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Abstract. Using rate-independant evolutions as a framework for elastoplas-

ticity, an a posteriori bound for the error introduced by time stepping is es-
tablished. A time adaptive algorithm is devised and tested in comparison to

a method with constant time steps. Experiments show that a significant error

reduction can be obtained using variable time steps.

1. Introduction. Adaptive algorithms are a common way to optimize the effi-
ciency of numerical approximation methods. Correctly applied, they can reduce
computation time and amount of data to store, or minimize these factors while not
surpassing a prescribed approximation error.
In the case of elastoplasticity, several ways to implement adaptivity are known, e.g.
[2, 14, 12, 17]. They mostly focus on space adaptive methods, where the triangu-
lation for a finite element approximation is locally refined or coarsened based on
a specific a posteriori error estimate. Time adaptivity on the other hand is rarely
discussed. This is mainly caused by the fact, that the space discretization appears
to be a more impactful source of approximation error and computation time, when
compared to time discretization.
However, due to the one-dimensional nature of time, adaptivity in this one dimen-
sion is relatively easy to implement once a reasonable refinement indicator is found.
Additionally, it may be possible to combine space and time adaptivity from different
estimates, even though we are currently not aware of an obvious way to accomplish
this.
A posteriori error estimates that simultaneously control space and time discretiza-
tion errors can be obtained by formulating the evolution problem as a minimization
problem in space and time, cf. [5, 15, 4]. Since these estimates do not arise as
sums of local contributions it is unclear how to employ them efficiently for local
mesh refinement. To our knowledge, no rigorous attempt has been made to develop
adaptive time stepping methods for elastoplasticity, that is based on an estimate
which exclusively focuses on the error introduced by time discretization.
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Following [13] and [6] a common way to formulate linearized elastoplasticity leads
to the relations

−div σ = f, σ = C(ε(u)− p),
.
P ∈ ∂IS(Σ) (1)

for the displacement u, stresses σ and plastic strain p, complemented by boundary
and initial conditions. The fields Σ and P are generalized versions of σ and p

respectively, that also include inner variables to control hardening;
.
P denotes the

time derivative of P . The set of admissible stresses S is commonly obtained via
a von-Mises or Tresca yield criterion and ∂IS denotes the subdifferential of the
indicator functional of S.
To derive a weak formulation, we let Rd×dsym denote the set of symmetric marices and
define the Hilbert space

Y = H1
D(Ω,Rd)× L2(Ω,Rd×dsym)× L2(Ω)

as well as the mappings

A(y, w) =

∫
Ω

C(ε(u)− p) : (ε(v)− q) + Hkinp : q + Hisoae dx,

〈`(t), w〉 =

∫
ΓN

g(t) · v ds+

∫
Ω

f(t) · v dx,

Ψ(y) =

∫
Ω

I∗S(p, a) dx,

with y = (u, p, a) ∈ Y and w = (v, q, e) ∈ Y . As discussed in [6] and [9], the
conditions in (1) are then equivalent to

A(y, w − .y) + Ψ(w)− Ψ(
.
y) ≥ `(w − .y) (2)

for all t ∈ [0, T ] and w ∈ Y . By replacing the time derivatives in (2) with backward
difference quotients, it is possible to introduce a time discrete problem, that uniquely
defines iterates (yk)k=0,...,K via the recursion

A(yk, w − dtyk) + Ψ(w)− Ψ(dty
k) ≥ `k(w − dtyk) (3)

for all w ∈ Y and k = 1, ...K. Space discretization is obtained by substituting Y
with a finite element space Yh in (2) and (3).
If yh and (ykh)k=0,...,K are solutions of the semi-discrete problem in space and the
fully discrete problem, respectively, and ŷτ,h is the piecewise affine interpolant of
(ykh), results of [11] and [3] lead to an a posteriori estimate of the form

sup
t∈[0,T ]

||yh − ŷτ,h||2A ≤ 8

K∑
k=1

τkεk + 2 sup
t∈[0,T ]

‖A−1
h (`− ̂̀τ )‖2A

+ 8T

K∑
k=1

τ3
k sup
t∈[tk−1,tk]

||A−1
h (∂2

tt`)||2A,

where τk is the length of the k-th time interval and εk is a risidual term that only
depends on the computed solution and can be evaluated explicitly. If the boundary
and volume forces are linearly dependent on time, the data approximation errors
responsible for the second and third term on the right-hand side of the estimate
vanish. In a more general setting, additional computation for the inversion of Ah,
which is a linear operator linked to A, is required. We thus obtain a computable
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upper bound that consists of local contributions which are used as refinement indi-
cators for a time adaptive method.
For all the examples we use in our numerical tests, the adaptive algorithm reduces
the error introduced by time discretization, when compared to a method using a
similar amount of constant time steps. The reduction can be significant even for
smooth data.
The outline of this paper is as follows. In Section 2 we introduce the mathematical
framework, in which we establish an a posteriori error estimate. These findings are
applied to elastoplasticity and further developed in Section 3. Section 4 derives a
time adaptive algorithm, which is numerically tested in Section 5.

