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Abstract. A priori and a posteriori error estimates are derived for the numerical approximation
of scalar and complex valued phase field models. Particular attention is devoted to the dependence
of the estimates on a small parameter. For typical singularities the estimates depend on the inverse
of the parameter in a polynomial as opposed to exponential dependence of estimates resulting
from a straightforward error analysis. The estimates naturally lead to adaptive mesh refinement
and coarsening algorithms. Numerical experiments illustrate the reliability and efficiency of this
approach for the evolution of interfaces and vortices that undergo topological changes.

1. Introduction

The numerical analysis of phase field models such as the Allen-Cahn equation

∂tu−∆u+ ε−2f(u) = 0 in (0, T )× Ω,

∂nu = 0 on (0, T )× ∂Ω,

u(0, ·) = u0,

(1)

with T > 0, Ω ⊆ Rd, d = 2, 3, f(u) = u3 − u, and 0 < ε � 1 has recently attracted considerable
attention. Based on uniform bounds for the principal eigenvalue of the linearized Allen-Cahn
operator about the solution u(t, ·), i.e.,

(2) −λAC(t) := inf
v∈H1(Ω)\{0}

‖∇v‖2L2(Ω) + ε−2(f ′(u(t))v, v)

‖v‖2
L2(Ω)

,

where (·, ·) denotes the inner product in L2(Ω), the seminal work [FP03] derived optimal a priori
error estimates for the finite element approximation of (1) which avoid the use of a maximum
principle and are robust in ε−1, i.e., depend on ε−1 only in a low order polynomial. This is in contrast
to a straightforward error analysis that leads to exponential dependence of error estimates on ε−1,
which is of limited practical value. Unfortunately, uniform bounds for λAC(t) are only available as
long as the interface Γt := {x ∈ Ω : u(t, x) = 0} is smooth and u(t, ·) has the right profile across Γt,
cf. [AF93, Che94, dMS95]; those bounds break down when topological changes of the interface occur.
In this paper we show that minor modifications of the arguments in [FP03] and the subsequent
papers [FP04a, FP04b, KNS04, FP05, Bar05a, Bar05b, FW05, FW07, FHL07, KKL07, BM08]
allow to robustly control the approximation of a large class of evolutions that develop singularities.
Our key observation is that topological changes for which λAC(t) ∼ ε−2 occur within temporal
intervals of length comparable to ε2. Therefore, if only finitely many topological changes happen,
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we may expect that the bound

(3)
∫ T

0
λ+
AC(t) dt ≤ C0 + log(ε−κ),

where x+ := max{x, 0}, holds uniformly in ε−1. The logarithmic term reflects transition regions
in which λAC decays from ε−2 to an ε independent value. This bound is sufficient for a robust a
priori error analysis whereas a uniform bound λAC(t) ≤ C for almost every t ∈ (0, T ) would exclude
generic singularities, i.e., topological changes of the interface Γt.

The realistic bound (3) may be assumed for a robust a priori error analysis. It may however be
difficult to prove (3) rigorously in particular when the mathematical model is more involved than
the simple model problem (1) and therefore we also investigate a different approach following ideas
of [KNS04, Bar05a]. The latter paper proposes the approximation of the principal eigenvalue of
the linearized Allen-Cahn operator about an approximate solution U(t, ·), i.e.,

(4) −ΛAC(t) := inf
v∈H1(Ω)\{0}

‖∇v‖2L2(Ω) + ε−2(f ′(U(t))v, v)

‖v‖2
L2(Ω)

,

which is up to approximation errors accessible. By computing ΛAC , important information about
the evolution are extracted from the approximate solution and this allows a rigorous a posteriori
error analysis if the corresponding residual RU is sufficiently small: The estimates f ′ ≥ −1 and
−(f(u)− f(U)− f ′(u)e)e ≤ 3|U ||e|3 for e = u− U together with the definition of ΛAC lead to the
error inequality (assuming here for simplicity that ‖U(t)‖L∞(Ω) ≤ 1 for almost every t ∈ (0, T ))

d

dt
‖e(t)‖2L2(Ω) + ε2‖∇e(t)‖2L2(Ω) ≤ ε

−2‖RU (t)‖2∗ + 2(1 + Λ+
AC(t))‖e(t)‖2L2(Ω) + 6ε−2‖e(t)‖3L3(Ω).

A generalized Gronwall lemma that is based on a continuation argument implies the error estimate

sup
s∈[0,T ]

‖e(t)‖2 + ε2

∫ T

0
‖∇e(t)‖2L2(Ω) dt ≤ C1η

2 exp
(

2
∫ T

0
(1 + Λ+

AC(t)) dt
)

provided that

η2 := ‖e(0)‖2L2(Ω) + ε−2

∫ T

0
‖RU (t)‖2∗ dt ≤ C2ε

8 exp
(

2
∫ T

0
(1 + Λ+

AC(t)) dt
)−3

with constants C1, C2 > 0 that do not depend on ε. The bounds on the residual and the error
only depend on ε−1 in a polynomial provided that the integral of Λ+

AC(t) over (0, T ) grows at most
logarithmically in ε−1 similar to (3) and this can be monitored numerically. From an analytical
point of view, our results prove stability with polynomial dependence on ε−1 for solutions of (1).
We remark that a posteriori error estimates and related adaptive mesh refinement methods are of
particular importance for the approximation of phase field models, owing to their strongly localized
features.

The observation that the quantity λAC and the uniform bounds of [dMS95] are important for
a robust error analysis for (1) has first been noticed in [EJ95]. It is also formulated in [EJ95]
that a rigorous a posteriori analysis should extract the stability properties from the approximate
solution. Therefore, we make the philosophy to replace as much as possible “analytical knowledge”
by “computational knowledge” outlined in [EJ95] precise for the prototypical model problem (1).

We simultaneously derive error estimates for the numerical approximation of the Ginzburg-
Landau equation which is the complex valued version of (1), typically subject to Dirichlet boundary
conditions on some part ΓD of ∂Ω. In this case the set Γt := {x ∈ Ω : |u(t, x)| = 0} is (d − 2)-
dimensional and points or lines in this set are called vortices. If d = 2 it is known that degree-
one vortices are stable, i.e., ΛGL(t) ∼ 1 [LL94, Mir95, Lin97], whereas higher-degree vortices are
unstable, i.e., ΛGL(t) ∼ ε−2 [Bea03], and split into several vortices of degree one. Another critical
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topological change occurs when two degree-one vortices of different sign annihilate. The results of
this paper show that the annihilation of vortices can be reliably simulated while the splitting of
higher degree vortices may be critical. This is in agreement with theoretical results that state that
unstable higher degree vortices can exist for a positive, ε independent period [BOS07]. We stress
however that our estimator is capable of detecting automatically such exceptional scenarios. For
other aspects in the approximation of Ginzburg-Landau equations we refer the reader to the survey
article [DGP92] and the monograph [HT01].

Closely related to the numerical analysis of (1) is the approximation of mean curvature flow, for
which (1) is a regularization, cf. [Bra78, Ilm93, Küh98]. We refer the reader to [Wal96, NV97, DD00]
and the recent survey article [DDE05] for algorithms and error estimates for various discretizations
of the mean curvature flow as well as further references. Here, we only consider lowest order
finite element methods for the approximation of the simple model problem (1) but notice that to
our knowledge the estimates we derive are the first ones that provide rigorous error control for
the approximation of evolving interfaces that undergo topological changes. This underlines one
advantage of diffuse interface models in comparison to sharp interface methods which typically
require artificial adaptations at such events.

