the two L? residual
relations

lerllFz) = Res(zh) — /F (1= Ip)up B,z ds,

||e£[||%2(9) = Res(z}}) — /r (1 —Tp)up O,z ds.
D

Proposition 8.2. The approzimation errors el and e}l are related by el = e}l +
h2/6 and satisfy the following estimates:

- / (1 - Ip)up Bnzf ds = h*/18 + O(h*?),
I'p

_/ (1 —TIp)up dnzitds = O(h/?).
I'p
Moreover, ||e£||%2(9) = 11h*/90 and ||el,;[||i2(9) = 7h*/180.

Remark: The L? error is reduced to 56% when the discrete boundary data are
obtained by the L? projection instead of the nodal interpolation of up.

Proof. The second partial derivatives of u are constant and therefore a second order
difference quotient is exact. The stiffness matrix for the uniform triangulation
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T is equivalent to the discrete problem in the related difference scheme. Hence,
e,Il = (1 — Ih)u.

Let s denote the arc-length parameter on an edge E C I'p on which el =
(1 —Ip)u is given by e} (s) = s(h — s) with 0 < s < h. The identities

h h
/ s(ef —h?/6)ds=0 and / (h—s) (e} —h?/6)ds =0
0 0

imply that ef —h?/6 = (1—Ip)up—h?/6is L?>(T'p) orthogonal to S*(I'p) so that we
have we have IIpup = IDuD+h2/6. Since Ihu+h2/6 e St (T) equals Up,p = IIpup
on I'p and satisfies the difference equations there holds e}l = e} — h?/6.

A short calculation shows that

/h/h (g, y)? dod 11h6ad/h/h (g ) dody = —— b9
ep(x,y rdy = — n e (z,y rdy = —=h".
o Jo " 90 o Jo " 180

This verifies the last two identities in the assertion of the proposition since e{L and

el are (h, h)-periodic.

The L2 projection is stable for (quasi-) uniform meshes and therefore the esti-

mates in the proof Theorem 7.1 show ng;l/ ) = O(h5/?). By assumption, the dual
problem is H? regular and thus

||anzI1;I||L2(FD) < ||Z;1L]||H2(Q) S ||61I;I||L2(Q)-
Hence
- [ Mo aueftds Sl el = 00
Let ¢ € HL(Q) = H}(2) be the solution of A =1 in Q. Then,
21 =211 — h?/6 .

We obtain in view of ef = e}l + h?/6 that

2
—/ (1= Ip)up Opzlds = —/ (eIhI+h2/6)8n(z,I}—h—§)ds
T'p Q 6

h2
= —/ eE@nz,I}ds—k—/ eE@nCds
80 6 Jaa

h? h?
+ — OnCds — — Onzil ds.
36 Jaa 6 Joo "

The first term on the right-hand side is of order h%/? as shown previously. The
second term is of the same order by the same arguments since [|C||z2) S 1.
Partial integration in the third term shows

/893nCds=/QACdm=1.

Combined with a direct calculation of fQ e,IL dz = h?/3, the same arguments prove
for the last term

—/ 8,1z,r11ds:—/Az,I;I da::/eiI dz = h?/6.
Gle! Q Q

These estimates prove that

—/ (1 —Ip)up 8z} ds = h* /18 + O(h®/?),
I'p
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as asserted. O

Proof of Theorem 8.1. With up, f, T, zi, and e, as in the proposition,

[EAIPESY / (1 — Ip)updpzlds = h*/18 + O(h/?).
I'p

The estimate ||21||g2(q) < c1llef|lr2) and the above identity for ||ef||12(q) con-
clude the proof.

The point in the example is that the approximation error up — Ipup in the
Dirichlet data does not change its sign. This is always the case on parts of the
boundary where up is convex or concave. We may therefore expect that the bound-
ary contribution

(8.1) —/ eldpz}ds
I'p

is not of higher order. In this sense, the model example describes a rather generic
situation unless long-range cancellations lead to a global integral (8.1) of higher
order.
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