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al pro
esses 
an be modelled by minimising a given energyfun
tional E(u) amongst a 
lass of admissable displa
ements. Convexity 
onditionsguarantee sequential lower semi
ontinuity of E and then a

umulation points ofin�mising seqen
es are minimisers, i.e., the minimum of E is attained. For someimportant problems involving phase transitions in nonlinear elasti
ity or ferromag-neti
 bodies, these 
onvexity properties are not valid and so E is not sequentiallower semi
ontinuous; in general the minimum is not attained. Typi
al features ofin�mising sequen
es in
lude their weak a

umulation points regarded as a ma
ro-s
opi
 displa
ement of a (generalised) solution or their os
illations in terms of Youngmeasures to des
ribe the phases of the strains. Those ma
ros
opi
 quantities 
anbe des
ribed within relaxed formulations. This arti
le fo
uses on the numeri
altreatment of relaxed problems where an analyti
 formula of the relaxed, (quasi-)
onvexi�ed energy density is known.1. Introdu
tionThe minimisation of non
onvex fun
tionals in applied physi
s leads to highlyos
illating mi
rostru
tures in the solution. Two examples will be adressedin this arti
le: the s
alar double-well problem and a problem from nonlinearelasti
ity.Numeri
al s
hemes for these problems have to �nd a global minimiser (ina dis
rete subspa
e) amongst a huge number of lo
al ones. Classi
al iterationmethods fail to work properly here; a few thousand starting values are neededbefore a s
heme �nds a global minimiser. To avoid these severe diÆ
ultiesand sin
e one is mainly interested in the ma
ros
opi
 quantities, we 
onsiderdi�erent forms of 
onvexi�
ations of the related fun
tionals. This enableseÆ
ient implementation and a priori as well as a posteriori error estimates.In all the three examples the most important mi
ros
opi
 quantities 
an bere
overed from the solution of the relaxed problem.The generi
 example in mi
rostru
ture is due to L.C. Young [18℄.Problem (P�). MinimiseE(u) := R 10 (u02 � 1)2 + �u2 dxamongst the spa
e A of all Lips
hitz-
ontinuous fun
tions u : (0; 1) ! IRwith u(0) = u(1) = 0.



2 C. Carstensen et al.For � = 0, the in�mum of E over A equals zero and there are in�nitelymany minimisers. Indeed, every Lips
hitz-fun
tion with slopes �1 almost ev-erywhere that satis�es the boundary 
onditions is a minimiser. For instan
e,u(x) = minfx; 1� xg is a solution and Fig. 1.1 shows other examples.For � = 1, the in�mum of E over A is also zero sin
e there exist fun
tionswith slope �1 almost everywhere and with arbitrary small amplitude. Thein�mum is not attained be
ause there is no admissable fun
tion satisfyingu � 0 with slopes �1. Some fun
tions uj satisfying E(uj) = 4�(j+1)=3 aredepi
ted in Fig. 1.1; note that they are also solutions for (P0). The sequen
e
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Fig. 1.1. First fewmembers of a possibleminimising sequen
efor (P1)(uj) in�mises E and 
onverges strongly to zero in L1(0; 1), but the sequen
e(u0j) only 
onverges weakly to zero in L4(0; 1). Obviously, u � 0 is no min-imiser but des
ribes the ma
ros
opi
 quantities of a (non
lassi
al) minimiser.The la
king strong 
onvergen
e is 
aused by os
illations of (u0j) whi
h 
an bedes
ribed within a statisti
al notion by Young measures as follows: Let �jx;Ædenote the probability distribution of u0j(y) where y is taken uniformly atrandom from the ball B(x; Æ) of radius Æ around x. Then, for a subsequen
e,�x := limÆ!0 limj!1 �jx;Æ (weak* in measure)de�nes a probability measure, the related Young measure. It 
an be shown(
f. [14℄) that for (P1), any minimising sequen
e generates the Young measure�x = 12Æ�1 + 12Æ1; (1.1)where Æ�1 denotes the Dira
 measure with mass at +1 resp. �1. The rep-resentation (1.1) 
orresponds to the fa
t that we need half the slopes to beone and half of the slopes to be �1 to obtain a ma
ros
opi
 slope zero. Inthis sense, (1.1) des
ribes the mi
ros
opi
 me
hanism, they do both lowerthe double-well energy (u02 � 1)2 and have a ma
ros
opi
 limit u = 0. Thefa
t that �x 6= Æu0(x) 
auses mi
rostru
ture and ex
ludes strong 
onvergen
eof in�mising sequen
es.A relaxation of (P1) 
onsiders the fun
tional E�� in whi
h the non
onvexenergy density W (x) = (x2 � 1)2 is repla
ed its 
onvexi�
ation CW .Problem (RP1). Seek a minimiser u 2 A of the fun
tional



