AVERAGING TECHNIQUES YIELD RELIABLE A POSTERIORI FINITE
ELEMENT ERROR CONTROL FOR OBSTACLE PROBLEMS

S. BARTELS AND C. CARSTENSEN

ABSTRACT. The reliability of frequently applied averaging techniques for a posteriori error
control has recently been established for a series of finite element methods in the context
of second-order partial differential equations. This paper establishes related reliable and
efficient a posteriori error estimates for the energy-norm error of an obstacle problem on
unstructured grids as a model example for variational inequalities. The surprising main
result asserts that the distance of the piecewise constant discrete gradient to any continuous
piecewise affine approximation is a reliable upper error bound up to known higher order
terms, consistency terms, and a multiplicative constant.

1. INTRODUCTION

While a posteriori error control and adaptive mesh design is well established for (elliptic)
partial differential equations [AO, BSt, EEHJ, V], their exploitation for variational inequali-
ties started very recently [BSu, CN, LLT, V1, V2|. Amongst the a posteriori error estimation
techniques are averaging schemes firstly justified by super-convergence properties on struc-
tured grids with symmetry properties. Their recent justification on unstructured grids in
[BC, CA, CB, CF1, CF2, CF3, CF4, CF5] raises the question: How can averaging techniques
be possibly reliable (i.e., be guaranteed upper bounds) for variational inequalities?

Our mathematical investigations recast this question into the design of a weak approximation
operator that is compatible with the obstacle conditions and still enjoys local orthogonality
properties to generate higher order terms. Utilising the operator J from [Ca] and its dual J*
this paper provides an affirmative answer for a simple obstacle problem with affine obstacle
and studies the nonconforming case.

Given a bounded Lipschitz domain Qin RY, d = 2,3, f € H'(Q), g € H'(T'x), up € HY(Tp),
and y € H'(Q2) such that the closed and convex subset

K :={ve H(Q):v=uponT'p, x <valmost everywhere in Q}
of H'(2) is non-void, the obstacle problem under question reads: Seek u € K such that

(1.1) (Vu; V(u—v)) < (fiu—wv)+ / g(u—wv)ds forallve K.

Jrn

Here, (+;-) denotes the L?-product and I'p is a closed subset of T’ := 9 with positive surface
measure; ['y := I'\I'p. It is known [R, GLT, K] that (1.1) has a unique solution. The finite
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element approximation employs a (closed and convex) discrete set K, (i.e., a subset of a
finite-dimensional subspace of H'(Q)) and reads: Seek u;, € K} such that

(1.2) (Vup; V(up —vp)) < (f;un — op) +/ g(up —wvp)ds for all v, € K.

I'n
There exists a unique discrete solution u;, whose error e := u — uy, is in some sense quasi-
optimally small; we refer to [F, N| for a priori error estimates and focus on a posteriori
estimates in this paper. The choice

(1.3) Ky = {v, € 8"(T) : vy, = upy, on Tp, x5 < vy, almost everywhere in Q}

can model a conforming (i.e., K; C K) or non-conforming (i.e., K, ¢ K) discretisation.
Here, S'(T) is the P,-finite element space defined through a regular triangulation 7 of
into triangles and tetrahedra if d = 2 and d = 3, respectively, [BSc, Ci]; x, € S'(T) is an
approximation to x, up, € 8'(T)|r, is an approximation to up and we assume K, # ().

Our first result employs [BC, CB, Ca, CV] and standard estimates for the proof of
(14)  [V(u—un)|| S 0z + (on; x — un — w) + [V + |2V f]| + |hY e g/0s| 120 ).

Here, || - || denotes the L?(Q)-norm, “<” substitutes “< up to a multiplicative mesh-size-
independent constant”, w is arbitrary in H'(Q) with uy+w € K, w|r, = up —up vanishes
at nodes on I'p, o5 is a known discrete residual, hy and he are local mesh sizes, and

(1.5) Nz = min{|lpy — Vup|| : pn € S(T)%, pp-n=gon NNTy};

where n denotes the outer unit normal on 'y and N is the set of nodes in T (p, - n
interpolates ¢ at all nodes on T'y). Consistency is included in the arbitrary choice of w to
assess the error in K;, # K and upj # up; in the absence of contact near the boundary,
with (-)4 := max{-,0},

(L.6) IVwll S 0202 /95 12wy + 1V (¢ — )

The estimate (1.4) can be recommended for practical error control since (gp; X — up — w)
can be evaluated. Closer investigations reveal that this term can indeed be replaced by
consistency, averaging, and higher order terms. Our main result is a refined version of

IV(u—un)| Snz+ min gy — V(xa — un)l| + |Vl + [R5V f]| + |h7 fl 22 0720)
(1_7) qreSY(T)?
+||hz/2359/85||h2(m) + ||h}] (X — xn —w)_|[ + ([N — xn — w),||)1/2

where (-)_ := min{-,0}. The term ||hsf| 12(u7y) is the L*-norm over the shrinking domain
UTp, a union of a few layers of elements near I'p; e.g., if f € L>(2) we have ||hrf||r27,) S

| fllzoe @) |PE || 72(rpp) and see that this term is of higher order. In case x = x;, and no contact
near the boundary, the estimate reduces to
(1.8) IV(u—wup)l| Snz+ min g — V(xn — up)|| + h.o.t.

