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Abstract. The quasistatic rate-independent evolution of the Prager-Ziegler-type
model of linearized plasticity with hardening is shown to converge to the rate-
independent evolution of the Prandtl-Reuss elastic/perfectly plastic model. Based
on the concept of energetic solutions we study the convergence of the solutions in
the limit for hardening coefficients converging to 0 by using the abstract method
of Γ-convergence for rate-independent systems. An unconditionally convergent
numerical scheme is devised and 2D and 3D numerical experiments are presented.
A two-sided energy inequality is a posteriori verified to document experimental
convergence rates.

Mathematical Subject classification: 35K65, 35K85, 49S05, 65M60, 74C05.

1. Introduction, plasticity with hardening

There is an extensive engineering and mathematical literature addressing plastic-
ity with hardening, e.g. [1, 2, 3, 18, 20, 21, 22, 34, 47, 49, 50, 51, 54]. The simplest
example involving a quadratic stored energy is linearized plasticity. We will deal
with the simplest variant of this linearized plasticity with isotropic hardening and
possibly also kinematic hardening. The rate-independent plasticity without harden-
ing, i.e. the Prandtl-Reuss elastic/perfectly plastic model, received attention already
long time ago, see e.g. in [25, 28, 34, 46]. Since models without hardening are de-
generate, they are mathematically much more challenging as the displacements lie
in BD(Ω) only rather than in the much better space H1(Ω). We refer to [11] for a
recent analysis in the context of so-called energetic solutions. This work will be a
crucial basic for our analysis.

The aim of this article is to show that starting from a model with hardening we
have classical solutions that converge in the limit of vanishing hardening to solutions
of the Prandtl-Reuss model. Beside justification of the Prandtl-Reuss model as such
a limit, the motivation of considering and implementing a small hardening is also
numerically justified, e.g. a-posteriori error estimates and convergence of iterative
schemes can be proved [3, 19, 47]. One should nevertheless mention that there
are algorithms allowing for a direct treating of the Prandtl-Reuss model without
hardening, e.g. Newton’s schemes work often very well for the standard models with
zero hardening, but there is no convergence analysis for the time-dependent case
(see [46, 47] for static and incremental problems). Thus, our paper can be seen as a
natural synthesis of the rate-independent evolutionary approach from [11] and the
numerical approximation with small hardening used in [46, 47].

Let us still remark that similar convergence analysis has been carried out for
gradient-plasticity, using the gradient of the plastic strain both in stored energy and
in dissipation potential. Namely, for vanishing coefficients in these gradient terms,
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in [17, Sect.9.2], this model was shown to converge to the Prandtl-Reuss model in
terms of the energetic solutions. A similar justification has been given by vanishing
viscosity in the plastic flow rule [53]. The case of vanishing inertia is treated in [36],
but only for the case of fixed positive hardening. The peculiarity of the vanishing
hardening presented here is the changing structure, because the limit Prandtl-Reuss
problem has a different set of internal variables, since the isotropic-hardening pa-
rameter disappears. Moreover, the vanishing-hardening limit is especially adapted
to analyze the simultaneous limit with temporal and finite-element discretizations,
see our Section 5.

The plasticity problem is considered to be rate independent, i.e. no inertia is
considered (which is usually called quasistatic and there are no internal time scales.
Thus, the problem is invariant under time rescaling. This allows us to use the
so-called energetic formulation, which in our convex case is fully equivalent to the
commonly used evolutionary variational inequalities, see [35]. However, the energetic
formulation gives rise to a useful Γ-convergence theory, which will be employed in
Sections 4 and 5.

The elastoplastic evolution is given in terms of a time-dependent stored energy
functional E and a dissipation potential R being positively homogeneous of degree 1
(i.e. R(λz) = λR(z) for λ ≥ 0), which reflects the rate-independence of the process,
namely the invariance under any monotone re-scaling of time. Both functionals are
defined with respect to a suitable state space Q := U×Z, where U and Z are Banach
spaces. The triple (Q,E ,R) will be called a rate-independent system. Thereby a
state q = (u, z) ∈ U × Z = Q is given by the displacement field u and the internal
variable z that describes here plastic strain and possibly hardening, in some other
applications it may also be damage or some phase-transformation variables. We
assume that R involves only z, which distinguishes it as a “slow” variable while u is
a “fast” variable. We choose a further Banach space X ⊃ Z on which R is coercive.

Formally, the evolution of a rate-independent system (Q,E ,R) is given through
solutions q : [0, T ] → Q of the following system of doubly nonlinear degenerate
parabolic/elliptic variational inclusions :

∂uE (t, u(t), z(t)) 3 0 and ∂R
(.
z(t)

)
+ ∂zE (t, u(t), z(t)) 3 0 (1.1)

for a.a. t ∈ (0, T ), where “∂” refers to a (partial) subdifferential, using that R(·),
E (t, ·, z), and E (t, u, ·) are always here convex functionals. The first relation is the
balance of forces and the second is the plastic flow rule.

For our subsequent work it turns out that the notion of energetic solutions is
better suited. The following precise definition is the basis for the rest of this paper. A
function q : [0, T ]→ Q is called an energetic solution for (Q,E ,R), if t 7→ E (t, q(t))
lies in L∞([0, T ]), if t 7→ E ′t (t, q(t)) lies in L1([0, T ]), and if for all t ∈ [0, T ] the
stability condition (S) and the energy balance (E) hold:

(S) E (t, q(t)) ≤ E (t, q̂) + R(ẑ−z(t)) for all q̂ = (û, ẑ) ∈ Q, (1.2a)

(E) E (t, q(t)) + DissR(z, [0, t]) = E (0, q0) +

∫ t

0

E ′s(s, q(s)) ds, (1.2b)

with E ′t (t, q) = ∂
∂t

E (t, q) and the dissipation functional DissR(z, [0, t]) :=

sup
∑N

j=1 R(z(tj)−z(tj−1)), where the supremum is taken over all partitions of [0, t].
The major advantage of the concept of energetic solutions is that the formulation

(1.2) is derivative free: it does not contain
.
q, ∂R, nor E ′q . Moreover, it shows imme-

diately the basic energetic a priori estimates. If E is coercive in Z we immediately
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obtain

u ∈ B([0, T ];U) and z ∈ B([0, T ];Z) ∩ BV([0, T ];X),

where we used DissR(z, [0, T ]) < ∞ and the assumed coercivity of R in X; here
“B([0, T ]; ·)” and “BV([0, T ]; ·)” stands for bounded measurable and bounded vari-
ation functions on [0, T ], respectively. The equivalence of (1.1) and the energetic
solution is standard for the case with hardening (see e.g. [35, Sect. 2]), while for the
case without hardening the more subtle equivalence is established in [11].

We are now in a position to explain the main results and ideas of the paper. In
Section 2 we describe the plasticity model with hardening. In that situation E is
uniformly convex (implying a quadratic coercivity) and we choose as state space
Q a closed subspaces of the Hilbert space H1(Ω;Rd) × L2(Ω;Rd×d

dev ) × L2(Ω). The
classical existence result for solutions (cf. e.g. [20, 24]) is stated in Proposition 2.1
for completeness.

In Section 3 we present the Prandtl-Reuss model for perfect elastoplasticity with-
out hardening. We still have convexity, but the coercivity only holds with a linear
lower bound. Hence, the underlying state space Q

PR
becomes a closed subspace of

BD(Ω;Rd) ×M (Ω∪ΓD ;Rd×d
dev ). One major problem in our limit passage is that Q

for the hardening case is only weakly∗ dense in Q
PR

but not strongly. In Propo-
sition 3.2 we provide a slight generalization of the existence result in [11] for en-
ergetic solutions for the Prandtl-Reuss model written a rate-independent system
(Q

PR
,E

PR
,R

PR
). Using different techniques similar existence results were obtained

much earlier in [25, 53]. For simplicity, we have restricted all our work to the case
without volume and surface forces, and thus we do not need the classical safe-load
condition. We restricted the loading to time-dependent Dirichlet boundary data uD ,
but everything presented here can be generalized to included volume and surface
loading, when adding a suitable the safe-load condition.

In Section 4 we consider a family (Q,Eε,R) of rate-independent systems and study
the limit of its energetic solutions qε : [0, T ] → Q for ε → 0. To study the case of
vanishing hardening, we assume that Eε has the form

Eε(t, u, π, η) :=

∫
Ω

1

2
C
(
e(u+2uD(t))−π

)
:
(
e(u)−π

)
+
ε

2
Hπ:π +

ε

2
bη2 dx,

where ε > 0 measures the size of the hardening. Here π(t, x) ∈ Rd×d
dev is the plas-

tic strain tensor and η the scalar isotropic hardening parameter. The dissipation
potential (or equivalently on the elastic domain) is assumed to be independent of
ε and to satisfy the quite general structure condition (4.1). Then, based on suit-
able a priori bounds and the abstract theory of Γ-convergence for energetic solu-
tions of rate-independent systems (see [38]), Theorem 4.1 states that the solutions
qε = (uε, πε, ηε) converge (in terms of subsequences of u- and π-components) to
energetic solutions (u, π) of the Prandtl-Reuss system (Q

PR
,E

PR
,R

PR
).