Finite Element Methods for Non
onvex Minimisation Problems 3E��(u) := Z 10 CW (u0) + u2 dx:One easily veri�es that CW is given by CW (x) = 0 for jxj � 1 and CW (x) =W (x) for jxj > 1. Obviously, u � 0 is the unique solution for (RP1).The advantage in 
onsidering problem (RP1) instead of (P1) is that E�� isa 
onvex fun
tional so that any 
lassi
al minimisation algorithm 
an be usedto 
ompute an approximation of a minimiser of E��. This is not the 
ase forE and one 
an show that 
lassi
al algorithms fail to 
ompute a minimiser ofE in a �nite-dimensional spa
e.The remaining part of this survey arti
le treats more-dimensional andmore applied examples and is organised as follows. Se
tion 2 starts with as
alar model problem to illustrate the most important results from relaxationin modern theory of 
al
ulus of variations and gives an error analysis forthe numeri
al solution. We 
onsider a problem from nonlinear elasti
ity inSe
tion 3.2. S
alar double-well problem and its numeri
al solutionIn a variational model for phase transitions in 
ertain 
rystalline alloys, �nemixtures of phases are des
ribed by os
illating in�mising sequen
es of thestored elasti
 energy [2, 3℄. The variational framework is based on the min-imisation of an energy fun
tional with a non-
onvex energy density. In thedouble-well problem for two distin
t given ve
tors F1; F2 2 IRd this energydensity is de�ned by W (F ) := jF � F1j2jF � F2j2; (2.1)for F 2 IRd. The variational problem (P ) reads as follows.Problem (P ). Find a fun
tion u 2 A that minimises the energy fun
tionalE(u) := R
�W (ru) + ju� f j2� dx :in a body 
, a bounded Lips
hitz-domain in IRd with boundary � . The non-physi
al term ju�f j2 for a given fun
tion f 2 L2(
) serves as regularisationterm. The set of admissible fun
tions is A := uD +W 1;p0 (
) for given uD 2W 1;p(
) and W 1;p0 (
) = fv 2W 1;p(
) : vj� = 0g.As shown in the introdu
tion and depending on the given data, (P ) mayhave in�nitely many or no solutions at all. The dire
t method of the 
al
ulusof variations does not give the existen
e of solutions sin
e due to the non-
onvex nature of W the fun
tional E is not weakly lower semi
ontinuous.Nevertheless, one is interested in information on minimising sequen
es.A �nite element method repla
es the spa
e of admissible fun
tions A bya dis
rete subspa
e Ah � A and seeks a minimiser in Ah whi
h exists sin
eAh is �nite-dimensional and E satis�es 
ertain growth 
onditions. For an



