
AVERAGING TECHNIQUES YIELD RELIABLE A POSTERIORI FINITEELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMSS. BARTELS AND C. CARSTENSENAbstrat. The reliability of frequently applied averaging tehniques for a posteriori errorontrol has reently been established for a series of �nite element methods in the ontextof seond-order partial di�erential equations. This paper establishes related reliable andeÆient a posteriori error estimates for the energy-norm error of an obstale problem onunstrutured grids as a model example for variational inequalities. The surprising mainresult asserts that the distane of the pieewise onstant disrete gradient to any ontinuouspieewise aÆne approximation is a reliable upper error bound up to known higher orderterms, onsisteny terms, and a multipliative onstant.1. IntrodutionWhile a posteriori error ontrol and adaptive mesh design is well established for (ellipti)partial di�erential equations [AO, BSt, EEHJ, V℄, their exploitation for variational inequali-ties started very reently [BSu, CN, LLT, V1, V2℄. Amongst the a posteriori error estimationtehniques are averaging shemes �rstly justi�ed by super-onvergene properties on stru-tured grids with symmetry properties. Their reent justi�ation on unstrutured grids in[BC, CA, CB, CF1, CF2, CF3, CF4, CF5℄ raises the question: How an averaging tehniquesbe possibly reliable (i.e., be guaranteed upper bounds) for variational inequalities?Our mathematial investigations reast this question into the design of a weak approximationoperator that is ompatible with the obstale onditions and still enjoys loal orthogonalityproperties to generate higher order terms. Utilising the operator J from [Ca℄ and its dual J�this paper provides an aÆrmative answer for a simple obstale problem with aÆne obstaleand studies the nononforming ase.Given a bounded Lipshitz domain 
 in Rd , d = 2; 3, f 2 H1(
), g 2 H1(�N), uD 2 H1(�D),and � 2 H1(
) suh that the losed and onvex subsetK := fv 2 H1(
) : v = uD on �D; � � v almost everywhere in 
gof H1(
) is non-void, the obstale problem under question reads: Seek u 2 K suh that(ru;r(u� v)) � (f ; u� v) + Z�N g(u� v) ds for all v 2 K.(1.1)Here, (�; �) denotes the L2-produt and �D is a losed subset of � := �
 with positive surfaemeasure; �N := �n�D. It is known [R, GLT, K℄ that (1.1) has a unique solution. The �niteDate: January 4, 2001.1991 Mathematis Subjet Classi�ation. 65N30, 65R20, 73C50.Key words and phrases. Adaptive �nite element methods, a posteriori error estimates, ellipti variationalinequalities, obstale problems. 1



2 S. BARTELS AND C. CARSTENSENelement approximation employs a (losed and onvex) disrete set Kh (i.e., a subset of a�nite-dimensional subspae of H1(
)) and reads: Seek uh 2 Kh suh that(ruh;r(uh � vh)) � (f ; uh � vh) + Z�N g(uh � vh) ds for all vh 2 Kh.(1.2)There exists a unique disrete solution uh whose error e := u � uh is in some sense quasi-optimally small; we refer to [F, N℄ for a priori error estimates and fous on a posterioriestimates in this paper. The hoieKh := fvh 2 S1(T ) : vh = uD;h on �D; �h � vh almost everywhere in 
g(1.3)an model a onforming (i.e., Kh � K) or non-onforming (i.e., Kh 6� K) disretisation.Here, S1(T ) is the P1-�nite element spae de�ned through a regular triangulation T of 
into triangles and tetrahedra if d = 2 and d = 3, respetively, [BS, Ci℄; �h 2 S1(T ) is anapproximation to �, uD;h 2 S1(T )j�D is an approximation to uD and we assume Kh 6= ;.Our �rst result employs [BC, CB, Ca, CV℄ and standard estimates for the proof ofkr(u� uh)k . �Z + (%h;�� uh � w) + krwk+ kh2Trfk+ kh3=2E �Eg=�skL2(�N ):(1.4)Here, k � k denotes the L2(
)-norm, \. " substitutes \� up to a multipliative mesh-size-independent onstant ", w is arbitrary in H1(
) with uh+w 2 K, wj�D = uD�uD;h vanishesat nodes on �D, %h is a known disrete residual, hT and hE are loal mesh sizes, and�Z := minfkph �ruhk : ph 2 S1(T )d; ph � n = g on N \ �Ng;(1.5)where n denotes the outer unit normal on �N and N is the set of nodes in T (ph � ninterpolates g at all nodes on �N). Consisteny is inluded in the arbitrary hoie of w toassess the error in Kh 6= K and uD;h 6= uD; in the absene of ontat near the boundary,with (�)+ := maxf�; 0g,krwk . kh3=2E �2EuD=�s2kL2(�D) + kr(�� uh)+k:(1.6)The estimate (1.4) an be reommended for pratial error ontrol sine (%h;� � uh � w)an be evaluated. Closer investigations reveal that this term an indeed be replaed byonsisteny, averaging, and higher order terms. Our main result is a re�ned version ofkr(u� uh)k . �Z + minqh2S1(T )d kqh �r(�h � uh)k+ krwk+ kh2Trfk+ khT fkL2([TD)+kh3=2E �Eg=�skL2(�N ) + kh�1T (�� �h � w)�k+ (kfkk(�� �h � w)�k)1=2(1.7)where (�)� := minf�; 0g. The term khT fkL2([TD) is the L2-norm over the shrinking domain[TD, a union of a few layers of elements near �D; e.g., if f 2 L1(
) we have khT fkL2([TD) .kfkL1(
)kh2EkL2(�D) and see that this term is of higher order. In ase � = �h and no ontatnear the boundary, the estimate redues tokr(u� uh)k . �Z + minqh2S1(T )d kqh �r(�h � uh)k+ h.o.t.(1.8)(h.o.t. denotes higher order terms). The �ner estimate of Theorem 3.2 re�nes (1.7)-(1.8) inthe substitution of kqh �r(�h � uh)kL2(
) by the re�ned norm kqh �r(�h � uh)kL2(
s) ona smaller omputable region 
s around the free boundary of the ontat zone. Numerialexamples onvined us that this re�nement is neessary for eÆient approximation and errorontrol.