We remark that the approach presented in this paper also applies to more sophisticated models
such as the Cahn-Hilliard or Cahn-Larché equations, cf. [GW05, BM08, BMO09]. Employing the
concept of elliptic reconstruction [MN03, LM06], the techniques developed in this paper also lead
to optimal and robust error estimates in L∞(0, T ;L2(Ω)) as well as to estimates for nonconforming
and discontinuous Galerkin methods; details will appear elsewhere [BM09].

The outline of this paper is as follows. We introduce notation, generalized Gronwall lemmas,
finite element spaces, and discrete time derivatives in Section 2. Section 3 discusses the a posteriori
error analysis of (1), while a priori error control is provided in Section 4. Various numerical
experiments illustrate the theoretical results and are reported in Section 5.

2. Preliminaries

We specify in this section employed notation and data qualification, define weak solutions of (1),
state two generalized Gronwall lemmas, and introduce lowest order finite element spaces as well as
discrete time derivatives.

2.1. Notation. Let Ω ⊂ Rd, d = 2, 3 be a bounded, polygonal or polyhedral Lipschitz domain.
The outer unit normal on ∂Ω is denoted by n and ∂nv is the normal derivative of a function v
on ∂Ω. Standard notation is used for Sobolev and Lebesgue spaces and we write ‖ · ‖ whenever
‖ · ‖L2(Ω) is meant; (·, ·) denotes the inner product in L2(Ω; R`), ` ∈ N. For a Banach space X its
dual is denoted X∗ and 〈·, ·〉 is the corresponding duality pairing. We define

∑0
j=1 aj := 0 for any

given sequence (aj). For a real number r ≥ 0 we set Br := {x ∈ R` : |x| < r}. The identity matrix
in R`×` is denoted I`×`.

2.2. Data qualification and weak solution. Throughout this paper we assume that ` ∈ {1, 2},
0 < ε ≤ 1, and that f satisfies the following conditions.

Assumption (GA). (i) There exists a nonnegative function F ∈ C2(R`) such that f = DF .
(ii) There exists Cf ≥ 0 such that Df(u) ≥ −CfI`×` in the sense of bilinear forms for all u ∈ R`.
(iii) There exist δ > 0 with δ < 2 if d = 2 and δ ≤ 1 if d = 3 and a nonnegative function g ∈ C(R`)
such that for all a, b ∈ R` we have(

f(a)− f(b)−Df(b)(a− b)
)
· (a− b) ≥ −g(b)|a− b|2+δ.
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The closed subset ΓD ⊆ ∂Ω is assumed to be either empty or of positive surface measure. We
define

V := H1
D(Ω; R`) = {v ∈ H1(Ω; R`) : v|ΓD

= 0}
and denote by ‖ · ‖∗ the induced norm on V∗. Assumption (GA) implies that there exists

u ∈ XAC/GL := H1(0, T ; V∗) ∩ L∞(0, T ;H1(Ω; R`))

satisfying

(5) 〈∂tu(t), v〉+ (∇u(t),∇v) = −ε−2(f(u(t)), v)

for almost every t ∈ (0, T ) and every v ∈ V as well as

u(0) = u0, u(t)|ΓD
= uD.

The function u is called weak solution of the Allen-Cahn or Ginzburg-Landau equation for ` = 1, 2,
respectively. We suppress the explicit dependence of u upon ε but stress that all appearing constants
do not depend on ε−1. We remark that (5) is the L2 gradient flow of the energy functional

Eε(u) :=
1
2

∫
Ω
|∇u|2 dx+ ε−2

∫
Ω
F (u) dx.

2.3. Generalized Gronwall lemmas. We include generalizations of the discrete and the contin-
uous Gronwall lemma which allow an additional superlinear term that can be controlled as long
as the function or sequence remains sufficiently small. This is precisely what is required to make
use of the error inequality stated in the introduction. The proof of the following lemma is adapted
from [KNS04]; a similar result can be found in [FW05].

Lemma 2.1. Suppose that the nonnegative functions y1 ∈ C([0, T ]), y2, y3 ∈ L1(0, T ), a ∈
L∞(0, T ), and the real number A ≥ 0 satisfy

y1(t) +
∫ t

0
y2(s) ds ≤ A+

∫ t

0
a(s)y1(s) ds+

∫ t

0
y3(s) ds

for all t ∈ [0, T ]. Assume that for B ≥ 0, β > 0, and every t ∈ [0, T ] we have∫ t

0
y3(s) ds ≤ B sup

s∈[0,t]
yβ1 (s)

∫ t

0
(y1(s) + y2(s)) ds.

Set E := exp
( ∫ T

0 a(s) ds
)

and assume that 8AE ≤ (8B(1 + T )E)−1/β. We then have

sup
t∈[0,T ]

y1(t) +
∫ T

0
y2(s) ds ≤ 8A exp

(∫ T

0
a(s) ds

)
.

Proof. Set θ := 8AE if A > 0 and let θ > 0 such that 4B(1 + T )θβE ≤ 1 otherwise. Define

Iθ :=
{
t′ ∈ [0, T ] : Υ(t′) := sup

s∈[0,t′]
y1(s) +

∫ t′

0
y2(s) ds ≤ θ

}
.

Since y1(0) ≤ A < θ and since Υ is continuous we have Iθ = [0, tm] for some 0 < tm ≤ T . For every
t ∈ [0, tm] we have

y1(t) +
∫ t

0
y2(s) ds ≤ A+

∫ t

0
a(s)y1(s) ds+B sup

s∈[0,t]
yβ1 (s)

∫ t

0
(y1(s) + y2(s)) ds

≤ A+
∫ t

0
a(s)y1(s) ds+B(1 + T )θ1+β.
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An application of Gronwall’s lemma, cf., e.g., [IT79], the condition on A, and the choice of θ yield
that for all t ∈ [0, tm] we have

y1(t) +
∫ t

0
y2(s) ds ≤ (A+B(1 + T )θ1+β)E ≤ θ

4
.

This implies Υ(tm) < θ, hence tm = T , and thus proves the lemma if A > 0. If A = 0 we may
choose θ arbitrarily small to deduce the assertion. �

Remarks 2.2. (i) Nonnegativity of a is needed to control a(s)y1(s) by the term a(s)
(
y1(s) +∫ s

0 y2(r) dr
)

in the application of the classical Gronwall lemma.
(ii) The factor 8 in the lemma can be replaced by any real number bigger than 4 or by 4 if a 6≡ 0.

A discrete version of this lemma reads as follows; the proof is adapted from [FP03].

Lemma 2.3. Let τ > 0 and suppose that the nonnegative real sequences (yjk)
M
j=0, k = 1, 2, 3, (aj)Mj=0

and the real number A ≥ 0 satisfy

ym1 + τ

m∑
j=1

yj2 ≤ A+ τ

m∑
j=1

ajyj1 + τ

m−1∑
j=1

yj3

for all m = 1, 2, ...,M , that supj=1,2,...,M τaj ≤ 1/2, and Mτ = T . Assume that for B ≥ 0, β > 0,
and every m = 1, 2, ...,M we have

τ
m−1∑
j=1

ym3 ≤ B sup
j=1,2,...,m−1

(yj1)βτ
m−1∑
j=1

(yj1 + yj2).

Set E := exp
(
2τ
∑M

j=1 a
j
)

and assume that 8AE ≤ (8B(1 + T )E)−1/β. Then

sup
j=1,2,...,M

yj1 + τ
M∑
j=1

yj2 ≤ 8A exp
(

2τ
M∑
j=1

aj
)
.

