
Linear-programming approah tonononvex variational problemsS�oren Bartels1 and Tom�a�s Roub���ek2;31 Department of Mathematis, University of Maryland, College Park, MD 20742, USA2 Mathematial Institute, Charles University, Sokolovsk�a 83, CZ-186 75 Praha 8, Czeh Republi3 Institute of Information Theory and Automation, Aademy of Sienes, Pod vod�arenskou v�e�z�� 4,CZ-182 08 Praha 8, Czeh Republi.Abstrat. In nononvex optimization problems, in partiular in nononvex vari-ational problems, there usually does not exist any lassial solution but onlygeneralized solutions whih involve Young measures. In this paper, after review-ing briey the relaxation theory for suh problems, an iterative sheme leadingto a \sequential linear programming" (=SLP) sheme is introdued, and its on-vergene is proved by a Banah �xed-point tehnique. Then an approximationsheme is proposed and analyzed, and alulations of an illustrative 2D \broken-extremal" example are presented.Key Words. Young measures, onvex approximations, relaxed variational prob-lems, linear approximation, Banah �xed point, adaptive sheme.AMS Subjet Classi�ation: 49M05, 65K10, 65N30.1. IntrodutionNononvex optimization problems often lak any solution beause of fast osil-lations of minimizing sequenes that eventually break lower semiontinuity withrespet to a weak onvergene, f. [44℄ and referenes therein for a survey in ase ofsalar variational problems on whih we will fous in this paper. Therefore, a re-laxation is urgent to solve suh problems in a suitably generalized sense. The mostgeneral way of relaxation is ertainly a suitable ontinuous extension, using also asuitable linear-spae struture not neessarily ompletely oherent with the linearstruture ouring in the formulation of the original problem. Thus extended, alsoalled relaxed, problems then may get a onvex struture even if the original prob-lem does not have any. For a large lass of problems, (generalized) Young measures(f. e.g. [2, 42℄) represent a suitable tool.The relaxed problems an be disretized by a theory of approximation of (general-ized) Young measures developed reently in [40, 41, 42℄, see also [32, 37, 38℄. Numer-ial solution of the relaxed problems an be often performed diretly, without ap-proximating the original, non-relaxed problem, f. [27, 28, 29, 32, 33, 34, 35, 42, 43℄.If the (additively oupled, f. e.g. (P) below) problem is linear in a lower-order term(i.e. G(x; �) in (P) is linear), suh approah leads to a linear-programming prob-lem and was shown very eÆient in [4℄. In the quadrati ase, it naturally leadsto a quadrati-programming problem, whih is a onsiderably less eÆient but stillpossible approah if the dimensionality is not too high, f. [13, 32, 29, 43℄. For1



2non-quadrati ase, one an still onsider an iterative sheme leading to sequential-quadrati-programming algorithm, whih is however even less eÆient, f. [31℄. Forother numerial approahes for the approximation of nononvex variational problemswe refer to [8, 11, 12, 14, 16, 17, 30℄.Therefore, espeially in a multidimensional ase, a more eÆient approah is desir-able. We propose to approximate the relaxed problem not quadratially (in ontrastto [31℄) but linearly so that the auxiliary problems are as those in [4℄. The idea ofso-alled sequential linear programming (=SLP) is not ompletely new and has beenused in other ontext, e.g., in [19, 36, 49℄.The goal of this paper is to demonstrate the usage of this, otherwise fairly (thoughnot absolutely) general approah, on a onrete problem of salar multidimensionalvariational alulus:(P) 8<: Minimize �(u) := Z
 F (x;ru(x)) +G(x; u(x)) dx;subjet to u 2 W 1;p(
); uj�
 = uD;with 
 � Rn a bounded domain with the Lipshitz boundary �
 and uD 2W 1�1=p;p(�
) given. Let us point out that we on�ne ourselves to additively ou-pled problems, in ontrast to general problems involving the funtional �(u) :=R
 '(x; u(x);ru(x))dx; i.e. we onsider only the speial ase '(x; u; s) = F (x; s) +G(x; u). It should be mentioned that this restrition seems unfortunately quite im-portant for the linearization and the Banah-�xed-point tehniques beause, e.g.,the estimate (3.6) below does not seem to be transferable to the general ase. Forthe ase that G is aÆne in u the linearized problem equals (P) and we general-ize existing error estimates for the approximation of relaxed formulations of (P) tononquadrati growth onditions under general assumptions.The outline and the main ontributions of this paper read as follows: We intro-due the employed relaxation of the nononvex variational problem (P) in Setion 2and prove onvergene of a linearization in Setion 3. Setion 4 is devoted to thenumerial analysis of the linearized problems. Besides an a-priori error estimatethat relates three di�erent sales, we establish an a-posteriori estimate whih al-lows for adaptive mesh re�nement. An eÆient and reliable iterative algorithm tosolve the disrete problems is provided in Setion 5. In Setion 6 we report on theperformane of our algorithm applied to a salar 2-well problem whih has beenproposed in [8, 10℄ as a benhmark model problem for the numerial approximationof salar nononvex variational problems. Finally, Setion 7 further illustrates (andoutlines some widening of) appliability of our algorithm; in partiular, modellingof ompatible phase transitions in elasti solids, optimal shape design problems, andertain phase transitions in antiplane shear settings are mentioned there.2. The Young-measure relaxationIn this setion we de�ne the employed relaxation of (P) whih is a ontinuousextension of (P) to measure valued solutions and has been established, e.g., in [42℄.We briey state the relaxed problem (RP ) and the main results onerning theonnetions between (P) and (RP ).Let M+1 (Rn) be the set of probability measures on Rn , i.e., the set of all non-negative Radon measures � satisfying RRn �(ds) = 1. The set of Lp-Young measures



3Yp(
;Rn) is de�ned asYp(
;Rn) := n� 2 L1w (
;M+1 (Rn)) : Z
 ZRn jsjp�x(ds) dx <1o:(2.1)Here �x := �(x) 2 M+1 (Rn) for almost all x 2 
 and the index \w" inL1w (
;M+1 (Rn)) stands for \weakly� measurable", whih means that given anyv 2 C0(Rn) := fw 2 C(Rn) : limjsj!1w(s) = 0g the mapping x 7! RRn v(s)�x(ds) isLebesgue measurable in 
.The fundamental theorem on Young measures [2℄ (f. also [42, Lemma 3.2.7℄)allows to ompute weak limits of ontinuous funtionals applied to weakly onvergentsequenes in Lp. We will assume that F : 
 � Rn ! R and G : 
 � R ! R areCarath�eodory funtions satisfying, for almost all x 2 
, all s 2 Rn , and all u 2 R,1jsjp � F (x; s) � 2(1 + jsjp);(2.2) jG(x; u)j � a(x) + 3jujq;(2.3)where p > 1, 1; 2; 3 > 0, a 2 L1(
), and 1 < q < pn=(n � p) if p < n and1 < q < 1 if p � n. Then we will onsider the already annoned relaxed problemin the form:(RP ) 8>>>><>>>>: Minimize ��(u; �) := Z
 �ZRn F (x; s)�x(ds) +G(x; u(x))�dx;subjet to ZRn s�x(ds) = ru(x) for a.a. x 2 
;u 2 W 1;p(
); � 2 Yp(
;Rn); uj�
 = uD:The following assertion [13℄, showing that (RP ) is indeed a proper relaxation of (P),is based on results from [25℄ and, in fat, translates some results of [42, Propositions5.2.1, 5.2.6 and 3.4.15℄:Proposition 2.1. (See [13, Proposition 1℄) Assume (2.2) and (2.3). There holds:(i) (RP ) admits a solution.(ii) inf(P) = min(RP).(iii) The embedding � : W 1;p(
) ! W 1;p(
) � Yp(
;Rn), v 7! (v; Ærv), ofany in�mizing sequene for (P) has a weakly onvergent subsequene whose(weak�weak�) limit is a solution to (RP ).(iv) Eah solution to (RP ) is the (weak�weak�) limit of the embedding � :W 1;p(
)! W 1;p(
)� Yp(
;Rn) of some in�mizing sequene for (P).3. An iterative algorithm to approximate (RP )The relaxation obviously linearized the problem as far as the highest term on-erns. Also, the equality onstraint in (RP ) is linear. The only possibly nonlinearterm in (RP ) is G(x; �) and our iterative sheme will be based on a linearization ofthis term. This gives the following oneptual �xed-point algorithm (AFP).Algorithm (AFP).(a) Choose "FP > 0, u(0) 2 W 1;p(
), u(0)j�
 = uD, and set k := 1.