In Section 5 we study the joint convergence of vanishing hardening and space-time
discretization. Choosing the time step τ = T/N we define discrete solutions via the
incremental problem

Minimize Eε(kτ, u, π, η) + R(π−πk−1
ετh , η−η

k−1
ετh ) subject to (u, π, η) ∈ Qh,

where h is the mesh parameter, i.e. the maximal mesh size in the finite-element dis-
cretization for the functions in Q (for conformal P1 elements for u and P0 elements
for (π, η)). Again using the abstract Γ-convergence theory we establish convergence
of (a subsequence of) the associated solutions q̄ετh (piecewise constant interpolant
of the incremental solutions) to energetic solutions of the Prandtl-Reuss system
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(Q
PR
,E

PR
,R

PR
). We cannot establish convergence of the whole family q̄ετh, as it

is not known that the solutions of the Prandtl-Reuss system are unique. However,
since it is shown in [11, Thm. 5.9] that the stresses

σ = C
(
e(u+uD(t))−π

)
(1.3)

are uniquely defined, and conclude that the stresses σ̄ετh converge without choosing
a subsequence. This also explains why in [46] only convergence of the stresses (even
with explicit error rates) could be shown.

Section 6 reports on numerical experiments were one two-dimensional and one
three-dimensional situation are studied, which are set up in such a way that a shear
band must form. We study the influence of varying the hardening parameter ε and
the discretization parameters h and τ .

2. Plasticity with hardening

Let us define

Rd×d
sym :=

{
A∈Rd×d ∣∣ AT = A

}
and Rd×d

dev :=
{
A∈Rd×d

sym

∣∣ trA = 0
}
. (2.1)

We consider the classical formulation of linearized elastoplasticity with a trace-free
plastic strain tensor π ∈ Rd×d

dev and a scalar, isotropic hardening parameter η. The
system consists of the mechanical equilibrium div σ + f = 0 for the elastic stress
σ = C(e(u)−π), i.e.

− div
(
C(e(u)− π)

)
= f, where e(u) =

1

2

(
∇u+ (∇u)>

)
∈ Rd×d

sym. (2.2a)

and the evolution law (flow rule) for the internal, plastic variable z = (π, η) in the
form

∂R
( .
π.
η

)
+
(

dev C
(
π−e(u)

)
+ Hπ

bη

)
3
(

0
0

)
. (2.2b)

Here C is the symmetric positive semidefinite 4th-order elastic moduli tensor,
i.e. Cijkl = Cjikl = Cklij for all i, j, k, l = 1, . . . , d. The kinematic hardening tensor
H is a symmetric and positive semidefinite operator on Rd×d

dev (of Prager/Ziegler type
[44, 55]), whereas the scalar parameter b ≥ 0 determines the isotropic hardening.

The dissipation potential R is assumed to be lower semicontinuous, convex, and
positively homogeneous of degree 1. The latter condition reflects rate independence,
since the subdifferential ∂R(·) is homogeneous of degree 0. We define the elastic
domain via S = ∂R(0) ⊂ Rd×d

dev ×R, which is closed and convex, and denote by δS
the convex indicator function, i.e. δS(ς, ξ) = 0 for (ς, ξ) ∈ S and +∞ otherwise.
Then, we have R = δ∗S, where δ∗S the Legendre-Fenchel conjugate functional to δS.
Throughout we assume that R satisfies the coercivity estimate

∃ c > 0 ∀ (π̇, η̇) ∈ Rd×d
dev ×R : R(π̇, η̇) ≥ c(|π̇|+ |η̇|).

This condition is equivalent to assuming that S contains an open neighborhood of
(0, 0) ∈ Rd×d

dev ×R.
Then, by the classical duality relation of convex analysis we have

[∂R]−1 = ∂R∗ = ∂δ∗∗S = ∂δS = NS = the normal-cone mapping for S.
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The problem (2.2) can thus equivalently be written in a form which is more standard
in the engineering literature, namely

div σ + f = 0 with σ = C
(
e(u)−π

)
, (2.3a)

∂

∂t

(
π
η

)
∈ NS

(
dev σ−Hπ
−bη

)
, (2.3b)

which reveals that Hπ is in the position of the back stress to the elastic stress σ.
We assume that such elasto-plastic body occupies a bounded Lipschitz domain

Ω ⊂ Rd. The system is to be completed by boundary conditions. For this, we divide
the boundary ∂Ω into two disjoint parts, ΓD and ΓN , and consider

u|ΓD = uD(t) on ΓD ,
(
C
(
e(u)− π

))
ν = g on ΓN = ∂Ω\ΓD . (2.4)

Throughout this work we assume that uD(t) may depend on time and is defined in
all of Ω, and that

ΓD has a nonempty relative interior and (2.5a)

a (d−2)-dimensional Lipschitz boundary. (2.5b)

Further, we make a transformation to the homogeneous Dirichlet boundary con-
ditions, i.e. replace u by u+uD . Neglecting an (unimportant) additive constant thus
created in the shifted functional E , the function-space setting and the energetics
can be defined by

U :=
{
u ∈ H1(Ω;Rd)

∣∣ u|ΓD = 0
}
, Z := L2(Ω;Rd×d

dev )×L2(Ω), (2.6a)

Q := U×Z, X := L1(Ω;Rd×d
dev )×L1(Ω), (2.6b)

E (t, u, π, η) :=
1

2

∫
Ω

C
(
e(u)−π

)
:
(
e(u)−π

)
+ Hπ:π + bη2 dx−

〈
fext(t), (u, π)

〉
,

(2.6c)

R(
.
π,
.
η) :=

∫
Ω

δ∗S(
.
π,
.
η)dx (2.6d)

with the extended force fext(t) ∈ U∗×Z∗ in (2.6c) being defined by〈
fext(t), (u, π)

〉
:=

∫
Ω

f(t)·u− Ce(uD(t)):(e(u)−π)dx+

∫
ΓN

g(t)·udH d−1. (2.6e)

As the stability condition (S) in (1.2a) is an intrinsic part of the definition of energetic
solutions, we introduce the set of stable states at time t via

S (t) :=
{
q ∈ Q

∣∣ E (t, q) <∞, ∀q̂ ∈ Q: E (t, q) ≤ E (t, q̂) + R(q̂−q)
}
. (2.7)

Then, assuming

uD ∈W1,1(I; H1(Ω;Rd)), f ∈W1,1(I;Lpf (Ω;Rd)), g ∈W1,1(I;Lpg(Γ;Rd)),
(2.8)

with pf = 2d/(d+2) and pg = 2−2/d if d > 2, or pf > 1 and pg > 1 for d = 2, or
pf = 1 = pg for d = 1, we have fext ∈W1,1(I;U∗×Z∗) and the proof of the following
proposition is standard, see [1, 20, 21, 22, 24, 35].

Proposition 2.1 (Existence of energetic solutions). Let C, H, b ≥ 0, S, U , and
Z be as described above, and (2.8) hold. Moreover assume that q0 = (u0, π0, η0) ∈
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S (0), i.e. q0 is stable at time t = 0. Furthermore, let the hardening form be coercive
on dom(δ∗S), i.e.

inf
{Hπ:π + bη2

|π|2 + η2

∣∣∣ 0 6= (π, η) ∈ Rd×d
dev ×R, δ

∗
S(π, η) <∞

}
> 0. (2.9)

Then, there is a unique energetic solution q = (u, π, η) with q(0) = q0 for the
energetic rate-independent system (U×Z,E ,R) defined in (2.6). Moreover, we have
q ∈W1,1(I;U×Z).

