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Abstract. The discretization of a tangent-point potential with a C1

conforming finite element method is investigated. Error bounds for the
practical evaluation of the potential and its variation are derived. A
numerical scheme for the minimization of a weighted sum of bending
energy and potential is devised and tested numerically for open and
closed curves.

1. Introduction

Simulating curves describing the bending behaviour of elastic rods is a chal-
lenging mathematical problem, cf. [DKS02, BGN12, Bar13, DLP14, PS15],
which has applications in the modeling of cell filaments [MOSS15], textile
fabrication processes [GM15], and the determination of equivalence classes of
knots [GRvdM15]. A rigorous dimension reduction from three-dimensional
elasticity shows that when large deformations occur, an inextensibility con-
straint has to be incorporated [MM03]. In the simplest setting the elastic
bending energy is then given by

Ibend(u) =
1

2

∫
I
|u′′(y)|2 dy, |u′(y)|2 = 1.

The constraint implies that the curve described by the function u : I → R3

is parametrized by arc-length and u′′(y) is its curvature vector.
Stable and convergent finite element methods using piecewise cubic, C1

conforming finite elements have been devised and analyzed in [Bar13]. The
constraint is imposed at the nodes of the underlying partition and critical
configurations for Ibend subject to clamped or periodic boundary conditions
are obtained by approximating a solution u : [0, T ]×I → R3 of the evolution
determined by the gradient flow

(∂tu, v) = −δIbend(u)[v], u(0) = u0,

for a suitable scalar product (·, ·) on H2(I,R3), an initial curve u0 : I → R3,
and curves v : I → R3 satisfying corresponding homogeneous boundary
conditions and the orthogonality relation

u′(t, y) · v′(t, y) = 0
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for all y ∈ I and t ∈ [0, T ], which is the linearization of the inextensibility
constraint about the curve u.
A natural requirement is to restrict the evolution or minimization to em-
bedded curves u : I → R3 and to determine isotopies from initial data, i.e.,
the topological equivalence class is preserved. Only few articles are avail-
able devising numerical schemes for this purpose, e.g., [Her12, Wal16]. One
way to realize this is to include a potential that avoids non-injective curves.
An outline on the discretization of several self-avoiding energies is provided
in [Sch16]. One possible choice is a repulsive tangent-point potential pro-
posed in [GM99] given for q ≥ 2 by

TP(u) =
2−q

q

∫
I

∫
I

1

rq
(
u(y), u(x)

) dx dy.

The potential takes values in [0,∞], see [SvdM12] and references therein,
and is a knot energy for q > 2 in the sense that for a sequence of embedded
curves (uk) ⊂W 2−1/q,q(I,R3) converging pointwise to a nonembedded curve
we have TP(uk) → ∞, see [SSvdM13, Bla13, BR15]. The tangent-point
radius r(u(y), u(x)) is the radius of the circle that is tangent to u in the
point u(y) and which intersects with u in u(x), i.e.,

r
(
u(x), u(y)

)
=
|u(y)− u(x)|2

2 dist(`(y), u(x))
=

|u(y)− u(x)|
2 sin(u′(y), u(y)− u(x))

with the tangent line `(y) = {u(y) + µu′(y) : µ ∈ R} and sin(a, b) denoting
the sine of the angle between the vectors a, b ∈ R3, cf. Fig. 1(a). If u(x) =
u(y) then the radius vanishes which causes a singularity in the potential,
cf. Fig. 1(b).

u(x)
`(y)

u(y)

u(x)
u(y)

u(y)

r→ 0 as u(x)→ u(y)(a) (b)

u(x)
α

r
α

Figure 1. (a) Tangent-point function r = r(u(y), u(x)) for
a curve u; (b) the radius r vanishes at self-intersections.

Using that | sin(a, b)| = |a ∧ b|/(|a||b|) and |u′(y)| = 1 we may write the
radius r as

r
(
u(x), u(y)

)
=

1

2

|u(y)− u(x)|2

|u′(y) ∧ [u(y)− u(x)]|
.

For x ≈ y we have that the inverse of the radius approximates the curvature
|u′′(y)|/2. This is our motivation to extract the singular diagonal from the
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integral and to consider the approximation

TPε(u) =
1

q

∫
I

∫
Iε(y)

|u′(y) ∧ [u(y)− u(x)]|q

|u(y)− u(x)|2q
dx dy,

where Iε(y) = I \ Bε(y). We provide a rigorous justification of this simpli-
fication via an error estimate; for sufficiently regular curves u the approxi-
mation is linear in ε, in general, i.e., if u ∈ H2 ∩W 2−1/q,q, q < 4, we have
the approximation order O(ε2−q/2−δ) for every δ ∈ (0, 2− q/2).
Based on the approximation of the tangent-point potential we devise dis-
cretizations of the potential and its variation. The resulting discrete opera-
tors allow us to define a semi-implicit scheme for approximating evolutions
determined by the gradient flow of a weighted sum of bending energy and
tangent-point potential, i.e., with a parameter % > 0,

(∂tu, v) = −δ
(
Ibend(u) + %TPε(u)

)
[v],

within the class of arc-length parametrized curves. Crucial for good stability
properties is a splitting of the variation of TPε into an antimonotone and
remaining part, i.e., we define mappings Mε and Aε such that

δTPε(u)[v] =Mε(u;u, v) +Mε(u; v, u)− 2Aε(u;u, v).