Proof. Set θ := 8AE. We proceed by induction and suppose that for some L ≥ 1 we have

sup
j=1,2,...,L−1

yj1 + τ

L−1∑
j=1

yj2 ≤ θ,

which is satisfied for L = 1. For all m = 1, 2, ..., L we then have

ym1 + τ

m∑
j=1

yj2 ≤ A+ τ

m∑
j=1

ajyj1 +B sup
j=1,2,...,m−1

(yj1)βτ
m−1∑
j=1

(yj1 + yj2)

≤ A+ τ

m∑
j=0

ajyj1 +B(1 + T )θ1+β.

The implicit version of the discrete Gronwall lemma, cf., e.g., [QV94], the condition on A, and the
definition of θ prove that for all m = 1, 2, ..., L we have

ym1 + τ

m∑
j=1

yj2 ≤ 2(A+B(1 + T ))θ1+β)E ≤ θ

2
.

This completes the inductive argument and proves the lemma. �

Remark 2.4. The factor 2 on the right-hand side of the estimate of Lemma 2.3 can be replaced by
a factor 1 + o(1) provided that supj=1,2,...,M τaj = o(1) as τ → 0. Analogously, the factor 8 may be
replaced by 4(1 + o(1)).
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2.4. Finite element spaces. Let T be a regular triangulation of Ω into triangles or tetrahedra.
The lowest order finite element space S1(T ) consists of all T -elementwise affine, globally continuous
functions and we set

Vh := S1(T )` ∩H1
D(Ω; R`).

We let J : V→ Vh denote the quasi-interpolation operator of [Clé75] which satisfies for all v ∈ V

(6) ‖h−1
T (v − J v)‖+ ‖∇(v − J v)‖+ ‖h−1/2

F (v − J v)‖L2(∪F) ≤ CC`‖∇v‖.

Here, hT denotes the elementwise constant meshsize, i.e., hT |K = diam(K) for all K ∈ T , F is the
set of faces (edges if d = 2) in T , and hF is defined through hF |F = diam(F ) for all F ∈ F . For
all F ∈ F we let nF denote a unit normal to F and set for vh ∈ Vh

[∇vh · nF ] :=


|(∇vh|K1 −∇vh|K2) · nF | for F = K1 ∩K2 and K1,K2 ∈ T ,
|(∇vh|K) · nF | for F = K ∩ ∂Ω \ ΓD and K ∈ T ,
0 for F ⊆ ΓD.

The elementwise application of the Laplace operator to an elementwise smooth function ψ is defined
through (∆T ψ)|K := ∆ψ|K for all K ∈ T . We let P : V→ Vh denote the elliptic projection defined
for v ∈ V through

(Pv, V ) + (∇Pv,∇V ) = (v, V ) + (∇v,∇V )
for all V ∈ Vh. For quasiuniform meshes with 0 < h := ‖hT ‖L∞(Ω) ≤ 1/2 and if the Laplace
operator is H2 regular in Ω in the sense that there exists C∆ > 0 such that ‖D2v‖ ≤ C∆‖∆v‖ for
all v ∈ V ∩H2(Ω; R`) then we have, cf. [Cia02, Whe73],

(7) ‖Pv − v‖+ h‖∇(Pv − v)‖+ hd/2| log h|(d−3)/2‖Pv − v‖L∞(Ω) ≤ CPh2‖v‖H2(Ω)

for all v ∈ V ∩H2(Ω; R`).

2.5. Discrete time derivatives. Given a sequence of positive time steps (τj)Mj=1 and a sequence
(aj)Mj=0 we set for j = 1, 2, ...,M

dta
j :=

1
τj

(aj − aj−1).

Notice that 2(dtaj)aj = dt|aj |2+τj |dtaj |2 for j = 1, 2, ...,M . Let tm :=
∑m

j=1 τj , m = 0, 1, ...,M , and
T = tM . Given a function w : (0, T )→ L2(Ω; R`) with w ∈ H2(0, T ; V∗) set Rj := ∂tw(tj)−dtw(tj)
for j = 1, 2, ...,M . We then have, cf. [Tho97],

(8)
M∑
j=1

τj‖Rj‖2∗ ≤
τ2

3

∫ T

0
‖wtt(s)‖2∗ ds,

where τ := maxj=1,2,...,M τj and T := tM . Moreover, we have

(9)
M∑
j=1

τj‖dtw(tj)‖2∗ ≤
∫ T

0
‖∂tw(s)‖2∗ ds.

3. Robust a posteriori error analysis

In this section we derive robust a posteriori error estimates for Allen-Cahn (` = 1) and Ginzburg-
Landau (` = 2) equations following [KNS04, Bar05a]. Given an approximation Ũ ∈ XAC/GL with
Ũ(t)|ΓD

= UD for almost every t ∈ (0, T ) we let eD ∈ H1(Ω; R`) denote an extension of uD − UD if
ΓD 6= ∅ and eD ≡ 0 otherwise, and set

U(t) := Ũ(t) + eD.
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We define the functional RU (t) ∈ V∗ for almost every t ∈ (0, T ) and every v ∈ V through

(10) 〈RU (t), v〉 := −ε−2(f(U(t)), v)− 〈∂tU(t), v〉 − (∇U(t),∇v).

Theorem 3.1. Let δ, g, and Cf be as in (GA). Suppose that η0, η1 ∈ L2(0, T ) are such that for
almost every t ∈ (0, T ) we have

〈RU (t), v〉 ≤ η0(t)‖v‖+ η1(t)‖∇v‖
for all v ∈ V, assume that Λ ∈ L1(0, T ) is a function such that for almost every t ∈ (0, T ) we have

−Λ(t) ≤ −Λ(t) := inf
v∈V\{0}

‖∇v‖2 + ε−2(Df(U(t))v, v)
‖v‖2

,

and set µΛ(t) := 2(1 + Cf + (1− ε2)Λ(t))+. Define µg := sups∈(0,T ) ‖g(U(s))‖L∞(Ω). If

η2 := ‖e(0)‖2 +
∫ T

0
(η2

0(s) + ε−2η2
1(s)) ds ≤ ε8/δ

(2µgCS(1 + T ))2/δ

(
8 exp

( ∫ T

0
µΛ(s) ds

))−1−2/δ

then

sup
s∈[0,T ]

‖e(s)‖2 + ε2

∫ T

0
‖∇e(s)‖2 ds ≤ 8η2 exp

(∫ T

0
µΛ(s) ds

)
.

Proof. Subtracting (10) from (5), choosing v = e, and using (iii) of (GA) we find
1
2
d

dt
‖e(t)‖2 + ‖∇e(t)‖2 = 〈RU (t), e(t)〉 − ε−2(f(u(t))− f(U(t)), e(t))

≤ η0(t)‖e(t)‖+ η1(t)‖∇e(t)‖ − ε−2(Df(U(t))e(t), e(t)) + ε−2‖g(U(t))‖L∞(Ω)‖e(t)‖2+δ
L2+δ(Ω)

≤ 1
4
η2

0(t) + ‖e(t)‖2 +
ε−2

2
η2

1(t) +
ε2

2
‖∇e(t)‖2 − (1− ε2)ε−2(Df(U(t))e(t), e(t))

− (Df(U(t))e(t), e(t)) + ε−2µg‖e(t)‖2+δ
L2+δ(Ω)

.