A POSTERIORI FINITE ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS 3If the obstale � = �h is globally aÆne, r�h = A is onstant and qh = ph + A in (1.8)provides kr(u� uh)k . �Z + h.o.t.(1.9)Hene, the averaging estimator �Z (from the variational equality) is indeed reliable for theobstale problem up to a multipliative onstant and up to known higher order terms. Itis stressed that the averaging estimator �Z is eÆient; the proof is provided by a triangleinequality �Z � kr(uh � u)k+minfkru� phk : ph 2 S1(T )d; ph � n = g on N \ �Ng;(1.10)in ase u is suÆiently smooth, the minimum in the right-hand side is of higher order.It appears to us that the reliability of averaging tehniques is always related to smooth data(uD, g, and f) and hene rough obstales might be exluded from the assumptions; this is seenin our analysis by onsisteny terms whih are not always of higher order and may dominatethe error estimate. Consequently, this paper does not fous on oarse approximation of roughdata.The rest of this paper is organised as follows. Preliminaries and notation is introdued inSetion 2 where we reall a few results and state some basi estimates. Setion 3 is devoted tothe a posteriori error estimates and their proofs. Setion 4 outlines the numerial realisationwith a penalty sheme we employed. Setion 5 reports on four examples where the estimateof the error in the energy norm is extremely aurate.2. PreliminariesThroughout this paper, u 2 K solves (1.1) and uh 2 Kh solves (1.2). The aim is to provereliability and eÆieny of the aforementioned estimators. We let H1D(
) := fv 2 H1(
) :v = 0 on �Dg and de�ne S1D(T ) := S1(T ) \H1D(
).Let ('z : z 2 N ) be the nodal basis of S1(T ). Note that ('z : z 2 N ) is a partition of unityand the open pathes !z := fx 2 
 : 0 < 'z(x)g(2.1)form an open over (!z : z 2 N ) of 
 with �nite overlap.Let K := N n�D denote the set of free nodes and let E denote the set of all edges (d = 2) orfaes (d = 3) appearing for some T in T . In order to de�ne a weak interpolation operatorJ : H1D(
) ! S1D(T ) we modify ('z : z 2 K) to a partition of unity ( z : z 2 K). For eah�xed node z 2 N nK, we hoose a neighboring node �(z) 2 K and let �(z) := z if z 2 K. Inthis way, we de�ne a partition of N into ard(K) lasses I(z) := f~z 2 N : �(~z) = zg, z 2 K.For eah z 2 K set  z := X�2I(z)'� and 
z := fx 2 
 : 0 <  z(x)g(2.2)and notie that ( z : z 2 K) is a partition of unity. It is required that 
z is onneted andthat  z 6= 'z implies that �D \ �
z has a positive surfae measure.