For fixed ũ in the first component the mappings

(v, w) 7→ Mε(ũ; v, w), (v, w) 7→ Aε(ũ; v, w)

are bilinear forms with the properties that Aε(ũ; ·, ·) is positive semi-definite
while the quantity Mε(ũ; ũ, ũ) is positive. Our semi-implicit time stepping
scheme thus computes a sequence (uk)k=0,1,... such that(

dtu
k, v
)

+
(
[uk]′′, v′′) + %

[
Mε(u

k−1;uk, v)+Mε(u
k−1; v, uk)

]
= 2%Aε(uk−1;uk−1, v)

with the backward difference quotient dtu
k = (uk − uk−1)/τ and for all

suitable test functions v that satisfy the orthogonality relation

[uk−1]′ · v′ = 0

in I. Motivated by the identity u · ∂tu = 0, the same condition is imposed
on the discrete time-derivative, i.e.,

[uk−1]′ · [dtuk]′ = 0

in I. Every time step thus requires the solution of a well-posed, constrained,
symmetric linear system of equations.
If the initial curve u0 satisfies |[u0]′|2 = 1 then the orthogonality relation,
the identity uk = uk−1 + τdtu

k, and an inductive argument lead to

|[uk]′|2 = |[uk−1]′|2 + τ2|[dtuk]′|2 = · · · = 1 + τ2
k∑
`=1

|[dtu`]′|2.

Because of the gradient flow dynamics and corresponding bounds on the
time derivative we expect that the second term on the right-hand side is
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of order O(τ) up to negative powers of mesh-size related to the use of in-
verse estimates. Therefore no projection is needed to obtain curves that
approximately satisfy the arc-length constraint.
The rest of this article is organized as follows. In Section 2 we collect
some properties about the tangent-point potential and introduce our cubic
finite element spaces. Section 3 is devoted to a consistency analysis for
approximating and discretizing the tangent-point potential and its variation
in a periodic setting, i.e., for closed curves. In Section 4 we devise the
numerical scheme and discuss its implementation. Numerical experiments
are reported in the final Section 5.

2. Preliminaries

II.A. Sobolev-Slobodeckĭı spaces. We consider the torus R/Z equipped
with the distance |x|R/Z = infm∈Z |x−m|. The Sobolev space Hk(R/Z,R3)

is the closure of the set of all smooth, 1-periodic functions u : R→ R3 with
respect to the norm

‖u‖2Hk = ‖u‖2L2 + ‖u(k)‖2L2 ,

where the norms on the right-hand side are computed on a fundamental
interval, e.g., on I = [0, 1]. According to [Bla13] (see Lemma II.1 below)
curves u with TP(u) < ∞ can be characterized in terms of the Sobolev-

Slobodeckĭı space W 2−1/q,q(R/Z,R3) which contains all u ∈ H1(R/Z,R3)
with [u′]W 1−1/q,q <∞, where for s ∈ (0, 1) and p ∈ [1,∞) we have

[f ]W s,p(R/Z,R3) =
(∫∫

R/Z×R/Z

|f(x)− f(y)|p

|x− y|1+spR/Z
dx dy

)1/p
.

The Sobolev-Slobodeckĭı spaces form a subfamily of Besov spaces and can
also be defined via interpolation; see [RS96] for details. We define

‖v‖pW s,p = ‖v‖pLp + [v]pW s,p .

Note that W s,p(R/Z,R3) embeds into C0,s−1/p(R/Z,R3) if sp > 1. Fur-
thermore, from the embedding H1 ↪→ W s,p for s − 1

p ≤
1
2 [RS96], we infer,

provided q ≤ 4,

‖v‖W 2−1/q,q ≤ Cq ‖v‖H2 for any v ∈ H2(R/Z,R3).

As we intend to work in H2 which does not embed into W 1+s,p if s− 1
p >

1
2 ,

we will restrict our attention to q ≤ 4.

II.B. Tangent-point potential. By Cq we denote the class of embedded

and arc-length parametrized curves u ∈W 2−1/q,q(R/Z,R3). We quote some
known facts about the functional TP.

Lemma II.1 ([Bla13]). Let q ∈ (2,∞) and u ∈ C1(R/Z,R3) be embedded
and parametrized by arc-length. Then the tangent-point energy TP takes
finite values if and only if u ∈W 2−1/q,q.
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The requirement that u is embedded cannot be omitted, see the discussion
in [BR15, Rem. 2.2]. For the case q = 2 we refer to [BR15, Rem. 1.6].
The bi-Lipschitz constant biL(u) of a curve u ∈ Cq is defined via

biL(u) = sup
x,y∈R/Z, x 6=y

|x− y|
|u(x)− u(y)|

and satisfies biL(u) ≥ 1. The following lemma provides an upper bound.

Lemma II.2 (Uniform bi-Lipschitz estimate, [BR15, Prop. 2.1]). For any
M < ∞ and q ∈ (2,∞) there is a uniform bound CM,q < ∞ on the bi-
Lipschitz constant biL(u) for all curves u ∈ Cq with TP(u) ≤M , so

|x− y|R/Z ≤ CM,q |u(x)− u(y)| for all x, y ∈ R/Z.

Of course, it is not possible to bound the bi-Lipschitz constant merely in
terms of the Sobolev-Slobodeckĭı norm as the latter does not control self-
intersections.
The proof of Lemma II.2 does not extend to the case q = 2. However, in
this case finite tangent-point energy still implies that the image of the curve
is a one-dimensional manifold [SvdM12, Thm. 1.1].
The following statement implies that TP is in fact a knot energy if q > 2,
i.e., it blows up on sequences of embedded curves converging to a curve
with a self-intersection. This result has already been obtained in [SSvdM13,
Cor. 2.3] by geometric arguments.

Corollary II.3 (Self-avoidance). Let (uk)k∈N ⊂ Cq with q ∈ (2,∞) point-

wise converge to a curve u∞ ∈ C0(R/Z,R3) with a self-intersection, i.e.,
there are x, y ∈ R/Z, x 6= y with u∞(x) = u∞(y). Then TP(uk) → ∞ as
k →∞.

Proof. Assuming the contrary, we infer from Lemma II.2 the existence of a
constant C < ∞ with 0 < |x− y|R/Z ≤ C |uk(x)− uk(y)|. As k → ∞ this

leads to the contradiction 0 < C |u∞(x)− u∞(y)| = 0. �

For analytical considerations it is important to note that the integrand in
the tangent-point potential can be written as

(1)
|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q
=
|u′(y) ∧ (u(x)− u(y)− (x− y)u′(y))|q

|u(x)− u(y)|2q
.

