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.Abstra
t. In non
onvex optimization problems, in parti
ular in non
onvex vari-ational problems, there usually does not exist any 
lassi
al solution but onlygeneralized solutions whi
h involve Young measures. In this paper, after review-ing brie
y the relaxation theory for su
h problems, an iterative s
heme leadingto a \sequential linear programming" (=SLP) s
heme is introdu
ed, and its 
on-vergen
e is proved by a Bana
h �xed-point te
hnique. Then an approximations
heme is proposed and analyzed, and 
al
ulations of an illustrative 2D \broken-extremal" example are presented.Key Words. Young measures, 
onvex approximations, relaxed variational prob-lems, linear approximation, Bana
h �xed point, adaptive s
heme.AMS Subje
t Classi�
ation: 49M05, 65K10, 65N30.1. Introdu
tionNon
onvex optimization problems often la
k any solution be
ause of fast os
il-lations of minimizing sequen
es that eventually break lower semi
ontinuity withrespe
t to a weak 
onvergen
e, 
f. [44℄ and referen
es therein for a survey in 
ase ofs
alar variational problems on whi
h we will fo
us in this paper. Therefore, a re-laxation is urgent to solve su
h problems in a suitably generalized sense. The mostgeneral way of relaxation is 
ertainly a suitable 
ontinuous extension, using also asuitable linear-spa
e stru
ture not ne
essarily 
ompletely 
oherent with the linearstru
ture o

uring in the formulation of the original problem. Thus extended, also
alled relaxed, problems then may get a 
onvex stru
ture even if the original prob-lem does not have any. For a large 
lass of problems, (generalized) Young measures(
f. e.g. [2, 42℄) represent a suitable tool.The relaxed problems 
an be dis
retized by a theory of approximation of (general-ized) Young measures developed re
ently in [40, 41, 42℄, see also [32, 37, 38℄. Numer-i
al solution of the relaxed problems 
an be often performed dire
tly, without ap-proximating the original, non-relaxed problem, 
f. [27, 28, 29, 32, 33, 34, 35, 42, 43℄.If the (additively 
oupled, 
f. e.g. (P) below) problem is linear in a lower-order term(i.e. G(x; �) in (P) is linear), su
h approa
h leads to a linear-programming prob-lem and was shown very eÆ
ient in [4℄. In the quadrati
 
ase, it naturally leadsto a quadrati
-programming problem, whi
h is a 
onsiderably less eÆ
ient but stillpossible approa
h if the dimensionality is not too high, 
f. [13, 32, 29, 43℄. For1



2non-quadrati
 
ase, one 
an still 
onsider an iterative s
heme leading to sequential-quadrati
-programming algorithm, whi
h is however even less eÆ
ient, 
f. [31℄. Forother numeri
al approa
hes for the approximation of non
onvex variational problemswe refer to [8, 11, 12, 14, 16, 17, 30℄.Therefore, espe
ially in a multidimensional 
ase, a more eÆ
ient approa
h is desir-able. We propose to approximate the relaxed problem not quadrati
ally (in 
ontrastto [31℄) but linearly so that the auxiliary problems are as those in [4℄. The idea ofso-
alled sequential linear programming (=SLP) is not 
ompletely new and has beenused in other 
ontext, e.g., in [19, 36, 49℄.The goal of this paper is to demonstrate the usage of this, otherwise fairly (thoughnot absolutely) general approa
h, on a 
on
rete problem of s
alar multidimensionalvariational 
al
ulus:(P) 8<: Minimize �(u) := Z
 F (x;ru(x)) +G(x; u(x)) dx;subje
t to u 2 W 1;p(
); uj�
 = uD;with 
 � Rn a bounded domain with the Lips
hitz boundary �
 and uD 2W 1�1=p;p(�
) given. Let us point out that we 
on�ne ourselves to additively 
ou-pled problems, in 
ontrast to general problems involving the fun
tional �(u) :=R
 '(x; u(x);ru(x))dx; i.e. we 
onsider only the spe
ial 
ase '(x; u; s) = F (x; s) +G(x; u). It should be mentioned that this restri
tion seems unfortunately quite im-portant for the linearization and the Bana
h-�xed-point te
hniques be
ause, e.g.,the estimate (3.6) below does not seem to be transferable to the general 
ase. Forthe 
ase that G is aÆne in u the linearized problem equals (P) and we general-ize existing error estimates for the approximation of relaxed formulations of (P) tononquadrati
 growth 
onditions under general assumptions.The outline and the main 
ontributions of this paper read as follows: We intro-du
e the employed relaxation of the non
onvex variational problem (P) in Se
tion 2and prove 
onvergen
e of a linearization in Se
tion 3. Se
tion 4 is devoted to thenumeri
al analysis of the linearized problems. Besides an a-priori error estimatethat relates three di�erent s
ales, we establish an a-posteriori estimate whi
h al-lows for adaptive mesh re�nement. An eÆ
ient and reliable iterative algorithm tosolve the dis
rete problems is provided in Se
tion 5. In Se
tion 6 we report on theperforman
e of our algorithm applied to a s
alar 2-well problem whi
h has beenproposed in [8, 10℄ as a ben
hmark model problem for the numeri
al approximationof s
alar non
onvex variational problems. Finally, Se
tion 7 further illustrates (andoutlines some widening of) appli
ability of our algorithm; in parti
ular, modellingof 
ompatible phase transitions in elasti
 solids, optimal shape design problems, and
ertain phase transitions in antiplane shear settings are mentioned there.2. The Young-measure relaxationIn this se
tion we de�ne the employed relaxation of (P) whi
h is a 
ontinuousextension of (P) to measure valued solutions and has been established, e.g., in [42℄.We brie
y state the relaxed problem (RP ) and the main results 
on
erning the
onne
tions between (P) and (RP ).Let M+1 (Rn) be the set of probability measures on Rn , i.e., the set of all non-negative Radon measures � satisfying RRn �(ds) = 1. The set of Lp-Young measures