Incorporating the assumed bound for Λ(t) and (ii) of (GA) we have

1
2
d

dt
‖e(t)|2 + ‖∇e(t)‖2 ≤ 1

4
η2

0(t) + ‖e(t)‖2 +
ε−2

2
η2

1(t) +
ε2

2
‖∇e(t)‖2 + (1− ε2)Λ(t)‖e(t)‖2

+ (1− ε2)‖∇e(t)‖2 + Cf‖e(t)‖2 + ε−2µg‖e(t)‖2+δ
L2+δ(Ω)

≤ 1
4
η2

0(t) +
1
2
ε−2η2

1(t) + (1 + Cf + (1− ε2)Λ(t))‖e(t)‖2

+
(
1− ε2

2
)
‖∇e(t)‖2 + ε−2µg‖e(t)‖2+δ

L2+δ(Ω)
,

which leads to
d

dt
‖e(t)‖2 + ε2‖∇e(t)‖2 ≤ η2

0(t) + ε−2η2
1(t) + µΛ(t)‖e(t)‖2 + 2ε−2µg‖e(t)‖2+δ

L2+δ(Ω)
.

Hölder’s inequality with exponents 2/δ and 2/(2 − δ) and Sobolev embedding theorems together
with the assumption on δ stated in (iii) of (GA) yield that

(11) ‖e(t)‖2+δ
L2+δ(Ω)

≤ ‖e(t)‖δ‖e(t)‖2
L4/(2−δ)(Ω)

≤ CS‖e(t)‖δ(‖e(t)‖2 + ‖∇e(t)‖2).

An integration of the last two estimates over (0, t) shows that we are in the situation of Lemma 2.1
with A = η2, B = 2µgε−4CS , β = δ/2, and E = exp

( ∫ T
0 µΛ(s) ds

)
. This implies the assertion. �

Remark 3.2. Using the multiplicative Sobolev inequality ‖e‖2+δ
L2+δ(Ω)

≤ CmS‖∇e‖δ‖e‖2, cf. [LU68],
one can improve the conditions of the theorem if d = 2.
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3.1. Residual estimate. We include a brief discussion about estimates for RU for a fully implicit,
lowest order finite element discretization of (5). For ease of presentation we assume an exact solution
of the discrete nonlinear systems of equations; related estimates for semi-implicit discretizations
can be found in [KNS04, Bar05a].

Proposition 3.3. Let 0 = t0 < t1 < ... < tM = T be a partition of the interval (0, T ) with time
steps τj := tj − tj−1, j = 1, 2, ...,M , and (Tj)Mj=0 a sequence of regular triangulations of Ω. Suppose
that (U j)Mj=0 ⊂ H1(Ω; R`) is such that U j ∈ S1(Tj)` and U j |ΓD

= UD for j = 0, 1, ...,M , and

τ−1
j (U j − ITjU j−1, V ) + (∇U j ,∇V ) = −ε−2(f(U j), V )

for all V ∈ Vj
h := S1

D(Tj)`, j = 1, 2, ...,M , and where ITj denotes the nodal interpolation operator
related to Vj

h. If U ∈ XAC/GL is obtained by piecewise linear interpolation in time of (U j + eD)Mj=0

then for all v ∈ V we have

〈RU (s), v〉 ≤ (ηjt,0 + ηjc,0)‖v‖+ (CC`η
j
h,1 + ηjt,1)‖∇v‖,

where for j = 1, 2, ...,M and dj := ‖U j‖L∞(Ω) + ‖U j−1‖L∞(Ω) + ‖eD‖L∞(Ω) we set

ηjh,1 :=
∥∥hTj(τ−1

j (U j − ITjU j−1)−∆TjU
j + ε−2f(U j)

)∥∥+ ‖h1/2
Fj [∇U j · nFj ]‖L2(∪Fj),

ηjt,0 := ε−2‖Df‖L∞(Bdj )(‖U j−1 − U j‖+ ‖eD‖),

ηjt,1 := ‖∇(U j−1 − U j)‖+ ‖∇eD‖,

ηjc,0 := τ−1
j ‖ITjU

j−1 − U j−1‖.

Proof. For almost every s ∈ (tj−1, tj), j = 1, 2, ...,M and all v ∈ V we have by definition of RU
that

〈RU (s), v〉 = τ−1
j (U j − U j−1, v) + (∇U(s),∇v) + ε−2(f(U(s)), v)

=
[
τ−1
j (U j − ITjU j−1, v) + (∇U j ,∇v) + ε−2(f(U j), v)

]
+
[
(∇(U(s)− U j),∇v) + ε−2(f(U(s))− f(U j), v)

]
+ τ−1

j (ITjU j−1 − U j−1, v)

=: 〈rjh, v〉+ 〈rt(s), v〉+ 〈rjc , v〉.

Since rjh vanishes on Vj
h we may insert J v ∈ Vj

h in 〈rh, v〉. An elementwise integration by parts
and (6) lead to

〈rjh, v〉 = 〈rjh, v − J v〉 ≤ CC`η
j
h,1‖∇v‖.

Hölder inequalities, the identity

f(U(s))− f(U j) =
(∫ 1

0
Df(rU(s) + (1− r)U j) dr

)
(U(s)− U j),

and linearity of U in s lead to

〈rt(s), v〉 ≤ ‖∇(U(s)− U j)‖‖∇v‖+ ε−2‖Df‖L∞(Bdj )‖U(s)− U j‖‖v‖ ≤ ηjt,0‖v‖+ ηt,1‖∇v‖.

An application of Hölder’s inequality proves

〈rjc , v〉 ≤ τ−1
j ‖ITjU

j−1 − U j−1‖‖v‖ = ηc,0‖v‖.

A combination of the estimates proves the lemma. �
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Remarks 3.4. (i) The error indicators ηh, ηt, and ηc control residuals related to spatial discretiza-
tion, temporal discretization, and coarsening of triangulations.
(ii) If UD is obtained by nodal interpolation of uD, an extension eD ∈ H1(Ω; R`) with

‖eD‖L∞(Ω) ≤ C‖h2
F∂

2
FuD‖L∞(ΓD), ‖∇eD‖ ≤ C‖h3/2

F ∂2
FuD‖L2(ΓD),

where ∂F denotes the piecewise tangential derivative along ΓD, has been constructed in [BCD04].

3.2. Eigenvalue approximation. We next investigate the lowest order finite element approxi-
mation of the eigenvalue problems refining the results of [Bar05a]. As above we assume an exact
solution of nonlinear systems of equations and omit the argument t in the following. We notice
that there exist nontrivial functions w ∈ V such that for all v ∈ V we have

(12) (∇w,∇v) + ε−2
(
Df(U)w, v

)
= −Λ(w, v)

and let PΛ denote the L2 projection onto the subspace of all w ∈ V that satisfy (12). We assume
that we are given (W,Λh) ∈ Vh × R with ‖W‖ = 1 and such that

(13) (∇W,∇V ) + ε−2(Df(U)W,V ) = −Λh(W,V ).

for all V ∈ Vh.

Proposition 3.5 ([Lar00]). Let (W,Λh) ∈ Vh × R satisfy ‖W‖ = 1 and (13) and assume that

(14) ‖W − PΛW‖2 ≤ 1/2.

For k = 1, 2 set

ηΛ,k := ‖hkT
(
∆TW − ε−2Df(U)W − ΛW

)
‖+ ‖hk−1/2

F [∇W · nF ]‖L2(∪F).

Then
−Λh + Λ ≤ 2CC`ηΛ,1(ε−2‖Df(U)‖L∞(Ω) + (−Λh)+)1/2.

Proof. We abbreviate pε := ε−2Df(U) and w := PΛW and define RW,Λh ∈ V∗ through

〈RW,Λh , v〉 := −Λh(W, v)− (∇W,∇v)−
(
pεW, v

)
for all v ∈ V. Upon choosing v = W in (12) and v = w in the definition of RW,Λh we deduce

(w,W )(Λ− Λh) = −(∇w,∇W )− (pεw,W ) + (∇W,∇w) + (pεW,w) + 〈RW,Λh , w〉 = 〈RW,Λh , w〉.