This relation motivates defining the operator

(2) (Dv) (x, y) =
v(x)− v(y)− (x− y)v′(y)

(x− y)2
.

II.C. Variation of TP. We next provide a splitting of the variation of TP
noting that the functional is differentiable on appropriate classes of curves.

Lemma II.4 ([BR15, Thm. 1.4, Rem. 3.1]). For any q ∈ (2,∞) the (para-
metrization invariant formulation of the) functional TP is continuously dif-

ferentiable on embedded W 2−1/q,q-curves.
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The statement also holds in the case q = 2 if one additionally requires that
the curves are continuously differentiable, see [BR15, Rem. 1.6]; recall that

W 3/2,2 does not embed into C1. The results presented below can in fact be
extended to the case q = 2, however, to simplify notation, we will restrict
our attention to q > 2. If u ∈ Cq and ϕ ∈W 2−1/q,q, q ∈ (2,∞), with u′ ⊥ ϕ′,
the first variation of TP at u in direction ϕ simplifies to

δTP(u)[ϕ] =M0(u;u, ϕ) +M0(u;ϕ, u)− 2A0(u;u, ϕ)

where, for ε ∈ [0, 1/2) and a set Rε ⊂ R/Z × R/Z with equality for ε = 0,
we have

Mε(u; v, w) =

∫∫
Rε

|u′(y) ∧ (u(x)− u(y))|q−2

|u(x)− u(y)|2q

×
〈
u′(y) ∧ (u(x)− u(y)) , v′(y) ∧ (w(x)− w(y))

〉
dx dy.

If v′ ⊥ w′ we may replace w(x)−w(y) by w(x)−w(y)− (x− y)w′(y). The
mapping Aε is given by

Aε(u; v, w) =

∫∫
Rε

|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q+2 〈v(x)− v(y), w(x)− w(y)〉 dx dy.

If the integration domain in TP is replaced byRε we also have for ε ∈ (0, 1/2)

δTPε(u)[ϕ] =Mε(u;u, ϕ) +Mε(u;ϕ, u)− 2Aε(u;u, ϕ).

II.D. Approximation spaces. For the spatial discretization we use con-
forming subspaces Vh ⊂ H2(I,R`) that are subordinated to a partition Th of
I into subintervals Ii of lengths hi with maximal length h. We identify the
partition Th with a sequence of nodes z1 < z2 < · · · < zM+1 and the space
S1,3(Th,R3) is given by C1 splines of piecewise cubic polynomial degree, i.e.,

S1,3(Th,R3) = {vh ∈ C1(I,R3) : vh|Ii ∈ P3(Ii)3, i = 1, 2, ...,M},
where Ii = [zi, zi+1] and Pk(Ii) denotes the set of polynomials of degree
k ≥ 0 restricted to Ii. We note that the restriction of vh ∈ S1,3(Th,R3)
to an interval Ii is entirely determined by the values of vh and v′h at the
endpoints of Ii, i.e., by the four vectors vh(zi), vh(zi+1), v

′
h(zi), and v′h(zi+1)

that define the positions and tangents of the nodes of the discrete curve. We
let

L0(Th × Th) =
{
vh ∈ L∞(I × I) : vh|Ij×Ik constant for i, j = 1, 2, . . . ,M

}
denote the set of piecewise constant functions on the tensor product Th×Th.
Given a setR ⊂ I×I that is the union of rectangles Ij×Ik, j, k = 1, 2, . . . ,M ,
we define the averaging operator

Qh : L∞(R)→ L0(Th × Th)

that computes on each rectangle Ij × Ik ⊂ R the average of the values at
the four vertices or associates the value 0 otherwise. For any f ∈ C0,α(R),
α ∈ (0, 1], we have

(3) ‖f −Qhf‖L∞ ≤ Ch
α [f ]C0,α .
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3. Consistency analysis for closed curves

In this section we provide estimates that control the influences of removing
the singular part and using quadrature in the potential TP.

III.A. Removal of singular part. For ε ∈ (0, 1/2) and u ∈ Cq we consider

TPε(u) = 1
q

∫∫
Rε

|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q
dx dy,

where Rε is any measurable set with

R̃ε =
{

(x, y) ∈ R/Z× R/Z : |x− y|R/Z ≥ ε
}
⊂ Rε ⊂ R̃ε/2.

The integrand can be transformed using (1).

Lemma III.1. We have TPε(u) ↗ TP(u) as ε ↘ 0 for any u ∈ Cq and
q ∈ [2,∞). In the case of u ∈ Cq ∩H2(R/Z,R3) and q ∈ [2, 4) we have

|TPε(u)− TP(u)| ≤ Cδ,qε2−q/2−δ biL(u)2q
∥∥u′∥∥q

H1

for any δ ∈ (0, 2− q/2).

Proof. We have TPε(u) ≤ TP(u) and with Sε = (R/Z)2 \ R̃ε

q
(
TP(u)− TPε(u)

) (1)
≤
∫∫
Sε

|u′(y) ∧ (u(y + z)− u(y)− zu′(y))|q

|u(y + z)− u(y)|2q
dz dy

≤ biL(u)2q
∫∫
Sε

∣∣∣∫ 1
0 (u′(y + ϑz)− u′(y)) dϑ

∣∣∣q
|z|q

dz dy

Jensen
≤ biL(u)2q

∫∫
Sε

∫ 1

0

|u′(y + ϑz)− u′(y)|q

|z|q
dϑ dz dy

≤ biL(u)2q
∫ 1

0

∫∫
Sϑε

ϑq−1
|u′(y + z)− u′(y)|q

|z|q
dz dy dϑ

≤ biL(u)2q
∫∫
Sε

|u′(y + z)− u′(y)|q

|z|q
dz dy.