eSL(T)?
(h.o.t. denotes higher order terms). The finer estimate of Theorem 3.2 refines (1.7)-(1.8) in
the substitution of ||g, — V(xn — us)||22(q) by the refined norm ||gn — V(xn — us)||r2(q,) on
a smaller computable region €, around the free boundary of the contact zone. Numerical
examples convinced us that this refinement is necessary for efficient approximation and error
control.
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If the obstacle x = xj; is globally affine, Vx, = A is constant and ¢, = p, + A in (1.8)
provides

(1.9) IV (u—up)|| < nz+ ho.t.

Hence, the averaging estimator 7, (from the variational equality) is indeed reliable for the
obstacle problem up to a multiplicative constant and up to known higher order terms. It
is stressed that the averaging estimator 7y is efficient; the proof is provided by a triangle
inequality

(1.10) nz < ||V (up —u)|| +min{||Vu — pu|| : pp € S (T)% pr-n=gon NNTy};
in case wu is sufficiently smooth, the minimum in the right-hand side is of higher order.

It appears to us that the reliability of averaging techniques is always related to smooth data
(up, g, and f) and hence rough obstacles might be excluded from the assumptions; this is seen
in our analysis by consistency terms which are not always of higher order and may dominate
the error estimate. Consequently, this paper does not focus on coarse approximation of rough
data.

The rest of this paper is organised as follows. Preliminaries and notation is introduced in
Section 2 where we recall a few results and state some basic estimates. Section 3 is devoted to
the a posteriori error estimates and their proofs. Section 4 outlines the numerical realisation
with a penalty scheme we employed. Section 5 reports on four examples where the estimate
of the error in the energy norm is extremely accurate.

2. PRELIMINARIES

Throughout this paper, u € K solves (1.1) and u;, € K} solves (1.2). The aim is to prove
reliability and efficiency of the aforementioned estimators. We let HL(Q) := {v € H'(Q) :
v=0on T'p} and define S,(T) := SY(T) N H,H(Q).

Let (¢, : 2 € N) be the nodal basis of S'(T). Note that (¢, : 2 € ) is a partition of unity
and the open patches

(2.1) w, ={reN:0< ¢, (x)}
form an open cover (w, : z € N') of  with finite overlap.

Let K := A\ T'p denote the set of free nodes and let £ denote the set of all edges (d = 2) or
faces (d = 3) appearing for some T in 7. In order to define a weak interpolation operator
J: HL(Q) — S,H(T) we modify (p, : z € K) to a partition of unity (¢, : 2 € K). For each
fixed node z € N\ K, we choose a neighboring node ((z) € K and let {(z) := z if z € K. In
this way, we define a partition of N into card(K) classes I(z) :={Z € N : ((2) = 2z}, z € K.
For each z € K set

(2.2) ), = Z wc and Q,:={reQ:0<,(x)}
Cel(z)

and notice that (¢, : 2 € K) is a partition of unity. It is required that €, is connected and
that i, # ¢, implies that ['p N OS2, has a positive surface measure.
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For g € L'(Q2) define
(2.3) Jg:=Y g.0. € SH(T) where g.:=(g;.)/(1;0.) €R

z2eK

The local mesh-sizes are denoted by hy and hg where hy € L£°(T) denotes the element size,
hy|p := hyp := diam(T') for T' € T, and the edge size hg € L*°(UE) is defined on the union or
skeleton UE of all edges E in £ by hg|p := hg := diam(E). The patch size h, := diam(£2,)
is defined for each node z € K separately. For z € N'\ K set h, := diam(w,) and for '€ T
let wy := U.erna€(z)- Note that the sets of patches (wyp: T € T) and (€2, : z € K) have a
finite overlap.

In the following we write || - ||, 4 instead of || - ||;»(4) and || - || abbreviates || - [|2,o. Similarly,
we denote by |+ 19,4 := ||V - |24 the semi-norm in H'(A) and | - |, abbreviates | - |; 2.0
Theorem 2.1 ([Ca, Cl, CV, CB]). The operator J is H'-stable and first-order convergent,
1.€.,
(2.4) lhr' (g = T + lIhe (9 = Tg)llory + 19 = Tghs S lgls
for g € H},(Q)). Moreover, for f € L*(2), there holds
: 1/2

(25 (f:9 - J9) S lgha (X Mmin[lf — £[30.)"" =

zeK :

Lemma 2.1. We have, for all v € Hj(Q),
(f;v—Jv) +/ g(v— Jv)dr — (Vup; V(v — Jv))
'y

Slohe min  (IVun—pall + 1 (9 = pr - 1) oy + W7V F]).
PhES!(T)

Proof. The lemma is, at least implicitly, included in [CB] (and also in [BC, CF1, CF2, CF3,
CF4]) and so we merely sketch its proof. From (2.5) we have by Poincaré’s inequality
(fiv— Ju) S ol ol BV .