4(b) Solve the following linear optimization problem (RP(k)):
(RP(k)) 8>>>>>>>><>>>>>>>>:

Minimize ��(k)(u; �) := Z
 � ZRn F (x; s)�x(ds)+G0u(x; u(k�1))(u� u(k�1))�dx;subjet to ZRn s�x(ds) = ru(x) for a.a. x 2 
;u 2 W 1;p(
); � 2 Yp(
;Rn); uj�
 = uD:Denote the solution to (RP(k)) by (u(k); �(k)); assumptions made later willguarantee this solution to be unique.() If jju(k) � u(k�1)jjL2(
) � "FP, set k := k + 1 and go to (b).(d) Stop.Throughout this artile we assume, in addition to (2.2) and (2.3), that the onvexhull of F (x; �), denoted by F ��(x; �), is ontinuously di�erentiable for almost allx 2 
 and there exist 4 > 0, `G � 0, and s� 2 Rn , js�j = 1, suh that, for almostall x 2 
, for all all s1; s2 2 Rn , and all u1; u2 2 R, there holds4(s� � (s1�s2))2 � �[F ��℄0s(x; s1)� [F �� ℄0s(x; s2)� � (s1 � s2);(3.1) jG0u(x; u1)�G0u(x; u2)j � `Gju1 � u2j:(3.2)We must naturally assume p � 2 to make (2.2) and (3.1) mutually ompatible. Inorder to exploit onventional weak-solution theory for the Euler-Lagrange equationrelated to (RP(k)), we assume that there exist 5 > 0 and b 2 Lp0(
) suh that, foralmost all x 2 
 and for all s 2 Rn ,j[F ��℄0s(x; s)j � b(x) + 5(1 + jsjp�1):(3.3)Lemma 3.1. Let (3.1) and (3.3) be valid. Then the mapping f 7! u : L2(
) !L2(
), with u 2 W 1;p(
) solving in the weak sense the Dirihlet boundary valueproblem �div �[F �� ℄0s(x;ru)� = f; uj�
 = uD;(3.4)is Lipshitz ontinuous with the onstant `1 given expliitly by`1 = D
;s�4 ; D
;s� := diamhs�;
i = supx1;x22
s� � (x1 � x2):(3.5)Proof. Take two right-hand sides f1 and f2 and the orresponding weak solutionsu1 and u2. Subtrat the orresponding weak formulations from eah other and testthem by u1 � u2 2 W 1;p0 (
). By the �ne version of Poinar�e's inequality (whihfollows from the one-dimensional Poinar�e inequality, see, e.g., Showalter [45, Ch.II,Lemma 5.1℄) and by H�older's inequality we get1D
;s� jju1 � u2jj2L2(
) � Z
 �s� � r(u1 � u2)�2dx(3.6) � 14 Z
 �[F ��℄0s(x;ru1)� [F ��℄0s(x;ru2)� � r(u1 � u2)dx= 14 Z
(f1 � f2)(u1 � u2)dx� 14 jjf1 � f2jjL2(
)jju1 � u2jjL2(
):



5For �u 2 W 1;p(
), �uj�
 = uD, let (u; �) solve the following auxiliary problem:(AP�u) 8>>>><>>>>: Minimize ���u(u; �) := Z
 �ZRn F (x; s)�x(ds) +G0u(x; �u)(u� �u)� dx;subjet to ZRn s�x(ds) = ru(x) for a.a. x 2 
;u 2 W 1;p(
); � 2 Yp(
;Rn); uj�
 = uD:The following Lemma 3.2 shows, in partiular, uniqueness in terms of u-omponentof solutions to (AP�u), whih enables us to denote u = S(�u) for a solution (u; �) to(AP�u).Lemma 3.2. Let (2.2), (2.3), and (3.1){(3.3) be valid. Then the mapping S : �u 7!u, L2(
)! L2(
), is Lipshitz ontinuous with the onstant`2 = D
;s�`G4 :(3.7)Proof. For (u; �) solving (AP�u), u must satisfy the Euler-Lagrange equation for theoarse relaxation of (AP�u), i.e. for the problem of minimization of R
 F ��(x;ru) +G0u(x; �u)(u � �u)dx for u 2 W 1;p(
), uj�
 = uD. This equation is just (3.4) withf = G0u(x; �u). Then, by (3.2), the mapping �u 7! f : L2(
) ! L2(
) is obviouslyLipshitz ontinuous with the onstant `G. Composition of this mapping with themapping f 7! u addressed in Lemma 3.1 just gives the mapping S. Its Lipshitzonstant `2 is `1`G, whih is just (3.7).Lemma 3.3. Let again (2.2), (2.3), and (3.1){(3.3) be valid. Furthermore, letG(x; �) be \not muh" nononvex in the sense (formulated in terms of non-monotoniity of G0u) that9 � � 1̀1 8u1; u2 2 R 8(a.a.) x2
 :(3.8) �G0u(x; u1)�G0u(x; u2)�(u1 � u2) � (u1 � u2)2;and let D
;s�`G < 4:(3.9)Then the mapping S has a unique �xed point u and there is � suh that the pair(u; �) solves the relaxed problem (RP ).Proof. The �xed point u 2 W 1;p(
) � L2(
) does exist by the Banah ontration-mapping priniple. Yet, by the de�nition of S, u = S(u) means that there is � suhthat (u; �) solves (RPu), whih implies that u solves the Dirihlet boundary-valueproblem for the Euler-Lagrange equationdiv �[F �� ℄0s(x;ru)� = G0u(x; u); uj�
 = uD:(3.10)The nonlinear operator orresponding to (3.10) is monotone, whih an be seen fromthe estimateZ
�[F ��℄0s(x;ru1)� [F ��℄0s(x;ru2)� � r(u1 � u2)(3.11) +�G0u(x; u1)�G0u(x; u2)�(u1 � u2) dx � � 1̀1 + � jju1 � u2jj2L2(
) � 0;where (3.6) and (3.8) have been used. Therefore, the potential of (3.10), i.e. thefuntional u 7! R
 F ��(x;ru)+G(x; u) dx, is onvex on fu 2 W 1;p(
); uj�
 = uDg.



6This implies that u minimizes this potential on W 1;p(
) under the ondition uj�
 =uD. Then it suÆes to take � 2 Yp(
;Rn) suh thatF ��(x;ru) = ZRnF (x; s)�x(ds) and ZRns�x(ds) = ru(x)(3.12)for a.a. x 2 
. Suh � does exist due to the de�nition of the onvex envelope F ��(x; �)and due to the Carath�eodory property of F (hene F �� is a Carath�eodory integrand),the set-valued mapping x 7! f�x 2M+1 (Rn); (3.12) holdsg is measurable and admitstherefore a weak* measurable seletion x 7! �x; see [42, Proof of Proposition 3.1.9℄for similar arguments. Moreover, the integrability of RRn jsjp�x(ds) required in (2.1)follows from oerivity (2.2) of F and the fat that R
 RRn F (x; s)�x(ds) dx is �nite.The onstants 4 in (3.1), `G in (3.2), as well as D
;s� in (3.5) an be assumed tobe expliitly at our disposal (see Setion 6). Then, by standards arguments, we anstate an a-priori estimate in terms of ku(0) � ukL2(
) (the adjetive \a-priori" refershere to that both the solution u an be estimated a-priori by jjuDjjW 1�1=p;p(�
) andthe initial iteration u(0) is hosen a-priori) and an a-posteriori estimate in terms ofku(k+1) � u(k)kL2(
):Proposition 3.4. Let (2.2), (2.3), and (3.1){(3.3), (3.8) and (3.9) be valid, and let(u; �) be a solution to (RP ). Then, for eah j � 0 there holdsjju(j) � ujjL2(
) � `j2 jju(0) � ujjL2(
):(3.13)Let (u(k+1); �(k+1)) be the output of Algorithm (AFP). There holdsjju(k+1) � ujjL2(
) � "FP `21� `2 :(3.14)Remark 3.5. One annot expet any onvergene of f�(k)gk2N beause � on-struted in (3.12) need not be determined uniquely. In some partiular situations,however, one an prove onvergene of the Young measure support and weak on-vergene of volume frations [4, 11℄. Also, inorporating an estimate (4.7) below,we dedue onvergene of \stresses" in the sensek[F ��℄0s(�;ru(k+1))� [F ��℄0s(�;ru(k))k%Lp0(
;Rn) � Cku(k) � u(k�1)k2L2(
):(3.15)Remark 3.6. If �-omponent is forgotten, the iteration of Algorithm (AFP) anbe written as: Find u(k+1) 2 W 1;p(
), uj�
 = uD, suh that, for all v 2 W 1;p(
),vj�
 = 0, there holdsZ
[F ��℄0s(x;ru(k+1)) � rv dx = � Z
G0u(x; u(k))v dx(3.16)(see also Lemma 4.1 below). Sine we did not want to inlude F �� in the omputa-tions, we de�ned the iteration by a minimization problem involving also �.Remark 3.7. The assumptions (3.1) and (3.3) involve F �� whose expliit knowl-edge is, however, rather exeptional; the examples in Setions 6 or 7 are suh anexeption. Extreme diÆulties in expliit evaluation of F �� even in very speial asean be seen in [7, 11, 18℄. It should be emphasized that (3.3) an be dedued from(2.2). Unfortunately, it is not obvious whether (3.1) an be veri�ed without expliitknowledge of F ��. However, it should be amphasized that (3.1) is not needed forthe implementation of Algorithm (AFP) and whenever the Algorithm onverges, itonverges ultimately to a solution of (RP ); hene, it is worth trying numerial us-age of the Algorithm even if (3.1) is not veri�ed in a partiular ase in question.