2. Model problem and a posteriori error control. In this section, we consider
a general rate-independent evolution problem, that is used as a framework for the
formulation of the elastoplastic model problem. Additionally, we develop the a
posteriori estimate required for an adaptive algorithm using variable time steps. It
is based on the proof of an estimate given in [3] using a general concept of [11].

Let T > 0, Y be a Hilbert space, y0 ∈ Y , A : Y × Y → R a continuous,
symmetric and coercive bilinear form and ` ∈ W 2,∞([0, T ];Y ′). We also assume,
that Ψ : Y → R ∪ {+∞} is a proper, convex and lower semicontinuous functional
that is homogeneous of degree one. Using dots to denote time derivatives, the
aforementioned evolution problem proposed in [6, 9] reads as follows.

Definition 2.1 (Continuous evolution). Seek y : [0, T ] → Y , such that y(0) = y0

and

A(y, w − .y) + Ψ(w)− Ψ(
.
y) ≥ `(w − .y)

for all t ∈ [0, T ] and w ∈ Y .

Note that Y can be finite or infinite dimensional. To formulate a time discrete
problem, we let K ∈ N be the number of time steps and 0 = t0 < t1 < ... <
tK = T . For k = 1, ...,K the length of the corresponding time step is denoted by
τk = tk− tk−1 and we use the notation `k = `(tk) as well as the backward difference
quotient dt, i.e.

dty
k =

yk − yk−1

τk
.

Time discretzation is introduced by replacing the time derivatives in (2.1) with
backward difference quotients.

Definition 2.2 (Time stepping). Seek (yk)k=1,...,K ⊂ Y , such that

A(yk, w − dtyk) + Ψ(w)− Ψ(dty
k) ≥ `k(w − dtyk)

for all w ∈ Y and k = 1, ...K.

As discussed in [10], Chapter 11, both problems have unique solutions and the so-
lution y of the continuous problem meets the regularity condition y ∈W 1,∞([0, T ];Y ).
For spatial regularity properties of solutions we refer the reader to [8].
Introducing the linear, bounded and invertible operator A : Y → Y ′ via 〈Av,w〉 =
A(v, w) for v, w ∈ Y , we note, that the variational inequality in the continuous
problem is equivalent to the inclusion

−Ay + ` ∈ ∂Ψ(
.
y). (4)
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Defining C∗ := ∂Ψ(0), and considering the fact that Ψ is homogeneous of degree one,
we have Ψ = I∗C∗ , where I∗C∗ is the Legendre transform of the indicator functional
of the set C∗. Additionally, convex duality relations yield the equivalence of the
inclusions (4) and

.
y ∈ ∂IC∗(−Ay + `).

Introducing the variables z := −y +A−1` and r := A−1
.
` leads to

−.z + r ∈ ∂IC∗(Az).

In the time discrete case, we proceed similarly and obtain the inclusions

−dtzk + rk ∈ ∂IC∗(Azk),

where the transformations zk := −yk +A−1`k and rk = A−1dt`
k are used.

The monotone inclusions provide a structure that leads to an error estimate derived
in [11, 3]. We provide a proof with variable time steps.

Theorem 2.3. Suppose that z ∈W 1,∞([0, T ];Y ) meets the condition

−.z + r ∈ ∂IC∗(Az),

for all t ∈ [0, T ] and the sequence (zk)k=0,...,K ⊂ Y satisfies z0 = z(0) and

−dtzk + rk ∈ ∂IC∗(Azk)

for all k = 1, ...,K. Additionally, let ẑτ : [0, T ] → Y denote the piecewise affine
interpolant of (zk)k=1,...,K in the sense that ẑτ (tk) = zk for k = 0, ...,K.
The estimate

sup
t∈[0,T ]

||z − ẑτ ||2A ≤ 4

K∑
k=1

τkεk + 4T

K∑
k=1

τ3
k sup
t∈[tk−1,tk]

||.r||2A

holds with the nonnegative quantities

εk = τk〈Adtzk, rk〉 − τk||dtzk||2A
for k = 1, ...,K, where ‖ · ‖A is the norm induced by the bilinear form A.