3. Plasticity without hardening

In the case without hardening, i.e. H = 0 and b = 0, one obtains the Prandtl-Reuss
system of perfect elastoplasticity. The peculiarity here is that the displacement no
longer lives in the conventional Sobolev H1-space but rather in the space of functions
with bounded deformations introduced in [52], defined as

BD(Ω;Rd) :=
{
u ∈ L1(Ω;Rd)

∣∣ e(u) ∈M (Ω;Rd×d
sym)

}
, (3.1)

where e(u) is the symmetric part of distributional gradient of u. For general bounded
Borel sets S ⊂ Rd we set M (S, V ) = C0(S;V )∗ denotes V -valued Radon measures
on Ω (here C0(S;V ) denotes continuous function with compact support on S). The
space BD(Ω;Rd) has a predual space, and thus a weak* topology. The weak* con-
vergence means weak convergence in L1(Ω;Rd) together with weak* convergence of
e(u) in M (Ω;Rd×d

sym). See [54, 11] for many details about BD-functions.
The rate-independent system (Q

PR
,E

PR
,R

PR
) for the Prandtl-Reuss system is

given by

U
PR

:= BD(Ω;Rd), Z
PR

= X
PR

:= M (Ω∪ΓD ;Rd×d
dev ), (3.2a)

Q
PR

:=
{

(u, π) ∈ U
PR
×Z

PR
| e(u)−π|Ω ∈ L2(Ω;Rd×d

sym),

us ν dH d−1+ π|ΓD = 0 on ΓD

}
, (3.2b)

E
PR

(t, u, π) :=
1

2

∫
Ω

C
(
e(u+2(uD(t))−π

)
:
(
e(u)−π

)
dx, (3.2c)

R
PR

(
.
π) :=

∫
Ω∪ΓD

δ∗P (·)d
.
π(x) for

.
π ∈M (Ω∪ΓD ;Rd×d

dev ), (3.2d)

where as b means the symmetrized tensorial product 1
2
(a ⊗ b + b ⊗ a) and where

P ⊂ Rd×d
dev is the elasticity domain, which is assumed to be a bounded, closed

convex neighborhood of 0. Equivalently, (3.2d) can also be written as R
PR

(
.
π) =∫

Ω∪ΓD
δ∗P ( d

.
π

d| .π|)d| .π| where | .π| is the total variation of
.
π and d

.
π

d| .π| is the Radon-Nykodym

derivative of d
.
π with respect to | .π|. See [11] for further details about functions on

M (Ω∪ΓD ;Rd×d
dev ).

Functions from BD(Ω;Rd) have traces in L1(∂Ω;Rd). However, one has to be
aware of jumps that can occur at the boundary, i.e. the measure e(u) may concentrate
on the boundary ∂Ω. Thus, the classical boundary condition u = 0 on ΓD used in
the definition of Q in (2.6b) is replaced by the more involved relation us ν dH d−1 +
π|ΓD = 0 on ΓD for Q

PR
in (3.2b). This relation has to be understood as an equality

of measures on ΓD , viz.

∀measurable A ⊂ ΓD :

∫
A

us ν dH d−1 =

∫
A

dπ = π(A).
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The relation simply means that any jump of u on the boundary with respect to the
Dirichlet condition u = 0 is due to a localized plastic deformation.

In fact, to define traces properly, one use suitable extensions of functions into a
neighborhood of Ω̄. For w ∈ H1(Rd;Rd) representing prescribed Dirichlet condition
w|ΓD , we define

A(w) :=
{

(u, π) ∈ BD(Ω;Rd)×M (Ω∪ΓD ;Rd×d
dev )

∣∣ e(u)−π|Ω ∈ L2(Ω;Rd×d
sym),

π|ΓD = (w−u)s ν dH d−1 on ΓD

}
. (3.3)

Lemma 2.1 in [11] shows that A : w 7→ A(w) has a weak×weak*-closed graph in
H1(Rd;Rd)×(BD(Ω;Rd)×M (Ω∪ΓD ;Rd×d

dev )). This shows that Q
PR

from (3.2b), being
equal to A(0), is a closed subset of the Banach space of

Q̃
PR

:=
{

(u, π) ∈ BD(Ω;Rd)×M (Ω∪ΓD ;Rd×d
dev )

∣∣ e(u)−π|Ω ∈ L2(Ω;Rd×d
sym)

}
which is equipped with the norm

‖(u, π)‖Q̃
PR

:= ‖u‖L1(Ω) + ‖e(u)‖M (Ω) + ‖π‖M (Ω∪ΓD ) + ‖e(u)−π‖L2(Ω).

Thus, Q
PR

is itself a Banach space with the norm ‖ · ‖Q̃
PR

.

In view of (3.2b), for any energetic solution q ∈ L∞(I;Q) the elastic stress σ =
C(e(u+uD)−π) lies in L∞(I; L2(Ω;Rd×d

sym)) even though its particular components
Ce(u) and Cπ may exhibit spatial concentration. Note also that, comparing to
(2.6e), we now consider f = 0 and g = 0 to prevent uncontrolled slip and thus
blow-up of a-priori estimates. In fact, certain qualified nonvanishing f = 0 or g = 0
could be admitted if a suitable “safe load condition” is additionally imposed, cf. [11,
Formulas (2.17)-(2.18)].

Existence of solution to the Prandtl-Reuss system has been proved in [25, 53]
by using the method of vanishing viscosity (or Yosida regularization). In [14], the
limit passage from the rate-independent incremental problem was done while using
weaker notion of solutions. Only recently, in [11, Thm.4.5], Dal Maso et al. executed
this limit procedure in the framework of energetic solutions. In [17, Sect.9], it was
shown the Prandtl-Reuss limit to also be reached from a rate-independent model of
gradient plasticity.

We give a slight variant of the existence proof from [11] which is based on quite
different arguments based on abstract BV relaxations. This variant follows [48]
but still relies on the technical results from [11]. However, we hope that it can be
generalized more easily to other plasticity models. We introduce an intermediate

notion of convergence in Q
PR

denoted by “
strict−→ ” and defined via

(un, πn)
strict−→ (u, π) ⇐⇒


(un, πn)

∗
⇀ (u, π) in BV(Ω;Rd)×M (Ω;Rd×d

dev ),

|πn|(Ω∪ΓD)→ |π|(Ω∪ΓD) in R,
e(un)−πn|Ω → e(u)−π|Ω in L2(Ω;Rd×d

sym).

(3.4)

Moreover, we define the subspace

Q0
PR

:=
{

(u, π) ∈W1,1(Ω;Rd)×L1(Ω;Rd×d
dev )

∣∣ u = 0 on ΓD ,

e(u)−π ∈ L2(Ω;Rd×d
sym)

}
. (3.5)

Obviously, Q0
PR

is a strongly closed subspace of Q
PR

; in fact it is the strong closure

of PQ for Q from (2.6b), where P(u, π, η) = (u, π) is the projection dropping the
isotropic hardening parameter.
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Our different approach is based on the following central conjecture, which states
that a weakened version weak stability is sufficient to imply the desired stability.
We believe that the implication (3.6) is true under quite general conditions. We will
show that it holds at least in the case considered in [11], see Remark 3.3.

Conjecture 3.1. For all t ∈ [0, T ] and all (u, π) ∈ Q
PR

the following holds:

If E
PR

(t, u, π) ≤ E
PR

(t, u+û, π+π̂) + R
PR

(π̂) for all (û, π̂) ∈ Q0
PR
,

then E
PR

(t, u, π) ≤ E
PR

(t, u+ũ, π+π̃) + R
PR

(π̃) for all (ũ, π̃) ∈ Q
PR
.

}
(3.6)

The following arguments (from [48]) support the validity of (3.6). First one knows
by [4, Thm. 2.38] that

J : (ũ, π̃) 7→ E
PR

(t, u+ũ, π+π̃) + R
PR

(π̃)

is sequentially lower semicontinuous on Q
PR

with respect to the weak* convergence.
Thus, the minimum over (ũ, π̃) ∈ Q

PR
on the right-hand side of the lower line in

(3.6) is achieved. Moreover, [4, Thm. 2.39] guarantees that J is even sequentially
continuous with respect to the strict convergence (3.4) on Q

PR
. Under suitable

conditions on ∂Ω and ΓD it should be possible to show that Q0
PR

is dense in Q
PR

with respect to the strict convergence, see [48]. Then, (3.6) follows by continuity
and density.

As a side effect of the vanishing-hardening convergence below, we obtain the
following existence result.

Proposition 3.2 (Energetic solution for the Prandtl-Reuss model). Let the rate-
independent system (Q

PR
,E

PR
,R

PR
) be as described in (3.2) such that (3.6) holds.

Moreover, assume uD ∈ W1,1(I; W1,2(Ω;Rd)) and that (u0, π0) ∈ Q
PR

is stable at
t = 0. Then, there exists an energetic solution (u, π) with (u(0), π(0)) = (u0, π0).
Moreover, C(e(u) − π) and thus also the“true” elastic stress σ from (1.3) is deter-
mined uniquely.

Proof. It suffices to merge Proposition 2.1 with Theorem 4.1 below for η0 ∈ L2(Ω)
such that δS(π0, η0) = δP (π0) and realize that (4.1) can always be satisfied for a
suitable S, e.g. for that one from Example 4.2. 2

Remark 3.3. Conjecture 3.1 holds in the case considered in [11]. The equivalence
proved in [11, Prop. 3.5] was used for exactly the same purpose as we use (3.6),
namely to show that the set of stable states is closed under the weak* convergence,
see [11, Thm. 3.7]. There the following additional conditions were used:

Ω has a (d−1) dimensional C2 boundary, (3.7a)

ΓD has a (d−2) dimensional C2 boundary, (3.7b)

Ce = CD

(
e− tr e

d
I
)

+ κ(tr e)I with

CD :Rd×d
dev → Rd×d

dev positive definite and κ > 0. (3.7c)

The proof of (3.6) for this case is obtained in [11, Sect. 3.2] as a result of a subtle
regularity theory for the stress σ = C(e(u)−π) ∈ L2(Ω;Rd×d

sym) (namely dev σ ∈
L∞(Ω) and div σ = 0 in Ω and σν = 0 on ΓN = ∂Ω\ΓD) and a careful analysis of the
stress-strain duality, see e.g. [11, Prop. 2.4].

