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Summary. Many physical processes can be modelled by minimising a given energy
functional E(u) amongst a class of admissable displacements. Convexity conditions
guarantee sequential lower semicontinuity of E and then accumulation points of
infimising seqences are minimisers, i.e., the minimum of E is attained. For some
important problems involving phase transitions in nonlinear elasticity or ferromag-
netic bodies, these convexity properties are not valid and so E is not sequential
lower semicontinuous; in general the minimum is not attained. Typical features of
infimising sequences include their weak accumulation points regarded as a macro-
scopic displacement of a (generalised) solution or their oscillations in terms of Young
measures to describe the phases of the strains. Those macroscopic quantities can
be described within relaxed formulations. This article focuses on the numerical
treatment of relaxed problems where an analytic formula of the relaxed, (quasi-)
convexified energy density is known.

1. Introduction

The minimisation of nonconvex functionals in applied physics leads to highly
oscillating microstructures in the solution. Two examples will be adressed
in this article: the scalar double-well problem and a problem from nonlinear
elasticity.

Numerical schemes for these problems have to find a global minimiser (in
a discrete subspace) amongst a huge number of local ones. Classical iteration
methods fail to work properly here; a few thousand starting values are needed
before a scheme finds a global minimiser. To avoid these severe difficulties
and since one is mainly interested in the macroscopic quantities, we consider
different forms of convexifications of the related functionals. This enables
efficient implementation and a priori as well as a posteriori error estimates.
In all the three examples the most important microscopic quantities can be
recovered from the solution of the relaxed problem.

The generic example in microstructure is due to L.C. Young [18].
Problem (P,). Minimise

E(u) := .[01 (u? —1)2 + au®dz

amongst the space A of all Lipschitz-continuous functions « : (0,1) - R
with «(0) = u(1) = 0.
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For a = 0, the infimum of E over A equals zero and there are infinitely
many minimisers. Indeed, every Lipschitz-function with slopes +1 almost ev-
erywhere that satisfies the boundary conditions is a minimiser. For instance,
u(z) = min{z, 1 — z} is a solution and Fig. 1.1 shows other examples.

For a = 1, the infimum of E over A is also zero since there exist functions
with slope +1 almost everywhere and with arbitrary small amplitude. The
infimum is not attained because there is no admissable function satisfying
u = 0 with slopes +1. Some functions u; satisfying E(u;) = 4-U+1)/3 are
depicted in Fig. 1.1; note that they are also solutions for (Fy). The sequence
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(u;) infimises E and converges strongly to zero in L>(0, 1), but the sequence
(u}) only converges weakly to zero in L*(0,1). Obviously, u = 0 is no min-
imiser but describes the macroscopic quantities of a (nonclassical) minimiser.

The lacking strong convergence is caused by oscillations of (u;) which can be

described within a statistical notion by Young measures as follows: Let l/i 5
denote the probability distribution of u}(y) where y is taken uniformly at
random from the ball B(x,d) of radius ¢ around z. Then, for a subsequence,

vy = lims_y0 lim;_, o 1/";’5 (weak* in measure)

defines a probability measure, the related Young measure. It can be shown
(cf. [14]) that for (P;), any minimising sequence generates the Young measure
Ve = 561 + 301, (1.1)

where §+1 denotes the Dirac measure with mass at +1 resp. —1. The rep-
resentation (1.1) corresponds to the fact that we need half the slopes to be
one and half of the slopes to be —1 to obtain a macroscopic slope zero. In
this sense, (1.1) describes the microscopic mechanism, they do both lower
the double-well energy (u'? — 1) and have a macroscopic limit u = 0. The
fact that v, # d,/(,) causes microstructure and excludes strong convergence
of infimising sequences.

A relaxation of (P;) considers the functional E** in which the nonconvex
energy density W (z) = (22 — 1)? is replaced its convexification CT .
Problem (RP;). Seek a minimiser u € A of the functional
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1
E**(u) := / CW (u') + v’ dx.
0

One easily verifies that CW is given by CW (z) = 0 for |z| < 1 and CW (z) =
W (x) for |z| > 1. Obviously, u = 0 is the unique solution for (RP;).

The advantage in considering problem (RP; ) instead of (P;) is that E** is
a convex functional so that any classical minimisation algorithm can be used
to compute an approximation of a minimiser of £**. This is not the case for
FE and one can show that classical algorithms fail to compute a minimiser of
FE in a finite-dimensional space.