7Besides, even if F �� is expliitly known so that one an think about minimizingu 7! R
 F ��(x;ru) + G(x; u) dx whih is algorithmially \heaper" than solving(RP), the Young-measure solution ontains more information than pure knowledgeof the underlying \deformation" u so the e�ort made by implementing a \more ex-pensive" algorithm is not ompletely lost; f. e.g. [15, 18, 39℄ for usage of Youngmeasures to onstrut minimizing sequenes in this or similar irumstanes. More-over, Algorithm (AFP) irumvents diÆulties arising from degenerate onvexity(i.e., laking uniform strit onvexity) of F ��.4. Disretization of (RP(k))The fairly general onstrution of �nite-dimensional onvex subsets of Yp(
;Rn)has been performed rigourously in [13, 32, 40, 41, 42℄ by using systematially dualityarguments. Referring to these works, we present briey the resulting disretizationof (RP(k)).4.1. The basi onstrution and disrete optimality onditions. For a dis-retization of the polyhedral (polygonal if n = 2) bounded Lipshitz domain 
 � Rn ,let us onsider a regular triangulation T of 
. We will refer to T rather through itsmesh parameter h := maxT2T diam(T ). We setVh(
) := fvh 2 W 1;1(
); 8T 2T : vhjT aÆneg;(4.1) Lh(
) := fph 2 L1(
); 8T 2T : phjT onstantg:(4.2)The notations Vh(
;Rn) and Lh(
;Rn) for Rn -valued funtions will be used, too.By IT : C(
)! Vh(
) we denote the nodal interpolation operator assoiated to Tand we de�ne a funtion hT 2 Lh(
) by hT jT := diam(T ) for all T 2 T .Let us assume, for simpliity, uniformW 1;1-estimates for all disrete solutions andlet us onsider a suÆiently large but bounded, polyhedral, onvex set ! � Rn whereall gradients of disrete solutions will live. This seems in aord with our examplein Set. 6, otherwise we would have additionally to make a limit passage with !to Rn as in [13, Proposition 2℄. Furthermore, we onsider a regular triangulation� of ! with nodes N� and will refer to � rather through its mesh parameter d :=maxT2� diam(T ).We de�neYd;h(
;Rn) := ��2Yp(
;Rn); 8T 2T 8s2N� 9�Ts 2 [0; 1℄ :Xs2N� �Ts = 1; �jT = Xs2N� �Ts Æs�:The losed onvex set Yd;h(
;Rn) onsists of all T -elementwise homogeneous Lp-Young measures whih are supported in the nodes of � .Given an approximation u(k�1)d;h of u(k�1), the set Yd;h(
;Rn) allows for an imme-diate disretization of (RP(k)):
(RP(k)d;h) 8>>>>>>>><>>>>>>>>:

Minimize ��(k)d;h(ud;h; �d;h) := Z
�ZRn F (x; s) [�d;h℄x(ds)+G0u(x; u(k�1)d;h )(ud;h � u(k�1)d;h )�dx;subjet to ZRn s[�d;h℄x(ds) = rud;h(x) for a.a. x 2 
;ud;h 2 Vh(
); �d;h 2 Yd;h(
;Rn); ud;hj�
 = IT uDj�
:



8Existene of a solution (u(k)d;h; �(k)d;h) to (RP(k)d;h) is guaranteed if (RP(k)d;h) is feasible.Optimality onditions, invented in [42℄, are the key towards an error analysis andan eÆient implementation of (RP(k)d;h).Lemma 4.1. (See [42, Proposition 5.5.3℄.) Let (u(k)d;h; �(k)d;h) 2 Vh(
) � Yd;h(
;Rn)be suh that, for almost all x 2 
, there holds ru(k)d;h(x) 2 int(!). Then the pair(u(k)d;h; �(k)d;h) is a solution to (RP(k)d;h) if and only if it is feasible for (RP(k)d;h) and thereexists �(k)d;h 2 Lh(
;Rn) suh that, for almost all x 2 
, we havemaxs02N���(k)d;h(x) � s0 � F (x; s0)� = ZRn �(k)d;h(x) � s� F (x; s)[�(k)d;h℄x(ds);(4.3)and, for all vh 2 Vh(
) with vhj�
 = 0, there holdsZ
 �(k)d;h � rvh dx + Z
G0u(x; u(k�1)d;h ) vh dx = 0:(4.4)Remark 4.2. The problem (RP(k)d;h) has a struture of a minimization problemwith a linear ost funtional, linear onstraints, and a onvex set of admissible pairs(ud;h; �d;h), and (4.3){(4.4) are just onventional Karush-Kuhn-Tuker optimalityonditionsmodi�ed to this onrete ase. The funtion �(k)d;h is the Lagrange multiplierfor the onstraint rud;hjT = RRn s�d;hjT (ds), T 2 T , involved in (RP(k)d;h).Any solution (u(k)d;h; �(k)d;h) to (RP(k)d;h) is still a solution to (RP(k)d;h) modi�ed byreplaing F (x; �) by the onvex hull of its nodal interpolant Fd on � , Fd(x; �) :=I�F (x; �); we put Fd(x; �) = +1 in Rn n !. Thus we an state the following lemmain whih �s[F ��d ℄ denotes the subgradient of the onvex, ontinuous, � -pieewise aÆnefuntion F ��d (x; s) with respet to s.Lemma 4.3. (See [4, 13℄.) Assume that (u(k)d;h; �(k)d;h) is a solution to (RP(k)d;h) and�(k)d;h 2 Lh(
;Rn) satis�es the onditions of Lemma 4.1. Then, for almost all x 2 
,it holds �(k)d;h(x) 2 �s[F ��d ℄(x;ru(k)d;h(x)):If for almost all x 2 
 the mappings F (x; �) and F ��(x; �) are of lass C1;1lo and if�F (x; �)j!��� = �F ��(x; �)�j! then there holds�(k)d;h � [F ��℄0s(�;ru(k)d;h)Lp0(
;Rn) � 6d [F ��℄00sL1(
�!;Rn�n):(4.5)Remark 4.4.(i) The ondition F (x; �); F ��(x; �) 2 C1;1lo an be weakened to F (x; �); F ��(x; �) 2C1;�lo for some � 2 (0; 1℄. We then have to replae d in (4.5) by d�.(ii) SuÆient onditions for F ��(x; �) 2 C1;�lo and expliit estimates forjj[F ��℄00s(x; �)jjC1;�(Br(0)) are given in [23, 3℄.(iii) The proof of Lemma 4.3 uses the fat that ! is disretized into triangles ortetrahedra so that nodal values are extremal values.4.2. An a-priori error estimate. To estimate the error u(k)d;h � u(k) for solutionsu(k)d;h and u(k) to (RP(k)d;h) and (RP(k)), respetively, we employ the auxiliary problem(AP�u) introdued in Setion 3 but with u(k�1)d;h in plae of �u. Aording to Lemma 3.1there holds for solutions (~u(k); ~�(k)) to (APu(k�1)d;h ) and (u(k); �(k)) to (RP(k)),k~u(k) � u(k)kL2(
) � `Gku(k�1)d;h � u(k�1)kL2(
):(4.6)