4 S. BARTELS AND C. CARSTENSENFor g 2 L1(
) de�neJg :=Xz2K gz'z 2 S1D(T ) where gz := (g; z)=(1;'z) 2 R:(2.3)The loal mesh-sizes are denoted by hT and hE where hT 2 L0(T ) denotes the element size,hT jT := hT := diam(T ) for T 2 T , and the edge size hE 2 L1([E) is de�ned on the union orskeleton [E of all edges E in E by hE jE := hE := diam(E). The path size hz := diam(
z)is de�ned for eah node z 2 K separately. For z 2 N n K set hz := diam(!z) and for T 2 Tlet !T := [z2T\N
�(z). Note that the sets of pathes (!T : T 2 T ) and (
z : z 2 K) have a�nite overlap.In the following we write k � kp;A instead of k � kLp(A) and k � k abbreviates k � k2;
. Similarly,we denote by j � j1;2;A := kr � k2;A the semi-norm in H1(A) and j � j1;2 abbreviates j � j1;2;
.Theorem 2.1 ([Ca, Cl, CV, CB℄). The operator J is H1-stable and �rst-order onvergent,i.e., kh�1T (g � Jg)k+ kh�1=2E (g � Jg)k2;�N + jg � Jgj1;2 . jgj1;2(2.4)for g 2 H1D(
). Moreover, for f 2 L2(
), there holds(f ; g � Jg) . jgj1;2�Xz2K h2z minfz2R kf � fzk22;
z�1=2:(2.5)Lemma 2.1. We have, for all v 2 H1D(
),(f ; v � Jv) + Z�N g(v � Jv) dx� (ruh;r(v � Jv)). jvj1;2 minph2S1(T )d(kruh � phk+ kh1=2E (g � ph � n)k2;�N + kh2Trfk):Proof. The lemma is, at least impliitly, inluded in [CB℄ (and also in [BC, CF1, CF2, CF3,CF4℄) and so we merely sketh its proof. From (2.5) we have by Poinar�e's inequality(f ; v � Jv) . jvj1;2kh2Trfk:An integration by parts of �(ph;r(v�Jv)) and utilising that divTruh = 0 reveals that thelast two terms in the left-hand side of the asserted inequality equalZ�N (g � ph � n)(v � Jv) ds+ (ph �ruh;r(v � Jv)) + (divT (ph �ruh); v � Jv). jvj1;2 �kh1=2E (g � ph � n)k2;�N + kph �ruhk+ khT divT (ph �ruh)k�(2.6)by (2.4) and Cauhy inequalities. This and a T -elementwise inverse estimate of the formhTk divT (ph �ruh)k2;T . kph �ruhk2;T onlude the proof.Lemma 2.2 ([BCD℄). Assume uD 2 H1(�D) \ C(�D), uDjE 2 H2(E) for all E 2 E suhthat E � �D, and let �2EuD=�s2 denote the edgewise seond derivative of uD along �D.Suppose uD;h is the nodal interpolant of uD, i.e., uD;h(z) = uD(z) for all z 2 N \ �D. Thenthere exists wD 2 H1(
) suh that wDj�D = uD � uD;h, suppwD � ST2T ;T\�D 6=; T ,kwDk1 = kuD � uD;hk1;�D; and jwDj1;2 . kh3=2E �2EuD=�s2k2;�D :(2.7)



A POSTERIORI FINITE ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS 5De�nition 2.1. De�neTD := fT 2 T : T \ �D 6= ;g and T := fT 2 T n TD : (�h � uh)jT = 0g:The following lemma shows (1.6) and estimates the terms whih inlude w in (1.7).Lemma 2.3. Suppose that uD satis�es the onditions of Lemma 2.2, that �j�D � uD;h, andthat (�� uh)� � wD in S TD with wD from Lemma 2.2. Then we haveminw2H1(
)uh+w2K jwj1;2 . kh3=2E �2EuD=�s2k2;�D + j(�� uh)+j1;2 andminw2H1(
)uh+w2K�jwj21;2 + XT2T nTD kh�1T (�� �h � w)�k22;T + XT2T kfk2;!T k(�� �h � w)�k2;T�. kh3=2E �2EuD=�s2k22;�D + j(��uh)+j21;2 + XT2T nTD kh�1T (�� �h)�k22;T+ XT2T kfk2;!T k(�� �h)�k2;T :Proof. Set w := (��uh)++wD and notie uh+w 2 K. Then jwj1;2 � j(��uh)+j1;2+ jwDj1;2.Utilising wDjT = 0 and �h � uh on eah T 2 T n TD we have on eah T 2 T n TDk(�� �h � w)�k2;T = k(�� �h � (�� uh)+)�k2;T � k(�� �h)�k2;T :Then, Lemma 2.2 proves the assertions.Remark 2.1. Sine kwDk1 = kuD � uD;hk1;�D by Lemma 2.2, the assumption (�� uh)� ��kuD � uD;hk1;�D in S TD implies (�� uh)� � wD in S TD.Lemma 2.4 ([BC, CB℄). Let gjE 2 H1(E)\C(E) for all E 2 E suh that E � �N and, foreah node z 2 N \ �N where the outer unit normal n on �N is ontinuous (hene onstantin a neighbourhood of z as �N is a polygon), let g be ontinuous. Assume that the setS1N(T ; g) := fph 2 S1(T )d : 8E 2 E ; z 2 E � �N ; ph(z) � nE = g(z)gis non-void. Then (�Eg=�s denotes the edgewise surfae gradient of g on �N)minph2S1(T )d�kruh � phk+ kh1=2E (g � ph � n)k2;�N�. minqh2S1N (T ;g) kruh � qhk+ kh3=2E �Eg=�sk2;�N :Remark 2.2. For d = 2 the onditions on g in Lemma 2.4 suÆe for S1N(T ; g) 6= ; [CB℄.De�nition 2.2. De�ne % 2 (H1D(