The remaining part of this survey article treats more-dimensional and
more applied examples and is organised as follows. Section 2 starts with a
scalar model problem to illustrate the most important results from relaxation
in modern theory of calculus of variations and gives an error analysis for
the numerical solution. We consider a problem from nonlinear elasticity in
Section 3.

2. Scalar double-well problem and its numerical solution

In a variational model for phase transitions in certain crystalline alloys, fine
mixtures of phases are described by oscillating infimising sequences of the
stored elastic energy [2, 3]. The variational framework is based on the min-
imisation of an energy functional with a non-convex energy density. In the
double-well problem for two distinct given vectors Fi, F» € R? this energy
density is defined by

W(F) = |F - F{[?|F — B2, (2.1)

for F € R?. The variational problem (P) reads as follows.
Problem (P). Find a function u € A that minimises the energy functional

E(u) := [, (W(Vu) + |u— f|?) dx

in a body 2, a bounded Lipschitz-domain in R? with boundary I". The non-
physical term |u — f|? for a given function f € L?(£2) serves as regularisation
term. The set of admissible functions is A := up + Wg P(0) for given up €
WhP(02) and Wy P (2) = {v € W'P(2) : v|r = 0}.

As shown in the introduction and depending on the given data, (P) may
have infinitely many or no solutions at all. The direct method of the calculus
of variations does not give the existence of solutions since due to the non-
convex nature of W the functional F is not weakly lower semicontinuous.
Nevertheless, one is interested in information on minimising sequences.

A finite element method replaces the space of admissible functions A by
a discrete subspace A, C A and seeks a minimiser in A; which exists since
Ap is finite-dimensional and E satisfies certain growth conditions. For an
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overview of approximation results in model examples we refer to [8, 9, 13].
Since local minimisers cluster around global ones, it requires a huge amount
of computational work to minimise E directly over A}, (cf. [4]) and numerical
solutions are strongly dependent on starting values.

Relaxation utilising Young measures. Minimising sequences (Vu;) for
(P) are typically weakly but not strongly convergent and their weak limits are
in general not solutions of (P). The reason for this is their oscillatory nature.
To describe this behaviour by a generalized limit, one is led to measure-
valued strains: The bounded sequence (Vu;) generates a family of probability
measures (v )zc0 on R?, the gradient Young measure v € Y M(2; R?), such
that, for all g € C(R?) that vanish at infinity, there holds

(9(Vu;)) =* [ga g(F)dv(F) in L>(£2). (2.2)

We refer to [1, 14, 15, 16] for details.
The weak limit Vu of a sequence of gradients (Vu;) for a minimising
sequence (u;) for (P) is related to a Young measure by the identity

Vu(z) = [a Fdv.(F) =: (v,,id) ae.in 0 (2.3)

which follows from (2.2) with g = id in a neighbourhood of supp v, and gives
a connection between the macroscopic strain Vu and the gradient Young
measure v. Since one is often interested only in the macroscopic quantities
Vu, DW(Vu), and the generated Young measure, relation (2.3) motivates
Problem (GP). Seek a minimiser of

GE(u,v) = [,(ve, Wydz + [, |u— f|?dz (2.4)

amongst all (u,v) € B := {(v,n) € A x Y M(2;R?); Vo(x) =< p,,id > for
a.a. x € 2}.

Note that in contrast to (P), (GP) always has solutions and inf4 E =
ming GE by construction of B. Moreover, if (Vu;) is a minimising sequence
for (P) that generates the gradient Young measure v and which converges
weakly to Vu, then (u,v) is a minimiser for (GP) (cf. [15]). This situation is
more involved in the vectorial case (cf. [14, 17]).

A numerical scheme for (GP) would replace the set A by a finite element
space Ap and the space YM(Q;IR,d) by elementwise convex-combinations
of Dirac measures (cf. [7]). This approach results in a very high number of
degrees of freedom.