9Combining the optimality onditions of Lemma 4.1 with the estimates of Lemma 4.3,(4.6), and the Euler-Lagrange equations for the solution u(k) to (RP(k)), one anprove the error estimate of Proposition 4.5 below. Some arguments in the proofare similar to those in [4, 11℄. The fous of the result presented here is the rightsaling of d, h, and k. Some notation is neessary to estimate the error aused bythe approximation of non-homogeneous boundary data.Let E(T ) denote the set of sides (=edges if n = 2 or faes if n = 3) in T , andlet hE 2 L1([E(T )) be de�ned by hE jE := hE := diam(E) for E 2 E(T ). For� 2 C(�
) satisfying �jE 2 W 2;2(E) for all E 2 E(T ) with E � �
, let �2E�=�s2denote the sidewise seond derivative of � on �
.Proposition 4.5. Assume that there exist 1 < % � 2, 0 � � <1, and 7 > 0 suhthat, for almost all x 2 
 and all s1; s2 2 Rn , there holdsj[F ��℄0s(x; s1)� [F ��℄0s(x; s2)j% � 7 �1 + js1j� + js2j��(4.7) ��[F ��℄0s(x; s1)� [F ��℄0s(x; s2)� � (s1 � s2):Suppose that the onditions of Lemma 4.1 and Lemma 4.3 are satis�ed and uD 2C(
) is suh that uDjE 2 W 2;2(E) for all E 2 E(T ) with E � �
. Moreover, let(~u(k); ~�(k)) be a solution to (APu(k�1)d;h ). Then, there holdsku(k)�u(k)d;hk2L2(
) � C1 � infwh2Vh(
);whj�
=IT uDj�
kr(~u(k)�wh)k%0Lp(
;Rn)+ku(k�1)�u(k�1)d;h k2L2(
)+ h3=2E �2EuD�s2 2L2(�
;R(n�1)�(n�1)) + d [F ��℄00sL1(
�!;Rn�n)�:The onstant C1 > 0 is independent of k and the triangulations T and � but dependson an a-priori bound for kr~u(k)kLp(
) + kru(k)d;hkLp(
).Proof. Let v 2 W 1;p(
) satisfy vj�
 = (IT uD � uD)j�
. The triangle inequality andthe �ne version of Poinar�e's inequality, f. (3.6), yieldku(k)d;h � u(k)kL2(
) � ku(k)d;h � ~u(k) � vkL2(
) + kvkL2(
) + k~u(k) � u(k)kL2(
)� D1=2
;s� ks� � r(u(k)d;h � ~u(k) � v)kL2(
) + kvkL2(
) + k~u(k) � u(k)kL2(
)� D1=2
;s� ks� � r(u(k)d;h � ~u(k))kL2(
) + 8kvkW 1;2(
) + k~u(k) � u(k)kL2(
);we used that u(k)d;h� ~u(k)�v vanishes on �
. A result in [6℄ shows that we an hoosev suh that kvkW 1;2(
) � 9h3=2E �2EuD�s2 L2(�
;R(n�1)�(n�1)):Employing (4.6) we thus haveku(k)d;h � u(k)kL2(
) � D1=2
;s� ks� � r(u(k)d;h � ~u(k))kL2(
)(4.8) + 89h3=2E �2EuD�s2 L2(�
;R(n�1)�(n�1)) + `2ku(k�1)d;h � u(k�1)kL2(
):Assumption (3.1) implies42 ks� � r(u(k)d;h � ~u(k))k2L2(
)(4.9) � 12 Z
�[F ��℄0s(x;ru(k)d;h)� [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx:



10Following the argumentation in [11, Proof of Theorem 2℄ we dedue from (4.7) that1210k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn)(4.10) � 12 Z
�[F ��℄0s(x;ru(k)d;h)� [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dxwhere 10 > 0 is independent of T and � but involves the a-priori boundkr~u(k)kLp(
;Rn) + kru(k)d;hkLp(
;Rn) � 11whih follows from (2.2). Inserting �(k)d;h and employing H�older's inequality,Lemma 4.3, and the a-priori bound 11, we inferZ
([F ��℄0s(x;ru(k)d;h)� [F ��℄0s(x;r~u(k))) � r(u(k)d;h � ~u(k)) dx(4.11)� Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx+k[F ��℄0s(�;ru(k)d;h)� �(k)d;hkLp0(
;Rn)kr(u(k)d;h � ~u(k))kLp(
;Rn)� Z
��(k)d;h�[F ��℄0s(x;r~u(k))��r(u(k)d;h�~u(k)) dx+ 611d k[F ��℄00skL1(
�!;Rn�n):The Euler-Lagrange equations for ~u(k), Lemma 4.1, and H�older's inequality prove,for arbitrary vh 2 Vh(
) � W 1;p(
) with vhj�
 = 0,Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx(4.12) = Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k) � vh) dx� k�(k)d;h � [F ��℄0s(�;r~u(k))kLp0(
;Rn) kr(u(k)d;h � ~u(k) � vh)kLp(
;Rn):The triangle inequality and Lemma 4.3 yieldk�(k)d;h � [F ��℄0s(�;r~u(k))kLp0(
;Rn)(4.13) � k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))kLp0 (
;Rn) + 6dk[F ��℄00skL1(
�!;Rn�n):Employing (4.13) in (4.12) and Young's inequality ab � a%=% + b%0=%0 for ertaina; b � 0 showsZ
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx(4.14) � 1210% k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn)+�1 + (210)%0=%% �kr(u(k)d;h � ~u(k) � vh)k%0Lp(
;Rn) + %6d%k[F ��℄00sk%L1(
�!;Rn�n):The ombination of (4.9){(4.11) with (4.14) yields, after absorbing1=(210%) k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn) on the right-hand side,%� 1210%k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn) + 42 ks� � r(u(k)d;h � ~u(k))k2L2(
)� �1 + (210)%0=%% � infvh2Vh(
);vhj�
=0 kr(u(k)d;h � ~u(k) � vh)k%0Lp(
;Rn)+ 611dk[F ��℄00skL1(
�!;Rn�n) + %6d%k[F ��℄00sk%L1(
�!;Rn�n):Using this estimate in (4.8), hoosing vh = wh � u(k)d;h for arbitrary wh 2Vh(
) with whj�
 = IT uDj�
, and estimating d%k[F ��℄00sk%L1(
�!;Rn�n) �12dk[F ��℄00skL1(
�!;Rn�n) sine % > 1 and d � 13, proves the proposition.



11A simple indution argument proves an estimate for the error ku(k)d;h � ukL2(
).Theorem 4.6. Under the same onditions of Proposition 4.5 there holdsku� u(k)d;hk2L2(
) � C2 `2k2 ku� u(0)k2L2(
) + kXj=1 infwh2Vh(
);whj�
=IT uDj�
kr(~u(j) �wh)k%0Lp(
;Rn)+ku(0)�u(0)d;hk2L2(
)+k�dk[F ��℄00skL1(
�!;Rn�n)+h3=2E �2EuD�s2 2L2(�
;R(n�1)�(n�1))�!:Proof. The triangle inequality and Proposition 3.4 showku� u(k)d;hkL2(
) � `k2 ku� u(0)kL2(
) + ku(k) � u(k)d;hkL2(
):Iterated appliation of Proposition 4.5 proves Theorem 4.6.A density argument and Theorem 4.6 prove onvergene u(k)d;h ! u in L2(
) for(d; h)! 0 and k !1 (for d; h� 1=k), where d and h are the maximal meshsizesof � and T , respetively. If ~u(j), j = 0; 1; 2; :::; k, satis�es ~u(j) 2 W 1+�;p(
) for some� 2 (0; 1℄ so that infwh2Vh(
);whj�
=IT uDj�
 kr(~u(j) � wh)k%0=2Lp(
;Rn) � 14h�for some � 2 (0; 1℄ and j = 0; 1; 2; :::; k, we may hoose u(0)d;h = IT u(0), d = h2�, and,provided `2 < 1, log(h�= log(`2)) � k � log(h�= log(`2)) + 1 to verifyku� u(k)d;hkL2(
) � C 02�1 + log(h�= log(`2))� h�:(4.15)Remark 4.7. Similarly as in Remark 3.7, expliit knowledge of F �� is not neededfor (4.5) and the estimate of Theorem 4.6 sine expliit bounds for F ��(x; �)00 areprovided in [3℄ in terms of F only.4.3. An a-posteriori error estimate. Sine in general higher regularity is notavailable or � may be very small in (4.15), a-posteriori error estimates that allowfor adaptive mesh re�nement ould yield improved onvergene rates.Let �h 2 Lh(
;Rn) and E 2 E(T ). For E � �
 set ��h� �nE := 0. If E = T�\T+for T�; T+ 2 T let nE 2 Rn be the unit vetor perpendiular to E pointing from T�to T+ and de�ne ��h� � nE := ��hjT+ � �hjT�� � nE:Theorem 4.8. Under the same onditions of Proposition 4.5 and if G0u(�; u(k�1)d;h ) 2W 1;p0(
) there holdsku(k) � u(k)d;hk2L2(
) + k�(k)d;h � [F ��℄0s(�;ru(k))k%Lp0(
;Rn)(4.16) � C3 � XE2E(T ) hEk��(k)d;h� � nEkp0Lp0(E)�1=p0+C4�ku(k�1) � u(k�1)d;h k2L2(
) + h3=2E �2EuD�s2 2L2(�
;R(n�1)�(n�1))+ kh2TrG0u(�; u(k�1)d;h )kLp0(
;Rn) + d k[F ��℄00skL1(
�!;Rn�n)�:The onstants C3; C4 > 0 are independent of k and the meshsizes of T and � butdepend on an a-priori bound for kr~u(k)kLp(
;Rn) + kru(k)d;hkLp(
;Rn).