An integration by parts of —(p,; V(v — Jv)) and utilising that divyVu, = 0 reveals that the
last two terms in the left-hand side of the asserted inequality equal

/ (9 —pn-n)(v—Jv)ds+ (pn — Vup; V(v — Jv)) + (divy(pn — Vug); v — Jov)
(2.6) JIw

< foliz (1029 = i - )y + lpn = Vun| + [|h7 divy (s — Vun)|)

by (2.4) and Cauchy inequalities. This and a T-elementwise inverse estimate of the form
he|| divy(pn — Vug)|lor S llpn — V|2 conclude the proof. O

Lemma 2.2 ([BCD]). Assume up € H'(Tp) N C(Tp), up|r € H*(E) for all E € £ such
that E C I'p, and let 8271,;)/852 denote the edgewise second derivative of up along T'p.
Suppose up p is the nodal interpolant of up, i.e., upp(z) = up(z) for allz € NNTp. Then
there exists wp € H'(Q) such that wp|r, = up — upp, suppwp C UTeT,TmrDﬂ, T,

(2.7) [wplleo = lup — wppllory, and |wplia S |hY*02un/dsar,. [
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Definition 2.1. Define
TD = {TETTQFD7A@} and 722: {TGT\TD . (thuh)‘T:O}.

The following lemma shows (1.6) and estimates the terms which include w in (1.7).

Lemma 2.3. Suppose that up satisfies the conditions of Lemma 2.2, that x|r,, < upn, and
that (x —up)- < wp in |JTp with wp from Lemma 2.2. Then we have

wer%g(lsz) whio S 102 Fun /05 |ary, + (X — un)sha  and
up+weK

min (jwf,+ D Ik (= x0 = w)-lEr+ 3 Il 0 = X0 = )|l
Zfﬂué[() TeT\Tp TeT.

S 02up /05?31, + [(x—un)+ o+ D IIhr" (x = x)- 34
TeT\Tp
+ > I o N0 = x8) - llor
TeT.

Proof. Set w := (x —up)++wp and notice up, +w € K. Then |w|i o < |(x —un)+|12+|wpli 2.
Utilising wp|r = 0 and x, < uy, on each T'€ T \ Tp we have on each T € T\ Tp

1O¢ = xn = w) o = [10¢ = xn = O = wn) ) -z < 1[Ox = xa) 27

Then, Lemma 2.2 proves the assertions.

Remark 2.1. Since ||wpllew = ||lup — upp|ler, by Lemma 2.2, the assumption (x — up)- <
—|lup —upplloor, in |JTp implies (x — up)- < wp in Y Th.

Lemma 2.4 ([BC, CB)). Let g|p € HY(E)YNC(E) for all E € € such that E C Ty and, for
each node z € N NTnx where the outer unit normal n on Ty is continuous (hence constant
in a neighbourhood of z as Ty is a polygon), let g be continuous. Assume that the set

SN(T.9) = {ph € S"(T)":VE€E.2€ ECTy, pu(2) -np = g(2)}

is non-void. Then (Ogg/ds denotes the edgewise surface gradient of g on Ty )

min Vu, — + hl/Q — o n )
min (I = pall + 110 = pr - ),

< min  ||Vu, — gl + ||hg/2859/88||2,]“]v. O
Qh,es}v(Tﬂg)

Remark 2.2. For d = 2 the conditions on ¢ in Lemma 2.4 suffice for S} (T, g) # 0 [CB|.
Definition 2.2. Define g € (H},(Q2))* and o, € S'(T), for v € H,(Q), by

(2.8) o(v) = (f;v)—i—/r guvds — (Vu; Vo),

(2.9) on = Z((.f;soz)+/

zeK Jr

gp. ds — (Vuh; VQOZ))M)Z/(I @z)
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Remark 2.3. Note that 0 < p(e — w) for w € H'(Q) satisfying w|r, = up — upy and
X — up < w (since up +w € K). If uy, € K we may choose w = 0. If not, let, e.g., Pxuy
be the projection of u, onto K with respect to |- |12 and w := Pguj, — uj, minimises |w|; »
among all w with u, +w € K.

Lemma 2.5. We have, for all w € H' () satisfying w|r, = up — up,
1 1
Lo —wlt s alelty = (Fre = w — (e =) = (Vui Ve = w— J(e — )

(2.10) .
+ / gle —w—J(e—w))ds+ i\wﬁg + (on; e —w) — o(e — w).
Jry

Proof. Note that e — w € Hj (). The definition of J(e — w) yields, e.g.,
> (Y V) (e — w)/(1;0.) = (Vup: V(e — w))

zeK
and eventually leads to
(on;e —w) = (f;J(e —w)) — (Vup; VJ(e —w)) + / gJ (e — w)ds.
I'n
This and some elementary calculations show

ole —w) — (op;e—w)=(fre—w—Je—w +/r gle —w—J(e—w))ds

N

— (Vu; V(e —w)) + (Vup; V(e —w)) = (f;e —w— J(e — w))
+/r gle—w—Je—w))ds— (Ve; V(e —w)) — (Vup; V(e —w — J(e — w))).
Since 2(Ve; V(e — w)) = [e — w5 + |e[T, — |w]} 5 we deduce (2.10). O

Our motivation for the definition of g, is that its nodal values reflect Kuhn-Tucker conditions.