As u ∈W 2−1/q,q, the integrand is in L1(R/Z× (−1/2, 1/2)) and the integral
vanishes as ε↘ 0 due to the absolute continuity of the integral. We choose
δ ∈ (0, 2− q/2) and define s = 1 − 1

q , σ = 1
2 + 1−δ

q , r = 1
1−δ , 1

r + 1
r′ = 1.

Using the embedding H1 ↪→W σ,qr shows∫∫
Sε

|u′(y + z)− u′(y)|q

|z|1+sq
dz dy

≤

[∫∫
Sε

(
|u′(y + z)− u′(y)|q

|z|1/r+σq

)r
dz dy

]1/r [∫∫
Sε

1

|z|(1−1/r+(s−σ)q)r′ dz dy

]1/r′
≤
[
u′
]q
Wσ,qr(R/Z,R3)

· Cδ,qε2−q/2−δ ≤ Cδ,qε2−q/2−δ
∥∥u′∥∥q

H1(R/Z,R3)
,

which implies the estimate. �
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Remark III.2. If u ∈ Cq ∩W 2,q(R/Z,R3) and q ∈ [2,∞) we have

|TPε(u)− TP(u)| ≤ CqεbiL(u)2q
∥∥u′′∥∥q

Lq(R/Z,R3)
,

which follows from the proof of Lemma III.1 with Jensen’s inequality, i.e.,∫∫
Sε

|u′(y + z)− u′(y)|q

|z|q
dz dy ≤

∫∫
Sε

∫ 1

0

|u′′(y + ϑz)|q

|z|q−q
dϑ dz dy ≤ 2ε

∥∥u′′∥∥q
Lq
.

III.B. Use of quadrature. For a partition Th of I = [0, 1] as in Subsec-
tion II.D into subintervals Ij with midpoints xj , j = 1, 2, . . . ,M , we define
for ε ≥ 2h

Rε,h =
⋃

|xj−xk|R/Z≥ε

Ij × Ik.

Note that if Ij × Ik ⊂ Rε,h then distR/Z(Ij , Ik) ≥ ε/2. Given q ∈ [2,∞) and

u ∈ C1(R/Z,R3), we introduce the discrete tangent-point energy

TPε,h(u) = 1
q

∫∫
Rε,h
Qh
[
|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q

]
dx dy.

Proposition III.3. For any ε ∈ (0, 1/2), 0 < 2h ≤ ε, q ∈ [2,∞), and
u ∈ Cq ∩H2 we have

|TPε,h(u)− TPε(u)| ≤ Cq
√
h

(
biL(u)

ε

)q+1 (∥∥u′′∥∥
L2 + 1

)
,

where the integration domain of TPε is chosen to be Rε = Rε,h.

Proof. In light of (3) we merely have to show that the function

f(x, y) =
|u′(y) ∧ (u(x)− u(y))|µ

|u(x)− u(y)|ν
, µ = q, ν = 2q,

is C0,1/2 on Rε,h. Note that all factors of f are C1, except for u′ ∈ H1.

Exploiting the embedding H1 ↪→ C0,1/2 on intervals, we infer

[f ]C0,1/2(Rε,h) ≤ ess supy ‖f(·, y)‖H1(|·−y|≥ε/2)+ess supx ‖f(x, ·)‖H1(|x−·|≥ε/2) .

We first note that

‖f‖L∞(Rε,h) ≤
∥∥u′∥∥µ

L∞
sup

|ξ−η|≥ε/2
|u(ξ)− u(η)|µ−ν ≤ Cµ,ν

∥∥u′∥∥µ
L∞

(
biL(u)

ε

)ν−µ
.
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The partial derivatives of f are for (x, y) ∈ Rε,h given by

∂xf(x, y) = µ
|u′(y) ∧ (u(x)− u(y))|µ−2

|u(x)− u(y)|ν
〈
u′(y) ∧ (u(x)− u(y)) , u′(y) ∧ u′(x)

〉
− ν |u

′(y) ∧ (u(x)− u(y))|µ

|u(x)− u(y)|ν+2

〈
u(x)− u(y), u′(x)

〉
,

∂yf(x, y) = µ
|u′(y) ∧ (u(x)− u(y))|µ−2

|u(x)− u(y)|ν

×
〈
u′(y) ∧ (u(x)− u(y)) , u′′(y) ∧ (u(x)− u(y))− u′(y) ∧ u′(y)

〉
+ ν
|u′(y) ∧ (u(x)− u(y))|µ

|u(x)− u(y)|ν+2

〈
u(x)− u(y), u′(y)

〉
.

We deduce the bounds

|∂xf | ≤ Cµ,ν
∥∥u′∥∥µ+1

L∞
sup

|ξ−η|≥ε/2
|u(ξ)− u(η)|µ−ν−1

|∂yf | ≤ Cµ,ν
∥∥u′∥∥µ−1

L∞
sup

|ξ−η|≥ε/2
|u(ξ)− u(η)|µ−ν

∣∣u′′(y)
∣∣

+ Cµ,ν
∥∥u′∥∥µ+1

L∞
sup

|ξ−η|≥ε/2
|u(ξ)− u(η)|µ−ν−1 .

Recalling |u′| ≡ 1, we verify that

‖∂xf‖L∞(Rε,h) ≤ Cµ,ν
∥∥u′∥∥µ+1

L∞

(
biL(u)

ε

)ν−µ+1

,

ess supx ‖∂yf(x, ·)‖L2(|x−·|≥ε) ≤ Cµ,ν
∥∥u′∥∥µ+1

L∞

(
biL(u)

ε

)ν−µ+1 (
1 +

∥∥u′′∥∥
L2

)
,

which implies the asserted estimate. �

Remark III.4. Exploiting the embedding W 1−1/q,q ↪→ C0,1−2/q, one can
alternatively derive an error bound in terms of h1−2/q for q ∈ (2,∞). In

particular, if u ∈W 2,q the embedding W 1,q ↪→ C0,1−1/q leads to the approx-
imation rate h1−1/q. In case that u ∈W 3,∞(R/Z,R3) then the identity

f(x, y) =

∣∣∣∣∫ 1

0
u′(y + ϑ(x− y)) dϑ

∣∣∣∣−2q ∣∣∣∣u′(y) ∧
∫ 1

0
(1− σ)u′′(y + σ(x− y)) dσ

∣∣∣∣q
where f is defined as in the preceding proof) shows that f is C0,1 on R/Z×
R/Z with a bound depending on the Lipschitz constant of u that is indepen-
dent of ε. This leads to a linear approximation rate with respect to h. The
formula indicates that the integrand f of the tangent point potential is well
behaved on the diagonal x ≈ y. If u ∈W 4,∞ then we even have f ∈ C1,1 so
that a higher order quadrature rule would lead to quadratic convergence in
h.
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III.C. Approximation of the variation. We next derive bounds for the
approximation and discretization of the variation of the potential TP.