))� and %h 2 S1(T ), for v 2 H1D(
), by%(v) := (f ; v) + Z�N gv ds� (ru;rv);(2.8) %h := Xz2K�(f ;'z) + Z�N g'z ds� (ruh;r'z)� z=(1;'z):(2.9)



6 S. BARTELS AND C. CARSTENSENRemark 2.3. Note that 0 � %(e � w) for w 2 H1(
) satisfying wj�D = uD � uD;h and� � uh � w (sine uh + w 2 K). If uh 2 K we may hoose w = 0. If not, let, e.g., PKuhbe the projetion of uh onto K with respet to j � j1;2 and w := PKuh � uh minimises jwj1;2among all w with uh + w 2 K.Lemma 2.5. We have, for all w 2 H1(
) satisfying wj�D = uD � uD;h,12 je� wj21;2+12 jej21;2 = (f ; e� w � J(e� w))� (ruh;r(e� w � J(e� w)))+ Z�N g(e� w � J(e� w)) ds+ 12 jwj21;2 + (%h; e� w)� %(e� w):(2.10)Proof. Note that e� w 2 H1D(
). The de�nition of J(e� w) yields, e.g.,Xz2K(ruh;r'z)( z; e� w)=(1;'z) = (ruh;rJ(e� w))and eventually leads to(%h; e� w) = (f ; J(e� w))� (ruh;rJ(e� w)) + Z�N gJ(e� w) ds:This and some elementary alulations show%(e� w)� (%h; e� w) = (f ; e� w � J(e� w)) + Z�N g(e� w � J(e� w)) ds� (ru;r(e� w)) + (ruh;rJ(e� w)) = (f ; e� w � J(e� w))+ Z�N g(e� w � J(e� w)) ds� (re;r(e� w))� (ruh;r(e� w � J(e� w))):Sine 2(re;r(e� w)) = je� wj21;2 + jej21;2 � jwj21;2 we dedue (2.10).Our motivation for the de�nition of %h is that its nodal values reet Kuhn-Tuker onditions.Lemma 2.6. We have %h � 0 � uh � �h almost everywhere in 
 and, for z 2 K,%h(z)(�h(z)� uh(z)) = 0:Proof. Given z 2 K and a real number w de�ne vh 2 S1(T ) by vh(z) := w and vh(�) = uh(�)for � 2 Nnfzg. If �h(z) � w we have vh 2 Kh and alulate with (1.2)(uh(z)� w)(ruh;r'z) = (ruh;r(uh � vh)) � (f ; uh � vh) + Z�N g(uh � vh) ds= (uh(z)� w)�(f ;'z) + Z�N g'z ds�:Aording to (2.9) this gives (after a division by (1;'z) > 0)0 � (uh(z)� w)%h(z):A disussion of w 2 R under the restrition �h(z) � w yields the assertions.



A POSTERIORI FINITE ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS 73. A posteriori estimatesThe ombination of the next result with Lemma 2.4 provides a proof of (1.4).Theorem 3.1 (A posteriori estimate I). If w 2 H1(
) is suh that uh+w 2 K, i.e., wj�D =uD � uD;h and �� uh � w, thenje� wj1;2 + jej1;2 . minph2S1(T )d(kruh � phk+ kh1=2E (g � ph � n)k2;�N )+ kh2Trfk+ jwj1;2 + (%h;�� uh � w):Proof. Sine uh + w 2 K we have %(e� w) � 0, f. Remark 2.3. Moreover, %h � 0 � u� �almost everywhere in 
 by Lemma 2.6 so that (%h; u� �) � 0 and hene(%h; e� w)� %(e� w) � (%h; e� w) = (%h; u� �) + (%h;�� uh � w) � (%h;�� uh � w):Utilising this estimate and Lemma 2.1 in (2.10) we dedue the assertion.The following lemmas are needed to obtain other bounds for (%h; e� w).Lemma 3.1. Let z 2 N be either an interior point of 
 or suppose that eah open half-spae with boundary point z has a non-void intersetion with 
. Suppose T 2 T is suh thatz 2 !T and set ~
z := 
z [ !T . Let wh 2 S1(T ) satisfy wh(z) = 0 and 0 � wh on ~
z. Then,kwhk2;~
z . hz minqz2S1(T j~
z )d krwh � qzk2;~
z :(3.1)Proof. The left- and right-hand side of (3.1) de�ne semi-norms k � kl and k � kr, respetively,on S1(T j~
z). We laim that kwhkr = 0 implies kwhkl = 0 for all wh 2 S1(T ) with wh(z) =0 � whj~
z . Indeed, if rwh equals some qz 2 S1(T j~
z)d it is (T j~
z)-pieewise onstant andontinuous, whene wh is aÆne on ~
z. Sine wh(z) = 0 we obtain that wh(x) equals �n�(x�z)for all x 2 ~
z and some n 2 Rd ; jnj = 1, and some � 2 R. Let H := fy 2 Rd : m�(y�z) < 0ginterset with ~
z (H\~
z 6= ; is obvious for z 2 
 and assumed for z 2 Nn
). For x 2 H\~
z,0 � wh(x) = �n � (x� z) and m � (x� z) < 0:(3.2)For m = +n, (3.2) implies � � 0 and for m = �n, (3.2) yields 0 � �. Together, � = 0, i.e.,wh = 0 and so kwhkl = 0. Sine k � kl and k � kr are norms on the �nite-dimensional aÆnespae fwh 2 S1(T j~
z) : wh(z) = 0; 0 � whj~
zg, they are equivalent. The onstant C > 0 ink � kl � C k � kr depends on T j~
z . A saling argument onludes the proof.Remark 3.1. If z 2 N is a boundary point of 
 and fx 2 
