
Finite Element Computation of MarosopiQuantities in Nononvex MinimisationProblems and Appliations in MaterialsSieneS�oren Bartels1, Carsten Carstensen1, and Petr Pleh�a�21 Mathematishes Seminar der Christian-Albrehts-Universit�at zu Kiel, Germany2 Mathematial Sienes Department, University of Delaware, USASummary. Many physial proesses an be modelled by minimising a given energyfuntional E(u) amongst a lass of admissable displaements. Convexity onditionsguarantee sequential lower semiontinuity of E and then aumulation points ofin�mising seqenes are minimisers, i.e., the minimum of E is attained. For someimportant problems involving phase transitions in nonlinear elastiity or ferromag-neti bodies, these onvexity properties are not valid and so E is not sequentiallower semiontinuous; in general the minimum is not attained. Typial features ofin�mising sequenes inlude their weak aumulation points regarded as a maro-sopi displaement of a (generalised) solution or their osillations in terms of Youngmeasures to desribe the phases of the strains. Those marosopi quantities anbe desribed within relaxed formulations. This artile fouses on the numerialtreatment of relaxed problems where an analyti formula of the relaxed, (quasi-)onvexi�ed energy density is known.1. IntrodutionThe minimisation of nononvex funtionals in applied physis leads to highlyosillating mirostrutures in the solution. Two examples will be adressedin this artile: the salar double-well problem and a problem from nonlinearelastiity.Numerial shemes for these problems have to �nd a global minimiser (ina disrete subspae) amongst a huge number of loal ones. Classial iterationmethods fail to work properly here; a few thousand starting values are neededbefore a sheme �nds a global minimiser. To avoid these severe diÆultiesand sine one is mainly interested in the marosopi quantities, we onsiderdi�erent forms of onvexi�ations of the related funtionals. This enableseÆient implementation and a priori as well as a posteriori error estimates.In all the three examples the most important mirosopi quantities an bereovered from the solution of the relaxed problem.The generi example in mirostruture is due to L.C. Young [18℄.Problem (P�). MinimiseE(u) := R 10 (u02 � 1)2 + �u2 dxamongst the spae A of all Lipshitz-ontinuous funtions u : (0; 1) ! IRwith u(0) = u(1) = 0.



2 C. Carstensen et al.For � = 0, the in�mum of E over A equals zero and there are in�nitelymany minimisers. Indeed, every Lipshitz-funtion with slopes �1 almost ev-erywhere that satis�es the boundary onditions is a minimiser. For instane,u(x) = minfx; 1� xg is a solution and Fig. 1.1 shows other examples.For � = 1, the in�mum of E over A is also zero sine there exist funtionswith slope �1 almost everywhere and with arbitrary small amplitude. Thein�mum is not attained beause there is no admissable funtion satisfyingu � 0 with slopes �1. Some funtions uj satisfying E(uj) = 4�(j+1)=3 aredepited in Fig. 1.1; note that they are also solutions for (P0). The sequene
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Fig. 1.1. First fewmembers of a possibleminimising sequenefor (P1)(uj) in�mises E and onverges strongly to zero in L1(0; 1), but the sequene(u0j) only onverges weakly to zero in L4(0; 1). Obviously, u � 0 is no min-imiser but desribes the marosopi quantities of a (nonlassial) minimiser.The laking strong onvergene is aused by osillations of (u0j) whih an bedesribed within a statistial notion by Young measures as follows: Let �jx;Ædenote the probability distribution of u0j(y) where y is taken uniformly atrandom from the ball B(x; Æ) of