Proof. The condition for zk immediately implies Azk ∈ C∗ as well as

〈v −Azk,−dtzk + rk〉 ≤ 0

for all v ∈ C∗ and k = 1, ...,K. Since z0 = z(0), the condition for z also yields
Az0 ∈ C∗ and we may choose v = Azk−1 to find

−εk = τk||dtzk||2A − τk〈Adtzk, rk〉 ≤ 0.

Let z+
τ : [0, T ]→ Y denote the piecewise constant interpolant of (zk) with z+

τ (t) =
zk for t ∈ (tk−1, tk]. Similarly r+

τ is the piecewise constant interpolant of (rk). For
all t ∈ [0, T ] and v ∈ C∗ we have

〈v −Az+
τ ,−∂tẑτ + r+

τ 〉 ≤ 0.

The definition

ρτ = 〈Az+
τ −Aẑτ ,−∂tẑτ + r+

τ 〉

leads to

〈v −Aẑτ ,−∂ẑτ + r〉 ≤ ρτ + 〈v −Aẑτ , r − r+
τ 〉.
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Considering the condition for z, we also have

〈v −Az,−∂tz + r〉 ≤ 0.

Choosing v = Az and v = Aẑτ in the last two inequalities respectively and adding
them, we find that

〈A(z − ẑτ ), ∂t(z − ẑτ )〉 ≤ ρτ + 〈A(z − ẑτ ), r − r+
τ 〉.

Using d
dt‖w‖

2
A = 2〈Aw, ∂tw〉 for w ∈ Y as well as Cauchy-Schwarz and Young’s

inequality leads to the estimate

1

2

d

dt
‖z − ẑτ‖2A ≤ ρτ + T‖r − r+

τ ‖2A +
1

4T
‖z − ẑτ‖2A. (5)

For t ∈ [tk−1, tk] we can use z+
τ − ẑτ = −(t− tk)dtz

k to find

ρτ = (t− tk)‖dtzk‖2A − (t− tk)〈Adtzk, rk〉 =
t− tk
τk

(−εk) ≤ εk.

Let t∗ ∈ [0, T ], so that the maximum of t 7→ ‖z−ẑτ‖A is attained at t∗. We integrate
inequality (5) over the interval [0, t∗] and note that ‖r−r+

τ ‖A ≤ τk supt∈[tk−1,tk] ‖
.
r‖A

as well as z(0) = z0 to show the estimate

1

2
sup
t∈[0,T ]

‖z − ẑτ‖2A ≤
K∑
k=1

τkεk + T

K∑
k=1

τ3
k sup
t∈[tk−1,tk]

‖.r‖2A +
1

4
sup
t∈[0,T ]

‖z − ẑτ‖2A,

which proves the theorem.

3. Application to elastoplasticity. The next step is to apply the general frame-
work to the elastoplastic model problem and to formulate the error estimate in a
way, that enables us to define a time adaptive algorithm. We assume homogeneous
initial conditions and a combination of linear kinematic and isotropic hardening as
well as the von-Mises flow rule. For a derivation of the model, we refer the reader
to [6].
Consider a bounded Lipschitz domain Ω ⊂ Rd with a closed, possibly empty set
ΓD ⊂ ∂Ω and let H1

D(Ω) be the set of functions in H1(Ω), that vanish on ΓD.
Additionally, let ΓN = ∂Ω \ ΓD, a volume force f ∈ W 2,∞([0, T ];L2(Ω;Rd)) and a
boundary force g ∈W 2,∞([0, T ];L2(ΓN ,Rd)).
The framework of Section 2 can be applied to plasticity by using the Hilbert space

Y = H1
D(Ω,Rd)× L2(Ω,Rd×dsym)× L2(Ω)

as well as the mappings

A(y, w) =

∫
Ω

C(ε(u)− p) : (ε(v)− q) + Hkinp : q + Hisoae dx,

〈`(t), w〉 =

∫
ΓN

g(t) · v ds+

∫
Ω

f(t) · v dx, (6)

Ψ(y) =

∫
Ω

I∗S(p, a) dx,

for y = (u, p, a) ∈ Y and w = (v, q, e) ∈ Y . Here, C : Rd×dsym → Rd×dsym with

CB = 2µB + λ tr(B)Id
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represents Hooke’s law and makes use of the material specific Lamé parameters
µ > 0 and λ > 0. Furthermore, ε(u) denotes the symmetric gradient of u and
Hkin,Hiso ≥ 0 are the hardening modules for kinematic and isotropic hardening
respectively. Because of the assumed homogeneous initial conditions we are able to
eliminate the inner variable b, that is commonly used for kinematic hardening, and
have

I∗S(p, a) =

{
σy|p| if tr p = 0 and σy|p| ≤ −a,
+∞ otherwise.