Lemma 2.6. We have g, < 0 < uy — x5, almost everywhere in Q) and, for z € IC,
on(2)(Xn(2) — un(2)) = 0.

Proof. Given z € K and a real number w define v, € S'(T) by vj,(2) := w and v, (¢) = up(¢)
for ¢ € N\{z}. If xx(2) < w we have v, € K}, and calculate with (1.2)

(un(2) — w)(Vun; Vo,) = (Vup; V(up —vp)) < (fsun —vn) + / g(up — vp) ds

JTy

— () w)(fip) + [ geuds),

'y

According to (2.9) this gives (after a division by (1;¢,) > 0)
0 < (up(z) — w)on(2).

A discussion of w € R under the restriction x,(z) < w yields the assertions. O
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3. A POSTERIORI ESTIMATES

The combination of the next result with Lemma 2.4 provides a proof of (1.4).

Theorem 3.1 (A posteriori estimate I). Ifw € H'(Q) is such that uy+w € K, i.e., wlp, =
up —upp and x —up, < w, then

S min (19 = pall+ 18 (g = pn - m)llary)
pPr€

(on; X — up — w).

Proof. Since u, +w € K we have g(e — w) > 0, c¢f. Remark 2.3. Moreover, g, <0 <u — x
almost everywhere in Q by Lemma 2.6 so that (gn;u — x) < 0 and hence
(onie —w) —o(e —w) < (onie —w) = (on;u = X) + (0n; X — un — w) < (op; X — up — w).

Utilising this estimate and Lemma 2.1 in (2.10) we deduce the assertion. O

The following lemmas are needed to obtain other bounds for (gn;e — w).

Lemma 3.1. Let z € N be either an interior point of € or suppose that each open half-
space with bmmdary point z has a non-void intersection with €. Suppose T' € T is such that
2 € Wy and set Q, == Q, Uwy. Let wy, € S'(T) satisfy wyp(z) = 0 and 0 < wy, on Q. Then,

< ; _ .
(3.1) lwallag, S he el IVwn = a:ll50, -

Proof. The left- and right-hand side of (3.1) define semi-norms || - ||, and || - ||, respectively,
on §'(Tlg.). We claim that |lwy||, = 0 implies [Jw, |, = 0 for all w), € S'(T) with w,(z) =
6. Indeed, if Vw, equals some ¢, € §'(Tlq_ )? it is (T g )-piecewise constant and

continuous, whence wy, is affine on Q,. Since wy(z) = 0 we obtain that wy(z) equals o n-(z—2)
forall z € Q, and some n € R?, |n| =1, and some o € R. Let H := {y € R* : m-(y—2) < 0}
intersect with Q, (HNQ, # 0 is obvious for z €  and assumed for z € N'\Q). Forz € HNQ,,
(3.2) 0<wp(z)=an-(xr—2)and m-(x —2z) <O0.

For m = +n, (3.2) implies @ < 0 and for m = —n, (3.2) yields 0 < a. Together, a = 0, i.e.,
wp, = 0 and so ||wy||; = 0. Since || - ||; and || - ||, are norms on the finite-dimensional affine
space {wy, € §'(Tlg,) : wa(z) = 0,0 < wylg. }, they are equivalent. The constant C' > 0 in
| -1 < C| ||+ depends on Tg_. A scaling argument concludes the proof. O

Remark 3.1. If z € N is a boundary point of  and {z € Q : |x — z| < £} is convex for
some £ > 0 then 2z does not satisfy the condition of Lemma 3.1. Convex corners may yield
unexpected difficulties for higher approximation [NW].

The next result shows that g, can be controlled by averaging terms.
Lemma 3.2. We have, for T € T,
hllonllor S bl Fllawe + min (IVun = grllaw, + hi*ll(g = gz - 1) ll2.r o),
q

TESI(T‘wT)d
hilonligr S hlflizw, +  min ([[Vuy — @rl2w, + hy2 (g — gr - n)|2,0wnowr ) -
qreSY (T|wp)?
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Proof. Set J*f = 3", . (fi¢.)/(1;¢.) 9, and note that J*f is the first summand in the
definition of g, in (2.9). We have ||J*f|lo.7 S || fllowy and | J*f S owy for T 6 T, cf.
[Ci, CV, CBJ. Note also that hl. < (1,¢,) < bl and |, ]127 < h,i/Q Nbeller S h ? for all
T € T with T C Q,. Using this in (2.9) we deduce

lonlbir S I Fllwr + S b |(Vun Vig.) — / g0. ds,

(3.3) 2eK,TCA, I'n
ohor S e+ 3 1T Vo)~ [ gpudsl
2eK,TCA. I'n

Let qr be an element of S'(7T,,)¢. An elementwise inverse estimate shows
ho|l divr(gr = Vun) |20, S Vun = grll20,-