radius Æ around x. Then, for a subsequene,�x := limÆ!0 limj!1 �jx;Æ (weak* in measure)de�nes a probability measure, the related Young measure. It an be shown(f. [14℄) that for (P1), any minimising sequene generates the Young measure�x = 12Æ�1 + 12Æ1; (1.1)where Æ�1 denotes the Dira measure with mass at +1 resp. �1. The rep-resentation (1.1) orresponds to the fat that we need half the slopes to beone and half of the slopes to be �1 to obtain a marosopi slope zero. Inthis sense, (1.1) desribes the mirosopi mehanism, they do both lowerthe double-well energy (u02 � 1)2 and have a marosopi limit u = 0. Thefat that �x 6= Æu0(x) auses mirostruture and exludes strong onvergeneof in�mising sequenes.A relaxation of (P1) onsiders the funtional E�� in whih the nononvexenergy density W (x) = (x2 � 1)2 is replaed its onvexi�ation CW .Problem (RP1). Seek a minimiser u 2 A of the funtional



Finite Element Methods for Nononvex Minimisation Problems 3E��(u) := Z 10 CW (u0) + u2 dx:One easily veri�es that CW is given by CW (x) = 0 for jxj � 1 and CW (x) =W (x) for jxj > 1. Obviously, u � 0 is the unique solution for (RP1).The advantage in onsidering problem (RP1) instead of (P1) is that E�� isa onvex funtional so that any lassial minimisation algorithm an be usedto ompute an approximation of a minimiser of E��. This is not the ase forE and one an show that lassial algorithms fail to ompute a minimiser ofE in a �nite-dimensional spae.The remaining part of this survey artile treats more-dimensional andmore applied examples and is organised as follows. Setion 2 starts with asalar model problem to illustrate the most important results from relaxationin modern theory of alulus of variations and gives an error analysis forthe numerial solution. We onsider a problem from nonlinear elastiity inSetion 3.2. Salar double-well problem and its numerial solutionIn a variational model for phase transitions in ertain rystalline alloys, �nemixtures of phases are desribed by osillating in�mising sequenes of thestored elasti energy [2, 3℄. The variational framework is based on the min-imisation of an energy funtional with a non-onvex energy density. In thedouble-well problem for two distint given vetors F1; F2 2 IRd this energydensity is de�ned by W (F ) := jF � F1j2jF � F2j2; (2.1)for F 2 IRd. The variational problem (P ) reads as follows.Problem (P ). Find a funtion u 2 A that minimises the energy funtionalE(u) := R
�W (ru) + ju� f j2� dx :in a body 
, a bounded Lipshitz-domain in IRd with boundary � . The non-physial term ju�f j2 for a given funtion f 2 L2(
) serves as regularisationterm. The set of admissible funtions is A := uD +W 1;p0 (
) for given uD 2W 1;p(
) and W 1;p0 (
) = fv 2W 1;p(
) : vj� = 0g.As shown in the introdution and depending on the given data, (P ) mayhave in�nitely many or no solutions at all. The diret method of the alulusof variations does not give the existene of solutions sine due to the non-onvex nature of W the funtional E is not weakly lower semiontinuous.Nevertheless, one is interested in information on minimising sequenes.A �nite element method replaes the spae of admissible funtions A bya disrete subspae Ah � A and seeks a minimiser in Ah whih exists sineAh is �nite-dimensional and E satis�es ertain growth onditions. For an