The quantities of interest in this formulation are the displacement u, the plastic
strain p, and an inner variable a, which measures the accumulation of isotropic
hardening. The stress σ = C(ε(u)− p), that is commonly sought in dual or mixed
formulations of the problem, only plays an implicit role in this case.
By applying Theorem 2.3, we conclude the estimate

sup
t∈[0,T ]

||z − ẑτ ||2A ≤ 4

K∑
k=1

τkεk + 4T

K∑
k=1

τ3
k sup
t∈[tk−1,tk]

||.r||2A,

which provides us with an accessible bound for the error between a solution of the
continuous problem and a solution of a semi-discrete problem in time. However, in
order to be able to run numerical tests, an estimate for a fully discrete solution is
required. Hence, we use a P1-FEM to achieve the discretization in space.
We consider a regular triangulation Th of Ω and let S1

D(Th) ⊂ H1
D(Ω) be the set

of continuous functions, that are affine on each element of Th and vanish on ΓD.
Similarly, L0(Th) ⊂ L2(Ω) contains functions, that are constant on each element of
Th.
With these notations we define the Hilbert space

Yh = S1
D(Th)d × L0(Th)d×dsym × L0(Th),

which is a subspace of Y . By simply using Yh in the Definitions 2.1 and 2.2, we
obtain a semi-discrete problem in space and a fully discrete problem, both of which
have unique solutions. The latter seeks (ukh, p

k
h, a

k
h)k=1,...,K ⊂ Yh, such that∫

Ω

C(ε(ukh)− pkh) : (ε(vh − dtukh)− (qh − dtpkh)) dx

+

∫
Ω

Hkinp
k
h : (qh − dtpkh) + Hisoa

k
h(eh − dtakh) dx

+

∫
Ω

I∗S(qh, eh) dx−
∫
Ω

I∗S(dtp
k
h, dta

k
h) dx

≥
∫

ΓN

g(t) · (vh − dtukh) ds+

∫
Ω

f(t) · (vh − dtukh) dx

for all (vh, qh, eh) ∈ Yh and k = 1, ...K.
Similar to the linear operator A, we define Ah : Yh → Y ′h via 〈Ahvh, wh〉 = A(vh, wh)
for vh, wh ∈ Yh. Since the important properties of the maps in (6) remain valid on
Yh, we are still able to apply Theorem 2.3 and conclude the following corollary.

Corollary 1. Suppose that yh : [0, T ] → Yh and (ykh)k=0,...,K ⊂ Yh are solutions
of the space discrete and fully discrete problem respectively. Let ŷτ,h : [0, T ] → Yh
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denote the piecewise affine interpolant of (ykh) with ŷτ,h(tk) = ykh for k = 0, ...,K.

Similarly, ̂̀τ is the interpolant of (`k). The estimate

sup
t∈[0,T ]

||yh − ŷτ,h||2A ≤ 8

K∑
k=1

τkεk + 2 sup
t∈[0,T ]

‖A−1
h (`− ̂̀τ )‖2A

+ 8T

K∑
k=1

τ3
k sup
t∈[tk−1,tk]

||A−1
h (∂2

tt`)||2A

holds with

εk = τk

∫
ΓN

(dtg(tk)) · dtukh ds+ τk

∫
Ω

(dtf(tk)) · dtukh dx

− τk
∫
Ω

C(ε(dtu
k
h)− dtpkh) : (ε(dtu

k
h)− dtpkh) dx

− τk
∫
Ω

Hkindtp
k
h : dtp

k
h dx− τk

∫
Ω

Hiso(dta
k
h)2 dx

for ykh = (ukh, p
k
h, a

k
h) and k = 1, ...,K.

Proof. Using the identities zh = −yh +A−1
h ` and zkh = −ykh +A−1

h `k as well as the
triangle inequality and (a+ b)2 ≤ 2a2 + 2b2, we find that

sup
t∈[0,T ]

||yh − ŷτ,h||2A = sup
t∈[0,T ]

||ẑτ,h − zh +A−1
h (`− ̂̀τ )||2A

≤ 2 sup
t∈[0,T ]

||zh − ẑτ,h||2A + 2 sup
t∈[0,T ]

||A−1
h (`− ̂̀τ )||2A.

We apply Theorem 2.3 and note, that rh = A−1
h

.
` to conclude the estimate. It

remains to show the characterization of εk. We have

〈Ahdtzkh, A−1
h dt`

k〉 = −〈Ahdtykh, A−1
h dt`

k〉+ 〈dt`k, A−1
h dt`

k〉
as well as

−‖dtzkh‖2A = − 〈Ahdtzkh, dtzkh〉

= − ‖dtykh‖2A + 〈dt`k, dtykh〉

+ 〈Ahdtykh, A−1
h dt`

k〉 − 〈dt`k, A−1
h dt`

k〉.