Since 〈RW,Λh , V 〉 = 0 for all V ∈ Vh we have

〈RW,Λh , w〉 = 〈RW,Λh , w − V 〉 = −Λh(W,w − V )− (∇W,∇(w − V ))− (pεW,w − V ).

A T -elementwise integration by parts, the choice V = Jw, and (6) imply

〈RW,Λh , w〉 ≤ CC`
(
‖hT (∆TW − pεW + ΛhW )‖+ ‖h1/2

F [∇W · nEh ]‖L2(∪F)

)
‖∇w‖.

Notice that W ∈ V so that −Λ ≤ −Λh; since ‖w‖ ≤ ‖W‖ = 1 we thus have

(15) ‖∇w‖2 = −Λ(w,w)− (pεw,w) ≤ (−Λh)+ + ‖pε‖L∞(Ω).

In view of (14), ‖W‖2 = 1, and (w −W,w) = 0 we have (w,W ) ≥ 1/2. A combination of the
estimates concludes the proof of the lemma. �

Remark 3.6. If the Laplace operator is H2 regular in Ω and (14) holds then we have

−Λh + Λ ≤ 2CPC∆ηΛ,2(ε−2‖Df(U)‖L∞(Ω) + (−Λh)+).

The saturation assumption (14) is difficult to verify in practice and therefore we include an a
priori estimate assuming H2 regularity of the Laplace operator.
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Proposition 3.7. Suppose that the Laplace operator is H2 regular in Ω and let (W,Λh) ∈ Vh ×R
satisfy (13) and assume that h is such that

CPC∆(CV + 2ε−2‖Df(U)‖L∞(Ω))h
2 ≤ 1/2,

where CV := infv∈V: ‖v‖=1 ‖∇v‖2. Then we have

0 ≤ Λ− Λh ≤ 4
(
1 + CV + (3 + `1/2)ε−2‖Df(U)‖L∞(Ω)

)2
CPC∆h

2.

Proof. Let w ∈ V satisfy (12) with ‖w‖ = 1. Set pε := ε−2Df(U) and qε := pε + ‖pε‖L∞(Ω)I`×`.
Since W is minimal for

V 7→ (∇V,∇V ) + (pεV, V )

among all V ∈ Vh with ‖V ‖ = 1 we have for all such V that

0 ≤ Λ− Λh ≤ −‖∇w‖2 − ‖q1/2
ε w‖2 + ‖∇V ‖2 + ‖q1/2

ε V ‖2

≤ 2(∇V,∇(V − w)) + 2(qεV, V − w).
(16)

The bound −Λ ≤ CV + ‖pε‖L∞(Ω) and −∆w + pεw = −Λw lead to

‖D2w‖ ≤ C∆‖∆w‖ ≤ C∆(CV + 2‖pε‖L∞(Ω)) =: C∆αε

and ‖∇w‖ ≤ α
1/2
ε . The assumption CPC∆αεh

2 ≤ 1/2 implies
∣∣1 − ‖Pw‖∣∣ ≤ 1/2 and we may

therefore employ V = Pw/‖Pw‖ in (16). Since ‖∇Pw‖2 ≤ ‖∇w‖2 + 1 we have

(∇V,∇(V − w)) =
1

‖Pw‖2
(
(∇Pw,∇(Pw − w)) + (∇Pw,∇w)(1− ‖Pw‖)

)
=

1
‖Pw‖2

(
(Pw,Pw − w) + (∇Pw,∇w)(1− ‖Pw‖)

)
≤ 4(1 + αε)CPC∆αεh

2.

We notice that

(qεV, V − w) =
1

‖Pw‖2
(
(qεPw,Pw − w) + (qεPw,w)(1− ‖Pw‖)

)
≤ 4‖qε‖L∞(Ω)CPC∆αεh

2,

combine all estimates, and use ‖qε‖L∞(Ω) ≤ (1 + `1/2)‖pε‖L∞(Ω) to verify the assertion. �

If f ∈ C1,α
loc (R`), 0 < α ≤ 1, it is sufficient to approximate the eigenvalues at a finite number of

time steps in order to construct a function Λ that satisfies the conditions of Theorem 3.1.

Proposition 3.8. Suppose that f ∈ C1,α
loc (R`) for some 0 < α ≤ 1, let tj−1 < t < tj be such that

t = tj−1 + %(tj − tj−1) for some % ∈ (0, 1), and assume that U(t) = (1 − %)U j−1 + %U j. We then
have

−(1− %)Λ(tj−1)− %Λ(tj)− ‖Df‖C0,α(Bdj )ε
−2‖U j−1 − U j‖αL∞(Ω) ≤ −Λ(t),

where dj := ‖U j−1‖L∞(Ω) + ‖U j‖L∞(Ω).

Proof. For all v ∈ V with ‖v‖ = 1 we have

(1− %)
(
(∇v,∇v) + ε−2(Df(U j−1)v, v)

)
+ %
(
(∇v,∇v) + ε−2(Df(U j)v, v)

)
≤ (∇v,∇v) + ε−2(Df(U(t))v, v) + ε−2‖(1− %)Df(U j−1) + %Df(U j)−Df(U(t))‖L∞(Ω).

With this estimate the result follows from the definition of Λ(t). �
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4. Robust a priori error analysis

We next provide an a priori error analysis for a fully implicit discretization of (5) modifying
slightly the arguments of [FP03]. For ease of presentation we suppose that T j = T for a fixed
quasiuniform triangulation and τj = τ for a fixed positive number and for j = 0, 1, ...,M . Moreover,
we assume that u0 ∈ H1(Ω; R`). Then, let (U j)Mj=0 ⊂ S1(T )` be such that U0 = Pu0, U j |ΓD

= UD

for all j = 0, 1, ...,M and

(17) (dtU j , V ) + (∇U j ,∇V ) = −ε−2(f(U j), V )

for all V ∈ Vh and j = 1, 2, ...,M . For j = 0, 1, ...,M we define

Ej := u(tj)− U j .

To bound (Ej)Mj=0 we make the following regularity assumption and refer the reader to [FP03] for
a detailed discussion of these estimates. The validity of a maximum principle is not essential for
the error analysis and can be replaced by an upper bound that depends polynomially on ε−1.

Assumption (RA). The Laplace operator is H2 regular in Ω, we have f ∈ C2(R`), and there are
constants C∞, Cu > 0 and a parameter σ ≥ 0 such that for the solution u ∈ XAC/GL of (5) we have

sup
t∈[0,T ]

‖u(t)‖L∞(Ω) ≤ C∞

and

sup
t∈(0,T )

‖u(t)‖H2(Ω) +
(∫ T

0
‖utt‖2∗ dt

)1/2
+
(∫ T

0
‖ut‖2H2(Ω) dt

)1/2
≤ Cuε−σ.

Remark 4.1. For initial data with uniformly bounded energy we may choose σ = 2, cf. [FP03].

Lemma 4.2. Suppose that (RA) is satisfied and that

(18) CPh
(4−d)/2| log h|(3−d)/2Cuε

−σ ≤ min{C∞, ε2C−1
f ′′ }, Cf ′′CS2Cuτ ≤ ε2+σ

where Cf ′′ := ‖D2f‖L∞(B3C∞ ) and CS2 > 0 is such that ‖v‖L∞(Ω) ≤ CS2‖v‖H2(Ω) for all v ∈ H2(Ω).
For j = 1, 2, ...,M set

−λh(tj) := inf
v∈V\{0}

‖∇v‖2 + ε−2(Df(Pu(tj))v, v)
‖v‖2

and for almost every t ∈ (0, T ) define

−λ(t) := inf
v∈V\{0}

‖∇v‖2 + ε−2(Df(u(t))v, v)
‖v‖2

(a) For j = 0, 1, ...,M we have
λh(tj) ≤ λ(tj) + 1.