In fact, in [11], the stronger hypotheses fext ∈ W1,1(I; Ld(Ω;Rd)) are as-
sumed, which would lead here to the qualification uD ∈ W1,1(I; W2−1/d,d(ΓD ;Rd))
that allows the extension of uD in W1,1(I; W2,d(Ω;Rd)) so that divCe(uD) is in
W1,1(I; Ld(Ω;Rd)). Yet, one should realize a special character of the Dirichlet part
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of the load fext from (2.6e) that needs only e(uD) ∈W1,1(I; L2(Ω;Rd×d)) when tested
by e(u)−π ∈ L2(Ω;Rd×d).

4. The limit of vanishing hardening

Now we present and prove the main result, namely that the time-dependent
Prandtl-Reuss model can be obtained as a limit from the classical elastoplastic
model with hardening, if the hardening approaches zero. Most previous existence
results for the Prandtl-Reuss system are based on viscous regularizations of the flow
rule, see e.g. [5, 14, 53]. The vanishing-hardening limit was investigated only in
the context of the dynamical problem in [9, 10], where the inertial effects can be
used to prevent instantaneous formation of shear bands. To the best of the authors
knowledge, the limit of vanishing hardening in the strict rate-independent setting
was not investigated so far. And it is exactly this limit, which can be combined
easily with numerical space-time discretizations, see the following section.

We naturally need some moderate qualifications for the relation between the dissi-
pative potentials δ∗S and δ∗P occurring in (2.6d) and (3.2d), respectively. We suppose

∀π ∈ Rd×d
dev : δ∗P (π) = min

η∈R
δ∗S(π, η), (4.1a)

∃C∈R ∀π∈Rd×d
dev ∃η∈R : δ∗S(π, η) = δ∗P (π) and |η| ≤ C|π|. (4.1b)

We show in Example 4.2 that these conditions hold in the standard cases used for
modeling hardening.

Theorem 4.1 (Convergence of vanishing hardening). Let all the assumptions of
Proposition 2.1 and (3.6) hold. Define

Eε(t, u, π, η) :=

∫
Ω

1

2
C
(
e(u+2uD(t))−π

)
:
(
e(u)−π

)
+
ε

2
Hπ:π +

ε

2
bη2 dx, (4.2)

assume that q0 = (u0, π0, η0) ∈ Q is stable at t = 0 for each ε > 0, and denote by
qε = (uε, πε, ηε) be the unique energetic solution to (Q,Eε,R); cf. (2.6). Then the
following holds:
(i) There is a constant C independent of ε giving the a-priori estimates

∥∥πε∥∥BV(Ī;L1(Ω;Rd×ddev ))
≤ C, (4.3a)∥∥e(uε)−πε∥∥L∞(I;L2(Ω;Rd×dsym ))

≤ C, (4.3b)∥∥e(uε)∥∥L∞(I;L1(Ω;Rd×dsym ))
≤ C, (4.3c)∥∥πε∥∥L∞(I;L2(Ω;Rd×ddev ))

≤ C/
√
ε, (4.3d)∥∥e(uε)∥∥L∞(I;L2(Ω;Rd×dsym ))

≤ C/
√
ε, (4.3e)∥∥ηε∥∥L∞(I;L2(Ω))

≤ C/
√
ε. (4.3f)

(ii) For ε → 0, there is a subsequence of {(uε, πε)}ε>0 converging weakly* in

L∞(I; BD(Ω;Rd))×BV(Ī; M (Ω∪ΓD ;Rd×d
dev )) to some (u, π) and also πε(t)

∗
⇀ π(t)

in M (Ω∪ΓD ;Rd×d
dev )) for any t ∈ Ī. Every such couple (u, π) is an energetic so-

lution to (Q
PR
,E

PR
,R

PR
) with (u(0), π(0)) = (u0, π0); see (1.2) and (3.2).

(iii)Moreover, the whole sequence of stresses {C(e(uε)−πε)}ε>0 converges weakly*
in L∞(I; L2(Ω;Rd×d

sym)) to C(e(u)−π) and even strongly pointwise on [0, T ], i.e.

∀t ∈ [0, T ] : C(e(uε(t))−πε(t))→ C(e(u(t))−π(t)|Ω) in L2(Ω;Rd×d
sym), (4.4)
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and analogous assertion holds for “true” stresses from (1.3).

Let us note that (4.3c) cannot yield any uniform L∞(I; W1,1(Ω;Rd))-estimate for
uε because Korn’s inequality does not hold for this limit case, cf. [43].

An example for stable initial conditions that are independent of ε is π0 = 0 and
η0 = 0 and u0 minimizing Eε(t, ·, 0, 0) which obviously does not depend on ε; note
that δS(0, 0) = δP (0). In principle, one may weaken the requirement of stability
of initial conditions independently of ε and another approximation would allow for
u0 ∈ W1,1(Ω;Rd×d

dev ) and π0 ∈ L1(Ω;Rd×d
dev ). For this we would need to approximate

both u0 and π0 by some u0ε and π0ε ∈ L2(Ω;Rd×d
dev ) so that e(u0ε)−π0ε → e(u0)−π0

in L2(Ω;Rd×d
dev ) and ‖π0ε‖L2(Ω;Rd×ddev ) = o(ε−1/2) so that

∫
Ω
εHπ0ε : π0εdx→ 0.

Proof of Theorem 4.1. We divide the proof to the six steps.

Step 1 (a-priori estimates): The coercivity of R and of the “C-part” of Eε
then gives the estimates (4.3a,b). By the obvious inequality ‖e(u)‖L1(Ω;Rd×d) ≤
(measd(Ω))1/2‖e(u)−π‖L2(Ω;Rd×d)+‖π‖L1(Ω;Rd×d), we obtain also (4.3c). From the “H-

part” of Eε and from 1
2
εη2, we further obtain (4.3d) and (4.3f), respectively. Then,

by the triangle inequality ‖e(u)‖L2(Ω;Rd×d) ≤ ‖e(u)−π‖L2(Ω;Rd×d) + ‖π‖L2(Ω;Rd×d), we
eventually obtain (4.3e).

Step 2 (selection of convergent subsequences): Let us take the energetic solution
(uε, πε, ηε) to the problem (U×Z,Eε,R, u0, π0, η0), which exists due to Proposi-
tion 2.1. For the convergence we use the estimates (4.3a-c) and select the sub-
sequence by Banach’s selection principle. Moreover, by Helly’s selection principle
and metrizability of the weak* topology on the balls in M (Ω∪ΓD), we can also claim

πε(t)
∗
⇀ π(t) in M (Ω∪ΓD ;Rd×d

dev ) for all t ∈ Ī. Then also

σε(t) = C
(
e(uε(t))−πε(t)

)
⇀ σ(t) = C

(
e(u(t))−π(t)|Ω

)
in L2(Ω;Rd×d

sym) (4.5)

for all t ∈ Ī; it follows from the a-priori estimate (4.3b) and the uniqueness of the
stress, cf. the arguments in [34, Sect.4.2.3] or [11, Thm.5.9]. Also, for any t ∈ Ī,
uε(t) converges weakly* in BD(Ω;Rd) to a limit which can be uniquely identified with
u(t) because its strain e(u(t)) = C−1σ(t) + π(t)|Ω ∈ M (Ω;Rd×d

sym) has already been

determined uniquely when choosing πε(t)
∗
⇀ π(t) in M (Ω∪ΓD ;Rd×d

dev ) and because of
the prescribed Dirichlet boundary conditions.