Relaxation by convexification. Another relaxation of (P) can be ob-
tained from (GP) by minimising the two contributions in (2.4) seperately.
For fixed F = Vu(z) one can find a probability measure v, such that v, min-
imises the expression (u, W) amongst all probability measures p satisfying
(u,id) = F. Sometimes it is even possible to calculate an explict formula for
a function QW that satisfies
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QW (F) = ming, jay—r (1, W). (2.5)

In the scalar case QW is given by the second Legendre transform W** of
W which equals the lower convex hull CW of W. Equations (2.5) and (2.4)
motivate Problem (RP). Find a minimiser u € A for the functional

E**(u) = [, W*(Vu)dz + [, |u— f|* da. (2.6)

The map W** is constructed in [5] and given by the formula
*ox 2 2 2 2 2 T 2
we(F) = ((IF = B = |4P), ) +4(AP|F = B - (47 - (F - B))”),

where A := (Fy — F1)/2 #0, B := (F} + F»)/2, and (-)4 := max{-,0}.

Note that (RP) always has a solution and that inf 4 F = min 4 E**. More-
over, if (Vu;) is a minimising sequence for (P) which converges weakly to
Vu, then u is a solution for (RP) (cf. [15]).

The convexified problem (RP) plays an important role in the scalar case
since the most relevant information concerning (P) such as the Young mea-
sure and the macroscopic displacement and stress field can be recovered from
a minimiser u of E**. Since two different energy densities might have the
same lower convex envelope, one loses information on the actual problem, in
general. In the vectorial case one has to consider the quasiconvex hull of W
which is harder to compute than and in general different from CW.

Numerical analysis of the convexified problem allowing microstruc-
ture. In this subsection we outline the numerical analysis of the relaxation
(RP) of problem (P) and seek a minimiser for E** in a discrete subspace
Ap C A based on a regular triangulation T of 2 into closed triangles and
parallelograms in the sense of [10]. We allow energy densities more general
than (2.1). As mentioned before, problems like (P) may have infinitely many
or no solutions at all but there usually exists a Young measure solution v
from which one can calculate the macroscopic stress field

0= [a DW(A) dv(A) = DW**(Vu) =: o™ (2.7)

where a solution « of the convexified problem (RP) defines 0** which actually
equals o in (2.7) and is independent of the choice of the minimiser u. Similarly,
a discretisation of (RP) gives a solution u, € Aj, and again, the associated
stress field oy, is independent of the choice of the minimiser.

For W given in (2.1) the gradient Young measure v can be calculated
as soon as one knows a solution of (RP): Define Ag := A/|A| and let P =
1~ Ag - AL denote the orthogonal projection in R onto span{A}*. Let

MF) = (1+AY-(F-B) (A2 —|P-(F - B)P) )2,
Su(F) 1= B+P-(F-B)+ (AP —|P-(F - B)]")"" 4,



6 C. Carstensen et al.

and define the map g, that maps a vector F € R? to a probability measure
fi(F), by

_ ) if |A| < |F — B|,
u(p);_{F if |A] < | |

AE)ds,ry + (1= A(F)) 0s_(ry if [F' — B| < |A].

Then, p : u — (Vu) defines a map p: WP(2) — Y M (£2; R?) such that, if
(Vu;) is a minimising sequence for E in A which converges weakly to u € A
and which generates the Young measure v, then v, = u(Vu(z)) fora.a. z € 2
(cf. [5]). The map also allows us to calculate discrete Young measures v? :=
w(Vup(z)) for solutions up, of (RPy), thus recovering microscopic information
from averaged quantities.

A priori error estimates. The following results hold for minimising prob-
lems related to more general energy densities than W from (2.1). We refer to
[5] for a more general version of the subsequent theorem in which A, C A is
a discrete subspace.

Theorem 2.1 ([5]). There exist minimisers u and uy of (2.6) in A resp.
Ap. The stress o := DW**(Vu) and the discrete stress op := DW**(Vup)
are determined in a unique way. Furthermore, if u,u, € Wh4(0)

||U_Uh||i4/3(9) + ||U_Uh||i2(9)

S C1 n

. 2 2

Uhleih (lw = vllZ20) + (VU = Vopl|7s(g))-
Since no higher regularity results are known for problems of the form

(RP), the error estimate is of limited use for error control in practice. There-

fore, a posteriori error estimates, which allow us to estimate the error in terms

of the computed approximation, are of particular interest.