(b) For almost every t ∈ (0, T ) we have

|λ(t)| ≤ CV + ε−2Cf ′ ,

where Cf ′ := ‖Df‖L∞(BC∞ ) and CV := infv∈V:‖v‖=1 ‖∇v‖2.
(c) We have ∣∣∣ ∫ T

0
λ+(t) dt− τ

M∑
j=1

λ+(tj)
∣∣∣ ≤ 1.

11



Proof. (a) By the mean value theorem we have that

Df(Pu(tj))−Df(u(tj)) = D2f(ξ)(Pu(tj)− u(tj)),

with a function ξ such that |ξ(x)| ≤ ‖Pu(tj)‖L∞(Ω) + ‖u(tj)‖L∞(Ω) for almost every x ∈ Ω. Owing
to (7) and (18) we have ‖Pu(tj)‖L∞(Ω) ≤ 2C∞ and thus

‖Df(Pu(tj))−Df(u(tj))‖L∞(Ω) ≤ Cf ′′CPh(4−d)/2| log h|(3−d)/2Cuε
−σ ≤ ε2.

Using this bound in

(Df(Pu(tj))v, v) ≥ (Df(u(tj))v, v)− ‖Df(Pu(tj))−Df(u(tj))‖L∞(Ω)(v, v)

implies the first assertion.
(b) This follows immediately from the definitions of Cf ′ and CV.
(c) For almost every t ∈ (0, T ) let w(t) ∈ V with ‖w(t)‖ = 1 satisfy

−λ(t) = ‖∇w(t)‖2 + ε−2(Df(u(t))w(t), w(t)).

Owing to the fact that w(t) is optimal for the right-hand side we find that

−∂tλ(t) = ε−2
(
D2f(u(t))ut(t)w(t), w(t)

)
and hence∫ T

0
|∂tλ(t)| dt ≤ ε−2Cf ′′

∫ T

0
‖ut(t)‖L∞(Ω) dt

≤ ε−2Cf ′′CS2T
1/2
(∫ T

0
‖ut‖2H2(Ω) dt

)1/2
≤ ε−2Cf ′′CS2T

1/2Cuε
−σ.

Basic interpolation estimates and (18) lead to the assertion. �

We provide an error analysis, assuming for ease of presentation that a discrete maximum principle
is satisfied up to a constant factor.

Theorem 4.3. Let δ, Cf , and g be as in (GA). Let (RA) and (18) be satisfied and assume that
supj=0,1,...,M ‖U j‖L∞(Ω) ≤ 2C∞. Suppose that there are C0 > 0 and κ ≥ 0 such that

(19)
∫ T

0
λ+(t) dt ≤ C0 + log ε−κ.

There exist constants C1, C2 > 0 such that if

τ + h2 ≤ C1ε
2+σ+4/δ+2κ+4κ/δ

then
sup

j=1,2,...,M
‖u(tj)− U j‖ ≤ C2(τ + h2)ε−2−σ−4κ

and (
τ

M∑
j=1

‖∇(u(tj)− U j)‖2
)1/2

≤ C2(τ + h)ε−3−σ−4κ.

Remarks 4.4. (i) For smooth initial data with uniformly bounded energy and F (u) = (|u|2−1)2/4
we may choose σ = 2 and δ = 1 so that the conditions of the theorem are satisfied if τ+h2 ≤ Cε6+4κ.
For smooth evolutions of interfaces or vortices we may choose κ = 0, cf. [Che94, dMS95, Mir95,
Lin97, Bea03].
(ii) The powers 2κ(1 + 1/δ) and −4κ can be replaced by (1 + o(1))κ(1 + 1/δ) and −2(1 + o(1))κ,
respectively, provided that τε−2 = o(1), cf. Remark 2.4.
(iii) For the a priori error analysis it is sufficient to require that δ is finite in (iii) of (GA).
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Proof. We split the proof into five steps: We select an interpolant of the exact solution, identify a
discrete equation satisfied by that approximation, use the techniques discussed in Subsection 2.3
to control the distance between the interpolant and the sequence (U j)Mj=0, and finally apply the
triangle inequality to prove the asserted bounds.
Step 1. We employ the decomposition

Ej = Θj + Φj :=
[
u(tj)− Pu(tj)

]
+
[
Pu(tj)− U j

]
.

Step 2. Using (5), noting (∇Θj ,∇V ) = −(Θj , V ), and setting Rj := ∂tu(tj) − dtu(tj) we have for
every V ∈ Vh

(dtPu(tj),V ) + (∇Pu(tj),∇V )− ε−2(f(Pu(tj))V )

= −(dtΘj , V )− (∇Θj ,∇V )− ε−2(f(Pu(tj))− f(u(tj)), V )− 〈Rj , V 〉
= −(dtΘj , V ) + (Θj , V )− ε−2(f(Pu(tj))− f(u(tj)), V )− 〈Rj , V 〉 =: 〈Dj , V 〉.

(20)

Step 3. Subtracting (17) from (20), choosing V = Φj , employing (i) and (ii) of (GA), and incorpo-
rating the definition of λh(tj) shows that

1
2
dt‖Φj‖2 +

τ

2
‖dtΦj‖2 + ‖∇Φj‖2 = 〈Dj ,Φj〉+ ε−2(f(Pu(tj))− f(U j),Φj)

≤ ‖Dj‖∗‖Φj‖H1(Ω) + ε−2(Df(Pu(tj)Φj ,Φj) + ε−2‖g(Pu(tj))‖L∞(Ω)‖Φj‖2+δ
L2+δ(Ω)

≤ ε−2

2
‖Dj‖2∗ +

ε2

2
‖Φj‖2 +

ε2

2
‖∇Φj‖2

+ (1− ε2)λh(tj)‖Φj‖2 + (1− ε2)‖∇Φj‖2 + Cf‖Φj‖2 + ε−2Cg‖Φj‖2+δ
L2+δ(Ω)

.

We have

‖Φj‖2+δ
L2+δ(Ω)

≤ Cδ
(
‖Φj−1‖2+δ

L2+δ(Ω)
+ τ2+δ‖dtΦj‖2+δ

L2+δ(Ω)

)
≤ Cδ‖Φj−1‖2+δ

L2+δ(Ω)
+ Cδτ

2‖dtΦj‖2
( ∑
k=j−1,j

(‖Pu(tk)‖L∞(Ω) + ‖Uk‖L∞(Ω))
)δ
.