Lemma III.5. For u ∈ Cq, ϕ ∈ W 2−1/q,q with u′ ⊥ ϕ′, and q ∈ (2,∞) we
have δTPε(u)[ϕ]→ δTP(u)[ϕ] as ε↘ 0. If additionally u, ϕ ∈ H2(R/Z,R3)
and q ∈ (2, 4) we even arrive at

|δTPε(u)[ϕ]− δTP(u)[ϕ]| ≤ Cδ,qε2−q/2−δ biL(u)2q+2
∥∥u′∥∥q

H1 ‖ϕ‖H2

for any δ ∈ (0, 2− q/2).

Proof. We proceed as in the proof of Lemma III.1. It is convenient to sepa-
rately discuss the summands of δTP; using (2) we obtain in case v′ ⊥ w′

|Mε(u; v, w)−M0(u; v, w)|

≤
∫∫
Sε

∣∣u′(y) ∧ Du(x, y)
∣∣q−2

×
∣∣∣∣ x− y
u(x)− u(y)

∣∣∣∣2q ∣∣u′(y) ∧ Du(x, y)
∣∣ ∣∣v′(y) ∧ Dw(x, y)

∣∣ dx dy

≤ biL(u)2q
∥∥v′∥∥

L∞

∫∫
Sε
|Du (x, y)|q−1 |Dw (x, y)| dx dy

≤ biL(u)2q
∥∥v′∥∥

L∞

[∫∫
Sε
|Du (x, y)|q

]1−1/q [∫∫
Sε
|Dw (x, y)|q

]1/q
and analogously

|Aε(u; v, w)−A0(u; v, w)|

≤
∫∫
Sε

|u′(y) ∧ Du(x, y)|q

|u(x)− u(y)|2q+2 |x− y|
2q |〈v(x)− v(y), w(x)− w(y)〉| dx dy

≤ biL(u)2q+2

∫∫
Sε
|Du(x, y)|q

∣∣∣∣v(x)− v(y)

x− y

∣∣∣∣ ∣∣∣∣w(x)− w(y)

x− y

∣∣∣∣ dx dy

≤ biL(u)2q+2
∥∥v′∥∥

L∞

∥∥w′∥∥
L∞

∫∫
Sε
|Du (x, y)|q dx dy.

Noting that∫∫
Sε
|Dw (x, y)|q dx dy ≤

∫∫
Sε

∣∣∣∫ 1
0 (w′(y + ϑz)− w′(y)) dϑ

∣∣∣q
|z|q

dz dy

≤
∫∫
Sε

|w′(y + z)− w′(y)|q

|z|q
dz dy,

the first claim is a consequence of the absolute continuity of the integral.
For the second one we argue as in the proof of Lemma III.1. �

For a practical evaluation of δTP we use quadrature and define

DTPε,h(u)[ϕ] =Mε,h(u;u, ϕ) +Mε,h(u;ϕ, u)− 2Aε,h(u;u, ϕ),
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with the mappings Mε,h and Aε,h defined by

Mε,h(u; v, w) =

∫∫
Rε,h

〈
(QhΦ) (x, y), v′(y) ∧ (w(x)− w(y))

〉
dx dy,

Aε,h(u; v, w) =

∫∫
Rε,h

(QhΨ) (x, y) 〈v(x)− v(y), w(x)− w(y)〉 dx dy,

for functions Φ and Ψ given by

Φ(x, y) =
∣∣u′(y) ∧ (u(x)− u(y))

∣∣q−2 u′(y) ∧ (u(x)− u(y))

|u(x)− u(y)|2q
,

Ψ(x, y) =
|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q+2 .

Proposition III.6. For any ε ∈ (0, 1/2), 0 < 2h ≤ ε, q ∈ (2,∞), and
u ∈ Cq ∩H2(R/Z,R3) we have for all ϕ ∈ H2(R/Z,R3) with u′ ⊥ ϕ′ that

∣∣[DTPε,h − δTPε
]
(u)[ϕ]

∣∣ ≤ Cq√h(biL(u)

ε

)q+3(∥∥u′′∥∥
L2 + 1

)
‖ϕ‖H2 ,

where the integration domain of TPε is chosen to be Rε = Rε,h.

Proof. As δTPε and DTPε,h are analogously decomposed it is convenient
to separately consider the corresponding summands. We obtain, assuming
v′ ⊥ w′,∣∣[Mε,h −Mε

]
(u; v, w)

∣∣ ≤ ‖Φ−QhΦ‖L∞
∫∫
Rε,h

∣∣v′(y) ∧ (w(x)− w(y))
∣∣ dx dy,

∣∣[Aε,h −Aε](u; v, w)
∣∣ ≤ ‖Ψ−QhΨ‖L∞

∫∫
Rε,h

∣∣v′(y) ∧ (w(x)− w(y))
∣∣ dx dy.

Noting estimate (3) with α = 1/2 we deduce that

|Mε,h(u; v, w)−Mε(u; v, w)| ≤ C
√
h [Φ]C0,1/2(Rε,h)

∥∥v′∥∥
L∞

∥∥w′∥∥
L∞

,

|Aε,h(u; v, w)−Aε(u; v, w)| ≤ C
√
h [Ψ]C0,1/2(Rε,h)

∥∥v′∥∥
L∞

∥∥w′∥∥
L∞

.