12Proof. Arguing as in (4.9){(4.11) we have, for all vh 2 Vh(
) with vhj�
 = 0,42 k�� � r(u(k)d;h � ~u(k))k2L2(
) + 1210 k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn)� Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k) � vh) dx + 611d k[F ��℄00skL1(
�!;Rn�n):Inserting v 2 W 1;p(
) with vj�
 = (IT uD�uD)j�
 and employing the Euler-Lagrangeequations for ~u(k) provesZ
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k) � vh) dx= Z
 �(k)d;h � r(u(k)d;h � ~u(k) � v � vh) dx + Z
G0u(x; u(k�1)d;h )(u(k)d;h � ~u(k) � v � vh) dx+ Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � rv dx:Arguing as in (4.12)-(4.14) showsZ
��(k)d;h � [F ��℄0s(x;r~u(k))� � rv dx � �1 + (210)%0=%%0 �krvk%0Lp(
;Rn)+ %6d%k[F ��℄00sk%L1(
�!;Rn�n) + 1210%k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn):A T -elementwise integration by parts, div �(k)d;hjT = 0, and H�older and Cauhy in-equalities yieldZ
�(k)d;h � r(u(k)d;h � ~u(k) � v � vh) dx = XE2E(T ) ZE��(k)d;h� � nE (u(k)d;h � ~u(k) � v � vh) ds� � XE2E(T ) hE k��(k)d;h� � nEkp0Lp0 (E)�1=p0� XE2E(T ) h1�pE ku(k)d;h � ~u(k) � v � vhkpLp(E)�1=pThe weak interpolation operator J : W 1;p0 (
)! Vh(
) \W 1;p0 (
) of [9℄ satis�es, forw 2 W 1;p0 (
) and f 2 W 1;p0(
),Z
 f(w � Jw) dx � 15kh2TrfkLp0(
;Rn)kwkW 1;p(
);XE2E(T ) h1�pE k(w � Jw)kpLp(E) � p15kwkpW 1;p(
):Setting vh = J(u(k)d;h � ~u(k) � v) and ombining the previous estimates shows, afterabsorbing terms on the right-hand side and using d � 13,42 ks� � r(u(k)d;h � ~u(k))k2L2(
) + %� 1210% k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn)� 16� XE2E(T ) hEk��(k)d;h� � nEkp0Lp0 (E)�1=p0ku(k)d;h � ~u(k) � vkW 1;p(
) + 17�krvk%0Lp(
;Rn)+ d k[F ��℄00skL1(
�!;Rn�n) + kh2TrG0u(�; u(k�1)d;h )kLp0(
;Rn)ku(k)d;h � ~u(k) � vkW 1;p(
)�:Choosing v as in the proof of Proposition 4.5, employing an a-priori bound for ku(k)d;h�~u(k) � vkW 1;p(
), and using (4.8) proves the asserted estimate for ku(k) � u(k)d;hkL2(
).An appliation of the estimatek[F ��℄0s(�;ru(k))� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn) � 18ku(k�1) � u(k�1)d;h k2L2(
);whih follows from (4.7) as (4.6) (f. (4.10)), onludes the proof.Remark 4.9. The ondition G0u(�;ru(k�1)d;h ) 2 W 1;p0(
) an be dropped. This re-sults in a omputable term whih is not neessarily of higher order.



13Setting �E := h1=p0E k[�(k)d;h℄ �nEkLp0 (E) and assuming that d� h and for j = k� 1; kthere holds ku(j)d;h � u(j)k2L2(
) � k�(k)d;h � [F ��℄0s(�;ru(k))k%Lp0(
;Rn);Theorem 4.8 proves a reliability-estimate, with \h:o:t:" denoting \higher orderterms",k�(k)d;h � [F ��℄0s(�;ru(k))kLp0(
;Rn) + h:o:t: � C3 � XE2E(T ) �p0E�1=(%p0) =: �R;R:The inverse estimation tehniques of [47℄ allow for the onverse, eÆieny-, estimatewith a di�erent exponent,�R;E := �%R;R � C 03k�(k)d;h � [F ��℄0s(�;ru(k))kLp0(
;Rn) + h:o:t:The gap between �R;E and �R;R is known as a reliability-eÆieny-gap [11℄. Undersimilar assumptions one an show [4℄C5 inf�h2Vh(
;Rn) k�(k)d;h � �hkLp0(
;Rn) � k�(k)d;h � [F ��℄0s(�;ru(k))kLp0(
;Rn) + h:o:t:� C 05 inf�h2Vh(
;Rn) k�(k)d;h � �hk1=%Lp0(
;Rn):If [F ��℄0s(�;ru(k)) is smooth, e.g., in W 2;p0, we have C5 = 1. Sine the omputationof the in�mum appears too expensive an approximation an be de�ned through theaveraging-operator A : L1(
;Rn)! Vh(
;Rn) of [9℄,�A;E = �%A;R := k�(k)d;h �A�(k)d;hkLp0(
) � inf�h2Vh(
;Rn) k�(k)d;h � �hkLp0 (
;Rn):5. Effiient implementation by the ative-set strategyAs the dimensionality of (RP(k)d;h) is usually very high but the optimal Youngmeasure is typially supported only on rather low-dimensional sets, it is ertainlydesirable to redue the dimensionality by exploiting a ertain a-priori information toput the expetedly \non-ative" points out of alulations and also to have a ertainreliable a-posteriori information to hek whether we did it orretly.This information omes from the optimality onditions in Lemma 4.1. However,the HamiltonianH(x; s) = �(k)d;h(x)�s�F (x; s) appearing in these onditions is usuallynot known and has to be estimated from previous iterations in an iterative algorithm.Indeed, this adaptivity idea, let us all it ative-set strategy was proposed and �rstimplemented in [13℄, and further used in [4, 28, 29, 43℄. The iterative algorithm inquestion is the suessive re�nement of a triangulation of !. The ative-set strategywas also implemented in [31℄ where the iterative algorithm arises by the sequentialquadrati programming approah.We briey reall the entral idea for the ative-set strategy and refer to [13℄ andAlgorithm (AT0;�;�;L;m) below for its pratial realization to solve (RP(k)d;h) eÆiently.The support Supp � of � 2 Yp(
;Rn) is given bySupp � := �(x; s)2
�Rn ; s 2 supp �x	where supp �x � Rn is the support of the probability measure �x; Supp � is de�nedup to a set of zero measure.Given A � 
�N� we de�ne a subset of Yd;h(
;Rn) byYd;h;A(
;Rn) = �� 2 Yd;h(
;Rn); Supp � � A	:



14The lower-dimensional subproblem (RP(k)d;h;A) is then de�ned as follows.
(RP(k)d;h;A)

8>>>>>>>>>><>>>>>>>>>>:
Minimize ��(k)d;h(ud;h; �d;h) = Z
�ZRn F (x; s) [�d;h℄x(ds)+G0u(x; u(k�1)d;h )(ud;h � u(k�1)d;h )�dx;subjet to ZRns[�d;h℄x(ds) = rud;h(x) for a.a. x2
;ud;hj�
 = IT uDj�
;ud;h 2 Vh(
); �d;h 2 Yd;h;A(
;Rn):Assume that we are given an approximation ~�h 2 Lh(
;Rn) to the Lagrange multi-plier �(k)d;h 2 Lh(
;Rn) ourring in the optimality onditions of Lemma 4.1. If ~�h islose enough to �(k)d;h and if A is de�ned through ~�h as in the following propositionthen any solution to (RP(k)d;h;A) is a solution to (RP(k)d;h).Proposition 5.1. (See [13, Corollary 1℄.) Let (u(k)d;h; �(k)d;h) be a solution to (RP(k)d;h)with orresponding multiplier �(k)d;h and let ~�h 2 Lh(
;Rn). If for " 2 Lh(
) and allT 2 T there holds sups2! ��(�(k)d;h � ~�h)jT � s �� � 12 "jTand ifA = n(x; s)2
�N� ; ~�h(x) � s� F (x; s) � maxs02N��~�h(x) � s0 � F (x; s0)�� "(x)o;then any solution to (RP(k)d;h;A) is a solution to (RP(k)d;h).Proof. The optimality onditions of Lemma 4.1 guaranteeSupp �d;h � B := n(x; s) 2 
�N� ;�(k)d;h � s� F (x; s) = maxs02N���(k)d;h � s0 � F (x; s0)�o:Therefore (f. [13℄), it suÆes to show B � A. For almost all x 2 
 and all s 2 Rnsuh that (x; s) 2 B there holds by assumption on " and de�nition of B,~�h(x) � s� F (x; s) � �(k)d;h(x) � s� F (x; s)� "(x)=2= maxs02N���(k)d;h � s0 � F (x; s0)�� "(x)=2� maxs02N��~�h � s0 � F (x; s0)�� "(x):Hene we have (x; s) 2 A.Given some ~�h we do not know " in general. We may however hoose some positive" 2 Lh(
), de�ne A as in Proposition 5.1, ompute a solution to (RP(k)d;h;A), verifythe optimality onditions of Lemma 4.1, and enlarge " to repeat this proedure untilthe optimality onditions are satis�ed.6. Illustrative example: 2D broken extremalWe want to illustrate our algorithm on the so-alled Tartar's broken-extremalexample [35℄ whih is modi�ed for the multidimensional ase like in [11, Set. 8℄ or[14, 16℄. To be more spei�, let us onsider n = 2, 
 := (0; K)2 with some K > 0