This, an integration by parts, divyVu, = 0, |@,]12 < hg/%l, el < hZ/Q, and noting that
for z € T'N I there holds w, C wy lead to

(Vun; Vop,) — / w.qr - nds = (Vuy, — qr; Vo,) — (divrgr; 0.) <0 [Vun — grlow,-

JTy

This, the fact that each element T belongs to a finite number of patches Q. only, (3.3),
and faanrN 0.(g —qr-n)ds < p! ||h,l/2(g — qr - n)||2.,rynowy conclude the proof of the
lemma. O

Definition 3.1. With each T € T,
T={TeT :TNTp=073yeKknwr yi(z)=uz),xa(y) < unly)},

we associate some zp € K Nwy such that y,(z7) = up(zr) and set QZT = Q,, Uwyp,

T, ={TeT:3KeT,TCQ,}, ad Q:=|JT
TeTs

Remark 3.2. For each T € 7T; we preferably choose zp € Q (i.e., zp ¢ 082 if possible). This
allows us to impose the condition of Lemma 3.1 in as few as possible nodes on the boundary.

Remark 3.3. The region {2y may be regarded as a layer between the discrete contact zone
and the discrete non-contact zone.

Lemma 3.3. Assume that for each T € T, for which zp € K N Ty the intersection of €2
with any open half-space with boundary point zp is non-void. For all w € H'(Q) satisfying
wlr, =up —upy and x —up < w, we have

(on;e — Z bl on

TeTp

+ > g (x = xn —w) |3+ Zhﬂmhllamllh% (X — xn — w) o7 + [[P7V ou|*.
TeT\Tn TeTe

w|1 2.0 T Z ESFI;'\H ||V(Xh - Uh,) - q,zH;,QZT
9= Q.
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Proof. Since (gp;e—w) = > et fT on(e —w) dx we may estimate the contribution from each
T € T separately. In the first case we assume T € Tp. Since e — w = 0 on I'p, Friedrichs’
inequality implies

(3.4) / on(e —w)dx < hyllonllarle — w20,
T

In the second case we assume 7' € T, TNI'p =0, and xp|w, < Uplw,. Lemma 2.6 guarantees
onlr = 0 and so

(3.5) /T on(e —w)dr =0.

In the third case we assume T € T; and so there exist y, z;r € K N@wyp such that x,(zr) =
un(zr) and xpn(y) < up(y). The conditions of Lemma 3.1 are satisfied for z; by assumption.
Since xp < up, x < u,
(X =xn—w) F+xn—ur < (X —up —w)_ <e—w
Because of g, < 0, this leads to
(3.6) / on(e —w)dr < / on(x — xn —w)_dx + / on(xn — up) de.
Jr Jr Jr

Owing to Lemma 2.6 we have g,(y) = 0 and so ||op |27 S hrlonli 2.0, by a discrete Friedrichs’
inequality. This, (3.6), and Lemma 3.1 show

/ on(e —w)dx < R
Jr

x ([|hr" (x — xn — w)_ + min \Y% —Uup) — Gllo o ).
(hr' (x = xn — w)-lloyr qzesl(TQZT)dH (xn = un) — €llag.,)

(3.7)

In the remaining fourth case we assume 7' € 7. and obtain with (3.6)

(3.8) / on(e —w) dz S hellonll2rllhr' (x = X0 — w) -2
T
The summation of (3.4), (3.5), (3.7), and (3.8) verifies the assertion. O

The combination of the next result with Lemma 2.4 provides the proof of (1.7) and so
specifies to the reliability of all averaging techniques for affine obstacles.

Theorem 3.2 (A posteriori estimate II). Assume that for each T € T; such that zp € KN
['y the intersection of Q with any open half-space with boundary point zr is non-void. For
all w € HY(Q) satisfying wlr, = up —upp and x — up < w, we have

e S in (V- pull+lh (g pet)lory)+  min VO =un)=aall20.
Ph

1/
(3 A lloerllOx = xn — w)_[l2) " +|W\12+|lh Vf||

TeTe
_ 1/2 1/2
() I O xa - w)-llr) T+ (OO0 Al fIBL,)

TeT\Th TeTp



10 S. BARTELS AND C. CARSTENSEN

Proof. As in the proof of Theorem 3.1 we have

e —w < min (||Vuh—ph||+||hl/2(q_ph n)[la.ry)
™ presi(

(on; e — w).