 : jx � zj < "g is onvex forsome " > 0 then z does not satisfy the ondition of Lemma 3.1. Convex orners may yieldunexpeted diÆulties for higher approximation [NW℄.The next result shows that %h an be ontrolled by averaging terms.Lemma 3.2. We have, for T 2 T ,hTk%hk2;T . hTkfk2;!T + minqT2S1(T j!T )d�kruh � qTk2;!T + h1=2T k(g � qT � n)k2;�N\�!T �;h2T j%hj1;2;T . h2T jf j1;2;!T + minqT2S1(T j!T )d�kruh � qTk2;!T + h1=2T k(g � qT � n)k2;�N\�!T �:



8 S. BARTELS AND C. CARSTENSENProof. Set J�f := Pz2K(f ;'z)=(1;'z)  z and note that J�f is the �rst summand in thede�nition of %h in (2.9). We have kJ�fk2;T . kfk2;!T and jJ�f j1;2;T . jf j1;2;!T for T 2 T , f.[Ci, CV, CB℄. Note also that hdT . (1; 'z) . hdT and j zj1;2;T . hd=2�1T , k zk2;T . hd=2T for allT 2 T with T � 
z. Using this in (2.9) we deduek%hk2;T . kfk2;!T + Xz2K;T�
z h�d=2T j(ruh;r'z)� Z�N g'z dsj;j%hj1;2;T . jf j1;2;!T + Xz2K;T�
z h�d=2�1T j(ruh;r'z)� Z�N g'z dsj:(3.3)Let qT be an element of S1(T j!T )d. An elementwise inverse estimate showshzk divT (qT �ruh)k2;!T . kruh � qTk2;!T :This, an integration by parts, divTruh = 0, j'zj1;2 . hd=2�1z , k'zk . hd=2z , and noting thatfor z 2 T \ K there holds !z � !T lead to(ruh;r'z)� Z�N 'zqT � n ds = (ruh � qT ;r'z)� (divT qT ;'z) . hd=2�1T kruh � qTk2;!T :This, the fat that eah element T belongs to a �nite number of pathes 
z only, (3.3),and R�!T\�N 'z(g � qT � n) ds . hd=2�1z kh1=2z (g � qT � n)k2;�N\�!T onlude the proof of thelemma.De�nition 3.1. With eah T 2 Ti,Ti := fT 2 T : T \ �D = ;; 9x; y 2 K \ !T ; �h(x) = uh(x); �h(y) < uh(y)g;we assoiate some zT 2 K \ !T suh that �h(zT ) = uh(zT ) and set ~
zT := 
zT [ !T ,Ts := fT 2 T : 9K 2 Ti; T � ~
zKg; and 
s := [T2Ts T:Remark 3.2. For eah T 2 Ti we preferably hoose zT 2 
 (i.e., zT 62 �
 if possible). Thisallows us to impose the ondition of Lemma 3.1 in as few as possible nodes on the boundary.Remark 3.3. The region 
s may be regarded as a layer between the disrete ontat zoneand the disrete non-ontat zone.Lemma 3.3. Assume that for eah T 2 Ti for whih zT 2 K \ �N the intersetion of 
with any open half-spae with boundary point zT is non-void. For all w 2 H1(
) satisfyingwj�D = uD � uD;h and �� uh � w, we have(%h; e� w) . XT2TD hTk%hk2;T je� wj1;2;!T +XT2Ti minqz2S1(T j~
zT )d kr(�h � uh)� qzk22;~
zT+ XT2T nTD kh�1T (�� �h � w)�k22;T + XT 2T hTk%hk2;Tkh�1T (�� �h � w)�k2;T + kh2Tr%hk2:



A POSTERIORI FINITE ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS 9Proof. Sine (%h; e�w) =PT2T RT %h(e�w) dx we may estimate the ontribution from eahT 2 T separately. In the �rst ase we assume T 2 TD. Sine e � w = 0 on �D, Friedrihs'inequality implies ZT %h(e� w) dx . hT k%hk2;T je� wj1;2;!T :(3.4)In the seond ase we assume T 2 T , T \�D = ;, and �hj!T < uhj!T . Lemma 2.6 guarantees%hjT = 0 and so ZT %h(e� w) dx = 0:(3.5)In the third ase we assume T 2 Ti and so there exist y; zT 2 K \ !T suh that �h(zT ) =uh(zT ) and �h(y) < uh(y). The onditions of Lemma 3.1 are satis�ed for zT by assumption.Sine �h � uh, � � u,(�� �h � w)� + �h � uh � (�� uh � w)� � e� w:Beause of %h � 0, this leads toZT %h(e� w) dx � ZT %h(�� �h � w)� dx+ ZT %h(�h � uh) dx:(3.6)Owing to Lemma 2.6 we have %h(y) = 0 and so k%hk2;T . hT j%hj1;2;!T by a disrete Friedrihs'inequality. This, (3.6), and Lemma 3.1 showZT %h(e� w) dx . h2T j%hj1;2;!T� �kh�1T (�� �h � w)�k2;T + minqz2S1(T j~
zT )d kr(�h � uh)� qzk2;~
zT �:(3.7)In the remaining fourth ase we assume T 2 T and obtain with (3.6)ZT %h(e� w) dx . hTk%hk2;Tkh�1T (�� �h � w)�k2;T :(3.8)The summation of (3.4), (3.5), (3.7), and (3.8) veri�es the assertion.The ombination of the next result with Lemma 2.4 provides the proof of (1.7) and sospei�es to the reliability of all averaging tehniques for aÆne obstales.Theorem 3.2 (A posteriori estimate II). Assume that for eah T 2 Ti suh that zT 2 K \�N the intersetion of 
 with any open half-spae with boundary point zT is non-void. Forall w 2 H1(