15and, for almost all x 2 
, all s 2 Rn , and all u 2 R,F (x; s) := js� aj2js+ aj2;(6.1) G(x; u) := (u� g(a � x))2 with(6.2) g(�) := � 3128(� � �b)5 � 13(� � �b)3;(6.3)for a = (os�; sin�) with � = �=6 and for �b = 1=2. Note that (6.1) (when shiftedby a onstant) �ts with (2.2) for p = 4.Then (f. [35℄) the relaxed problem (RP ) has the unique solutionu(x) = 8<: g(a � x) for a � x 2 (0; �b);(a � x� �b)324 + (a � x� �b) for a � x 2 (�b;p2);(6.4a) �x = 8<: 1� a � ru(x)2 Æ�a + 1 + a � ru(x)2 Æa for a � x 2 (0; �b);Æru(x) for a � x 2 (�b;p2);(6.4b)provided we hoose the boundary data uD := uj�
 with u just from (6.4a). Herewe an take a bene�t from an expliit knowledge (6.5) of F �� although, as alreadypointed out in Remarks 3.7 and 4.7, our algorithm itself does not exploit the infor-mation (6.5) below.Lemma 6.1. (See [11, Propositions 1{3℄.) Let F be as in (6.1). For almost allx 2 
 and all s 2 Rn there holdsF ��(x; s) = maxfjsj2 � 1; 0g2 + 4�jsj2 � (a � s)2�:(6.5)Moreover, for almost all x 2 
 and all s1; s2 2 Rn , we have��[F ��℄0s(x; s1)� [F ��℄0s(x; s2)��2 � 8 �1 + js1j2 + js2j2�� �[F ��℄0s(x; s1)� [F ��℄0s(x; s2)� � (s1 � s2);8 �a? � (s1 � s2)�2 � �[F ��℄0s(x; s1)� [F ��℄0s(x; s2)� � (s1 � s2);with a? = (sin�;� os�).Remark 6.2. For almost all x 2 
 and all s 2 Rn there holds F ��(x; s) = F (x; s)if and only if jsj � 1. Hene only gradients of modulus � 1 lead to a non-trivialYoung measure.Let us point out that Lemma 6.1 proves 4 = 8 and s� = a? in (3.1) for F from(6.1) and we have `G = 2 in (3.2) for G de�ned by (6.2), while D
;s� � p2K in(3.5). Obviously, (3.8) holds even with  = 2 > �1=`2 in as G(x; �) from (6.2) isuniformly onvex. Lemma 3.3 therefore ensures onvergene of Algorithm (AFP) inthis ase if `2 = D
;s�`G4 � K2p2 < 1;i.e., if the size K of the square 
 is less than 2p2. For our numerial experimentswe hose K = 1.Furthermore, the onvex domain ! := (�m;m)2 � R2 is triangulated by uniformtriangulations � with meshsize d > 0. More preisely, a uniform triangulation � of! with meshsize d an be de�ned through the nodesN� := �s2R2 ; 9i; j 2 f�M; :::;Mg : s = � imM ; jmM ��;(6.6)



16where M is a positive integer satisfying m=d � 1 � M � m=d. The elements in �are hosen as halved squares with sides of lengths m=M and p2m=M .For parameters � 2 f0; 1=2g, � 2 [1; 2℄, a positive numberm 2 R, a list of positiveintegers L = (L(0); L(1); L(2); :::), and an initial triangulation T0 of 
 we used thefollowing algorithm to approximate (RP ) on a sequene of uniformly (� = 0) andadaptively (� = 1=2) re�ned triangulations Tj, j = 0; 1; 2; :::. The algorithm an beemployed to any spei�ation of (RP ) (though onvergene has to be proved foreah situation) and ombines adaptive mesh re�nement with a nested �xed pointiteration and the ative set strategy introdued in the preeding setions. Theparameter � determines the ratio of the meshsizes of the triangulations of 
 and !.The sequene of integers L is needed for the realization of the ative set strategy.Given j � 0 and a triangulation Tj of 
 with Nj nodes the number hj is de�ned byhj = 1=pNj. The algorithm terminates if a suitable stopping riterion is satis�edand then the output is an approximate solution (uj; �j) 2 Vhj (
)� Ydj ;hj(
;R2) to(RP ) for some j � 0 and a triangulation �j of ! = (�m;m)2 with meshsize dj = h�j .Algorithm (AT0;�;�;L;m).(a) Set j := 0, k := 0, ` := 0, and hoose u(k)j 2 Vhj(
) suh that u(k)j j�
 =ITjuDj�
. Choose �j;` 2 Lh(
;R2), set " :=1, and dj;` := 2L(j)h�j .(b) Generate a uniform triangulation �j;` of ! = (�m;m)2 with meshsize dj;` andwith nodes N�j;` as in (6.6).() De�neA := n(x; s)2
�N�j; ;̀ �j;`(x)�s� F (x; s) > maxs02N�j;` �j;`(x)�s0 � F (x; s0)� "o:Enlarge A appropriately to ensure feasibility of (RP(k+1)dj;`;hj ;A).(d) Solve the linear optimization problem (RP(k+1)dj;`;hj ;A) to obtain a solution(~uj; ~�j;`) 2 Vhj(
)�Ydj;`;hj ;A(
;R2) and a Lagrange multiplier ~�j 2 Lhj (
;R2).(e) If, for almost all x 2 
 and all s 2 N�j;`, it holds~�j(x) � s� F (x; s) � ZR2�~�j(x) � s0 � F (x; s0)�~�j;`;x(ds0) + h2�jthen:(e1) if ` < L(j), then set �j;`+1 := ~�j, dj;`+1 := dj;`=2, " := dj;`=2, ` := ` + 1,and go to (b).(e2) if ` = L(j), then set u(k+1)j := ~uj, �(k+1)j;` := ~�j;`, ` := 0, and go to (g).(f) Set " := 2", �j;` := ~�j, and go to ().(g) If ku(k+1)j � u(k)j kL2(
) � h2j set uj := u(k+1)j , �j := ~�(k+1)j;` , k := 0, and go to (j).(h) Set k := k + 1, dj;` := 2L(j)h�j , " := hj=2, �j;` := ~�j and go to (b).(j) Compute error indiators �E for all sides E 2 E(Tj) in Tj.(k) Terminate if a stopping riterion is satis�ed.(l) Mark the side E 2 E(Tj) for re�nement if �E � �maxE02E(Tj) �E0.(m) Generate a new triangulation Tj+1. Set �j+1;` := �j;L(j), u(k)j+1 := uj, " := hj,dj+1;` := 2L(j+1)h�j+1, j := j + 1, and go to (b).



17Remark 6.3.(i) A omputable riterion is available to enlarge m in (e) and thereby guaranteethat it is large enough [4℄.(ii) Feasibility of (RP(k+1)dj;`;hj ;A) in Step () of the algorithm an be ahieved, e.g.,by enlarging A suh that Æru(k)j 2 Ydj;`;hj ;A(
;R2).(iii) Stopping riteria in (k) of Algorithm (AT0;�;�;L;m) an be, e.g., kuj �uj�1kL2(
) � "stop, k�j � �j�1kLp0(
) � "stop, or PE2E(Tj) �p0E � "stop for some"stop > 0, or j = J for some J � 1.(iv) Sine in the optimal ase we have kuj � ukL2(
) � Ch2j we hose "FP = h2j asa stopping riterion for the �xed point iteration.(v) The tolerane h2�j for the veri�ation of the maximum priniple in (e) guaran-tees �j(x) = [F ��℄0s(x;ruj(x)) +O(h�j ) for almost all x 2 
.(vi) The hoies of " for the de�nition of A in () are motivated by Proposition 5.1.(vii) We refer to [47℄ for details on red-green-blue re�nement strategies to obtain are�ned regular triangulation from the error indiators �E in (m).(viii) Steps (b)-(e) of the algorithm realize the ative set strategy as proposed in[13℄.(ix) Sine optimization toolboxes provide a Lagrange multiplier ~� based on duality(and hene the inner produt in) RN , ~� has to be resaled by 1=jT j, i.e.,�(k)d;hjT := ~�jT=jT j, in order to satisfy the onditions of Lemma 4.1.
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Figure 1. Initial triangulation T0 in the example.For the numerial approximation of (RP ) spei�ed through (6.1)-(6.3) we hoosea oarse initial triangulation T0 of 
 whih onsists of 32 ongruent triangles withN0 = 25 nodes, f. Figure 1. We used m = 2, employed L = (4; 2; 2; 2; :::), and triedall ombinations of � 2 f1; 3=2; 2g and � 2 f0; 1=2g. Moreover, we used �0;0 = 0and u(0)0 = IT0uD in Step (a) of the algorithm to start the iteration. As a stoppingriterion we used j = J for various positive integers J .Figure 2 shows the solution u2 2 Vh2(
) on the uniform triangulation T2 for � = 1and the support of the disrete Young measure solution restrited to two di�erentelements. The triangulation T2 is obtained by two red-re�nements of T0 and onsistsof 256 elements and has 225 free nodes. The displayed triangulation of ! = (�2; 2)2admits 4761 nodes and we observe that the ative set strategy ativates only a fewnodes (or atoms) whih are very lose to the support of the exat Young measuresolution. In the middle plot of Figure 2 we observe some ative nodes lose to zerowhih results from Step () of the algorithm to ensure feasibility of the optimizationproblem (RP(k+1)dj;`;hj;A).For a omparison we displayed the solution u12 2 Vh12(
) on the adaptively gen-erated triangulation T12 for � = 3=2 together with the support of the assoiatedYoung measure solution restrited to two di�erent elements in Figure 3. The trian-gulation T12 admits a omparable number of degrees of freedom as the one shown
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0.3Figure 2. Solution on a uniformly re�ned triangulation (top) for� = 1 and support of the assoiated disrete Young measure (indiatedby irles) restrited to the elements onvf(5; 4); (4; 5); (4; 4)g=16(middle) and onvf(8; 12); (9; 11); (9; 12)g=16 (bottom) (indiated bya darker shading in the upper right plot). The magni�ed regions dis-play volume frations larger than 1/1000.in Figure 2 but the mesh on ! is �ner beause of the di�erent hoie of �. Theadaptive re�nement strategy re�nes the mesh towards the line fx 2 
; x � a = �bgalong whih the exat solution has a disontinuity in the gradient. This appearsreasonable sine by our hoie of � uniform triangulations do not resolve that lineand the approximation error in a neighbourhood of it is expeted to be large onuniform meshes.Table 1 displays for � = 0, i.e., for uniform mesh re�nement, � = 1, and j =0; 1; 2 the number of free nodes in Tj, the minimal integer K for whih ku(K+1)j �u(K)j kL2(
) � h2j , the number of iterations in the ative set strategy in the last stepof the �xed point iteration and for the highest level L(j) in the ative set strategy,the number of atoms in the triangulation �j;L(j), as well as the average number