Step 3 (stability): The convergence in the stability condition (1.2a) requires essen-
tially an explicit construction of mutual recovery sequences in the spirit of [38]. Here,
because of the disappearance of the isotropic hardening in the limit, we must consider
a modification of this concept. For each t the solutions qε(t) = (uε(t), πε(t), ηε(t))
form a stable sequence, i.e. supε>0 Eε(t, qε(t)) < ∞ and qε(t) ∈ Sε(t) with Sε(t)

from (2.7) with Eε in place of E , such that (uε, πε)
∗
⇀ (u(t), π(t)) ∈ Q

PR
, i.e.

uε(t)
∗
⇀ u(t) in BD(Ω;Rd), (4.6a)

πε(t)
∗
⇀ π(t) in M (Ω∪ΓD ;Rd×d

dev ), (4.6b)

e(uε(t))−πε(t) ⇀ e(u(t))−π(t) in L2(Ω;Rd×d
sym). (4.6c)

In particular, this implies ‖πε(t)‖L2(Ω;Rd×dsym ) = O(ε−1/2) and ‖ηε(t)‖L2(Ω;Rd×dsym ) =

O(ε−1/2).
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Now, for fixed t and a given test function (ũ, π̃) ∈ Q
PR

we have to construct a
so-called mutual recovery sequence (q̃ε)ε>0 in the spirit of [38] such that

lim sup
ε→0

Eε(t, q̃ε) + R(q̃ε−qε(t))− Eε(t, qε(t))

≤ E
PR

(ũ, π̃) + R
PR

(π̃−π(t))− E
PR

(t, u, π(t)). (4.7)

The main point is that we first restrict ourselves to special test functions (ũ, π̃) ∈
Q

PR
, namely those given in the form (where we temporarily drop the time depen-

dence)

(ũ, π̃, η̃) = (u, π, 0) + (û, π̂, η̂)

with (û, π̂) ∈ Q1
PR

:= H1
ΓD

(Ω;Rd)×L2(Ω;Rd×d
dev ),

and η̂ ∈ L2(Ω) such that δ∗S(π̂, η̂) = δ∗P (π̂), (4.8)

where H1
ΓD

(Ω;Rd) := U from (2.6a). Then we put

q̃ε = (ũε, π̃ε, η̃ε) = (uε+ũ−u, πε+π̃−π, ηε+η̃−0); (4.9)

note that the difference q̃ε − qε = (ũ−u, π̃−π, η̃) = q̂ is independent of ε. Hence,

R(π̃ε−πε, η̃ε−ηε) =

∫
Ω

δ∗S(π̃ε−πε, η̃ε−ηε)dx =

∫
Ω

δ∗S(π̃−π, η̃)dx

=

∫
Ω

δ∗S(π̂, η̂)dx =

∫
Ω

δ∗P (π̂)dx = R
PR

(π̃−π). (4.10)

Thus, we have the middle term in the limsup in (4.7) under control.
To control the limit of the two energy terms in the limsup (4.7) we use a cancel-

lation property of the quadratic functionals Eε and E
PR

: because of the quadratic
structure of both Eε and E

PR
, for fext defined again by (2.6e) now with f = 0 and

g = 0, we have

lim
ε→0

Eε(t, ũε, π̃ε, η̃ε)− Eε(t, uε, πε, ηε)

= lim
ε→0

∫
Ω

1

2
C
(
e(ũε−uε)− π̃ε+πε

)
:
(
e(ũε+uε)− π̃ε−πε

)
+
ε

2
H(π̃ε−πε):(π̃ε+πε) +

ε

2
(η̃ε−ηε)(η̃ε+ηε)dx−

〈
fext(t), (ũε−uε, π̃ε−πε)

〉
= lim

ε→0

∫
Ω

1

2
C
(
e(û)− π̂

)
:
(
e(2uε+û)− 2πε−π̂

)
+
ε

2
Hπ̂:(2πε+π̂)

+
ε

2
η̃(η̃ε+ηε)dx−

〈
fext(t), (û, π̂)

〉
=

∫
Ω

1

2
C
(
e(û)− π̂

)
:
(
e(2u+û)− 2π−π̂

)
+ dx−

〈
fext(t), (û, π̂)

〉
=

∫
Ω

1

2
C
(
e(ũ−u)− π̃+π

)
:
(
e(ũ+u)− π̃−π

)
dx−

〈
fext(t), (ũ−u, π̃−π)

〉
= E

PR
(t, ũ, π̃)− E

PR
(t, u, π), (4.11)

where we used (4.6c)∣∣∣ ∫
Ω

ε

2
Hπ̂:(2πε+π̂)dx

∣∣∣ ≤ ε

2
|H|
∥∥π̂∥∥

L2(Ω)

∥∥2πε+π̂
∥∥

L2(Ω)
= O

(√
ε
)
→ 0 and∣∣∣ ∫

Ω

ε

2
bη̃(η̃ε+ηε)dx

∣∣∣ ≤ ε

2
b
∥∥η̂∥∥

L2(Ω)

∥∥η̃ε+ηε∥∥L2(Ω)
= O

(√
ε
)
→ 0. (4.12)

11



This allows for the limit passage in the mutual recovery sequence condition (4.7).
Using the stability of qε we know that each term in the limsup is non-negative.
Hence we conclude that the right-hand side is non-negative as well. Recalling the
special choice of (ũ, π̃) in (4.8) we have derived the following stability condition for
the limit (u(t), π(t)) ∈ Q

PR
:

∀(û, π̂) ∈ Q1
PR

: E
PR

(t, u(t), π(t)) ≤ E
PR

(t, u(t)+û, π(t)+π̂) + R
PR

(π̂), (4.13)

where Q1
PR

is defined in (4.8). Since Q0
PR

is the (strong) closure of Q1
PR

in Q
PR

and

E
PR

and R
PR

are continuous, we have shown that (u(t), π(t)) satisfies the upper
condition in the assumed property (3.6). Thus, the lower condition holds as well
and the desired stability (S) in (1.2a) is established.

Step 4 (upper energy balance): Using the energy balance (1.2b) for qε, for fext defined
again by (2.6e) now with f = 0 and g = 0, we have∫

Ω

1

2
C
(
e(uε(t))−πε(t)

)
:
(
e(uε(t))−πε(t)

)
+
ε

2
Hπε(t):πε(t) +

ε

2
bηε(t)

2 dx

+ DissR(πε, ηε; [0, t])−
〈
fext(t), (uε(t), πε(t))

〉
≤
∫ t

0

〈.
f ext, (uε, πε)

〉
dt

+

∫
Ω

1

2
C
(
e(u0)−π0

)
:
(
e(u0)−π0

)
+
ε

2
Hπ0:π0 +

ε

2
bη2

0 dx−
〈
fext(0), (u0, π0)

〉
.

(4.14)

Note that e(uε(t))−πε(t) is well defined because of the bound (4.3a) and because
uε(t) is then determined uniquely by minimizing Eε(t, ·, πε(t), ηε(t)). We can pass
to the limit in (4.14) by using weak lower semicontinuity of E

PR
(t, ·, ·) and that the

already mentioned convergence e(uε(t))−πε(t) ⇀ e(u(t))−π(t) in L2(Ω;Rd×d), and
also by using

lim inf
ε→0

DissR(πε, ηε; [0, t]) ≥ lim inf
ε→0

DissR
PR

(πε; [0, t]) ≥ DissR
PR

(π; [0, t]). (4.15)

The first inequality in (4.15) is just by δ∗S(π, η) ≥ δ∗P (π), while the second one is
by weak lower-semi continuity of DissR

PR
( · ; [0, t]). Eventually, we can forget the

terms
∫

Ω
ε
2
Hπε(t):πε(t) + ε

2
ηε(t)

2 dx while
∫

Ω
ε
2
Hπ0:π0 dx converges to 0 because we

have assumed π0 ∈ L2(Ω;Rd×d
sym) and also

∫
Ω
ε
2
bη2

0 dx → 0 by η0 ∈ L2(Ω). The limit
passage in (4.14) results to the upper energy estimate

E
PR

(t, u(t), π(t)) + DissR
PR

(π; [0, t]) ≤ E
PR

(0, u0, π0) +

∫ t

0

〈.
f ext, (u, π)

〉
dt. (4.16)

Step 5 (lower energy balance): Recalling the upper energy estimate (4.16) we obtain
the desired energy balance (E) in (1.2b), by using the standard argument that
stability of q(t) for all t ∈ Ī implies the lower energy inequality, cf. [33, 42].

Step 6 (improved convergence): The convergence of the whole sequence (Ce(uε) −
πε)ε>0 is due to the mentioned uniqueness of the elastic stresses. Having the point-
wise stability, by abstract arguments from theory of rate-independent processes, the
stored energy converges pointwise, i.e. Eε(t, uε(t), πε(t), ηε(t))→ E

PR
(t, u(t), π(t)) for
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any t ∈ [0, T ]. In view of (4.2) and (3.2c) and using also (4.5), we have

lim inf
ε→0

∫
Ω

1

2
C
(
e(uε(t))−πε(t)

)
:
(
e(uε(t))−πε(t)

)
dx

≤ lim
ε→0

∫
Ω

1

2
C
(
e(uε(t))−πε(t)

)
:
(
e(uε(t))−πε(t)

)
+
ε

2
Hπε(t):πε(t) +

ε

2
bηε(t)

2 dx

= lim
ε→0

Eε(t, uε(t), πε(t), ηε(t))−
∫

Ω

σε(t):e(uD(t))dx

= E
PR

(t, u(t), π(t))−
∫

Ω

σ(t):e(uD(t))dx

=

∫
Ω

1

2
C
(
e(u(t))−π(t)

)
:
(
e(u(t))−π(t)

)
. (4.17)

Thus, by positive definiteness of C and using an appropriate equiva-
lent norm on the Hilbert space L2(Ω;Rd×d) induced by C, we obtain
lim infε→0 ‖e(uε(t))−πε(t)‖L2(Ω;Rd×d) ≤ ‖e(u(t))−π(t)‖L2(Ω;Rd×d). ¿From this and
from (4.5), the strong convergence (4.4) follows by the uniform convexity of the
Hilbert space L2(Ω;Rd×d). 2

Example 4.2 (Dissipation potential). An example for the dissipation potential,
considered e.g. in [21, 22, 35, 51] (often with for q

H
= 1), is

δ∗S(π̇, η̇) := δ∗P (π̇) + δK(π̇, η̇) with K :=
{

(π̇, η̇) ∈ Rd×d
dev ×R

∣∣ η̇ ≤ −q
H
δ∗P (π̇)

}
(4.18)

for P ⊂ Rd×d
dev a convex, bounded, and closed neighbourhood of the origin and q

H
> 0.