4 C. Carstensen et al.overview of approximation results in model examples we refer to [8, 9, 13℄.Sin
e lo
al minimisers 
luster around global ones, it requires a huge amountof 
omputational work to minimise E dire
tly over Ah (
f. [4℄) and numeri
alsolutions are strongly dependent on starting values.Relaxation utilising Young measures. Minimising sequen
es (ruj) for(P ) are typi
ally weakly but not strongly 
onvergent and their weak limits arein general not solutions of (P ). The reason for this is their os
illatory nature.To des
ribe this behaviour by a generalized limit, one is led to measure-valued strains: The bounded sequen
e (ruj) generates a family of probabilitymeasures (�x)x2
 on IRd, the gradient Young measure � 2 YM(
; IRd), su
hthat, for all g 2 C(IRd) that vanish at in�nity, there holds(g(ruj)) *� RIRd g(F ) d�(F ) in L1(
): (2.2)We refer to [1, 14, 15, 16℄ for details.The weak limit ru of a sequen
e of gradients (ruj) for a minimisingsequen
e (uj) for (P ) is related to a Young measure by the identityru(x) = RIRd F d�x(F ) =: h�x; idi a.e. in 
 (2.3)whi
h follows from (2.2) with g = id in a neighbourhood of supp �, and givesa 
onne
tion between the ma
ros
opi
 strain ru and the gradient Youngmeasure �. Sin
e one is often interested only in the ma
ros
opi
 quantitiesru, DW (ru), and the generated Young measure, relation (2:3) motivatesProblem (GP ). Seek a minimiser ofGE(u; �) := R
h�x;W i dx+ R
 ju� f j2 dx (2.4)amongst all (u; �) 2 B := f(v; �) 2 A � YM(
; IRd);rv(x) =< �x; id > fora.a. x 2 
g.Note that in 
ontrast to (P ), (GP ) always has solutions and infA E =minBGE by 
onstru
tion of B. Moreover, if (ruj) is a minimising sequen
efor (P ) that generates the gradient Young measure � and whi
h 
onvergesweakly to ru, then (u; �) is a minimiser for (GP ) (
f. [15℄). This situation ismore involved in the ve
torial 
ase (
f. [14, 17℄).A numeri
al s
heme for (GP ) would repla
e the set A by a �nite elementspa
e Ah and the spa
e YM(
; IRd) by elementwise 
onvex-
ombinationsof Dira
 measures (
f. [7℄). This approa
h results in a very high number ofdegrees of freedom.Relaxation by 
onvexi�
ation. Another relaxation of (P ) 
an be ob-tained from (GP ) by minimising the two 
ontributions in (2.4) seperately.For �xed F = ru(x) one 
an �nd a probability measure �x su
h that �x min-imises the expression h�;W i amongst all probability measures � satisfyingh�; idi = F . Sometimes it is even possible to 
al
ulate an expli
t formula fora fun
tion QW that satis�es



Finite Element Methods for Non
onvex Minimisation Problems 5QW (F ) = minh�;idi=F h�;W i: (2.5)In the s
alar 
ase QW is given by the se
ond Legendre transform W �� ofW whi
h equals the lower 
onvex hull CW of W . Equations (2.5) and (2.4)motivate Problem (RP ). Find a minimiser u 2 A for the fun
tionalE��(u) = R
W ��(ru) dx + R
 ju� f j2 dx: (2.6)The map W �� is 
onstru
ted in [5℄ and given by the formulaW ��(F ) = ��jF �Bj2 � jAj2�+�2 + 4�jAj2jF �Bj2 � �AT � (F �B)�2�;where A := (F2 � F1)=2 6= 0, B := (F1 + F2)=2, and (�)+ := maxf�; 0g.Note that (RP ) always has a solution and that infAE = minA E��. More-over, if (ruj) is a minimising sequen
e for (P ) whi
h 
onverges weakly toru, then u is a solution for (RP ) (
f. [15℄).The 
onvexi�ed problem (RP ) plays an important role in the s
alar 
asesin
e the most relevant information 
on
erning (P ) su
h as the Young mea-sure and the ma
ros
opi
 displa
ement and stress �eld 
an be re
overed froma minimiser u of E��. Sin
e two di�erent energy densities might have thesame lower 
onvex envelope, one loses information on the a
tual problem, ingeneral. In the ve
torial 
ase one has to 
onsider the quasi
onvex hull of Wwhi
h is harder to 
ompute than and in general di�erent from CW .Numeri
al analysis of the 
onvexi�ed problem allowing mi
rostru
-ture. In this subse
tion we outline the numeri
al analysis of the relaxation(RP ) of problem (P ) and seek a minimiser for E�� in a dis
rete subspa
eAh � A based on a regular triangulation T of 
 into 
losed triangles andparallelograms in the sense of [10℄. We allow energy densities more generalthan (2.1). As mentioned before, problems like (P ) may have in�nitely manyor no solutions at all but there usually exists a Young measure solution �from whi
h one 
an 
al
ulate the ma
ros
opi
 stress �eld� := RIRd DW (A) d�(A) != DW ��(ru) =: ��� (2.7)where a solution u of the 
onvexi�ed problem (RP ) de�nes ��� whi
h a
tuallyequals � in (2.7) and is independent of the 
hoi
e of the minimiser u. Similarly,a dis
retisation of (RP ) gives a solution uh 2 Ah and again, the asso
iatedstress �eld �h is independent of the 
hoi
e of the minimiser.For W given in (2.1) the gradient Young measure � 
an be 
al
ulatedas soon as one knows a solution of (RP ): De�ne A0 := A=jAj and let P =1�A0 � AT0 denote the orthogonal proje
tion in IRd onto spanfAg?. Let�(F ) := �1 +AT0 � (F �B)�jAj2 � jP � (F �B)j2��1=2�=2;S�(F ) := B + P � (F �B)� �jAj2 � jP � (F �B)j2�1=2A0;