19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.5

1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

oooo
oo
oooo
oooo
oooo
oooo
o

oooo
oooo
oo

oooo
oxoo
oo

oooo
oooo
oo
oooo
oooo
o
oooo
oooooooo
oooo

ooo

oooo
oo
oooo
oooo
oooo
oooo
o

oooo
oooo
oo

oooo
oxoo
oo

oooo
oooo
oo

oooo
oooo
oo
oooo
oooooooo
oooooo

−0.5 0.5 1 1.5 2

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
−1−1.5−2 0

0.5

0.6

0.55

0.45

0.4

0.485

0.8 0.9 10.75 0.85 0.95

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

oooooo
oo
oooo
oooo
oooo
oooo
oo

oooo
oooo
oo

oooo
xxoo
oo

oooo
oooo
oo

oooo
oooo
o
oooo
oooooooo
o

1

1.5

2

0.5

0

−0.5

−1

−1.5

−2
−1.5 1 1.5 2−2 −1 −0.5 0 0.5

0.698

0.302

0.65

0.6

0.5

0.45

0.4

0.55

10.950.90.850.80.75Figure 3. Solution on an adaptively re�ned triangu-lation (top) for � = 3=2 and support of the assoiateddisrete Young measure (indiated by irles) restritedto the elements onvf(5; 5); (4; 4); (5; 4)g=16 (middle) andonvf(10; 12); (8; 12); (9; 13)g=16 (bottom) (indiated by a darkershading in the upper right plot). The magni�ed regions displayvolume frations larger than 1/1000.of ative atoms per element. It is remarkable that less than 4% of the possibleatoms are ativated by Algorithm (AT0;�;�;L;m). Beause of the nested iteration,i.e., hoosing the solution on a oarse triangulation as the starting value for the�xed point iteration on the re�ned triangulation, the algorithm performs very fewiterations for the �xed point iteration on one triangulation Tj. The number ofiterations in the maximum priniple grows rapidly in this example. This behaviourmight be aused by the hoie of the parameter " = hj (motivated by the estimatek�j+1 � �jkL4=3(
;R2) � Chj whih holds if the exat solution of (RP ) is smooth)whih seems too optimisti in this example.



20 The same numbers are displayed for � = 1=2, i.e., adaptive mesh-re�nement, and� = 3=2 in Table 2. Owing to the larger hoie of � the number of possible atomsgrows faster but less than 3% of them are ativated by the ative set strategy. Again,the number of �xed point iterations is very small but in ontrast to the numbers foruniform mesh re�nement, the numbers of iterations in the maximum priniple seemto remain bounded.j dof(Tj) FP-it's MP-it's # atoms/jTjj # ative atoms/jTjj0 9 3 1 289 9.31 49 3 12 1369 21.32 225 3 30 4761 65.1Table 1. Degrees of freedom (=dof) in Tj, numbers of �xed point(FP-) and maximum priniple (MP-) iterations, numbers of possibleatoms, and average number of ativated atoms per element in the �naliteration on Tj for uniform mesh re�nement and � = 1.j dof(Tj) FP-it's MP-it's # atoms/jTjj # ative atoms/jTjj0 9 3 2 1089 17.81 12 3 2 2401 32.22 20 3 2 3721 44.23 34 3 1 5929 48.34 37 3 1 6561 55.35 52 3 3 9409 71.56 59 3 4 11025 73.67 70 3 7 13689 85.48 83 3 2 17689 93.99 121 3 6 29929 120.510 146 3 3 37249 122.611 147 3 2 38809 131.612 152 3 6 40401 131.6Table 2. Degrees of freedom (=dof) in Tj, numbers of �xed point(FP-) and maximum priniple (MP-) iterations, numbers of possibleatoms, and average number of ativated atoms per element in the �naliteration on Tj for adaptive mesh re�nement and � = 3=2.For all ombinations of � 2 f0; 1=2g and � 2 f1; 3=2; 2g we displayed the errorkuj � ukL2(
) against degrees of freedom in Tj for j = 0; 1; 2; ::: with a logarithmisaling used for both axes in Figure 4. We observe that the adaptive re�nementstrategy for � = 3=2 leads to smaller errors than the uniform re�nement strategyfor � = 3=2 at omparable numbers of degrees of freedom in Tj larger than 100, andalso to an improved experimental onvergene rate. For the theoretially motivatedhoie � = 2 we were not able to ompute solutions on meshes with more than 100degrees of freedom in Tj. The numerial results indiate however that the hoie� = 2 is too pessimisti in this example and � = 1 appears suÆient for uniformmesh-re�nement. For the adaptive strategy the hoie � = 1 gave suboptimal resultsbut � = 3=2 led to reasonable solutions.For all ombinations of � 2 f0; 1=2g and � 2 f1; 3=2; 2g in Algorithm (AT0;�;�;L;m)Figure 5 displays the error k�j � �kL4=3(
;R2) for � = [F ��℄0s(�;ru) on various trian-gulations. We observe that the stress error dereases optimally with rate 1=2 for
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Figure 6. Stress error and error estimators for (�; �) = (0; 1) and(�; �) = (1=2; 3=2) in Algorithm (AT0;�;�;L;m).7. Further examplesThe salar harater of the addressed variational problems as well as the assump-tion (3.1) restrits appliation area of our approah onsiderably. Hene it is worthoutlining appliability of our algorithm to three spei� models having de�nite in-terpretations.7.1. Compatible phase transitions in elasti solids. This �rst example is out ofthe salar framework used throughout this paper and illustrates how the appliationsof the algorithm an be widened to vetorial problems at least in speial ases. Giventwo symmetri matries E1; E2 2 Rn�nsym suh that E2 � E1 = (a 
 b + b 
 a)=2 fora; b 2 Rn with jbj = 1, and a symmetri, positive-de�nite fourth order tensor C , thefuntion F (x; E) = F (E) := 12 minj=1;2 jC 1=2(E � Ej)j2; E 2 Rn�nsym(7.1)leads to a simple model for ompatible phase transitions in ertain elasti solidsat small strains provided, of ourse, (P) employs W 1;p(
;Rn) instead of W 1;p(
),appropriate funtions G and uD, and the symmetri gradient "(u) := 12(ru+ruT )instead of ru. We refer to [1, 12℄ for spei�ations of E1; E2 and C that modela tetragonal-to-monolini transformation in a high-temperature superondutor.Owing to the work of [26℄ and the hoie of E1; E2, formulation (RP ) (with Rnreplaed by Rn�nsym ) is a proper relaxation of (P). The following lemma shows that thekey assumptions (3.1) and (4.7) of our analysis are indeed satis�ed in this example.Lemma 7.1. Let F be de�ned through (7.1). Then F �� satis�es (3.1) and (4.7).Proof. It is shown in [5℄ that F ��(E) = 12 min�2[0;1℄ jC 1=2(E � (1� �)E1 � �E2)j2 =12 min�2[0;1℄ jC 1=2(E�E1��A)j2 where A := (a
b+b
a)=2. If �(E) 2 [0; 1℄ satis�esF ��(E) = 12 jC 1=2(E �E1 � �(E)A)j2 then (with \ : " denoting the salar produt in