We add the two equalities, multiply with τk and note, that rk = A−1
h dt`

k to obtain

εk = τk〈dt`k, dtykh〉 − τk||dtykh||2A.
The asserted characterization of εk follows from the definitions of A and ` displayed
in (6).

Now that we control the error for our specific problem, the next goal is to establish
(εk)k=1,...,K as refinement indicators for the implementation of time adaptivity. To
accomplish this, we aim at identifying an estimate of the form

sup
t∈[0,T ]

||yh − ŷτ,h||2A ≤ γ

K∑
k=1

τkεk, (7)

where the last two terms on the right-hand side of the estimate from Corollary 1
are not present.
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Remark 1. i) If the body force f and the boundary force g, and therefore the

map `, are linear with respect to the temporal variable t, the terms `− ̂̀τ and
∂2
tt` vanish. In this case, the proofs of Theorem 2.3 and Corollary 1 can be

simplified and we obtain the estimate

sup
t∈[0,T ]

||yh − ŷτ,h||2A ≤ 2

K∑
k=1

τkεk.

ii) Defining τ = max{τk : k = 1, ...,K}, we are able to determine convergence rates
for each individual term on the right-hand side of the estimate in Corollary 1.
We have

K∑
k=1

τkεk ∈ O(τ2), (8)

K∑
k=1

τ3
k sup
t∈[tk−1,tk]

||A−1
h (∂2

tt`)||2A ∈ O(τ2), (9)

whereas the continuity of A−1
h and a standard estimate for linear spline inter-

polation yield

sup
t∈[0,T ]

‖A−1
h (`− ̂̀τ )‖2A ∈ O(τ4), (10)

see [4] for details. The lower convergence rates in (8) and (9) justify discarding
term (10), if τ is small.

iii) Term (9) is predetermined by the applied forces f and g and does not depend
on the computed solution. Therefore, it is possible to define regions, where the
temporal grid needs to be refined, before a potential algorithm is even started.
An alternative strategy is to merge the two remaining terms and define the
new refinement indicator

ε′k = εk + Tτ2
k sup
t∈[tk−1,tk]

||A−1
h (∂2

tt`)||2A

≤ εk + Tτ2
k cAh

sup
t∈[tk−1,tk]

||∂2
tt`||2Y ′h ,

where cAh
is an upper bound for the operator norm of A−1

h .
However, since in all of our tests ` is linearly dependent on t and we know, that
an additional refinement based on the second derivative of ` is possible, we will
assume (7) for the rest of this paper.

It is important to note, that by approximating the semi-discrete solution in
space, we basically isolate the error caused by the time discretization for our time
adaptive algorithm to properly identify where to refine the temporal grid. The
error introduced by the space discretization is therefore not taken into account here.
However, as mentioned in the introduction, estimates and adaptive algorithms in
space exist elsewhere.

4. Time adaptive algorithm. Now that (εk)k=1,..K are established as refinement
indicators, we are able to formulate a time adaptive algorithm for the computation
of a numerical solution to the elastoplastic problem. It makes use of the user defined
parameters εmax, which defines an upper bound for the refinement indicators εk,
and θ, which determines the grid coarsening strategy the algorithm follows.
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Algorithm 1 (Adaptive time stepping). Let k = 0, y0
h ∈ Yh, t0 = 0, τ > 0,

εmax > 0 and θ ∈ [0, 1].

1. Set k 7→ k + 1.
2. Set tk = tk−1 + τ .
3. If tk > T , set tk = T and τ = T − tk−1.
4. Use an iterative solution method to compute the solution ykh for the time tk.
5. Compute εk(ykh).
6. If εk > εmax, set τ 7→ τ/2 and continue with Step 2.
7. If tk = T , stop the algorithm.
8. If εk ≤ θεmax, set τ 7→ 2τ .
9. Continue with Step 1.

Considering an adaptive algorithm it is important to distinguish the two main
reasons for using it: reduction of stored data and reduction of computation time.
The former is determined by the number of time steps K. The latter however de-
pends on Ktot, the total number of computed steps. This includes the times, Steps
2-6 are taken, but need to be repeated with a smaller stepsize, because the refine-
ment indicator εk was too large.
The conditions under which the algorithm attempts to coarsen the grid (Step 8)
play an important role in reducing K and Ktot. This motivates the introduction of
the parameter θ.
For θ = 1 the algorithm doubles the stepsize after every successful time step. On
the one hand, this will minimize K, because every opportunity to coarsen the grid
will be taken. But on the other hand, if the error is relatively constant or increases
with time, the stepsize will always have to immediately be reduced again, which
leads to an increase of Ktot. In these cases, if a minimization of computation time
is desired, a parameter θ ∈ (0, 1) may be in order.
The case θ = 0 should only be used, if the error never decreases, which means
that the stepsize never needs to be increased. To decide this before starting the
algorithm requires a high amount of a priori knowledge about the problem and its
solution though.
Algorithm 1 is not specific to our a posteriori estimate or model problem. It can be
used for time adaptivity in general by substituting εk with a refinement indicator,
that was obtained from another estimate. However, as the proof of the follow-
ing proposition indicates, we require uniform boundedness of εk/τk to ensure the
termination of the algorithm.