) satisfying wj�D = uD � uD;h and �� uh � w, we haveje�wj1;2+jej1;2 . minph2S1(T )d(kruh�phk+kh1=2E (g�ph�n)k2;�N )+ minqh2S1(Ts)d kr(�h�uh)�qhk2;
s+ �XT2T kfk2;!T k(�� �h � w)�k2;T�1=2 + jwj1;2 + kh2Trfk+ � XT2T nTD kh�1T (�� �h � w)�k22;T �1=2 + �XT2TD h2Tkfk22;!T �1=2:



10 S. BARTELS AND C. CARSTENSENProof. As in the proof of Theorem 3.1 we haveje� wj1;2 + jej1;2 . minph2S1(T )d(kruh � phk+ kh1=2E (g � ph � n)k2;�N )+ kh2Trfk+ jwj1;2 + (%h; e� w):Employing Lemma 3.3 and absorbing je� wj1;2 we have(3.9) je� wj21;2 + jej21;2 . minph2S1(T )d(kruh � phk+ kh1=2E (g � ph � n)k2;�N )2 + kh2Trfk2+ jwj21;2 + kh2Tr%hk2 + XT2TD h2Tk%hk22;T + XT2T nTD kh�1T (�� �h � w)�k22;T+ XT 2Ti minqz2S1(T j~
zT )d kr(�h � uh)� qzk22;~
zT + XT 2T hTk%hk2;Tkh�1T (�� �h � w)�k2;T :Lemma 3.2 shows(3.10) kh2Tr%hk2 + XT2TD h2Tk%hk22;T + XT 2T hTk%hk2;Tkh�1T (�� �h � w)�k2;T. kh2Trfk2 +XT2T minqT2S1(T j!T )d�kruh � qTk2;!T + h1=2T k(g � qT � n)k2;�N\�!T �2+ XT2T nTD kh�1T (�� �h � w)�k22;T + XT2T khTfk2;!T kh�1T (�� �h � w)�k+ XT2TD h2Tkfk22;!T :Let ~ph 2 S1(T )d denote the minimiser ofminph2S1(T )d(kruh � phk+ kh1=2E (g � ph � n)k2;�N ):Sine ~phj!T 2 S1(T j!T )d for all T 2 T and sine the pathes !T have a �nite overlap we haveXT2T minqT2S1(T j!T )d�kruh � qTk2;!T + h1=2T k(g � qT � n)k2;�N\�!T �2. minph2S1(T )d�kruh � phk+ kh1=2E (g � ph � n)k2;�N �2:(3.11)A similar argument and the de�nition of Ts showXT 2Ti minqz2S1(T j~
zT )d kr(�h � uh)� qzk22;~
zT . minqh2S1(Ts)d kr(�h � uh)� qhk22;
s:(3.12)The ombination of (3.9)-(3.12) proves the theorem.Remark 3.4. Two appliations of the triangle inequality indiate eÆieny of the error esti-mate of Theorem 3.2 in ase �h = �,minph2S1(T )d(kruh�phk+kh1=2E (g�ph�n)k2;�N )+ minqh2S1(Ts)d kr(uh��h)�qhk2;
s � jej1;2+jej1;2;
s+j���hj1;2;
s+2 minph2S1(T )d(kru�phk+kh1=2E (g�ph�n)k2;�N )+ minqh2S1(Ts)d kr��qhk2;
s:



A POSTERIORI FINITE ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS 114. Numerial Realisation via PenalisationIn the examples presented in the subsequent setion we have �h = �, �N = ;, �j�D � uD;h,and f 2 H2(
). Then the error estimate of Theorem 3.2 redues tojej1;2 . minph2S1(T )d kruh � phk+ minqh2S1(Ts)d kr(uh � �h)� qhk2;
s + h.o.t.;(4.1)where h.o.t. denotes higher order ontributions. In the numerial experiments we do notompute the minima in (4.1) but alulate an upper bound for the �rst two terms by applyingthe operator A : L2(
)2 ! S1N(T ; g) and B : L2(
)2 ! S1(T )2 of [CB℄, de�ned for p 2L2(
)2 and �N = ; by Ap = Bp :=Xz2N pz'z(4.2)with pz := 1j!zj R!z p dx 2 R2 for z 2 N ; i.e., we alulatekruh �Aruhk+ kr(uh � �h)� Br(uh � �h)k2;
s:We refer to [CB℄ for a de�nition of A in ase �N 6= ; where g � (Aruh) � n vanishes at allnodes z 2 N \ �N .Our numerial approximations are obtained utilising a penalisation method whih reads:Given " > 0, seek u" 2 fv 2 H1(
) : v = uD on �Dg suh that(ru";rv) = (f ; v) + Z�N gv ds� 1"((u" � �)�; v) for all v 2 H1D(
).(4.3)It is not diÆult to show that (4.3) has a unique solution u" 2 H1(
) with u" = uD on �D.Moreover, if the solution u of problem (1.1) satis�es u 2 H2(
) we haveju� u"j1;2 � "1=2kf +�uk:The disrete version of (4.3) reads: Given " > 0, seek u";h 2 fvh 2 S1(T ) : vh = uD;h on �Dgsuh that(ru";h;rvh) = (f ; vh) + Z�N gvh ds� 1"((u";h � �h)�; vh) for all vh 2 S1D(T ).(4.4)We solved the nonlinear equation (4.4) with a Newton-Raphston sheme (without damping).The implementation was performed in Matlab in the spirit of [ACF℄ with a diret solutionof linear systems of equations.We stress that we do not solve (1.2) but rather an approximation to it and we use thepenalisation (4.3) even if we know u 62 H2(
).The following adaptive algorithm generates all the sequenes of meshes T0; T1; T2; ::: in thispaper whih are uniform for � = 0 or adapted for � = 1=2 in (4.5). For details on thered-blue-green-re�nements in the algorithm we refer to [V℄.