We want to identify S via the definition

S = ∂δ∗S(0) =
{

(ς, ξ) ∈ Rd×d
dev × R

∣∣ ∀(π̇, η̇) : η̇ ≤ −q
H
δ∗P (π̇) ⇒ δ∗P (π̇) ≥ π̇:ς + η̇ξ

}
.

As δ∗P (0) is finite, any (ς, ξ) ∈ S satisfies implies ξ ≥ 0. Then the maximal value
of π̇:ς + η̇ξ is attained at η̇ = −q

H
δ∗P (π̇) and thus equals to π̇:ς − q

H
δ∗P (π̇)ξ. The

inequality δ∗P (π̇) ≥ π̇:ς + η̇ξ then reduces to π̇:ς ≤ (1+q
H
ξ)δ∗P (π̇) for all π̇ ∈ Rd×d

dev .
By the 1-homogeneity of δ∗P , this gives ς ∈ (1+qHξ)∂δ

∗
P (0). Using ∂δ∗P (0) = P , we

obtain the characterization

S =
{

(ς, ξ) ∈ Rd×d
dev × R

∣∣ ξ ≥ 0 and ς ∈ (1+qHξ)P
}
. (4.19)

Note that the constraint η̇ ≤ −q
H
δ∗P (π̇) ≤ 0 in (4.18) makes the evolution of the

hardening η unidirectional, namely the hardening variable never can increase while ξ
and thus also the set of ς satisfying δ∗P0

(ς) ≤ 1 + q
H
ξ in (4.19) cannot only decrease.

Also (4.1a) obviously holds just with P from (4.18), and C = q
H

in (4.1b) with
L = |P | =Lipschitz constant of δ∗P , and η = −δ∗P (π) in (4.1b).

Remark 4.3. The isotropic hardening η can be omitted if b = 0 because then there
is no driving force for the isotropic hardening and, if η0 = 0, then identically η ≡ 0.
Then the dissipation potential (2.6d) reduces to δ∗P (

.
π), cf. (3.2d) above.

5. Numerical approximation and its convergence

Numerical convergence results for the problem with hardening are classical,
cf. [21, 49, 50, 54] for a survey. However, most of the numerical results are based
on the assumption of (often not justified) higher regularity, which then allows us to
derive convergence rates, cf. the above references and e.g., [3]. Actually, regular-
ity for perfect plasticity up to the boundary is a difficult problem, requiring high
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smoothness of the boundary, as documented in [7, 13, 16, 29]. Besides, the hard-
ening parameters are considered fixed. Moreover, there are some numerical studies
directly for Prandtl-Reuss plasticity, e.g. [26, 28, 45, 46]. This suggests a chance
for an unconditional convergence jointly with both hardening parameters and nu-
merical discretization parameters approaching 0. This is indeed what we will prove,
cf. Theorem 5.1 below.

In the context of rate-independent processes, it is natural to discretize in time just
by the fully implicit 1st-order Euler scheme. We consider the constant time-step τ ,
and abbreviate tkτ := kτ .

We further consider spatial approximation, using C0-conforming P1-elements for
the approximation of u and P0-elements for the approximation of π and η. We
will further make a spatial discretization. For this, we assume that we are given
a sequence of triangulations {Th}h>0 of the polyhedral domain Ω without hang-
ing nodes but otherwise entirely general. We suppose that h > 0 range over
countable sets of positive real numbers with accumulation points at 0, and that
maxE∈Th diam(E) ≤ h. The finite-dimensional subspaces of L2(Ω) and W1,2(Ω) re-
lated to P0- and P1-elements and subordinate to the triangulation Th respectively
by V0,h and V1,h.

The approximate solution qkετh = (ukετh, π
k
ετh, η

k
ετh) is then obtained recursively for

k = 1, ..., T/τ as the solution to the incremental problem

Minimize Eε(tk, u, π, η) + R(π−πk−1
ετh , η−η

k−1
ετh )

subject to u ∈ V d
1,h, π ∈ V d×d

0,h , η ∈ V0,h,

}
(5.1)

with Eε from (4.2) and R from (4.18), when starting from q0
ετh = q0. It is notable

that (5.1) has a unique solution qkετh, k = 1, ..., T/τ , which satisfies the two-sided
energy inequality

Lkετh :=

∫ tk

tk−1

〈
.
f ext(t), q

k
ετh〉dt

≤ Eε
(
tkτ , q

k
ετh

)
− Eε

(
tk−1
τ , qk−1

ετh

)
+ DissR

(
qετh; [tk−1, tk]

)
≤
∫ tk

tk−1

〈
.
f ext(t), q

k−1
ετh 〉dt =: Uk

ετh, (5.2)

and the discrete stability

∀q̃=(ũ, π̃, η̃)∈V d
1,h×V d×d

0,h ×V0,h: Eε
(
tk, q

k
ετh

)
≤ Eε

(
tk, q̃

)
+ R(π̃−πk−1

ετh , η̃−η
k−1
ετh ),

(5.3)

see [40, 42].
Let us define the piecewise affine interpolant (uετh, πετh, ηετh) by[
uετh, πετh, ηετh

]
(t) :=

t−tk−1
τ

τ

(
ukετh, π

k
ετh, η

k
ετh

)
+
tkτ−t
τ

(
uk−1
ετh , π

k−1
ετh , η

k−1
ετh

)
for t ∈ [tk−1

τ , tkτ ] with k = 0, ..., Kτ := T/τ. (5.4)

Besides, we define also the back-ward piecewise constant interpolant[
ūετh, π̄ετh, η̄ετh

]
(t) :=

(
ukετh, π

k
ετh, η

k
ετh

)
for t ∈ (tk−1

τ , tkτ ], k = 1, ..., Kτ . (5.5)

For fixed ε > 0, taking into account the uniqueness of the energetic solution
qε = (uε, πε, ηε) as stated in Proposition 2.1, one obtains the convergence of the
whole sequence τ → 0 and h→ 0, cf. [37, Sect.4.2] or also [23]. The strategy is now
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to merge this convergence with the limit ε → 0 as stated in Theorem 4.1. Clearly
we have the successive convergence of the type

lim
ε→0

lim
τ→0
h→0

qετh = q. (5.6)

By arguments as in [31] or [6, Cor.4.8(ii)], one can formulate this result by means of
an implicit “stability criterion”, involving functions E1, E2 : R+ → R+, such that all
cluster points in {(uετh, πετh, ηετh)}ε>0,τ>0,h>0,τ≤E1(ε),h≤E2(ε) yield energetic solutions,
i.e. one gets the conditional convergence of the type:

lim
ε→0, τ→0, h→0
τ≤E1(ε), h≤E2(ε)

qετh = q. (5.7)

By a careful inspection of the proof of Theorem 4.1 and a sophisticated construction
of the mutual recovery sequence, we can improve (5.7) to the following unconditional
convergence result.

Theorem 5.1 (Unconditional convergence of FEM-discretisation). Let the assump-
tions for Theorem 4.1 hold. Then every sequence {(uετh, πετh, ηετh)}ε,τ,h>0 of the
approximate solutions obtained by (5.1) contains a subsequence which converges for
(ε, τ, h)→ (0, 0, 0) weakly* in the topologies indicated in (4.3a-c), i.e.

lim
(ε,τ,h)→(0,0,0)

ūετh = u weakly* in L∞(I; BD(Ω;Rd)), (5.8a)

lim
(ε,τ,h)→(0,0,0)

π̄ετh = π weakly* in BV(Ī; M (Ω∪ΓD ;Rd×d
dev )), (5.8b)

lim
(ε,τ,h)→(0,0,0)

e(uετh)−πετh = e(u)−π weakly* in L∞(I; L2(Ω;Rd×d)). (5.8c)

Any limit (u, π) obtained by this way is an energetic solution in the sense of (1.2) to
the Prandtl-Reuss model (Q

PR
,E

PR
,R

PR
, u0, π0) as defined in (3.2). Moreover, the

whole sequence (not only selected subsequences) of stresses {C
(
e(uετh)−πετh)}ε,τ,h>0

converges weakly* in L∞(I; L2(Ω;Rd×d)), and even strongly pointwise, i.e. for any
t ∈ [0, T ], it holds

lim
(ε,τ,h)→(0,0,0)

C(e(uετh(t))−πετh(t)) = C(e(u(t))−π(t)|Ω) strongly in L2(Ω;Rd×d).