6 C. Carstensen et al.and de�ne the map ~�, that maps a ve
tor F 2 IRd to a probability measure~�(F ), by~�(F ) := � ÆF if jAj � jF �Bj;�(F ) ÆS+(F ) + (1� �(F )) ÆS�(F ) if jF �Bj < jAj:Then, � : u 7! ~�(ru) de�nes a map � :W 1;p(
)! YM(
; IRd) su
h that, if(ruj) is a minimising sequen
e for E in A whi
h 
onverges weakly to u 2 Aand whi
h generates the Young measure �, then �x = �(ru(x)) for a.a. x 2 
(
f. [5℄). The map also allows us to 
al
ulate dis
rete Young measures �hx :=�(ruh(x)) for solutions uh of (RPh), thus re
overing mi
ros
opi
 informationfrom averaged quantities.A priori error estimates. The following results hold for minimising prob-lems related to more general energy densities than W from (2.1). We refer to[5℄ for a more general version of the subsequent theorem in whi
h Ah � A isa dis
rete subspa
e.Theorem 2.1 ([5℄). There exist minimisers u and uh of (2.6) in A resp.Ah. The stress � := DW ��(ru) and the dis
rete stress �h := DW ��(ruh)are determined in a unique way. Furthermore, if u; uh 2W 1;4(
)k� � �hk2L4=3(
) + ku� uhk2L2(
)� 
1 infvh2Ah�ku� vhk2L2(
) + kru�rvhk2L4(
)�:Sin
e no higher regularity results are known for problems of the form(RP ), the error estimate is of limited use for error 
ontrol in pra
ti
e. There-fore, a posteriori error estimates, whi
h allow us to estimate the error in termsof the 
omputed approximation, are of parti
ular interest.A posteriori error estimates. Given a regular triangulation T of 
 we
an de�ne the lowest order �nite element spa
e S1(T ) whi
h 
onsists of all
ontinuous fun
tions v : 
 ! IR su
h that vjT is aÆne for all T 2 T . For thenumeri
al treatment of (RP ) we set S10 (T ) := S1(T ) \W 1;40 (
) and de�neAh := uD + S10 (T ). Let E be the set of all edges appearing in T and notethat [E , the union of all edges, is the skeleton of edges in T . We denote byhT := diam(T ), T 2 T , and hE = diam(E), E 2 E , the diameters of elementsand edges in T .Given a solution uh 2 Ah of (RPh), let �h := DW ��(ruh). For all T 2 Tthe error indi
ator �RT is de�ned by�RT := h4=3T ZT j2(f � uh) + div�hj4=3dx+ XE��Tn�hEZE j[�h � nE ℄j4=3ds: (2.8)The integrand [�h �nE℄ denotes the jump of the dis
rete stresses �h �nE alonga fa
e E of two neighbouring elements, nE is a unit normal ve
tor of a �xedorientation along E, and the summation in (2.8) is over all su
h fa
es of T .