12 S. BARTELS AND C. CARSTENSENAlgorithm (A�). (a) Start with a oarse mesh T0, k = 0.(b) Set " := 1=N where N is the number of degrees of freedom of the triangulation Tk andompute the disrete solution u";h of (4.4) on the atual mesh Tk.() De�ne M := fz 2 K : u";h � �h(z); 9T 2 Tk 9y 2 N \ T; �h(y) < u";h(y)g;Ts;" := fT 2 Tk : 9z 2 M; T � !zg:For T 2 Tk ompute the re�nement indiator�Z;T := � kru";h �Aru";hk2;T if T 62 Ts;";12�kru";h �Aru";hk2;T + kr(u";h � �h)� Br(u";h � �h)k2;T� if T 2 Ts;";for the energy error eN := kr(u�u";h)k2;
 and ompute its estimator �N := �PT2T �2Z;T�1=2.(d) Mark the element T for red-re�nement provided�Z;T � � maxT 02Tk �Z;T 0:(4.5)(e) Mark further elements (red{blue{green-re�nement) to avoid hanging nodes and generatea new triangulation Tk+1. Update k and go to (b).Remarks 4.1. (i) Note that the disrete ontat zone is fx 2 
 : u";h(x) � �h(x)g andu";h(x) < �h(x) an our for some x 2 
.(ii) For simpliity, we only omputed an approximation Ts;" of Ts.(iii) Sine we only onsider lowest order methods with optimal onvergene rate O(h) thehoie " = 1=N is motivated by 1=N / h2 in two dimensions.(iv) The hoie of the fators in the de�nition of �Z;T is motivated by the eÆieny estimateof Remark 3.4. 5. Numerial ExperimentsThe theoretial results of this paper are supported by numerial experiments. In this setion,we report on four examples of problem (1.1) on uniform and adapted meshes.5.1. Example with smooth rotational symmetri solution [LLT℄. Let f := �2 on
 := (�3=2; 3=2)2 and uD(x; y) := r2=2� ln(r)�1=2 where r := (x2+y2)1=2 on the Dirihletboundary �D := �
. For �h = � := 0 the exat solution of problem (1.1) then readsu(x; y) = � r2=2� ln(r)� 1=2 if r � 1;0 otherwise:Note that u 2 H2(
). In our numerial experiments the oarse triangulation T0 of Fig. 1onsists of 16 squares halved along a diagonal.The left plot in Fig. 1 shows a sequene of triangulations generated by Algorithm (A1=2). Thealgorithm re�nes the mesh in the omplement of the ontat zone f(x; y) 2 
 : x2 + y2 � 1gin whih the solution vanishes. The approximate disrete ontat zone fT 2 Tk : u";h(xT ) ��h(xT )g, where xT denotes the enter of a triangle T , is plotted in white while its omplementis shaded (we hose this olor sine in most of the examples the omplement of the ontatzone is re�ned and appears darker). The right plot of Fig. 1 displays the solution u";h



A POSTERIORI FINITE ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS 13on the adaptively generated mesh T8 with 865 degrees of freedom. In Fig. 2 we plottedthe error and its estimator versus the degrees of freedom for uniform and adaptive meshre�nement. A logarithmi saling used for both axes allows a slope �� to be interpretedas an experimental onvergene rate 2� (owing to h / N�2 in two dimensions). We obtainexperimental onvergene rates 1 for both re�nement strategies. The error on the adaptivelyre�ned meshes is however smaller than the error on uniform meshes at omparable numbersof degrees of freedoms. The plot shows that �N serves as a very aurate approximate of theerror eN : The entries (N; eN) and (N; �N) almost oinide.