Proposition 1. Algorithm 1 terminates after a finite number of iterations.

Proof. Using Cauchy-Schwarz and Young’s inequality, we have

εk
τk

= 〈Ahdtzk, rk〉 − ‖dtzk‖2A

≤ ‖dtzk‖A‖rk‖A − ‖dtzk‖2A

≤ 1

4
‖rk‖2A.

We note, that rk = A−1
h dt`

k and ‖A−1
h dt`

k‖A ≤ supt∈[0,T ] ‖A−1
h

.
`‖A, which leads to

εk
τk
≤ 1

4
sup
t∈[0,T ]

‖A−1
h

.
`‖2A =: M.
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Employing the continuity of A−1
h , we can see, that the regularity condition ` ∈

W 2,∞([0, T ;Y ′]), that was required for Theorem 2.3, is more than enough to ensure
the uniform boundedness of εk/τk.
Let τε := M−1εmax and consider 0 < τk ≤ τε. Since M is a uniform upper bound
for εk/τk we have

εk = τk
εk
τk
≤ τεM = εmax.

This means, that whenever the stepsize τk is smaller than τε, the corresponding
refinement indicator εk is smaller than εmax. Therefore, the algorithm will proceed
with the next time step and not decrease the stepsize any further. Since we only
change the stepsize by multiplying or dividing it by 2, a lower bound for τk is τε/2.
The algorithm thus terminates after a maximum of

Kmax = d2τ−1
ε T e = d2MTε−1

maxe

time steps.

Remark 2. Related time-stepping algorithms have been proposed for the linear
heat equation. In that case termination results for coupled space-time adaptive
strategies have been proved in [7].

5. Numerical tests. In this section we report on numerical experiments to verify
that Algorithm 1 actually improves the error estimate when compared to a method
with constant stepsize. Our implementation of elastoplasticity is based on a dis-
placement formulation of the problem. It states that if the displacement ukh for the
current time tk is known, the remaining variables can be computed via

dtp
k
h =

(
|ξ| − σy(1−Hisoa

k−1
h )

)
+

2τk(µ+ Hisoσ2
y + Hkin)

ξ

|ξ|
and dta

k
h = −σy|dtpkh|,

where

ξ = dev
(
C(ε(ukh)− pk−1

h )−Hkinp
k−1
h

)
and dev(B) = B − 1

d
tr(B)Id.

Additionally, we want to compute ukh, such that∫
Ω

(
C(ε(ukh)− pk−1

h )− τkCdtpkh
)

: ∇vh dx =

∫
Ω

f(tk) · vh dx+

∫
ΓN

g(tk) · vh ds

holds for all vh ∈ S1
D(Th)d. However, due to the nonlinear nature of this equation,

we employ a Newton iteration to obtain ukh. A super linear convergence property of
the employed Newton iteration has been established in [16]. For more information
about the implementation we refer the reader to [1] or [4].
For simplification purposes we restrict the model to vanishing volume forces and
linear kinematic hardening, i.e. we set f ≡ 0 and the constants Hkin = 1 and
Hiso = 0. Additionally, the yield stress σy = 243 as well as the Lamé parameters

µ = E
2(1+ν) and λ = νE

(1+ν)(1−2ν) with E = 70000 and ν = 0, 33 are used.

The first problem we consider for our tests is a radially loaded ring.
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Example 1 (Loaded ring). Consider T = 16, Ω = {x ∈ R2| 1 <
√
x2

1 + x2
2 < 2}

and gr : [0, T ]→ R+ with gr(t) = 4
√

3/2t. The Neumann boundary conditions

g(x, t) =

{
4gr(t)

x
|x| for |x| = 1,

−gr(t) x
|x| for |x| = 2,

apply on ΓN = ∂Ω.

Figure 1. Numerical approximation of the solution for Example 1
at times t = 8, 10, 13, 15. The grey shading corresponds to the norm
of plastic strain p. For visibility purposes, we only applied 4 red
refinements as opposed to our actual tests, where 6 red refinements
were used. The radially symmetric nature of the problem allows
us to save computation time by only computing the solution for a
quarter of the ring.