Finite Element Methods for Non
onvex Minimisation Problems 7Theorem 2.2 ([5℄). There exists a 
onstant 
2 > 0 whi
h is independent ofhT , su
h thatk� � �hk2L4=3(
) + ku� uhk2L2(
) � 
2�XT2T �RT �3=8 =: 
2 �R:The proof of the theorem requires the use of the rough estimate ku �vhkW 1;4(
) � 
3 for an approximation vh 2 Ah of u, and so loses eÆ
ien
ywhen keeping reliability.
Fig. 2.1. Solution for the double-well problem.The �gure shows a solution for the problem(Ph) on the unit square. Mi
rostru
ture 
anbe observed 
lose to the left lower edge
Fig. 2.2. Solution for the relaxed double-wellproblem using the adaptive Algorithm 1. Notethat in 
ontrast to the (dis
rete) solution for(Ph) no mi
rostru
ture 
an be observedThe lo
al error indi
ators �RT 
an be used in the following algorithm foradaptive mesh re�nement.Adaptive Algorithm (A). (a) Start with a 
oarse mesh T0, k = 0.(b) Compute a minimiser uh 2 Ah of E�� with respe
t to the mesh Tk.(
) Compute �RT for ea
h T in T .(d) Compute the error bound �R and de
ide to terminate or to 
ontinue andthen go to (e).(e) Re�ne, i.e., halve the largest edge of, T 2 T provided �RT � 12 maxT 02T �RT 0 .



8 C. Carstensen et al.(f) Re�ne further elements to avoid hanging nodes and thereby de�ne a newmesh Tk+1, update k, and go to (a).For a numeri
al example let d = 2, 
 = (0; 1)2, F1;2 := �(
os �6 ; sin �6 ),and de�ne f(x; y) := f0(x 
os �6 + y sin �6 ) in 
, uD(x; y) := f1(x 
os �6 +y sin �6 ) on �
, for f0(s) := � 3128 (s� 0:5)5 � 13 (s� 0:5)3 and f1(s) := f0(s)if 0 � s � 0:5; f1(s) := 124 (s� 0:5)3 + (s� 0:5) if 0:5 < s � 1:Then, the dis
rete deformations for (Ph) and (RPh) are shown Fig. 2.1and Fig. 2.2 respe
tively. The mi
rostru
ture seen in the solution for (Ph)vanishes in the solution for (RPh).3. Numeri
al analysis of linearised phase transitions inelasti
 solidsThe variational model of an elasti
 body whi
h o

upies a bounded Lips
hitz-domain 
 � IRd, d = 2; 3, with two distin
t zero-stress strain phases F1 andF2 in IRd�dsym := fF 2 IRd�d : F = F T g de�nes a double-well problem similarto the s
alar one dis
ussed above. For ea
h well Fj , j = 1; 2, with minimalenergy W 0j 2 IR one has a quadrati
 elasti
 energy whi
h is, for F 2 IRd�dsym,de�ned by (
f. [12℄)Wj(F ) := 12 hF � Fj ; IC(F � Fj)i+W 0j ;where IC is a fourth-order elasti
ity tensor and h�; ��i denotes the s
alar produ
tin IRd�d. Energy minimisation balan
es the 
on�guration of the two phasesand so the strain energy density W is modelled by the minimum of W1 andW2 (
f. [12℄), i.e., W (F ) = minfW1(F );W2(F )g:The displa
ement u 2 A minimises the energy fun
tionalE(u) := R
W (�(u)) dx + R
 f � u dx� R�N g � ds; �(u) = 12 (ru+ruT );amongst all admissible displa
ements. The given fun
tions f 2 L2(
) and g 2L2(�N ), �N � �
, des
ribe lower order body for
es. The spa
e of admissiblefun
tions in
ludes the Diri
hlet data uD 2 W 1;2(
) and is de�ned by A :=uD +W 1;2D (
), where W 1;2D (
) = fv 2 W 1;2(
)d : vj�D = 0g for �D � �
with positive surfa
e measure.Problem (P ). Find a minimiser of E in A.As in the s
alar 
ase for (P ) from Se
tion 2, we do not have weak lowersemi
ontinuity for E so that we 
annot expe
t the existen
e of a minimiser.A relaxation allowing gradient Young measures generalising the approa
h in(GP ) is possible but for 
omputational reasons it is preferable to follow theideas that led to (RP ) in Se
tion 2. The appropriate 
hoi
e for the relaxedenergy density is the quasi
onvex envelope QW of W (
f. [11℄).