The argument in the proof of Proposition III.3 extends to arbitrary positive
reals µ < ν, so letting (µ, ν) = (q − 1, 2q) and (µ, ν) = (q, 2q + 2) yields the
desired bound. �

Analogously to Remark III.4, an inspection of the proof shows that the
additional assumption u, ϕ ∈W 2,q(R/Z,R3) yields an approximation rate in

terms of h1−1/q while u, ϕ ∈W 3,∞(R/Z,R3) leads to a linear approximation
rate with respect to h.
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4. Numerical scheme

IV.A. Discrete gradient flow. As a model problem and application of
our consistency estimates we consider the approximation of a family of arc-
length parametrized curves u(t, ·) : I → R3 for t ∈ [0, T ] such that

(∂tu,w) = −δ
(
Ibend + %TPε

)
(u)[w]

for all w : I → R3 satisfying u′(t, ·) ·w = 0 in I. With the decomposition of
δTPε introduced above, the evolution problem reads

(∂tu,w) = −B(u,w)− 2%Msym
ε (u;u,w) + 2%Aε(u;u,w),

where (·, ·) denotes the L2 scalar product,

2Msym
ε (u; v, w) =Mε(u; v, w) +Mε(u;w, v).

and the bilinear form B is the variation of the bending energy

B(v, w) = (v′′, w′′).

We consider here an interval I ⊂ R and include homogeneous or periodic
boundary conditions in the discrete linear space

Vh ⊂ S1,3(Th,R3).

Inhomogeneous boundary conditions will be included via the initial curve u0.
Given some uh ∈ S1,3(Th,R3) we include the linearized arc-length condition
in the space

Fh[uh] =
{
vh ∈ Vh : v′h(zi) · u′h(zi) = 0 for i = 1, 2, . . . ,M + 1

}
.

Our numerical scheme realizes a semi-implicit treatment of the evolution
problem with a linearized treatment of the constraint.

Algorithm IV.1 (Semi-implicit time-stepping). Let Th be a partioning of
I, let u0h ∈ S1,3(Th,R3) with |[u0h]′(zi)|2 = 1 for i = 1, . . . ,M + 1, and let
ε, τ > 0. Set n = 1.
(1) Compute vnh ∈ Fh[un−1h ] such that

(vnh ,wh) + τB(vnh , wh) + 2%τMsym
ε,h (un−1h ; vnh , wh)

= −B(un−1h , wh)− 2%Msym
ε,h (un−1h ;un−1h , wh) + 2%Aε,h(un−1h ;un−1h , wh)

for all wh ∈ Fh[un−1h ].

(2) Set unh = un−1h + τvnh . Stop if nτ ≥ T ; increase n→ n+ 1 and continue
with (1) otherwise.

The motivation for the particular semi-implicit treatment of the variation
of the potential is the fact that Aε(u; ·, ·) is a positive semi-definite bilinear
form while Mε(u; ·, ·) is non-negative in a neighborhood of (u, u).
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IV.B. Discrete energy barrier. To limit the influence of the self-avoidance
potential on the evolution but to still enforce embededness of curves, we aim
at determining a suitable parameter % = hα in terms of the mesh-size h > 0.
Our discretization of TP leads to the identity

TPε,h(uh) =
1

q

∑
i,j=1,...,M+1
|zi−zj |>ε

hihjγiγj
|u′h(zi) ∧ [uh(zi)− uh(zj)]|q

|uh(zi)− uh(zj)|2q

with certain weights γi that are independent of the mesh-size. A discrete
self-intersection corresponds to a configuration of non-neighboring nodes z
and z̃ such that

|uh(z)− uh(z̃)| ∼ h
and if u′h(z) and uh(z)− uh(z̃) are non-tangential we have

TPε,h(uh) ≥ ch2−q,
cf. Fig. 2. This shows that q = 2 may be insufficient to avoid self-intersections.
To introduce a discrete energy barrier we thus have to choose

% ≥ chq−2−σ

for some σ > 0.

uh(z̃)

uh(z)

Figure 2. Self-intersection of a planar curve not detected
by the discretized potential if q = 2 (black dots indicate
images of nodes z and z̃).

The parameter % introduces a length scale in the mathematical model that
determines how close a curve may be to itself.

IV.C. Assembly. We discuss here the numerical computation of terms re-
sulting from the differentiation and discretization of the tangent point en-
ergy. We set nE = M and for a partition I = ∪nEj=1Ij into closed intervals Ij
of lengths hj and with midpoints xj , j = 1, 2, . . . , nE , we note

TPε,h(uh) =

∫
Rε,h
Qhλh(x, y) dx dy =

∑
j,k=1,...,nE
|xj−xk|≥ε

Qhλh|Ij×Ikhjhk,

where

λh(x, y) =
1

q

|u′h(y) ∧ [uh(y)− uh(x)]|q

|uh(y)− uh(x)|2q
.
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The operator Qh computes on each rectangle Ij × Ik the constant value
obtained as the average of the values at the vertices. Similarly, we have

Aε,h(uh; vh, wh) =

∫
Rε,h

(QhΨh) (x, y) 〈vh(y)− vh(x), wh(y)− wh(x)〉 dx dy

=
∑

j,k=1,...,nE
|xj−xk|≥ε

QhΨh|Ij×Ik
∫
Ij×Ik

〈vh(y)− vh(x), wh(y)− wh(x)〉 dx dy,

where

Ψh(x, y) =
|u′h(y) ∧ (uh(y)− uh(x))|q

|uh(y)− uh(x)|2q+2
,

and

Mε,h(uh; vh, wh) =

∫
Rε,h

(QhΦh) (x, y) ·
[
v′h(y) ∧

(
wh(y)− wh(x)

)]
dx dy

=
∑

j,k=1,...,nE
|xj−xk|≥ε

QhΦh|Ij×Ik ·
∫
Ij×Ik

v′h(y) ∧
(
wh(y)− wh(x)

)
dx dy,

where

Φh(x, y) =
|u′h(y) ∧ [uh(y)− uh(x)]|q−2 u′h(y) ∧

(
uh(y)− uh(x)

)
|uh(y)− uh(x)|2q

.