4 C. Carstensen et al.overview of approximation results in model examples we refer to [8, 9, 13℄.Sine loal minimisers luster around global ones, it requires a huge amountof omputational work to minimise E diretly over Ah (f. [4℄) and numerialsolutions are strongly dependent on starting values.Relaxation utilising Young measures. Minimising sequenes (ruj) for(P ) are typially weakly but not strongly onvergent and their weak limits arein general not solutions of (P ). The reason for this is their osillatory nature.To desribe this behaviour by a generalized limit, one is led to measure-valued strains: The bounded sequene (ruj) generates a family of probabilitymeasures (�x)x2
 on IRd, the gradient Young measure � 2 YM(
; IRd), suhthat, for all g 2 C(IRd) that vanish at in�nity, there holds(g(ruj)) *� RIRd g(F ) d�(F ) in L1(
): (2.2)We refer to [1, 14, 15, 16℄ for details.The weak limit ru of a sequene of gradients (ruj) for a minimisingsequene (uj) for (P ) is related to a Young measure by the identityru(x) = RIRd F d�x(F ) =: h�x; idi a.e. in 
 (2.3)whih follows from (2.2) with g = id in a neighbourhood of supp �, and givesa onnetion between the marosopi strain ru and the gradient Youngmeasure �. Sine one is often interested only in the marosopi quantitiesru, DW (ru), and the generated Young measure, relation (2:3) motivatesProblem (GP ). Seek a minimiser ofGE(u; �) := R
h�x;W i dx+ R
 ju� f j2 dx (2.4)amongst all (u; �) 2 B := f(v; �) 2 A � YM(
; IRd);rv(x) =< �x; id > fora.a. x 2 
g.Note that in ontrast to (P ), (GP ) always has solutions and infA E =minBGE by onstrution of B. Moreover, if (ruj) is a minimising sequenefor (P ) that generates the gradient Young measure � and whih onvergesweakly to ru, then (u; �) is a minimiser for (GP ) (f. [15℄). This situation ismore involved in the vetorial ase (f. [14, 17℄).A numerial sheme for (GP ) would replae the set A by a �nite elementspae Ah and the spae YM(
; IRd) by elementwise onvex-ombinationsof Dira measures (f. [7℄). This approah results in a very high number ofdegrees of freedom.Relaxation by onvexi�ation. Another relaxation of (P ) an be ob-tained from (GP ) by minimising the two ontributions in (2.4) seperately.For �xed F = ru(x) one an �nd a probability measure �x suh that �x min-imises the expression h�;W i amongst all probability measures � satisfyingh�; idi = F . Sometimes it is even possible to alulate an explit formula fora funtion QW that satis�es



Finite Element Methods for Nononvex Minimisation Problems 5QW (F ) = minh�;idi=F h�;W i: (2.5)In the salar ase QW is given by the seond Legendre transform W �� ofW whih equals the lower onvex hull CW of W . Equations (2.5) and (2.4)motivate Problem (RP ). Find a minimiser u 2 A for the funtionalE��(u) = R
W ��(ru) dx + R
 ju� f j2 dx: (2.6)The map W �� is onstruted in [5℄ and given by the formulaW ��(F ) = ��jF �Bj2 � jAj2�+�2 + 4�jAj2jF �Bj2 � �AT � (F �B)�2�;where A := (F2 � F1)=2 6= 0, B := (F1 + F2)=2, and (�)+ := maxf�; 0g.Note that (RP ) always has a solution and that infAE = minA E��. More-over, if (ruj) is a minimising sequene for (P ) whih onverges weakly toru, then u is a solution for (RP ) (f. [15℄).The onvexi�ed problem (RP ) plays an important role in the salar asesine the most relevant information onerning (P ) suh as the Young mea-sure and the marosopi displaement and stress �eld an be reovered froma minimiser u of E��. Sine two di�erent energy densities might have thesame lower onvex envelope, one loses information on the atual problem, ingeneral. In the vetorial ase one has to onsider the quasionvex hull of Wwhih is harder to ompute than and in general di�erent from CW .Numerial analysis of the onvexi�ed problem allowing mirostru-ture. In this subsetion we outline the numerial analysis of the relaxation(RP ) of problem (P ) and seek a minimiser for E�� in a disrete subspaeAh � A based on a regular triangulation T of 