A posteriori error estimates. Given a regular triangulation 7 of 2 we
can define the lowest order finite element space S'(7) which consists of all
continuous functions v : £2 — R such that v|r is affine for all T € T. For the
numerical treatment of (RP) we set S} (T) := S'(T) N W, *(£2) and define
An = up + S}(T). Let € be the set of all edges appearing in 7 and note
that UE, the union of all edges, is the skeleton of edges in 7. We denote by
hr :=diam(T), T € T, and hy = diam(E), E € £, the diameters of elements
and edges in T.

Given a solution u;, € Ay, of (RPy), let o := DW**(Vuy,). Forall T € T
the error indicator nlt is defined by

ni .= h;/:"/ 2(f — up) + divoy|*3de + Z h’E/ lon - ng]|Y?ds. (2.8)
Jr BComr JE

The integrand [0}, - ng] denotes the jump of the discrete stresses o, -ng along
a face FE of two neighbouring elements, ng is a unit normal vector of a fixed
orientation along E, and the summation in (2.8) is over all such faces of T'.
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Theorem 2.2 ([5]). There exists a constant ca > 0 which is independent of
hr, such that

3/8
llo = ol 3,4/3(9) +llu— Uh”%?(g) < CZ(Z an?.) =:!CaNR.

TeT

The proof of the theorem requires the use of the rough estimate [ju —
vp|lwia(e) < ez for an approximation v, € Aj of u, and so loses efficiency
when keeping reliability.

Fig. 2.1. Solution for the double-well problem.
The figure shows a solution for the problem
(Pr) on the unit square. Microstructure can
be observed close to the left lower edge

Fig. 2.2. Solution for the relaxed double-well
problem using the adaptive Algorithm 1. Note
that in contrast to the (discrete) solution for
(Pr) no microstructure can be observed

The local error indicators nf* can be used in the following algorithm for
adaptive mesh refinement.

Adaptive Algorithm (A). (a) Start with a coarse mesh 7y, k = 0.
(b) Compute a minimiser uy € Ap, of E** with respect to the mesh 7.
(c) Compute n# for each T in T.
(d) Compute the error bound 7r and decide to terminate or to continue and
then go to (e).
(e) Refine, i.e., halve the largest edge of, T' € T provided nf > 1 maxye7 nf.
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(f) Refine further elements to avoid hanging nodes and thereby define a new

mesh 741, update k, and go to (a).

For a numerical example let d = 2, 2 = (0,1)%, F} » := F(cos §.8in§),
and define f(x,y) := fo(z cos g +ysing) in 2, up(z,y) := fi(zr cos§ +
y sinZ) on 912, for fo(s) := —7oz(s — 0.5)% — (s — 0.5)% and fi(s) := fo(s)
if0<s<0.5, fi(s) = 57(s — 0.5)% + (s = 0.5) if 0.5 < s < 1.

Then, the discrete deformations for (P,) and (RP,) are shown Fig. 2.1
and Fig. 2.2 respectively. The microstructure seen in the solution for (Py)
vanishes in the solution for (RFPy).

3. Numerical analysis of linearised phase transitions in
elastic solids

The variational model of an elastic body which occupies a bounded Lipschitz-
domain 2 ¢ R?, d = 2,3, with two distinct zero-stress strain phases Fy and
Fy in ]Rfj;,;j = {F ¢ R™: F = FT} defines a double-well problem similar
to the scalar one discussed above. For each well F}, j = 1,2, with minimal

energy WJO € R one has a quadratic elastic energy which is, for F' € ]R’f;rz
defined by (cf. [12])

WJ(F) = %(F - Fj,C(F - Fj)> + WJO,
where C is a fourth-order elasticity tensor and (-, --) denotes the scalar product
in R%*?. Energy minimisation balances the configuration of the two phases

and so the strain energy density W is modelled by the minimum of W; and
Wy (cf. [12]), i.e.,

W(F) = min{W; (F), Wy (F)}.
The displacement u € 4 minimises the energy functional
E(u) := [, W(e(u))dz + [, f-udr — fFN g-ds, e(u)=21(Vu+vul),

amongst all admissible displacements. The given functions f € L?(2) and g €
L*(I'y), I'y C 012, describe lower order body forces. The space of admissible
functions includes the Dirichlet data up € W12(£2) and is defined by A :=
up + W5(02), where W52(2) = {v € Wh2(2)4 : v|p, = 0} for I'p C AN
with positive surface measure.

Problem (P). Find a minimiser of E in A.