Employing Lemma 3.3 and absorbing |e — w|; » we have

(3.9) le—wli,+leff, S rggl (IVur — pull + 15 (g — o 1)l )? + 113V £
+lwls + 1105 Vanl”+ D hrllenlr + DY lhs' (x = xn —w) |37
TeTh TeT\Tp

+> . min (VO —uw) =gl + Y brllellaalhr' (x = xn = w) o
Ter; 8 (Tla.,.) T Tern

Lemma 3.2 shows

(310) 113Venll® + D hillonllsr + D hrllenllarllhs! (¢ = xn — w) o

TeTp TeTe
2
SRV +) I}Hﬂ (IVun = arllzwr + 212 0(g = ar - 1)l 20 g ror )
Ter IT€8 (Tlog)?
+ > I (= xn = w)_llr + D I fllawr 1P (x = X0 — w1l + Y BT 0
TeT\Tp TeT. TeTp

Let pp, € 8'(T)? denote the minimiser of

min  ([|Vuy, — pal| + 1he?(g = pn - n)llary)-
pr€SH(T)

Since pp |y, € S'(T |, )¢ for all T € T and since the patches wy have a finite overlap we have
: 2
> _min  (IVur = qrllwr + il — ar - m)llaryoonr)
A e8I (Tl
(3.11) €

2
< min  ([Van = pull + 159 = 1) ory)”
preS(T)

A similar argument and the definition of 7, show

3.12 min v —up) — |25 < min —up) —qnll? o .
12 7’26’; 4:€84(Tla,, ) IV 00 =) =~ HQ’QZT ™ gres (Ty) IV 00 = un) = anllz,
The combination of (3.9)-(3.12) proves the theorem. O

Remark 3.4. Two applications of the triangle inequality indicate efficiency of the error esti-
mate of Theorem 3.2 in case x, = ¥,

min (||Vuh — ||+ 1hE* (g—pn- n)||2FN)+ min ||V (up—xn)—anll2.0. < lef12+]e]12.0,
preSHT RESH(Ts)?

+|X*Xh|1,2,ns+2 min_ (||V?f*ph||+||h]/2(9 Pren) ey )+ min | NVx=anl20,. O
heS thS
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4. NUMERICAL REALISATION VIA PENALISATION

In the examples presented in the subsequent section we have x, = x, I'n =0, x|r, < upn,
and f € H*(Q). Then the error estimate of Theorem 3.2 reduces to

(4.1) lelio < min  [[Vu, —pp||+ mi
prESYT)E qr€eS?!

nin IV (un — xn) — qnll20, + h.o.t.,

where h.o.t. denotes higher order contributions. In the numerical experiments we do not
compute the minima in (4.1) but calculate an upper bound for the first two terms by applying
the operator A : L*(Q)? — SN(T,9) and B : L*(Q)* — S'(T)? of [CB], defined for p €
L*(2)? and T'y =0 by

2eN

with p, = ﬁ fwz pdr € R? for z € N i.e., we calculate

|Vup — AVuy|| + ||V (up — xn) — BV (up — xn)ll2.0,-

We refer to [CB] for a definition of A in case I'y # () where g — (AVuy) - n vanishes at all
nodes z € N NTy.

Our numerical approximations are obtained utilising a penalisation method which reads:
Given e > 0, seek u. € {v € H'(Q) : v =up on I'p} such that

(4.3) (Vue; Vo) = (f;v) +/ guds — é((uE —x)_;v) forallve H,(Q).

'y

It is not difficult to show that (4.3) has a unique solution u. € H'(2) with u. = up on T'p.
Moreover, if the solution u of problem (1.1) satisfies u € H?(Q) we have

u— gl < V2| f + Aull.

The discrete version of (4.3) reads: Givene > 0, seek u., € {v, € SY(T) : vy, =upy on T'p}
such that

1
(4.4) (Vuep; Vop) = (f;on) + / gupds — g((ug,h —xn)_;vp) forall v, € SH(T).

Jry

We solved the nonlinear equation (4.4) with a Newton-Raphston scheme (without damping).
The implementation was performed in Matlab in the spirit of [ACF] with a direct solution
of linear systems of equations.

We stress that we do not solve (1.2) but rather an approximation to it and we use the
penalisation (4.3) even if we know u & H*(Q).

The following adaptive algorithm generates all the sequences of meshes 7y, 77, 7a, ... in this
paper which are uniform for © = 0 or adapted for © = 1/2 in (4.5). For details on the
red-blue-green-refinements in the algorithm we refer to [V].



12 S. BARTELS AND C. CARSTENSEN

Algorithm (Ae). (a) Start with a coarse mesh Ty, k = 0.
(b) Set £ := 1/N where N is the number of degrees of freedom of the triangulation 7, and
compute the discrete solution u, j of (4.4) on the actual mesh 7j.

(c) Define

M ={zeK: up<xn(2),3T € TIye NNT, xn(y) < uen(y)},
Tee ={T €T :3z2e M, T Cw,}.

For T € 7T, compute the refinement indicator

— ||Vu8,h - AVUE,hHQ,T it’r ¢ 7;,57

TSIV ten = AV pllor + [V (en = X0) = BV (e = x) o) 3T € T,

for the energy error ey := ||V (u—u. 5)|/2,0 and compute its estimator 7y = (ZTGT U%,T) 2,
(d) Mark the element T for red-refinement provided

4.5 >0 .
( ) nNnzr =2 7I’I’lea7)7i Nz,

(e) Mark further elements (red blue green-refinement) to avoid hanging nodes and generate
a new triangulation 7;,;. Update £ and go to (b).

Remarks 4.1. (i) Note that the discrete contact zone is {z € Q : u.p(x) < xp(x)} and
ue p(x) < Xn(z) can occur for some z € €Q.