Owing to (18) we have ‖Pu(tk)‖L∞(Ω) ≤ 2C∞, k = j − 1, j. For τ such that

8δε−2τCδCgC
δ
∞ ≤ 1/4

the combination of the last two estimates with Lemma 4.2 (a) implies

dt‖Φj‖2 +
τ

2
‖dtΦj‖2 + ε2‖∇Φj‖2 ≤ ε−2‖Dj‖2∗ + µjλ‖Φ

j‖2 + 2CgCδε−2‖Φj−1‖2+δ
L2+δ(Ω)

,

where µjλ := 2(Cf + ε2 + (1 − ε2)(λ+(tj) + 1)), j = 1, 2, ...,M . Owing to (b) of Lemma 4.2 and
the conditions on τ we may assume that 2τµλj ≤ 1/2 for all j = 1, 2, ...,M . Upon summing over
j = 1, 2, ...,M , noting Φ0 = 0, and incorporating (11), Lemma 2.3 with A = ε−2τ

∑M
j=1 ‖Dj‖2∗,

E = exp
(
2τ
∑M

j=1 µ
j
λ

)
, B = 2CgCδε−2CS(1 + ε−2), and β = δ/2 yields that

sup
j=1,2,...,M

‖Φj‖2 + ε2τ

M∑
j=1

‖∇Φj‖2 ≤ 8AE

provided that with an appropriate constant CB > 0 we have

(21) AE ≤ CBε8/δE−2/δ ≤ 8−1(8B(1 + T )E)−2/δ.
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Step 4. Using estimate (c) of Lemma 4.2 and the assumed bound (19) we have

E ≤ exp
(
4T (Cf + 1)

)
exp

(
4τ

M∑
j=0

λ+(tj)
)
≤ CEε−4κ.

The estimates (7), (8), and (9) imply that

ε2A = τ
M∑
j=1

‖Dj‖2∗ ≤ C2
Ph

4C2
u + (1 + ε−2Cf ′)C2

Ph
4TC2

uε
−2σ +

τ2

3
C2
uε
−2σ ≤ CA(τ2 + h4)ε−2(1+σ).

The conditions of the theorem yield that (21) is satisfied with C2
1 = C−1

A CBC
−1−2/δ
E .

Step 5. We deduce from (7) that

max
j=1,2,...,M

‖Θj‖2 + τ
M∑
j=1

h2‖∇Θj‖2 ≤ C2
P(1 + T )h4Cuε

−2σ.

An application of the triangle inequality and a combination of the estimates imply the assertions.
�

5. Numerical experiments

We illustrate our theoretical findings by some numerical experiments discussing the most relevant
effects in a process governed by (5) in two dimensions for the scalar (` = 1) and the vectorial (` = 2)
case corresponding to Allen-Cahn and Ginzburg-Landau equations, respectively, with different
topological changes. We employed a semi-implicit discretization to approximate (1) and an inverse
iteration with a variable shift to compute approximations of the eigenvalue problems.

5.1. Allen-Cahn equations. Our first experiment studies prototypical topological changes of the
interface Γt := {x ∈ Ω : u(t, x) = 0} in an evolution defined by the Allen-Cahn equation. The
initial function u0 is chosen in such a way that the initial interface Γ0 consists of two concentric
circles centered at the origin, see the left upper plot in Figure 1.

Example 5.1 (Concentric circles). Let Ω := (−2, 2)2, ΓD := ∅, set r1 := 4/10 and r2 := 1, and
define dj(x) := |x| − rj for x ∈ Ω and j = 1, 2. For given ε > 0 and x ∈ Ω let

u0(x) := − tanh
(
d(x)/(

√
2ε)
)
, d(x) := max{−d1(x), d2(x)}.

Snapshots of the evolution defined by the initial data of Example 5.1 for ε = 1/16 are shown
in Figure 1. The approximations were obtained on uniform triangulations of meshsize h = ε/10
and with the uniform time-step size τ = ε3/16; we convinced ourselves that these discretization
parameters lead to accurate approximations. We see that the interface Γt undergoes two topological
changes. The first one occurs at t ≈ 0.08 when the radius of the inner circle decreases to zero.
Subsequently, the radius of the outer circle decreases until at t ≈ 0.5 the particle has entirely disap-
peared. For ε = 1/8, 1/12, 1/16, 1/24, 1/32, 1/48 we plotted in Figure 2 the numerically computed
eigenvalue ΛAC(t) as a function of t (left and right upper plots) and its integral over (0, t) (left
lower plot), i.e., the functions

t 7→ Λ+
AC(t), t 7→

∫ t

0
Λ+
AC(s) ds.

The results show that a uniform bound for Λ+
AC(t) breaks down when topological changes occur

and at these events we have ΛAC(t) ∼ ε−2. In contrast, the integrated eigenvalue grows only slowly
14



Figure 1. Snapshots of the evolution defined by Example 5.1 for t = 0.0, 0.06,
0.12, 0.29, 0.48, 0.5 and ε = 1/16 (from left to right and top to bottom). The initial
interface consists of two concentric circles and undergoes two topological changes
during the evolution.
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Figure 2. Approximated eigenvalue Λ+
AC(t) in Example 5.1 as a function of

t ∈ [0, 0.8] (left upper), a detailed plot in the interval [0.05, 0.1] (right upper),
its integral over (0, t) as a function of t ∈ [0, 0.6] (left lower), and the quantity
exp

( ∫ 0.6
0 Λ+

AC(t) dt
)

in dependence of ε (right lower). The eigenvalue grows like ε−2

at topological changes while its integral only grows logarithmically in ε−1.
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in ε−1. In fact, whenever we decrease ε by a factor 1/2, the integrated eigenvalue increases by a
constant rate. This corresponds exactly to a logarithmic growth of the form

(22)
∫ T

0
Λ+
AC(t) dt ∼ C0 + log(ε−κ).

The number C0 counts how many topological changes have occurred and the logarithmic plot of
exp

( ∫ T
0 Λ+

AC(t) dt
)

in the right lower plot of Figure 2 indicates that we may choose κ ≤ 2. The
numerical results thus show that robust a posteriori error estimation with our theoretical results
is possible in this example. Our upper bounds for the error are also useful for adaptive mesh-
refinement and coarsening and we tried the following algorithm, that uses a fixed time-step size,
for the initial data of Example 5.1.

Adaptive Algorithm. Given a tolerance % > 0 iterate for j = 1, 2, ...,M the following steps:
(a) Coarsen elements in TC ⊆ Tj−1 to obtain triangulation Tj,0 with ηjc,0 ≤ %/10. Set k := 0.
(b) Compute U j,k ∈ Vj,k

h such that for all V ∈ Vj,k
h we have

τ−1(U j,k − ITj,kU
j−1, V ) + (∇U j,k,∇V ) = −ε−2(f(U j,k), V ).

(c) Refine elements K ∈ Tj,k for which ηj,kh,1(K) ≥ (1/2) maxK′∈Tj,k η
j,k
h,1(K ′), set k := k + 1,

and go to (b) if ηj,kh,1 ≥ %.
(d) Update U j := U j,k, set j := j + 1, and go to (a).

In Figure 3 we display the adaptively generated triangulations obtained with the Adaptive Algo-
rithm in Example 5.1 for ε = 1/16 and % = ε. The algorithm automatically refines the grid locally
in a neighborhood of the interface and coarsens the triangulation when the interface has advanced.
We also observe that no strong refinement is carried out in a small neighborhood of the interface
Γt where the exact solution is almost linear.

Figure 3. Adaptively refined and coarsened triangulations obtained with the
Adaptive Algorithm in Example 5.1 with ε = 1/16 and % = ε.

Our second numerical experiment in the context of Allen-Cahn equations addresses a different
topological effect, namely the pinching of an interface. Since in two dimensions this phenomenon
is sensitively dependent on the choice of initial data it appears artificial but still fits well into our
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Figure 4. Snapshots of the evolution defined by Example 5.2 for t = 0.0, 0.012,
0.024, 0.073 0.122 0.146 and ε = 1/16 (from left to right and top to bottom). The
dumbbell shape of the initial interface defined in Example 5.2 immediately splits
into two interfaces that develop circular shapes and eventually collapse.
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Figure 5. Approximated eigenvalue Λ+
AC(t) in Example 5.2 as a function of t ∈

[0, 0.2] (left upper), the same plot with a logarithmic scaling used for both axes
(right upper), its integral over (0, t) as a function of t ∈ [0, 0.2] (left lower), and the
quantity exp

( ∫ 0.2
0 Λ+

AC(t) dt
)

as a function of ε (right lower). The eigenvalue grows
like ε−2 at topological changes while its integral only grows logarithmically in ε−1.
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framework. Moreover, the example is interesting since it does not lead to the uniform a priori
bounds for λAC(t) in (0, TS) in [Che94, dMS95] for any positive number TS > 0. The H1 seminorm
of the initial data of the following example is only bounded by log(ε−1) but uniform bounds of
the initial energy have not been assumed in our error analysis. We remark that pinching is an
important and generic topological effect in three dimensions, cf. [DDE05].