(5.9)

Proof. We highlight only the differences to the proof of Theorem 4.1. It essentially
concerns only Step 3, namely a construction and usage of a suitable mutual recovery
sequence.

Let us abbreviate Eεh(t, ·, ·, ·) := Eε(t, ·, ·, ·) + δV d1,h×V
d×d
0,h ×V0,h

(·, ·, ·). Again consider

(u, π) ∈ Q
PR

and a stable sequence (uεh, πεh)
∗
⇀ (u, π) in Q

PR
, i.e.

uεh
∗
⇀ u in BD(Ω;Rd), (5.10a)

πεh
∗
⇀ π in M (Ω∪ΓD ;Rd×d

dev ), (5.10b)

e(uεh)−πεh ⇀ e(u)−π in L2(Ω;Rd×d
sym), (5.10c)

with (uεh, πεh) ∈ V d
1,h×V d×d

0,h and an arbitrary ηεh ∈ V0,h. To facilitate also the time
discretization, a floating time tτ → t has to be considered instead of the fixed time
considered before in (4.11). Here stability of the sequence {(tτ , uεh, πεh, ηεh)}ε,h>0 for
the collection of functionals {(Eεh,R)}ε,h>0 means supε,h>0 Eεh(tε, uεh, πεh, ηεh) <∞
and (uεh, πεh, ηεh) ∈ Sεh(tτ ) with Sεh from (2.7) but with E replaced by Eεh. In
particular, ‖πεh‖L2(Ω;Rd×dsym ) = O(ε−1/2) and ‖ηεh‖L2(Ω;Rd×dsym ) = O(ε−1/2).
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We consider projectors Πh,1 and Πh,0 onto the P1- and P0-finite element spaces,
respectively, which are assumed to satisfy

Πh,0f → f in L2(Ω) and Πh,1g → g in H1(Ω) (5.11)

for all f ∈ L2(Ω) and all g ∈ H1(Ω). Again consider arbitrary û ∈ H1(Ω;Rd)
with û|ΓD = 0 and π̂ ∈ L2(Ω;Rd×d

dev )) as in (4.8). Then it is always possible to take

η̂h ∈ V0,h such that δ∗S(Πh,0π̂, η̂h) = δ∗P (Πh,0π̂). Here we used that S and P contain 0,
are convex, and do not depend on x and hence the element-wise averaging involved
in Πh,0 allows for a point-wise construction on each element. Then, likewise in (4.9),
put

ũεh = uεh + Πh,1û , π̃εh = πεh + Πh,0π̂ and η̃εh = ηεh + η̂h. (5.12)

Then one has an analog of (4.10):

R(π̃εh−πεh, η̃εh−ηεh) =

∫
Ω

δ∗S(π̃εh−πεh, η̃εh−ηεh)dx =

∫
Ω

δ∗S(Πh,0(π̃−π), η̃h)dx

=

∫
Ω

δ∗S(Πh,0π̂, η̂h)dx =

∫
Ω

δ∗P (Πh,0π̂)dx

→
∫

Ω

δ∗P (π̂)dx = R
PR

(π̂), (5.13)

where the last convergence uses the L2(Ω) convergence assumed in (5.11).
Taking into account the quadratic structure of both Eεh (if restricted on the finite-

dimensional FE subspaces) and (5.13), we have

Eεh(tτ , ũεh, π̃εh, η̃εh)− Eεh(tτ , uεh, πεh, ηεh)

=

∫
Ω

1

2
C
(
e(ũεh−uεh)− π̃εh+πεh

)
:
(
e(ũεh+uεh)− π̃εh−πεh

)
+
ε

2
H(π̃εh−πεh):(π̃εh+πεh) +

ε

2
(η̃εh−ηεh)(η̃εh+ηεh)dx

−
〈
fext(tτ ), (ũεh−uεh, π̃εh−πεh)

〉
=

∫
Ω

1

2
C
(
e(Πh,1û)− Πh,0π̂

)
:
(
e(2uεh+Πh,0û)− 2πεh−Πh,0π̂

)
+
ε

2
HΠh,0π̂:(2πεh+Πh,0π̂) +

ε

2
η̂h(η̃εh+ηεh)dx−

〈
fext(tτ ), (Πh,1û,Πh,0π̂)

〉
.

(5.14)

From this, by using the convergence (5.10), (5.13), and the quadratic structure of
E

PR
, one can see that (4.11) modifies as follows:

lim
(ε,τ,h)→(0,0,0)

Eεh(tτ , ũεh, π̃εh, η̃εh)− Eεh(tτ , uεh, πεh, ηεh)

=

∫
Ω

1

2
C
(
e(û)− π̂

)
:
(
e(2u+û)− 2π−π̂

)
dx−

〈
fext(t), (û, π̂)

〉
=

∫
Ω

1

2
C
(
e(ũ−u)− π̃+π

)
:
(
e(ũ+u)− π̃−π

)
dx−

〈
fext(t), (ũ−u, π̃−π)

〉
= E

PR
(t, ũ, π̃)− E

PR
(t, u, π), (5.15)

where we used (5.10c) and also the estimates analogous to (4.12). This allows for the
limit passage in the stability condition for the discretised problem with hardening,
i.e. in

Ēετh(t, ūετh(t), π̄ετh(t), η̄ετh(t)) ≤ Ēετh(t, ũ, π̃, η̃) + R(π̃−π̄ετh(t), η̃−η̄ετh(t)) (5.16)
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for any t ∈ [0, T ] and any (ũ, π̃, η̃) ∈ V d
1,h×V d×d

0,h ×V0,h, where we used the notation

Ēετh(t, q) := Eεh(tkτ , q) for t ∈ (tk−1
τ , tkτ ], cf. (5.3) and the definition (5.5). In fact, one

is to use (5.15) with the fact that, for all t ∈ [0, T ], one has Ēετh(t, q) = Eεh(tτ , q)
with tτ := min{tkτ ≥ t; k = 0, ..., T/τ} → t for τ → 0. Thus we can prove the
weaker stability condition (4.13), apply (3.6) to obtain the full stability, and finish
as in the proof of Theorem 4.1. 2

6. Numerical experiments

We present computational experiments on 2D and 3D Lipschitz domains, so, theo-
retically, only Theorem 4.1(i-ii) but not (iii) is at our disposal. The two-dimensional
setting allows us to use finer discretizations and thereby to consider smaller val-
ues of the hardening parameter ε. Throughout this section we employ an isotropic
material with isotropic hardening and without kinematic hardening. More specif-
ically, we consider the ansatz (4.2) with Ce = λ(tr e)I + 2µ e and with H = 0.
Having in mind materials like steel, we consider the Lamé constants λ = 79 GPa
and µ = 52.7 GPa, which correspond to Young’s modulus 137 GPa and Poisson’s
ratio 0.3. Moreover, we employ the hardening parameter b = µ in (4.2) and study
different choices of ε. We further consider the dissipation determined by S in (4.19)
with P = {ς ∈ Rd×d

dev | |ς| ≤ σy} with σy := 450MPa and q
H

= 1/σy. The coercivity
condition (2.9) holds even if H = 0 because |π| → ∞ makes here also η → −∞; more
specifically, η ≤ −q

H
σy|π| and thus the infimum in (2.9) is exactly bq2

H
σ2

y/(1+q2
H
σ2

y).
The nonlinear systems of equations arising in each time step were solved by a Newton
method using ideas from [8].

6.1. Two-dimensional experiment. We consider a rectangular specimen with
slightly generalized Dirichlet boundary conditions:

Ω = (−5L
2
, 5L

2
)× (−L

2
, L

2
), (6.1a)

ΓD = Γtop
D ∪ Γbottom

D , Γtop
D = (−5L

2
, L

2
)× {L

2
}, (6.1b)

Γbottom
D = (−L

2
, 5L

2
)× {−L

2
}, (6.1c)

uD(t, x) = 0 for x ∈ Γbottom
D , and (6.1d)

(uD)2(t, x) = −t 2 · 10−3m/s for x ∈ Γtop
D , (6.1e)

i.e., only the normal displacement on Γtop
D is prescribed (and gradually increasing in

time). Allowing the top side gliding facilitates the development of a shear band bet-
ter than if it would be fixed, although this requires a modification of the arguments
presented in Sections 2-5; in particular, instead of us ν dH d−1 + π = 0 in (3.2b),
one should prescribe u·ν dH d−1+ ν·π·ν = 0 on this “gliding” boundary. Moreover,
we set T = 1 s but note that, in fact, this physical unit is only related to (6.1e),
otherwise it is irrelevant in the considered rate-independent case.