The functions uh, vh, wh are linear combinations of basis functions ϕmep,
m = 1, 2, . . . , 2nC , p = 1, 2, 3, associated with the nodes z1, z2, . . . , znC with
nC = M + 1 of the partition and the canonical basis vectors ep ∈ R3,
p = 1, 2, 3. In particular, to a node z` two basis functions ϕ2`−1 and ϕ2` are
associated which are defined by the conditions

ϕ2`−1(zi) = δ`i, ϕ′2`−1(zi) = 0,

and

ϕ2`(zi) = 0, ϕ′2`(zi) = δ`i,

for i = 1, 2, . . . , nC . Note that odd and even basis functions have to be
scaled differently when transformed from a reference element, e.g.,

ϕm|Ij = hmmod2+1
j ϕ̃m′ ◦ Φj

with affine transformation Φj : Ij → [0, 1]. In particular, contributions to
the bilinear form are computed via∫

Ij

ϕ(α)
m ϕ(β)

n dx = h1−α−βj hmmod 2+1
j hnmod2+1

j

∫ 1

0
ϕ̃
(α)
m′ ϕ̃

(β)
n′ dx̃.

For the assembly of Aε,h we define vqh = vh · eq and note that every basis
function ϕn is supported on at most two neighboring intervals and that Ij
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and Ik are nonneighboring provided that ε ≥ 2h. Hence, we have

Aε,h(uh; vh, ϕneq)

=
∑

j,k=1,...,nE
|xj−xk|≥ε

QhΨh|Ij×Ik
∫
Ij×Ik

(
vqh(y)− vqh(x)

)(
ϕn(y)− ϕn(x)

)
dx dy

=
∑

j,k=1,...,nE
|xj−xk|≥ε

QhΨh|Ij×Ik ·


|Ij |
∫
Ik
vqhϕn dy −

∫
Ij
vqh dx

∫
Ik
ϕn dy if z[n] ∈ Ik,

|Ik|
∫
Ij
vqhϕn dx−

∫
Ij
ϕn dx

∫
Ik
vqh dy if z[n] ∈ Ij ,

0 otherwise,

where z[n] is the node associated with the basis function ϕn. Terms defined
by Mε,h are treated implicitly and we compute

Mε,h(uh;ϕmep, ϕneq)

=
∑

j,k=1,...,nE
|xj−xk|≥ε

QhΦh|Ij×Ik · (ep ∧ eq)
∫
Ij×Ik

ϕ′m(y)
(
ϕn(y)− ϕn(x)

)
dx dy

=
∑

j,k=1,...,nE
|xj−xk|≥ε

QhΦh|Ij×Ik · (ep ∧ eq) ·


|Ij |
∫
Ik
ϕ′mϕn dy if z[m], z[n] ∈ Ik,

−
∫
Ij
ϕn dx

∫
Ik
ϕ′m dy if

(
z[m], z[n]

)
∈ Ik × Ij ,

0 otherwise.

Note that in a periodic setting the nodes z1 and zM+1 are identified and
sums are over pairs of indices (j, k) with |xj − xk|R/Z ≥ ε.

5. Numerical experiments

In this section we report on experiments which verify the consistency es-
timates and discrete evolutions computed with the numerical scheme de-
scribed in Algorithm IV.1 to illustrate its practical stability properties and
the underlying evolution process. Throughout we assume that the flow pro-
vides sufficient regularity so that the approximation rates derived under
additional regularity assumpations are valid.

V.A. Experimental convergence rates. We consider a smooth planar
closed curve and verify the experimental convergence rate of TPε,h as the
approximation paramers (h, ε) tend to 0.

Example V.1. We let I = [0, 2π] and

u(y) =

cos(y)
sin(y)

0

 .
With standard trigonometrical identities and asymmetry of sin we find that

qTP(u) =

∫∫
I×I

(
cos(y)(cos(y)− cos(x)) + sin(y)(sin(y)− sin(x))

)q(
(cos(y)− cos(x))2 + (sin(y)− sin(x))2

)q dx dy.
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We thus have that TP(u) = 22−qπ2/q. For the summands in the decomposi-
tion of the variation of TP we haveM0(u;u, u) = qTP(u) and A0(u;u, u) =
qTP(u).

Table 1 shows for a sequence of uniform partitions of I with meshsizes
hj = 2−j/10, j = 0, 1, . . . , 5 the relative errors

δhTP =
∣∣TPε,h(Ihu)− TP(u)

∣∣/TP(u),

δhM =
∣∣Mε,h(Ihu; Ihu, Ihu)−M(u;u, u)

∣∣/M(u;u, u),

δhA =
∣∣Aε,h(Ihu; Ihu, Ihu)−A(u;u, u)

∣∣/A(u;u, u).

For our experiment we chose the parameters

q = 3, ε = 2h.

Note that our error analysis considers the caseM(u; v, w) with v′ ⊥ w′. We
observe a nearly linear rate of convergence for all errors. The error quantities

δjM and δjA coincide for the particular choice of functions.

hj δjTP δjM δjA

2−0/10 0.103 814 0.084 572 0.084 572
2−1/10 0.049 860 0.039 296 0.039 296
2−2/10 0.022 408 0.016 876 0.016 876
2−3/10 0.012 522 0.009 712 0.009 712
2−4/10 0.005 584 0.004 163 0.004 163
2−5/10 0.003 100 0.002 387 0.002 387

Table 1. Approximation errors in Example V.1 for a
smooth curve and different mesh sizes. A nearly linear ex-
perimental order of convergence is observed.