(ii) For simplicity, we only computed an approximation 7. of 7.

(iii) Since we only consider lowest order methods with optimal convergence rate O(h) the
choice ¢ = 1/N is motivated by 1/N oc h? in two dimensions.

(iv) The choice of the factors in the definition of 7, is motivated by the efficiency estimate
of Remark 3.4.

5. NUMERICAL EXPERIMENTS

The theoretical results of this paper are supported by numerical experiments. In this section,
we report on four examples of problem (1.1) on uniform and adapted meshes.

5.1. Example with smooth rotational symmetric solution [LLT]. Let f := —2 on
Q:=(-3/2,3/2)? and up(x,y) := r?/2 —1In(r) — 1/2 where r := (2% +5?)"/? on the Dirichlet
boundary ', := 9€2. For x;, = x := 0 the exact solution of problem (1.1) then reads

[ r?*/2—In(r) —1/2 if r > 1,
u(z,y) = { 0 otherwise.

Note that u € H?(2). In our numerical experiments the coarse triangulation 7, of Fig. 1
consists of 16 squares halved along a diagonal.

The left plot in Fig. 1 shows a sequence of triangulations generated by Algorithm (A;/;). The
algorithm refines the mesh in the complement of the contact zone {(z,y) € Q: 2?4+ y*> < 1}
in which the solution vanishes. The approximate discrete contact zone {T" € Ty, : u. p(x7) <
Xn(x7)}, where x denotes the center of a triangle 7', is plotted in white while its complement
is shaded (we chose this color since in most of the examples the complement of the contact
zone is refined and appears darker). The right plot of Fig. 1 displays the solution wu,
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on the adaptively generated mesh Tg with 865 degrees of freedom. In Fig. 2 we plotted
the error and its estimator versus the degrees of freedom for uniform and adaptive mesh
refinement. A logarithmic scaling used for both axes allows a slope —a to be interpreted
as an experimental convergence rate 2a (owing to h oc N~2 in two dimensions). We obtain
experimental convergence rates 1 for both refinement strategies. The error on the adaptively
refined meshes is however smaller than the error on uniform meshes at comparable numbers
of degrees of freedoms. The plot shows that 7y serves as a very accurate approximate of the
error ey: The entries (IV,ey) and (N, ny) almost coincide.

12 N
1
08 Aélévélié%’&
’ AR »
NN /
‘& Wy, NN, rﬂ)
06 NSNS
SN NS
02 1; 2 4

FIGURE 1. Adaptively refined meshes Ty (left upper) to T (right lower) (left)
with approximate discrete contact zone shown in white and solution u.; on
Ts with 865 free nodes (right) in Example 5.1.

5.2. Example with corner singularity. Using polar coordinates (7, ¢) on the L-shaped
domain Q := (—2,2)%\ [0,2] x [-2,0], up := 0 on T'p := 9Q, x, = x := 0, let f(r, ) :=
—r*sin(2¢/3) (V1 (r)/r + 77 (r)) — gr~"/*91(r) sin(20/3) — 72 (r) where,

1 if 7 <0,
i (r) =< —67° + 157 — 107 + 1 if0<7<1, for7:=2(r—1/4),
0 i1 <7

and v,(r) := 0 if r < 5/4 and ~,(r) := 1 otherwise. The exact solution of (1.1) is then given
by u(r,¢) := r*3~,(r) sin(2¢/3) and has a typical corner singularity at the origin. The
coarsest triangulation 7y of Fig. 3 consists of 48 halved squares.

The sequence of triangulations generated by Algorithm (A4, ,) in Example 5.2 and displayed
in the left plot of Fig. 3 shows a refinement towards the origin where the solution has a
singularity in the gradient and a refinement in the region {(z,y) € Q:1/4 < (22 +y?)'/2 <
3/4} where the solution has big gradients. This behavior can also be seen in the right plot
of Fig. 3 where we plotted the numerical solution u. j on triangulation 75 with 726 degrees
of freedom. Fig. 4 shows that the adaptive Algorithm (A;/,) improves the experimental
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107
- ey (uni_form)
* n (uniform)
PN e (adaptive)
n (adaptive)
CUZ
07 1
= ]
1
=
10’2 I I I I
10° 10 10° 10° 10° 10°
N
Ficure 2. Error and error estimator for uniform and adaptive mesh

refinement in Example 5.1.

convergence rate about 0.9 for uniform mesh-refinement to the optimal value 1. Note that
for uniform mesh-refinement we expect an asymptotic convergence rate 2/3 due to the corner
singularity. The error in the region where u has a large gradient seems to dominate in this
preasymptotic range with N < 105, Again, the entries for ny and ey almost coincide and
this behavior improves for increasing numbers of degrees of freedom.

5.3. First problem from elastoplastic torsion [R]. Let f:=1on Q:=(=1,1)?, up :=0
on I'p :=0Q, 'y := 0, and x(z,y) := dist((z,y),0Q). In this example the exact solution
of (1.1) is not known and cannot be expected to be smooth since y & H?(2). The coarsest
triangulation 7y of Fig. 5 consists of 64 elements with y, = x on 7;.