An analytical solution to this problem can be found in [2]. Figure 1 shows an
approximation of the development of plastic strain p, that was obtained by using
the method and parameters mentioned above. We see that plastic strains start to
occur at the inner boundary of the ring, after which it begins to spread outwards.
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Figure 2. Results of the tests using Example 1. Logarithmic
plot of the error term η2

tot as a function of K−1 ∼ τ for the method
with constant time steps (star) and the adaptive algorithm with
θ = 1 (cross). The remaining graphs (circle, diamond and square)
consider the total number of computed steps Ktot instead of the
number of time steps K and show the results for different values
of θ (see Algorithm 1). In the case of constant time steps, we have
K = Ktot. The triangle in the bottom right references the slope of
a quadratic function. An error reduction by the adaptive method is
observed. The difference is less significant when considering Ktot,
but increases for smaller values of θ.

As a reference point to compare our adaptive method to, we first run the tests with
constant stepsizes τ = 2−`/2 for ` = 0, . . . , 17. To measure the approximation error,
we resort to (7) and compute the term

η2
tot =

K∑
k=1

τkεk.

Our next step is to employ Algorithm 1 with τstart = 1, εmax = 10−n/4 for n =
1, ..., 25 and θ = 1. The results of these tests can be seen in Figure 2 where the two
methods are directly compared regarding the number of time steps K and the error
term η2

tot. Clearly, the adaptive method provides superior results for this problem in
the sense that less time steps are required to obtain a similarly low approximation
error.
Even if we compare computation time, and thus also account for the computed
steps, where the refinement indicator εk was too high, (which is also shown in
Figure 2,) we observe that the adaptive method still outperforms its counterpart
for small stepsizes. In the context of this specific problem, the red lines additionally
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indicate, that further improvement with a lower value of θ is possible. To see, if
these results are specific to Example 1, we consider two further problems.

Example 2 (Elastoplastic fissure). Let T = 10, Ω = (0, 3)× (0, 1) and g2 : [0, T ]→
R with g2(t) = −4

√
3/2 t. The boundary of Ω is split into ΓD = [2, 3] × {0, 1} ∪

{3} × [0, 1] and ΓN = ∂Ω \ ΓD. At [0, 2) × {1} ⊂ ΓN , the condition g = (0, g2)>

is applied, whereas homogeneous Neumann and Dirichlet boundary conditions hold
on the rest of ΓN and ΓD respectively.

In Example 2 we think of the domain Ω as the cross section of a bar of metal,
that is fixed by a vice on one side, while a growing force is applied from above, see
Figure 3. Figure 4 shows, that a fissure develops between the fixed part and the
free part of Ω, an ananalytical solution is not available.

ΩΓN ΓD

g2 g2

ΓD

ΓDΓN

ΓN

Figure 3. Illustration of the geometry used in Example 2.

Figure 4. Numerical approximation of the solution for Example 2
at time T = 10. The original triangulation of three halved squares
was red refined 6 times and the grey shading corresponds to the
norm of plastic strain p. The increasing force causes a curved fissure
to develop across the domain.

Example 3 (Uniform compression). Consider T = 200, Ω = (0, 2) × (0, 1) and
g2 : [0, T ] → R as in Example 2. We apply the Neumann boundary condition
g = (0, g2)> at ΓN = (0, 2) × {1} and homogeneous Dirichlet boundary conditions
at ΓD = [0, 2]×{0}. On the sides {0, 2}×(0, 1) of Ω, symmetric boundary conditions
are used, i.e. u1 = 0 and (σ21, σ22) · n = 0 with σ = C(ε(u)− p) and the outer unit
normal n.
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Figure 5. Results of the tests for Example 2 using notation from
Figure 2. The adaptive time stepping leads to an error reduction.

Example 3 models the deformations of the cross section of an infinitely long bar
of metal, that lies on the ground, while a growing force is applied from above. The
advantage of this problem is, that it is comparably easy to determine its analytical
solution. Additionally, this solution is simple in the sense, that p does not depend
on the space variable x. In other words, for a fixed time t, the plastic strain is
constant in Ω.
We are also able to determine the time tp, when plastic strain simultaneously occurs
in all of Ω, by computing the root of the function h(t) = 1√

2
(1− λ/(2µ+ λ)) g2(t)−

σy. With our choices of g2 and the material parameters, this yields tp ≈ 138.32.
Similar to our approach in Example 1, tests are run for the newly introduced prob-
lems and their results shown in Figure 6.