Finite Element Methods for Non
onvex Minimisation Problems 9Quasi
onvexity is the right form of 
onvexity to obtain weak lower semi-
ontinuity for fun
tionals like E to guarantee the existen
e of a minimiseru 2 A of QE(u) = R
 QW (�(u)) dx+ R
 f � u dx� R�N g � u ds:Problem (RP ). Find a minimiser of QE in A.The 
onne
tion between (P ) and (RP ) is that (RP ) has solutions whi
hare weak limits of minimising sequen
es for E and there holds infAE =minAQE (
f. [15℄). Sin
e all the important ma
ros
opi
 quantities 
an bere
overed from a solution u for (RP ) it is relevant to 
onsider this relaxedproblem. For the problem at hand, the quasi
onvex envelope of W is knownexpli
itly from [12℄,QW (F ) =8>><>>: W2(F ) if W2(F ) + 
 �W1(F );12�W2(F ) +W1(F )�� 14
 �W2(F )�W1(F )�2 � 
4if jW2(F )�W1(F )j � 
;W1(F ) if W1(F ) + 
 �W2(F );where 
 is given by a 
ertain proje
tion onto the spa
e of symmetri
 matri
es.In 
ase rank (F1 � F2) � 1 we have 
 = 12 hF2 � F1; IC(F2 � F1)i.Note that in general, the quasi
onvex hull of an energy density is notknown expli
itly.A dis
retisation of (RP ) 
onsists in repla
ing A by a dis
rete subspa
eAh and leads to the problem (RPh) whi
h has a minimiser uh 2 Ah.The relaxed problem and its approximation. For the numeri
al analy-sis of problem (RP ) we assume that the energy wells F1; F2 are 
ompatible,i.e., the di�eren
e F1�F2 has rank one. This 
ondition is satis�ed in some ap-pli
ations and allows us to exploit the Galerkin-orthogonality but also impliesthat QW is 
onvex.Theorem 3.1 ([6℄). Suppose rank (F1 � F2) = 1, and that u solves (RP )while uh solves (RPh). Then, for the stress �elds � := DQW (�(u)) and �h :=DQW (�(uh)) we have the a priori error estimatek IC�1=2(� � �h)k2L2(
) � infvh2Ah k IC1=2r(u� vh)k2L2(
): (3.1)Note that u and uh are in general not unique but (3.1) holds independent ofthe 
hoi
e of the minimisers.Finite element approximation and a posteriori error 
ontrol. In or-der to derive a 
omputable a posteriori error estimate, let T denote a regulartriangulation of the domain 
 and suppose that rank (F1 � F2) = 1.The volume and edge residuals R 2 L2(
)d and J 2 L2([E)d are de�nedas residuals from the strong form of the Euler-Lagrange equations by



10 C. Carstensen et al.RjT := (f + div�h)jT and J jE := 8<: [�h � nE ℄ if E 6� �;g � �h � n if E � �N ;0 if E � �D; (3.2)for T 2 T and E 2 E , respe
tively. Moreover, we denote by hT and hE thefun
tions satisfying hT jT = hT and hE jE = hE for all T 2 T and E 2 E ,respe
tively.Theorem 3.2 ([6℄). There exists a positive 
onstant 
4, whi
h only dependson the shape and not on the size of the elements in T , su
h thatk IC�1=2(� � �h)k2L2(
) � 
4kukW 1;2(
)�khTRkL2(
) + kh1=2E JkL2([E)�:As in Theorem 2.2, one fa
es a loss of eÆ
ien
y due to la
king smoothnessproperties of u but the estimate of the theorem still allows us to de�ne lo-
al error indi
ators whi
h 
an be used in Algorithm (A) for adaptive meshre�nement strategies.Remarks on mi
rostru
tures. The relaxed energy density 
an be seenas a 
onvex 
ombination of the two energies W1 and W2. We interpret thevolume fra
tion � of the area in whi
h the material has elasti
 propertiesde�ned by W1. A formula for the 
al
ulation of � in terms of the exa
t strain�(u) is given in [12℄. A numeri
al approximation uh for u thus allows us to
ompute an approximation �h of �, although theoreti
al bounds are la
king.The left plot of Fig. 3.1 shows the deformation and the modulus of thestress �elds on the deformed unit square with �xed lower side and load inthe verti
al dire
tion on the upper side. The material is de�ned through theelasti
ity tensor IC and the matri
es F1, F2 (
f. [6℄). The 
orresponding volumefra
tion �h is shown in the right plot of Fig. 3.1.
0 1