23Rn�n) 1jC 1=2Aj2 C (E � E1) : A 8<: � 0; for �(E) = 0;= �(E); for �(E) 2 (0; 1);� 1; for �(E) = 1:(7.2)Aording to [3℄ there holds F �� 2 C1(Rn�nsym ) and this implies that [5℄[F ��℄0(E) = C (E � E1 � �(E)A):Given E; ~E 2 Rn�nsym let � 2 R and A? 2 Rn�nsym satisfy CA? : A = 0 and E � ~E =�A+ A?. Writing � := �(E) and ~� := �( ~E) we have([F ��℄0(E)� [F ��℄0( ~E)) : (E � ~E) = C ��A+ A? � (� � ~�)A� : ��A+ A?�= ��2 � �(� � ~�)�jC 1=2Aj2 + jC 1=2A?j2:Sine � = 1jC 1=2Aj2 C (E� ~E ) : A, the estimates in (7.2) allow for �2��(��~�) � 0. Thisproves (3.1) sine A? is the projetion of E1 � E2 onto the orthogonal omplementof A. The identity([F ��℄0(E)� [F ��℄0( ~E)) : (E � ~E)� jC �1([F ��℄0(E)� [F ��℄0( ~E))j2= C ��A+ A? � (� � ~�)A� : �(� � ~�)A�= �2jC 1=2Aj2 � �(� � ~�)jC 1=2Aj2leads to the proof of (4.7).Let us remark that extension to more than 2 wells is not simple at all, and hasbeen done by Smyshlyaev and Willis [48℄ for a 3-well problem while only ertainestimates are known for more than 3-wells [22℄.7.2. Optimal shape design problems. Given 
 � R2 , a positive number � <j
j, and two positive numbers �1 < �2 the following domain optimization problemmodels the optimal mixture of two materials and ours in solid and uid mehanis:Find u 2 W 1;2(
) and ! � 
 suh that uj�
 = 0, j!j = a, and the pair (u; !) isminimal for I(u;!) := Z
 12�(x)jru(x)j2 + u(x) dx;with �j! = �1 and �j
n! = �2. It has been shown in [21℄ that this problem anbe redued to the following saddle point problem: Find (�; u) 2 R �W 1;2(
) withuj�
 = 0 whih are optimal insup�2R infu2W 1;2(
)uj�
=0 Z
 ��(ru(x)) + u(x) dx + C0�:Here, �� is expliitly determined by � (see [21, 11℄ for details) and �1; �2, is non-onvex, and satis�es our assumptions (2.2), (2.3), and (4.7). Therefore, for eah� 2 R we reover a salar variational problem of the type (P) with G(x; u) = u.The assumption (3.1) is not satis�ed but not needed for our approximation shemebeause the resulting relaxed problem is linear and the algorithm onverges alwaysin one iteration. This situation is srutinized in [4℄.



247.3. Phase transitions in antiplane shear settings. Nonlinear elastiity undervery speial irumstanes leads to a so-alled antiplane shear setting; f. the surveypaper by Horgan [24℄. A multi-well stored energy then orresponds to various natu-ral on�gurations of the material, alled phases; f. [20, 46℄ for this antiplane setting.For example, a two-dimensional double-well problem onsidered in [15, 20, 46℄ em-ploys F (x; s) = s21 + as42 � bs22; a; b > 0:(7.3)This F (x; �) allows for an expliit onvex envelopeF ��(x; �) = s21 +� �b2=(4a) if s2 2 ��pb=(2a);pb=(2a)�;as42 � bs22 otherwise:(7.4)Here F �� satis�es (3.1) with s� = (1; 0) and 4 = 1, but (3.3) would have to benaturally modi�ed and an anisotropi Sobolev spae would have to be used. As tothe weighted uniform monotoniity (4.7) of an inverse to [F ��℄0s(x; �), it holds here ina suitable \anisotropi" modi�ation with % = 2 (resp. 4/3) and � = 1 (resp. 3) withrespet to s1 (resp. s2) beause j[F ��℄0s(x; �)j has a growth as power � = 1 (resp. 3)with respet to s1 (resp. s2).A more general ase onsiders k phases desribed by the gradients fsigki=1 � Rn ,positive-de�nite matries fCigki=1 � Rn�nsym of \elasti" moduli, o�sets fwigki=1 � R,and elasti response near the phases that an be desribed by the potentialF (x; s) = F (s) := mini=1;:::;k�12 jC1=2i (s� si)j2 + wi�:(7.5)The following lemma desribes the onvex envelope of F and proves that all ourassumptions are satis�ed if k � n and C1 = ::: = Ck =: C.Lemma 7.2. Let F (x; s) = F (s) be as in (7.5) with Ci = C 2 Rn�nsym positivede�nite, i = 1; 2; :::; k.(i) For s 2 Rn there holdsF ��(s) = min�i2[0;1℄�1+:::+�k=1 12��C1=2(s� kXi=1 �isi)��2+ kXi=1 �iwi:(7.6)(ii) If for s 2 Rn the onvex-ombination oeÆients �i, i = 1; :::; k, are optimal in(7.6) then [F ��℄0(s) = C�s� kXi=1 �isi�:(7.7)(iii) For s; ~s 2 Rn there holds��C�1�[F ��℄0(s)� [F ��℄0(~s)���2 � �[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s):(7.8)(iv) Let L � Rn be a linear subspae of Rn and `0 2 L? (here orthogonality is de�nedthrough the salar produt (s; ~s) 7! (Cs) � ~s) suh that onv fs1; s2; :::; skg � `0 + L.Let `? 2 L? suh that jC1=2`?j = 1. For s; ~s 2 Rn there holds�C`? � (s� ~s)�2 � �[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s):Proof. (i) Formula (7.6) follows from showing that F ��(s) is bounded from aboveby the right-hand side RHS(s) of (7.6), that RHS is a onvex funtion, and thatRHS(s) � F (s). The fat that F �� is the largest onvex funtion below Fyields (7.6).



25(ii) For a proof of (7.7) let s 2 Rn and �i, i = 1; :::; k, be optimal for s in (7.6), andlet us abbreviate (s�; w�) =Pki=1 �i(si; wi). For any s0 2 Rn and t 2 R we haveF ��(s+ ts0) � 12 jC1=2(s+ ts0 � s�)j2 + w�:Hene, there holdsF ��(s+ ts0)� F ��(s) � 12 jC1=2(s+ ts0 � s�)j2 � 12 jC1=2(s� s�)j2= 12C(s+ ts0 � s�) � (s+ ts0 � s�)� 12C(s� s�) � (s� s�)= C(s� s�) � (ts0) + 12t2jC1=2s0j2:Sine we know from [3℄ that F �� 2 C1(Rn) we have, for jtj � t0,F ��(s+ ts0) = F ��(s) + t[F ��℄0(s) � s0 + '(t)with '(t)=jtj ! 0 for t! 0. Hene, for all jtj � t0 there holdstjtj�[F ��℄0(s)� C(s� s�)� � s0 � �'(t)jtj + jtj2 jC1=2s0j2and this implies (by hoosing an appropriate sign for t! 0)�C(s� s�)� [F ��℄0(s)� � s0 = 0:Sine s0 2 Rn was arbitrary we dedue [F ��℄0(s) = C(s� s�).(iii) Given any s; ~s 2 Rn , let �i; %i 2 [0; 1℄, i = 1; :::; k be suh that Pki=1 �i =Pki=1 %i = 1 andF ��(s) = 12 jC1=2(s� s�)j2 + w� and F ��(~s) = 12 jC1=2(~s� ~s%)j2 + ~w%where (s�; w�) =Pki=1 �i(si; wi) and (~s%; ~w%) =Pii=1 %i(si; wi). (7.7) shows��C�1�[F ��℄0(s)� [F ��℄0(~s)���2 = C(s� s� � ~s+ ~s%) � (s� s� � ~s+ ~s%)and �[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s) = C(s� s� � ~s+ ~s%) � (s� ~s):Using Pki=1 %i =Pki=1 �i = 1 we �nd�[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s)� jC�1([F ��℄0(s)� [F ��℄0(~s))j2= C(s� s� � ~s+ ~s%) � (s� � ~s%)= C(s� s�) � (s� � ~s%)� C(~s� ~s%) � (s� � ~s%)= kX̀=1 %`C(s� s�) � (s� � s`) + kX̀=1 �`C(~s� ~s%) � (~s% � s`)= kX̀=1 %`�C(s� s�) � (s� � s`)� w� + w`�+ kX̀=1 �`�C(~s� ~s%) � (~s% � s`)� ~w% + w`�:
(7.9)
By hoie of �i, i = 1; :::; k, for eah ` 2 f1; :::; kg the mapping f` : [0; 1℄! R,� 7! jC1=2(s� �s� � (1� �)s`)j2=2 + �w� + (1� �)w`has a minimum in � = 1, i.e., f 0̀(1) � 0, or�C(s� s�) � (s� � s`) + w� � w` � 0:
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