 into losed triangles andparallelograms in the sense of [10℄. We allow energy densities more generalthan (2.1). As mentioned before, problems like (P ) may have in�nitely manyor no solutions at all but there usually exists a Young measure solution �from whih one an alulate the marosopi stress �eld� := RIRd DW (A) d�(A) != DW ��(ru) =: ��� (2.7)where a solution u of the onvexi�ed problem (RP ) de�nes ��� whih atuallyequals � in (2.7) and is independent of the hoie of the minimiser u. Similarly,a disretisation of (RP ) gives a solution uh 2 Ah and again, the assoiatedstress �eld �h is independent of the hoie of the minimiser.For W given in (2.1) the gradient Young measure � an be alulatedas soon as one knows a solution of (RP ): De�ne A0 := A=jAj and let P =1�A0 � AT0 denote the orthogonal projetion in IRd onto spanfAg?. Let�(F ) := �1 +AT0 � (F �B)�jAj2 � jP � (F �B)j2��1=2�=2;S�(F ) := B + P � (F �B)� �jAj2 � jP � (F �B)j2�1=2A0;



6 C. Carstensen et al.and de�ne the map ~�, that maps a vetor F 2 IRd to a probability measure~�(F ), by~�(F ) := � ÆF if jAj � jF �Bj;�(F ) ÆS+(F ) + (1� �(F )) ÆS�(F ) if jF �Bj < jAj:Then, � : u 7! ~�(ru) de�nes a map � :W 1;p(
)! YM(
; IRd) suh that, if(ruj) is a minimising sequene for E in A whih onverges weakly to u 2 Aand whih generates the Young measure �, then �x = �(ru(x)) for a.a. x 2 
(f. [5℄). The map also allows us to alulate disrete Young measures �hx :=�(ruh(x)) for solutions uh of (RPh), thus reovering mirosopi informationfrom averaged quantities.A priori error estimates. The following results hold for minimising prob-lems related to more general energy densities than W from (2.1). We refer to[5℄ for a more general version of the subsequent theorem in whih Ah � A isa disrete subspae.Theorem 2.1 ([5℄). There exist minimisers u and uh of (2.6) in A resp.Ah. The stress � := DW ��(ru) and the disrete stress �h := DW ��(ruh)are determined in a unique way. Furthermore, if u; uh 2W 1;4(
)k� � �hk2L4=3(
) + ku� uhk2L2(
)� 1 infvh2Ah�ku� vhk2L2(
) + kru�rvhk2L4(
)�:Sine no higher regularity results are known for problems of the form(RP ), the error estimate is of limited use for error ontrol in pratie. There-fore, a posteriori error estimates, whih allow us to estimate the error in termsof the omputed approximation, are of partiular interest.A posteriori error estimates. Given a regular triangulation T of 
 wean de�ne the lowest order �nite element spae S1(T ) whih onsists of allontinuous funtions v : 
 ! IR suh that vjT is aÆne for all T 2 T . For thenumerial treatment of (RP ) we set S10 (T ) := S1(T ) \W 1;40 (
) and de�neAh := uD + S10 (T ). Let E be the set of all edges appearing in T and notethat [E , the union of all edges, is the skeleton of edges in T . We denote byhT := diam(T ), T 2 T , and hE = diam(E), E 2 E , the diameters of elementsand edges in T .Given a solution uh 2 Ah of (RPh), let �h := DW ��(ruh). For all T 2 Tthe error indiator �RT is de�ned by�RT := h4=3T ZT j2(f � uh) + div�hj4=3dx+ XE��Tn�hEZE j[�h � nE ℄j4=3ds: (2.8)The integrand [�h �nE℄ denotes the jump of the disrete stresses �h �nE alonga fae E of two neighbouring elements, nE is a unit normal vetor of a �xedorientation along E, and the summation in (2.8) is over all suh faes of T .



Finite Element Methods for Nononvex Minimisation Problems 7Theorem 2.2 ([5℄). There exists a onstant 2 > 0 whih is independent ofhT , suh thatk� � �hk2L4=3(
) + ku� uhk2L2(
) � 2�XT2T �RT �3=8 =: 2 �R:The proof of the theorem requires the use of the rough estimate ku �vhkW 1;4(
) � 3 for an approximation vh 2 Ah of u, and so loses eÆienywhen keeping reliability.