τ % = 1 % = h1/2 % = 0.01 · h1/2
1 N Y Y
h Y Y Y

h/4 Y Y Y

Table 2. Experimental stability analysis for Algo-
rithm IV.1 with fixed mesh-size h ∼ 1/80 in Example V.2.
An entry Y indicates that the total energy Itoth remained
bounded by its initial value whereas N refers to an instability.
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V.B. Evolution of a trefoil knot. We consider a periodic setting and as
initial curve a trefoil knot to study the evolution defined by the discrete
gradient flow.

Example V.2. For T = 200 and Ĩ = [0, 1] let

ũ(ỹ) =

(2 + cos(6πỹ)) cos(4πỹ)
(2 + cos(6πỹ)) sin(4πỹ)

sin(6πỹ)

 .
Via a reparametrization φ : Ĩ → I = [0, L] with the length L of the curve ũ
we obtain an arc-length parametrized mapping u : I → R3 that describes the
same curve.

For partitions Th of I with h ∼ 1/M we set

q = 3, τ = h/4, ε = 2h, % = h1/2/100.

Figure 5 shows for different mesh-sizes the values of the total weighted energy
and the potential

Itoth (unh) = Ibend(unh) + %TPε,h(unh), TPε,h(unh),

as functions of tn = nτ , n = 0, 1, . . . , N , for N ≈ T/τ . We see that the
discrete energy Itoth (unh) is monotonically decreasing indicating good stability
properties of our numerical scheme. Except for the case M = 20 we see that
the potential increases and reaches a barrier value that prevents the curve
from undergoing a topological change. This effect is also apparent from
Figure 3, in which we plotted snapshots of the discrete evolution for the
mesh-size h = 1/40. We see that the curve immediately relaxes its bending
energy and attains a constant state. Final states for different mesh-sizes are
shown in Figure 4 which are stationary configurations for h ∼ 1/40 and h ∼
1/80. The weighting factor % is too small in case h ∼ 1/20 to guarantee self-
avoidance and the evolution is towards a simple circle. Due to the decreasing
factor in front of the potential we observe that the minimal distance up to
which the curve may come close to itself decreases with the mesh-size. The
geometry of constant states as % ↘ 0 are discussed in [GRvdM15] where
instead of TP a non-smooth self-avoiding functional is considered.
To understand the stability properties of the iteration of Algorithm IV.1 we
tried for fixed M = 80 the weighting parameters

% = 1, h1/2, h1/2/100,

and step sizes
τ = 1, h, h/4.

Table 2 indicates whether the total energy Itoth remained bounded during
the discrete evolution. We observe that only for % = τ = 1 an instability
occurs. In all other settings the evolution attains a stationary state that is
comparable to those shown in the second and third plot of Figure 4. The
experiment thus indicates stability provided that τ% ≤ h1/2. In particular,
no self-intersections occur for this relation.
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Figure 3. Snapshots unh, n = 0, 1, . . . , 8, of the initial
discrete evolution defined by Example V.2 for mesh-size h ∼
1/40. The curve relaxes bending energy but its evolution is
stopped by the potential before the curve self-intersects.

Figure 4. Discrete configurations at T = 200 for mesh-
sizes h ∼ 1/20, 1/40, 1/80 in Example V.2. The choice % =

h1/2/100 is too small to avoid self-penetration for h ∼ 1/20.
For h ∼ 1/40, 1/80 the curves remain embedded throughout
the discrete evolution and attain a stationary configuration
which becomes flatter as h → 0 due to the weighting of the
potential.
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Figure 5. Discrete total weighted energy Itoth and potential
TPε,h as functions of unh, n = 0, 1, . . . , N , versus tn = nτ ∈
[0, 200] for the discrete evolution defined by Example V.2
with different mesh-sizes h ∼ 1/M .
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Figure 6. Discrete total weighted energy Itoth and potential
TPε,h as functions of unh, n = 0, 1, . . . , N , versus tn = nτ ∈
[0, 500] for the discrete evolution defined by Example V.3
with different mesh-sizes h ∼ 1/M .
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V.C. Unwinding of a clamped spiral. Our third experiment considers
a planar spiral curve that is clamped at its outer and free at its inner end.

Example V.3. Let T = 500 Ĩ = [0, 1] and

u(ỹ) =

20 cos(2π(2ỹ + 1))/(2π(2ỹ + 1))
20 sin(2π(2ỹ + 1))/(2π(2ỹ + 1))

0

 .
Via a reparametrization φ : Ĩ → I = [0, L] with the length L of the curve ũ
we obtain an arc-length parametrized mapping u : I → R3 that describes the
same curve.

We again consider a sequence of partitions Th of I with maximal mesh-
sizes h ∼ 1/M , that result from a transformation of a uniform partition of

Ĩ = [0, 1], and associated parameters

q = 3, τ = h/4, ε = 2h, % = h1/2/100.

The good stability properties of our numerical scheme are again confirmed
by Figure 5 where we plotted the values of the total weighted energy and
the potential

Itoth (unh) = Ibend(unh) + %TPε,h(unh), TPε,h(unh),

as functions of tn = nτ , n = 0, 1, . . . , N , for N ≈ T/τ . Opposed to the
experiments of the previous section the potential does not attain a con-
stant mesh-size dependent value but decays to zero. This is due to the fact
that the curve can entirely relax to a straight line without undergoing self-
intersections. Snapshots of the discrete evolution for the mesh-size h ∼ 1/40
are displayed in Figure 7 which illustrate this behavior. The discrete states
at time T = 500 shown in Figure 8 reveal a slight mesh-dependence of
the speed of the evolution which is related to the mesh dependence of the
weighting factor % in the energy functional that defines the evolution.
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Figure 7. Snapshots of the discrete evolution defined
by Example V.3 for mesh-size h ∼ 1/40 after j · 200, j =
0, . . . , 11, steps. The clamped curve relaxes its bending en-
ergy and tends to form a straight line.

Figure 8. Discrete configurations at T = 500 for mesh-
sizes h ∼ 1/20, 1/40, 1/80 in Example V.3. The speed of
evolution is slightly decreased as h→ 0.
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