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Figure 1. Adaptively re�ned meshes T0 (left upper) to T8 (right lower) (left)with approximate disrete ontat zone shown in white and solution u";h onT8 with 865 free nodes (right) in Example 5.1.5.2. Example with orner singularity. Using polar oordinates (r; ') on the L-shapeddomain 
 := (�2; 2)2 n [0; 2℄ � [�2; 0℄, uD := 0 on �D := �
, �h = � := 0, let f(r; ') :=�r2=3 sin(2'=3)�01(r)=r + 001 (r)�� 43r�1=301(r) sin(2'=3)� 2(r) where,1(r) := 8<: 1 if r < 0;�6r5 + 15r4 � 10r3 + 1 if 0 � r < 1;0 if 1 � r; for r := 2(r � 1=4);and 2(r) := 0 if r � 5=4 and 2(r) := 1 otherwise. The exat solution of (1.1) is then givenby u(r; ') := r2=3 1(r) sin(2'=3) and has a typial orner singularity at the origin. Theoarsest triangulation T0 of Fig. 3 onsists of 48 halved squares.The sequene of triangulations generated by Algorithm (A1=2) in Example 5.2 and displayedin the left plot of Fig. 3 shows a re�nement towards the origin where the solution has asingularity in the gradient and a re�nement in the region f(x; y) 2 
 : 1=4 � (x2 + y2)1=2 �3=4g where the solution has big gradients. This behavior an also be seen in the right plotof Fig. 3 where we plotted the numerial solution u";h on triangulation T8 with 726 degreesof freedom. Fig. 4 shows that the adaptive Algorithm (A1=2) improves the experimental
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Figure 2. Error and error estimator for uniform and adaptive mesh{re�nement in Example 5.1.onvergene rate about 0:9 for uniform mesh-re�nement to the optimal value 1. Note thatfor uniform mesh-re�nement we expet an asymptoti onvergene rate 2=3 due to the ornersingularity. The error in the region where u has a large gradient seems to dominate in thispreasymptoti range with N � 105. Again, the entries for �N and eN almost oinide andthis behavior improves for inreasing numbers of degrees of freedom.5.3. First problem from elastoplasti torsion [R℄. Let f := 1 on 
 := (�1; 1)2, uD := 0on �D := �
, �N := ;, and �(x; y) := dist((x; y); �
). In this example the exat solutionof (1.1) is not known and annot be expeted to be smooth sine � 62 H2(
). The oarsesttriangulation T0 of Fig. 5 onsists of 64 elements with �h = � on T0.This example is di�erent from Examples 5.1 and 5.2 in the sense that the solution and theobstale are non-smooth along the lines f(x; y) 2 
 : x = y or x = 1 � yg of the ontatzone. Algorithm (A1=2) re�nes the mesh towards these lines as an be seen in the left andright plot of Fig. 5. Moreover, the approximate disrete ontat zone redues to these lines.Using Algorithm (A1=2) the experimental onvergene rate 0:5 for Algorithm (A0) improvesto the optimal value 1 for the error estimator at least in Fig 6.5.4. Seond problem from elastoplasti torsion [LLT℄. Let f := �3 on 
 := (�1; 1)2,uD := 0 on �D := �
, �N := ;, and �h(x; y) = �(x; y) := � dist((x; y); �
). As in theprevious example the solution is not known. The oarsest triangulation T0 is the same as inExample 5.3.This example underlines the eÆieny of our estimator and its robustness with respet tonon-smoothness of the obstale. The obstale is non-smooth along the lines f(x; y) 2 
 :
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Figure 3. Adaptively re�ned meshes T0 (left upper) to T8 (right lower) (left)with approximate disrete ontat zone shown in white and solution u";h onT8 with 726 free nodes (right) in Example 5.2.
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Figure 5. Adaptively re�ned meshes T0 (left upper) to T8 (right lower) (left)with approximate disrete ontat zone shown in white and solution u";h onT8 with 2541 free nodes (right) in Example 5.3.
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Figure 6. Error estimator for uniform and adaptive mesh{re�nement inExample 5.3.obstale do not seem to play a speial role in the re�nement. The experimental onvergenerate of the error estimator for uniform mesh-re�nement equals one and this an be seen as
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). The adaptive Algorithm (A1=2) leads to smaller errors thanAlgorithm (A0), f. Fig. 8, and shows also the optimal experimental onvergene rate 1.To illustrate that the term minqh2S1(Ts)d kr(uh � �h) � qhk2;
s should not be oarsened tominqh2S1(T )d kr(uh � �h)� qhk of (1.7) we ompared �N with the error estimator �N;,2�N; := kru";h �Aru";hk+ kr(u";h � �h)� Br(u";h � �h)k:As an be seen in Fig. 8 this error estimator leads to worse experimental onvergene ratesfor uniform and adaptive mesh-re�nement.
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Figure 7. Adaptively re�ned meshes T0 (left upper) to T8 (right lower) (left)with approximate disrete ontat zone plotted in white and solution u";h onT8 with 1429 free nodes (right) in Example 5.4.5.5. Remarks. (i) The numerial results for Examples 5.1-5.4 show that the adaptive Al-gorithm (A1=2) yields signi�ant error redution.(ii) The error estimate performed extremely aurate although we only omputed an approx-imation u";h to uh.(iii) As an initial funtion for the Newton sheme we used �h on T0 for the �rst mesh andsuessively the prolongation to Tk+1 of the solution u";h on Tk for subsequent re�nementlevels (nested iteration). We stopped the iteration proess when the Eulidean norm of theoeÆient vetor of the residual rh of (4.4) satis�ed jrhj � 10�12. In the above examples,the sheme onverged after at most ten iteration steps.(iv) The meshes generated by Algorithm (A�) show loal symmetries. A similar error esti-mator as �N designed for seond order partial di�erential equations performed well also onrandomly perturbed meshes without any symmetry [CB, BC℄.(v) The error estimator is reliable and eÆient in Examples 5.1, 5.2, and 5.4. It is reliable(but possibly not eÆient) in Example 5.3 owing to non-smoothness of the obstale.
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