Comparing all the tests, we observe that most of the general trends are consistent.
For similar amounts of steps,the adaptive algorithm always yields smaller error
terms than the method with constant steps, even if all computed steps are taken
into account.
While the tests on the first two problems yield fairly similar results, there are two
main distinctions between them and Example 3.

1. The extent to which the adaptive method outperforms the ordinary one. For
Examples 1 and 2, the error term of the adaptive algorithm is not more than
about 10 times smaller than for the method with constant steps. Testing with
Example 3 however, this factor exceeds 104 for small time steps.

2. The effect of modifying the parameter θ. A lower value of θ reduces the amount
of unnecessarily computed steps, when testing with Examples 1 and 2. This
is not the case for Example 3.
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Figure 6. Results of the tests for Example 3 using notation from-
Figure 2. A stronger improvement of adaptity is observed than in
Examples 1 and 2.

To understand why these differences occur, we look at the development of refinement
indicator εk over time. To this end, we introduce the piecewise constant interpolant
ετ : [0, T )→ R+ with ετ |[tk−1,tk) = εk for all k = 1, ...,K. We are interested in this
function because of the property

T∫
0

ετ dt =

K∑
k=1

τkεk = η2
tot.

Figure 7 shows ετ as a function of t for the different examples. We observe, that
ετ develops fairly similarly in the first two examples. There is a long period, where
the error indicator is close to zero, after which it begins to monotonically increase.
In Example 3 however, almost all the error potential is concentrated in the time
interval, where plastic strain first emerges (see above). With these observations, we
are able to explain both the differences between problems listed above.
The adaptive algorithm refines the time grid in regions of high values of ετ . Thus,
to attain a low error during the later parts of Examples 1 and 2, a lot of time steps
are required. For the last example on the other hand, the adaptive method only re-
fines just before tp, while in the rest of the time interval, the grid remains as coarse
as possible with almost no negative effect on the error. In more general terms,
adaptive methods are most effective, when used on problems with singularities and
gradually lose their advantage, if the error potential is more evenly distributed.
The reason for different effects when modifying θ were basically already explained
in Section 4. A value θ < 1 means that the algorithm will sometimes not double
the stepsize after a successful step. This is a positive change, if the error potential
monotonically increases, e.g. in Examples 1 and 2, because the change in stepsize
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Figure 7. Development of error function ετ in time. The al-
gorithm with constant time steps was used on Examples 1 (top-
left), 2 (top-right) and 3 (bottom-left). The plot on the bottom-
right shows the adaptive method for Example 1 and with εmax =
3.16 · 10−5. The graphs start at t > 0, because the error in the left
out parts is almost zero. Similar results are observed for Examples
1 and 2, where after a certain amount of time, ετ starts to mono-
tonically increase. In Example 3, a single peak occurs during the
step containing the time tp ≈ 138.32, when plastic strain first
emerges.

would immediately have to be reverted anyway. For Example 3 however, the ability
to quickly increase the stepsize should be maintained in order to coarsen the grid
after tp.
Our observations indicate, that a priori knowledge about the particular problem is
helpful to use the adaptive method optimally. It is possible to run an algorithm
with a constantly high stepsize to obtain information about the error distribution
without too much time investment. Based on these findings, an informed decision,
if and how to use the adaptive algorithm, can be made.
Going back to Figure 7 once more, we are able to obtain additional insight into
what causes a high error term at a specific point in time. Example 3 shows, that
the occurrence of plastic strain does not necessarily lead to a large indicator ετ , be-
cause for t > tp, the error term is relatively small. The peak at tp rather indicates,
that the initial occurrence of plastic strain, where the material switches from purely
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elastic to elastoplastic behaviour, is the main reason for a large error term. This
theory is supported by the fact, that in the other two problems, where plastic strain
does not initially occur everywhere in Ω at the same time, the error is more spread
out. Knowledge about this effect may be helpful when the general behaviour of a
given problem is already known, but the computation method for an approximation
remains to be chosen.

Our numerical experiments have confirmed, that for the elastoplastic problem
with kinematic hardening, time adaptivity can be used to reduce the error intro-
duced by the time discretization, while maintaining a similar computation time. To
further decrease the number of computed steps, it is possible to change the con-
ditions under which the algorithm increases the stepsize. However, the adaptive
method does not improve convergence rates in the considered experiments and its
effectiveness is heavily dependent on the specific problem at hand.
Additionally, when computing numerical solutions in plasticity, several approxima-
tion errors, that were not taken into account in this paper, may occur, e.g. resulting
from space discretization or iterative solutions of the nonlinear problems. In prac-
tice, the different errors should thus be weighed against each other and the method
chosen accordingly. It appears attractive to further combine the time adaptive
algorithm with a space adaptive method.
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