Fig. 2.1. Solution for the double-well problem.The �gure shows a solution for the problem(Ph) on the unit square. Mirostruture anbe observed lose to the left lower edge
Fig. 2.2. Solution for the relaxed double-wellproblem using the adaptive Algorithm 1. Notethat in ontrast to the (disrete) solution for(Ph) no mirostruture an be observedThe loal error indiators �RT an be used in the following algorithm foradaptive mesh re�nement.Adaptive Algorithm (A). (a) Start with a oarse mesh T0, k = 0.(b) Compute a minimiser uh 2 Ah of E�� with respet to the mesh Tk.() Compute �RT for eah T in T .(d) Compute the error bound �R and deide to terminate or to ontinue andthen go to (e).(e) Re�ne, i.e., halve the largest edge of, T 2 T provided �RT � 12 maxT 02T �RT 0 .



8 C. Carstensen et al.(f) Re�ne further elements to avoid hanging nodes and thereby de�ne a newmesh Tk+1, update k, and go to (a).For a numerial example let d = 2, 
 = (0; 1)2, F1;2 := �(os �6 ; sin �6 ),and de�ne f(x; y) := f0(x os �6 + y sin �6 ) in 
, uD(x; y) := f1(x os �6 +y sin �6 ) on �
, for f0(s) := � 3128 (s� 0:5)5 � 13 (s� 0:5)3 and f1(s) := f0(s)if 0 � s � 0:5; f1(s) := 124 (s� 0:5)3 + (s� 0:5) if 0:5 < s � 1:Then, the disrete deformations for (Ph) and (RPh) are shown Fig. 2.1and Fig. 2.2 respetively. The mirostruture seen in the solution for (Ph)vanishes in the solution for (RPh).3. Numerial analysis of linearised phase transitions inelasti solidsThe variational model of an elasti body whih oupies a bounded Lipshitz-domain 
 � IRd, d = 2; 3, with two distint zero-stress strain phases F1 andF2 in IRd�dsym := fF 2 IRd�d : F = F T g de�nes a double-well problem similarto the salar one disussed above. For eah well Fj , j = 1; 2, with minimalenergy W 0j 2 IR one has a quadrati elasti energy whih is, for F 2 IRd�dsym,de�ned by (f. [12℄)Wj(F ) := 12 hF � Fj ; IC(F � Fj)i+W 0j ;where IC is a fourth-order elastiity tensor and h�; ��i denotes the salar produtin IRd�d. Energy minimisation balanes the on�guration of the two phasesand so the strain energy density W is modelled by the minimum of W1 andW2 (f. [12℄), i.e., W (F ) = minfW1(F );W2(F )g:The displaement u 2 A minimises the energy funtionalE(u) := R
W (�(u)) dx + R
 f � u dx� R�N g � ds; �(u) = 12 (ru+ruT );amongst all admissible displaements. The given funtions f 2 L2(
) and g 2L2(�N ), �N � �
, desribe lower order body fores. The spae of admissiblefuntions inludes the Dirihlet data uD 2 W 1;2(
) and is de�ned by A :=uD +W 1;2D (
), where W 1;2D (
) = fv 2 W 1;2(
)d : vj�D = 0g for �D � �
with positive surfae measure.Problem (P ). Find a minimiser of E in A.As in the salar ase for (P ) from Setion 2, we do not have weak lowersemiontinuity for E so that we annot expet the existene of a minimiser.A relaxation allowing gradient Young measures generalising the approah in(GP ) is possible but for omputational reasons it is preferable to follow theideas that led to (RP ) in Setion 2. The appropriate hoie for the relaxedenergy density is the quasionvex envelope QW of W (f. [11℄).