0

1

1.084

1

1

5

5

5

5

10

10

10

10

10

10

15

15

15

20

20

2525

30

30

35

38

0

1

1.084

Fig. 3.1. Deformation uh, stress �eld j�hj (left), and volume fra
tion �h (right)



Finite Element Methods for Non
onvex Minimisation Problems 11Referen
es1. Ball, J.M. (1989), A version of the fundamental theorem for Young measures.Partial di�erential equations and 
ontinuum models of phase transitions. Eds.M Ras
le, D. Serre, M. Slemrod: Le
ture Notes in Physi
s 344, 207|215.2. Ball, J.M., James, R.D. (1987), Fine phase mixtures as minimizers of energy.Ar
h. Rational Me
h. Anal. 100, 13|52.3. Ball, J.M., James, R.D. (1992), Proposed experimental tests of the theory of�ne mi
rostru
ture and the two{well problem. Phil. Trans. R. So
. Lond. A.338, 389|450.4. Carstensen, C. (1996), Numeri
al Analysis of Non
onvex Minimization Prob-lems allowing Mi
rostru
tures. Z. angew. Math. Me
h. 76 S2, 497-498.5. Carstensen, C., Ple
h�a�
, P. (1997), Numeri
al solution of the s
alar double-wellproblem allowing mi
rostru
ture. Math. Comp. 66, 997-1026.6. Carstensen, C., Ple
h�a�
, P. (1999), Numeri
al analysis of 
ompatiblephase transitions in elasti
 solids. SIAM J. Numer. Anal., a

epted.(http://www.numerik.uni-kiel.de/reports/1998/98-16.html)7. Carstensen, C., Roubi�
ek, T. (1999), Numeri
al Approximation of YoungMeasures in Non-
onvex Variational Problems. Numer. Math. In press.(http://www.numerik.uni-kiel.de/reports/1998/97-18.html)8. Chipot, M. (1991), Numeri
al analysis of os
illations in non
onvex problems.Numer. Math. 59, 747-767.9. Chipot, M., M�uller, S. (1997), Sharp energy estimates for �nite element approxi-mations of non-
onvex problems. Max-Plan
k-Institut Leipzig, Preprint 1997-8.10. Ciarlet, P.G. (1978), The �nite element method for ellipti
 problems. North-Holland, Amsterdam.11. Da
orogna, B. (1989), Dire
t methods in the 
al
ulus of variations. AppliedMath. S
ien
es 78, Springer-Verlag, Heidelberg.12. Kohn, R.V. (1991), The relaxation of a double-well energy. Continuum Me
h.Thermodyn. 3, 193-236.13. Luskin, M. (1996), On the 
omputation of 
rystalline mi
rostru
ture. A
ta Nu-meri
a 5, 191-257.14. M�uller, S. (1998), Variational models for mi
rostru
ture and phase transitions.Max-Plan
k-Institut Leipzig, Le
ture notes no. 2. (http://www.mis.mpg.de/
gi-bin/le
turenotes.pl)15. Pedregal, P. (1997), Parametrized measures and variational prin
iples.Birkh�auser.16. Roubi�
ek, T. (1997), Relaxation in optimization theory and variational 
al
ulus.De Gruyter Series in Nonlinear Analysis and Appli
ations 4, New York.17. Tartar, L. (1995), Beyond Young measures. Me

ani
a 30, 505-526.18. Young, L.C. (1937), Generalized 
urves and the existen
e of an attained abso-lute minimum in the 
al
ulus of variations. Comptes Rendues de la So
i�et�e desS
ien
es et des Lettres de Varsovie, 
lasse III 30, 212-234.