As in the scalar case for (P) from Section 2, we do not have weak lower
semicontinuity for E so that we cannot expect the existence of a minimiser.
A relaxation allowing gradient Young measures generalising the approach in
(GP) is possible but for computational reasons it is preferable to follow the
ideas that led to (RP) in Section 2. The appropriate choice for the relaxed
energy density is the quasiconvex envelope QW of W (cf. [11]).
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Quasiconvexity is the right form of convexity to obtain weak lower semi-
continuity for functionals like E to guarantee the existence of a minimiser
u € Aof

QE(u) = [, QW (e(u)) dx + [, f-udx — 'fFN g-uds.

Problem (RP). Find a minimiser of QF in A.

The connection between (P) and (RP) is that (RP) has solutions which
are weak limits of minimising sequences for E and there holds inf 4 F =
ming QE (cf. [15]). Since all the important macroscopic quantities can be
recovered from a solution u for (RP) it is relevant to consider this relaxed
problem. For the problem at hand, the quasiconvex envelope of W is known
explicitly from [12]

L(Wa(F) + Wi(F)— & (Wa(F) ~ Wi(F)* — 2
if [Wo(F) — Wi(F)| <7,

QW (F) =

where -y is given by a certain projection onto the space of symmetric matrices.
In case rank (F; — Fy) < 1 we have y = 3(F> — Fy ,C(F, — Fy)).

Note that in general, the quasiconvex hull of an energy density is not
known explicitly.

A discretisation of (RP) consists in replacing A by a discrete subspace
A, and leads to the problem (RPj) which has a minimiser uy € Ap.

The relaxed problem and its approximation. For the numerical analy-
sis of problem (RP) we assume that the energy wells Fy, Fy are compatible,
i.e., the difference F; — F5 has rank one. This condition is satisfied in some ap-
plications and allows us to exploit the Galerkin-orthogonality but also implies
that QW is convex.

Theorem 3.1 ([6]). Suppose rank (Fy — F») = 1, and that u solves (RP)
while up, solves (RPy). Then, for the stress fields o := DQW (e(u)) and oy, :=

DQW (e(up)) we have the a priori error estimate
1C2( — o) gy < infoy et 1€V (0 — o)y (31)

Note that u and wuj, are in general not unique but (3.1) holds independent of
the choice of the minimisers.

Finite element approximation and a posteriori error control. In or-
der to derive a computable a posteriori error estimate, let 7 denote a regular
triangulation of the domain (2 and suppose that rank (F; — Fy) = 1.

The volume and edge residuals R € L?(£2)? and J € L*(U£)? are defined
as residuals from the strong form of the Euler-Lagrange equations by
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lon -ng] HEZT,
Rl7 = (f +divoy)|r and J|lg:={ g—on-n ifECITy, (3.2)
0 if ECIp,

for T € T and E € &, respectively. Moreover, we denote by hs and hg the
functions satisfying hy|r = hy and hg|p = hg for all T € T and E € €,
respectively.

Theorem 3.2 ([6]). There exists a positive constant ¢4, which only depends
on the shape and not on the size of the elements in T, such that

1 2(0 = on) 1220y < callullwzgen (07 Rllzzay + 1Y Tl 12we).

As in Theorem 2.2, one faces a loss of efficiency due to lacking smoothness
properties of u but the estimate of the theorem still allows us to define lo-
cal error indicators which can be used in Algorithm (A) for adaptive mesh
refinement strategies.

Remarks on microstructures. The relaxed energy density can be seen
as a convex combination of the two energies W; and Ws. We interpret the
volume fraction 6 of the area in which the material has elastic properties
defined by Wj. A formula for the calculation of € in terms of the exact strain
€(u) is given in [12]. A numerical approximation uy for u thus allows us to
compute an approximation 6 of 8, although theoretical bounds are lacking.

The left plot of Fig. 3.1 shows the deformation and the modulus of the
stress fields on the deformed unit square with fixed lower side and load in
the vertical direction on the upper side. The material is defined through the
elasticity tensor € and the matrices Fy, F5 (cf. [6]). The corresponding volume
fraction 6, is shown in the right plot of Fig. 3.1.

1.084

1092

L
2
8

Fig. 3.1. Deformation uy, stress field |o,| (left), and volume fraction 6, (right)
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