Finite Element Methods for Nononvex Minimisation Problems 9Quasionvexity is the right form of onvexity to obtain weak lower semi-ontinuity for funtionals like E to guarantee the existene of a minimiseru 2 A of QE(u) = R
 QW (�(u)) dx+ R
 f � u dx� R�N g � u ds:Problem (RP ). Find a minimiser of QE in A.The onnetion between (P ) and (RP ) is that (RP ) has solutions whihare weak limits of minimising sequenes for E and there holds infAE =minAQE (f. [15℄). Sine all the important marosopi quantities an bereovered from a solution u for (RP ) it is relevant to onsider this relaxedproblem. For the problem at hand, the quasionvex envelope of W is knownexpliitly from [12℄,QW (F ) =8>><>>: W2(F ) if W2(F ) +  �W1(F );12�W2(F ) +W1(F )�� 14 �W2(F )�W1(F )�2 � 4if jW2(F )�W1(F )j � ;W1(F ) if W1(F ) +  �W2(F );where  is given by a ertain projetion onto the spae of symmetri matries.In ase rank (F1 � F2) � 1 we have  = 12 hF2 � F1; IC(F2 � F1)i.Note that in general, the quasionvex hull of an energy density is notknown expliitly.A disretisation of (RP ) onsists in replaing A by a disrete subspaeAh and leads to the problem (RPh) whih has a minimiser uh 2 Ah.The relaxed problem and its approximation. For the numerial analy-sis of problem (RP ) we assume that the energy wells F1; F2 are ompatible,i.e., the di�erene F1�F2 has rank one. This ondition is satis�ed in some ap-pliations and allows us to exploit the Galerkin-orthogonality but also impliesthat QW is onvex.Theorem 3.1 ([6℄). Suppose rank (F1 � F2) = 1, and that u solves (RP )while uh solves (RPh). Then, for the stress �elds � := DQW (�(u)) and �h :=DQW (�(uh)) we have the a priori error estimatek IC�1=2(� � �h)k2L2(
) � infvh2Ah k IC1=2r(u� vh)k2L2(
): (3.1)Note that u and uh are in general not unique but (3.1) holds independent ofthe hoie of the minimisers.Finite element approximation and a posteriori error ontrol. In or-der to derive a omputable a posteriori error estimate, let T denote a regulartriangulation of the domain 
 and suppose that rank (F1 � F2) = 1.The volume and edge residuals R 2 L2(
)d and J 2 L2([E)d are de�nedas residuals from the strong form of the Euler-Lagrange equations by



10 C. Carstensen et al.RjT := (f + div�h)jT and J jE := 8<: [�h � nE ℄ if E 6� �;g � �h � n if E � �N ;0 if E � �D; (3.2)for T 2 T and E 2 E , respetively. Moreover, we denote by hT and hE thefuntions satisfying hT jT = hT and hE jE = hE for all T 2 T and E 2 E ,respetively.Theorem 3.2 ([6℄). There exists a positive onstant 4, whih only dependson the shape and not on the size of the elements in T , suh thatk IC�1=2(� � �h)k2L2(
) � 4kukW 1;2(
)�khTRkL2(
) + kh1=2E JkL2([E)�:As in Theorem 2.2, one faes a loss of eÆieny due to laking smoothnessproperties of u but the estimate of the theorem still allows us to de�ne lo-al error indiators whih an be used in Algorithm (A) for adaptive meshre�nement strategies.Remarks on mirostrutures. The relaxed energy density an be seenas a onvex ombination of the two energies W1 and W2. We interpret thevolume fration � of the area in whih the material has elasti propertiesde�ned by W1. A formula for the alulation of � in terms of the exat strain�(u) is given in [12℄. A numerial approximation uh for u thus allows us toompute an approximation �h of �, although theoretial bounds are laking.The left plot of Fig. 3.1 shows the deformation and the modulus of thestress �elds on the deformed unit square with �xed lower side and load inthe vertial diretion on the upper side. The material is de�ned through theelastiity tensor IC and the matries F1, F2 (f. [6℄). The orresponding volumefration �h is shown in the right plot of Fig. 3.1.
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