This example is different from Examples 5.1 and 5.2 in the sense that the solution and the
obstacle are non-smooth along the lines {(z,y) € Q : 2 = yorx = 1 — y} of the contact
zone. Algorithm (A;/,) refines the mesh towards these lines as can be seen in the left and
right plot of Fig. 5. Moreover, the approximate discrete contact zone reduces to these lines.
Using Algorithm (A;/;) the experimental convergence rate 0.5 for Algorithm (Ay) improves
to the optimal value 1 for the error estimator at least in Fig 6.

5.4. Second problem from elastoplastic torsion [LLT]. Let f := —3 on Q:= (—1,1)?,
up = 0on I'p := 90, Ty := 0, and xu(z,y) = x(z,y) := —dist((z,y),09). As in the
previous example the solution is not known. The coarsest triangulation 7j is the same as in
Example 5.3.

This example underlines the efficiency of our estimator and its robustness with respect to
non-smoothness of the obstacle. The obstacle is non-smooth along the lines {(x,y) € Q :
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0.6

0.5

FIGURE 3. Adaptively refined meshes 7y (left upper) to 7g (right lower) (left)
with approximate discrete contact zone shown in white and solution u.; on
Ts with 726 free nodes (right) in Example 5.2.

10" T T T
- e, (uniform)
* Ny (uniform)
o e, (adaptive)
Ny (adaptive)
10° | 1
CDZ
>
-
107k 1
[uf
10’2 1 1 1
10" 10° 10° 10" 10°
N
FiGureE 4. Error and error estimator for uniform and adaptive mesh

refinement in Example 5.2.

x =1y or x = 1—y} but these lines do not belong to the contact zone and hence there should
be no refinement towards them. The sequence of meshes in the left plot of Fig. 7 shows that
the complement of the contact zone is indeed refined but the lines of non-smoothness of the
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FIGURE 5. Adaptively refined meshes 7y (left upper) to 7g (right lower) (left)
with approximate discrete contact zone shown in white and solution u.; on
Ts with 2541 free nodes (right) in Example 5.3.

10 r T T T
- n (uniform)
. N (adaptive)
Ny (adaptiv
0.25
F107 ]
‘a
1
10’2 1 1 1

10 10

FIGURE 6. Error estimator for uniform and adaptive mesh refinement in
Example 5.3.

obstacle do not seem to play a special role in the refinement. The experimental convergence
rate of the error estimator for uniform mesh-refinement equals one and this can be seen as
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an indication that v € H*(2). The adaptive Algorithm (A, ;) leads to smaller errors than
Algorithm (Ay), cf. Fig. 8, and shows also the optimal experimental convergence rate 1.

To illustrate that the term ming, cgi(7,)a [|V(un — Xn) — qnll2,0, should not be coarsened to
ming, esi(rye ||V (un — xn) — qul of (1.7) we compared ny with the error estimator ny,

20N = ||Vuep — AVue || + ||V (uen — xn) — BV (uen — xn)l|-

As can be seen in Fig. 8 this error estimator leads to worse experimental convergence rates
for uniform and adaptive mesh-refinement.

-0.1 R AN
V/
02 \ ‘\“x“:\ﬁ';‘»’«%!%y
DO il
-03 \ m‘y“fﬁ ‘WA /
X o \ m\;a'a%a@.«»v/( /i
B o \ et/
QT K 5
-07 \ é’%’g%’i/"’
-0.8=
1
05 1
0 0.5
"y 0
05 T 05

FIGURE 7. Adaptively refined meshes Ty (left upper) to 7g (right lower) (left)
with approximate discrete contact zone plotted in white and solution u, 5 on

Ts with 1429 free nodes (right) in Example 5.4.

5.5. Remarks. (i) The numerical results for Examples 5.1-5.4 show that the adaptive Al-
gorithm (A, ;) yields significant error reduction.

(ii) The error estimate performed extremely accurate although we only computed an approx-
imation u, p to uy.

(iii) As an initial function for the Newton scheme we used x; on Ty for the first mesh and
successively the prolongation to 7y of the solution u.j, on 7 for subsequent refinement
levels (nested iteration). We stopped the iteration process when the Euclidean norm of the
coefficient vector of the residual 7, of (4.4) satisfied |r,| < 107'% In the above examples,
the scheme converged after at most ten iteration steps.

(iv) The meshes generated by Algorithm (Ag) show local symmetries. A similar error esti-
mator as ny designed for second order partial differential equations performed well also on
randomly perturbed meshes without any symmetry [CB, BC].

(v) The error estimator is reliable and efficient in Examples 5.1, 5.2, and 5.4. It is reliable
(but possibly not efficient) in Example 5.3 owing to non-smoothness of the obstacle.
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107 T
0.25 A
z
<107 “
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ey
o Ny (unifor!'n)
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FIGURE 8. Error estimator 7y and coarsened estimator 7y . for uniform and
adaptive mesh—refinement in Example 5.4.
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