Example 5.2 (Dumbbell). Set Ω := (−2, 2)2, ΓD := ∅, define m1 = −m3 := (0, 2), m2 := 0, and,
for given ε > 0 let r1 = r3 := 2− 3ε/2, r2 := 1 and set dj(x) := |x−mj | − rj for x ∈ Ω. For x ∈ Ω
let

u0(x) := − tanh
(
d(x)/(

√
2ε)
)
, d(x) := max{−d1(x),−d2(x), d3(x)}.

In Figure 4 we display snapshots of the evolution defined by Example 5.2. Within a short time
interval, the initially connected interface Γ0 splits into two curves. Then, the two components of the
interface develop circular shapes and eventually the diameters of the two particles decrease to zero
until they collapse at t ≈ 0.13. The topological changes are accompanied by a strong increase of the
eigenvalue ΛAC(t). From the left upper plot in Figure 5, where we plotted the function t 7→ ΛAC(t)
for various choices of ε, we see that ΛAC(t) ∼ ε−2 at those events. We magnified the initial behavior
of ΛAC(t) by using a logarithmic scaling for both axes in the right upper plot of Figure 5. The
curves explain the logarithmic scaling behavior (22), illustrated in the left lower plot of Figure 5,
that is also valid in this example: Before a time of order ε2, the eigenvalue ΛAC(t) grows until
it reaches its value which is proportional to ε−2. After that, the eigenvalue decays like t−1 until
it reaches an ε independent value. The integral over the first time interval is bounded uniformly
while an integration over the second subinterval leads to a logarithmic contribution. Finally, the
quantities exp

( ∫ T
0 Λ+

AC(t) dt
)

shown in the right lower plot of Figure 5 show that we may choose
κ = 3 in the bound (22) in Example 5.2. In particular, we deduce that robust a posteriori error
control is possible.

5.2. Ginzburg-Landau equations. The topological changes for the vector valued version (` = 2)
of (5) are different from the scalar situation (` = 1). In addition to the fact that the interface Γt is
d − ` dimensional, the interaction of nonconnected components of Γt is the dominant effect. This
is reflected by the quantitative observation that the function 1 − |u(t, x)| decays algebraically to
0 away from Γt in the Ginzburg-Landau case while it decays exponentially away from a typical
Allen-Cahn interface. In the two examples of this subsection we investigate the applicability of
our error estimate for the annihilation of two degree-one vortices and the splitting of a degree-two
vortex.

Example 5.3 (Annihilation). Set Ω := (−1, 1) × (−1/2, 1/2), ΓD := ∂Ω and given ε > 0 let
dε := min{4/10, ε+ 3/10}. For x = (x1, x2) ∈ Ω set

u0(x) := f0(|(x1 ± dε, x2)|)(∓(x1 ± dε), x2)
|(x1 ± dε, x2)|

for ∓ x1 > 0,

where f0(r) = min{r/(2ε)− r3/(16ε), 1} for r ≥ 0. Set uD := u0|∂Ω.

Figure 6 shows the approximate solution for Example 5.3 with ε = 1/16. We observe that the two
vortices located at (±dε, 0) attract each other and annihilate at t ≈ 1.25. The principal eigenvalue
of the linearized Ginzburg-Landau operator about the numerical approximation U(t) has a peak
when the annihilation takes place, as can be seen in the left plot of Figure 7. Nevertheless, the
integrated positive part of the principal eigenvalue Λ+

GL remains bounded as ε decreases, as can be
observed in the right plot of Figure 7. Hence we may choose κ = 0 in this example and deduce that
our error estimator is robust and that the conditions for the a priori error estimate of Theorem 4.3
are satisfied here. We remark that the dependence of dε on ε is important in this example in order
to observe relevant effects within a uniformly bounded time interval.
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Figure 6. Snapshots of the evolution defined by Example 5.3 for t = 0.01, 0.94,
1.24, 1.41 and ε = 1/16 (from left to right and top to bottom). The two opposite
sign degree-one vortices initially located at (±dε, 0) attract each other and eventually
annihilate.
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Figure 7. Approximated eigenvalue ΛGL(t) in Example 5.3 as a function of t ∈
[0, 3] (left) and the integral over (0, t) of its positive part as a function of t ∈ [0, 3]
(right). The eigenvalue grows like ε−2 when the vortices annihilate while its integral
remains uniformly bounded.

In the second example for Ginzburg-Landau evolutions we consider a degree-two vortex located
at the origin. It is well known that such a vortex is unstable and splits into two degree-one vortices
that repel each other. We use the identification C ' R2 to define u0.

Example 5.4 (Splitting). Set Ω:= (−1, 1)2, ΓD := ∂Ω, and given ε > 0 and x = (x1, x2) ∈ Ω let

u0(x) :=
x2

|x|2 + ε2
=

(x2
1 − x2

2, 2x1x2)
x2

1 + x2
2 + ε2

.

Set uD := u0|∂Ω

The vector fields shown in Figure 8 illustrate the evolution defined by the initial data of Exam-
ple 5.4. The initial degree-two vortex immediately splits into two degree-one vortices that move
into opposite directions until their locations achieve equilibrium positions at t ≈ 0.7. During this
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Figure 8. Snapshots of the evolution defined by Example 5.4 for t = 0.01, 0.22,
0.71 and ε = 1/16 (from left to right and top to bottom). The initial degree-two
vortex immediately splits into two degree-one vortices that repel each other.
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Figure 9. Approximated eigenvalue ΛGL(t) in Example 5.4 as a function of t ∈
[0, 0.7] in the upper row. The integral over (0, t) of its positive part as a function
of t ∈ [0, 0.7] (left lower) and the quantity exp

( ∫ 0.7
0 Λ+

GL(t) dt
)

as a function of ε
(right lower). The eigenvalue grows like ε−2 when the degree-two vortex splits but
reduces to an ε independent value only after a time proportional to ε. The integrated
eigenvalue grows exponentially.

splitting process, the principal eigenvalue ΛGL(t) of the linearized Ginzburg-Landau operator about
the numerical approximation U(t) behaves like ε−2. As opposed to the previous examples, it de-
creases below an ε independent value only within a time interval whose length is comparable to
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ε. Therefore, the integral of Λ+
GL(t) over (0, 0.7) grows like ε−1 leading to an exponential growth

of the quantity exp
( ∫ 0.7

0 Λ+
GL(t) dt

)
, which is also observed in the right lower plot of Figure 5.4.

Hence, our error estimate is not robust in this example. The observations are in agreement with
the theoretical predictions of [BOS07] which prove that higher degree vortices can exist for an ε
independent period, in particular longer than a time comparable to ε2. We believe that this exam-
ple is exceptional since the critical behavior is enforced by the choice of initial data and would not
occur within an evolution for initial data that do not contain higher degree vortices.

Acknowledgements: The authors thank Matthias Kurzke for pointing out the reference [BOS07].
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