����������������

��������������������������������

L = 1cm

Γtop
D =normal Dirichlet loading

Γbottom
D =Dirichlet fixing

in Figure 3(right)
cross-section used

Figure 1. Geometry for the 2D example in Sect. 6.1
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The employed triangulations are so-called red-refinements of mesh-width h` =
2−` · 10−2m of the coarse triangulation with h0 = L = 10−2m and 10 triangles
displayed in Figure 1. We emphasize that the triangulations do not match the
expected 45◦-oriented slip band in this example. We always employ the time step

τ = τ` = h`/v0, with v0 = 0.04 m/s. (6.2)

Snapshots of the discrete evolution with ` = 7, i.e., a triangulation with 47 · 10 =
163 840 triangles, and ε = 1/64 for t = 0.25s, 0.5s, 0.75s, and 1s are shown in
Figure 2, where we plotted the hardening variable ηh(·, t) together with the magnified
discrete displacement field uh(·, t). We observe that a plastic region develops which
connects those points on the upper and lower boundary of Ω at which the type of
the boundary conditions change.

 

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Figure 2. Snapshots of the time evolution of one slip-band depicted via
the hardening variable ηh with ε = 1/64 in Example 6.1; t = 0.25s, 0.5s,
0.75s, and 1s. The displacement is magnified by a factor 4.

To visualize the dependency of ηh on ε, we displayed for ` = 7 and ε = 4−m,
m = 0, 1, 2, 3, in the left and right plot of Figure 3 the functions

t 7→ ‖ηh(·, t)‖L2(Ω), xcs
K 7→ −ηh

(
xcs
K , T

)
, (6.3)

where xcs
K ranges over a neighbourhood of the cross-section indicated in Figure 1;

more specifically, xcs
K are those midpoints of elements whose distance from this cross-

section is less than 10−4m.
The entire functions ηh(·, T ) at the end of the evolution are displayed for ε = 4−m,

m = 0, 1, 2, 3 and ` = 7 in Figure 4. We observe a diffuse plastic region for large
hardening parameters εb and, on the other hand, a narrower region with sharper
interfaces (= a slip band) for the smallest value of εb.

We experimentally studied the validity of the two-sided energy inequality dis-
cussed in Section 5. Figure 5 displays the discrete upper and lower bounds for
discretizations defined through ` = 4, 5, 6, 7 uniform refinements with corresponding
time-step sizes and for fixed ε = 1/16. We see in the left plot of Figure 5 that the
discrete upper bound dominates the lower bound for ` = 4. This is predicted by the
theoretical estimates (5.2) which assume an exact solution of the nonlinear systems
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ε = 1
ε = 1/4
ε = 1/16
ε = 1/64

Figure 3. Illustration of development of a shear band when ε ↓ 0: the
L2(Ω)-norm of ηh(·, t) for time 0 ≤ t ≤ T = 1 showing the blow-up ten-
dency O(1/

√
ε) predicted in (4.3f) (left) and a spatial profile of −ηh(·, T )

in Example 6.1 along the middle cross-section indicated in Fig. 1 at the
terminal time t = T (right).
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−0.045
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−0.03

−0.025
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Figure 4. Displacement uh and hardening variable ηh (∼ |plastic strain|)
for t = T and decreasing hardening parameter ε = 1, 1/4, 1/16, and 1/64,
showing how a diagonal slip-band becomes more and more pronounced.
The underlying triangulation has 163 840 triangles, the discrete displace-
ment is displayed magnified by a factor 4.

of equations. Let us remark that Figure 5(left) refers to the problem with trans-
formed Dirichlet condition and the displayed curves depend on the specific choice
of uD and do not represent the real physical power; more specifically, our choice of
uD was just to be the (approximate) elasto-plastic solution of the original problem,
which makes the “transformed” power zero until the plasticification starts. To com-
pare the upper and lower bound for different discretization parameters we scaled
them by 1/τ and in the right plot of Figure 5 we plotted their difference with a
logarithmic scale on the y-axis. We see that the difference decays linearly to 0 with
the spatial and temporal discretization parameters.
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(h,τ) = 2−4 10−2 (1m, 25s)

(h,τ) = 2−5 10−2  (1m, 25s)

(h,τ) = 2−6 10−2 (1m, 25s)

(h,τ) = 2−7 10−2  (1m, 25s)

Figure 5. Rates (=power) of the upper and the lower bounds in (5.2)
for h = 2−4cm and τ

.
= 16 · 10−3s (left) and difference between them in a

semi-logarithmic scaling for different discretization parameters, indicating
convergence like O(τ) (right); ε = 1/16.

6.2. Three-dimensional experiment. Although we know that approximations
converge unconditionally to the unique solution, the qualitative behaviour of the
discrete solutions may depend on the employed triangulations in a preasymptotic
range. In our three-dimensional experiment the underlying triangulations match the
expected geometry of the slip band.

We let

Ω = (−2L, 2L)× (−L
2
, L

2
)2, (6.4a)

ΓD = Γtop
D ∪ Γbottom

D , Γtop
D = (0, L

2
)× (−L

2
, L

2
)× {L

2
}, (6.4b)

Γbottom
D = (−2L, 0)× (−L

2
, L

2
)× {−L

2
}, (6.4c)

uD(t, x) = 0 for x ∈ Γbottom
D , and (6.4d)

(uD)3(t, x) = −t 2 · 10−3m/s for x ∈ Γtop
D , (6.4e)

for L = 1 · 10−2m, i.e., again only the normal displacement is prescribed on the top
part of ΓD, and ΓN = ∂Ω \ ΓD

��������
��������
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��������

���������������
���������������
���������������
���������������

axis for

Figure 7
L

L = 1cm

Figure 6. Geometry for the 3D example in Sect. 6.2

The employed triangulations are red-refinements of mesh-width h` = 2−` · 10−2m
with 8` · 24 tetrahedra of the coarse triangulation with h0 = 10−2m displayed in
Figure 6. We always used the time-step size τ = 0.025 · 2−`s.

For ` = 4 and ε = 4−m, m = 0, 1, 2, we displayed in the left and right plot of
Figure 7 the functions

t 7→ ‖ηh(·, t)‖L2(Ω), xax
K 7→ −ηh

(
xax
K , T

)
,

where, like in (6.3), xax
K ranges over a neighbourhood of the horizontal axis in Fig-

ure 6; more specifically, xax
K are those midpoints of elements whose distance from

this axis is less than 10−4m.
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Figure 7. The L2(Ω)-norm of ηh(·, t) for time 0 ≤ t ≤ T = 1 (left) and
a spatial profile of ηh(T, ·) along the horizontal axis of Ω in Example 6.2

The functions ηh(T, ·) are displayed for ` = 7 and ε = 4−m, m = 0, 1, 2, 3 in
Figure 8. We observe that for ε tending to zero, the developed plastic region becomes
narrower and the interfaces less diffuse.
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Figure 8. Displacement uh and hardening variable ηh (∼ |plastic strain|)
for t = T and ε = 1, 1/4, and 1/16, showing how a vertical slip-band
becomes more and more pronounced. The underlying triangulation has
98 304 tetrahedra, the displacement is magnified by a factor 4.

Remark 6.1 (Regularity, rate of convergence). If Ω is smooth and the loading has
additional regularity in time, it has been shown in [29] that the energetic solution
(uε, zε) admits additional regularity properties, namely

uε ∈ L∞(I; W3/2−α(Ω;Rd)), z ∈ L∞(I; W1/2−α(Ω;Rd×d×R)), for some α > 0.
(6.5)

This can further be used, cf. [30], to derive the rate of convergence:∥∥uε−ūετh∥∥L∞(I;H1(Ω;Rd))
+
∥∥zε−z̄ετh∥∥L∞(I;L2(Ω;Rd×d×R))

≤ C(α, ε)
(√

τ +
4−α
√
h
)
. (6.6)

The constant C(α, ε) naturally depends on the positive-definiteness constant ε of
E (t, ·, ·) and one can identify from [30] the explicit upper bound in the form C(α, ε) =
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Cαε
−2ec/ε with some c, C ∈ R. Obviously, C(α, ε) grows essentially like ec/ε. In

smooth cases, one thus gets an explicit hint how to converge simultaneously with
hardening and discretisation, namely

τ = o
(
e−2c/ε

)
, h = o

(
e−(4−α)c/ε

)
. (6.7)

This extreme upper bound cannot be used practically, but it has the advantage that
it is mathematically rigorous. Nevertheless we hope that it is too pessimistic and
that it will be possible to improve the bounds considerably, at least in particular
cases.
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