3Yp(
;Rn) is de�ned asYp(
;Rn) := n� 2 L1w (
;M+1 (Rn)) : Z
 ZRn jsjp�x(ds) dx <1o:(2.1)Here �x := �(x) 2 M+1 (Rn) for almost all x 2 
 and the index \w" inL1w (
;M+1 (Rn)) stands for \weakly� measurable", whi
h means that given anyv 2 C0(Rn) := fw 2 C(Rn) : limjsj!1w(s) = 0g the mapping x 7! RRn v(s)�x(ds) isLebesgue measurable in 
.The fundamental theorem on Young measures [2℄ (
f. also [42, Lemma 3.2.7℄)allows to 
ompute weak limits of 
ontinuous fun
tionals applied to weakly 
onvergentsequen
es in Lp. We will assume that F : 
 � Rn ! R and G : 
 � R ! R areCarath�eodory fun
tions satisfying, for almost all x 2 
, all s 2 Rn , and all u 2 R,
1jsjp � F (x; s) � 
2(1 + jsjp);(2.2) jG(x; u)j � a(x) + 
3jujq;(2.3)where p > 1, 
1; 
2; 
3 > 0, a 2 L1(
), and 1 < q < pn=(n � p) if p < n and1 < q < 1 if p � n. Then we will 
onsider the already annon
ed relaxed problemin the form:(RP ) 8>>>><>>>>: Minimize ��(u; �) := Z
 �ZRn F (x; s)�x(ds) +G(x; u(x))�dx;subje
t to ZRn s�x(ds) = ru(x) for a.a. x 2 
;u 2 W 1;p(
); � 2 Yp(
;Rn); uj�
 = uD:The following assertion [13℄, showing that (RP ) is indeed a proper relaxation of (P),is based on results from [25℄ and, in fa
t, translates some results of [42, Propositions5.2.1, 5.2.6 and 3.4.15℄:Proposition 2.1. (See [13, Proposition 1℄) Assume (2.2) and (2.3). There holds:(i) (RP ) admits a solution.(ii) inf(P) = min(RP).(iii) The embedding � : W 1;p(
) ! W 1;p(
) � Yp(
;Rn), v 7! (v; Ærv), ofany in�mizing sequen
e for (P) has a weakly 
onvergent subsequen
e whose(weak�weak�) limit is a solution to (RP ).(iv) Ea
h solution to (RP ) is the (weak�weak�) limit of the embedding � :W 1;p(
)! W 1;p(
)� Yp(
;Rn) of some in�mizing sequen
e for (P).3. An iterative algorithm to approximate (RP )The relaxation obviously linearized the problem as far as the highest term 
on-
erns. Also, the equality 
onstraint in (RP ) is linear. The only possibly nonlinearterm in (RP ) is G(x; �) and our iterative s
heme will be based on a linearization ofthis term. This gives the following 
on
eptual �xed-point algorithm (AFP).Algorithm (AFP).(a) Choose "FP > 0, u(0) 2 W 1;p(
), u(0)j�
 = uD, and set k := 1.



4(b) Solve the following linear optimization problem (RP(k)):
(RP(k)) 8>>>>>>>><>>>>>>>>:

Minimize ��(k)(u; �) := Z
 � ZRn F (x; s)�x(ds)+G0u(x; u(k�1))(u� u(k�1))�dx;subje
t to ZRn s�x(ds) = ru(x) for a.a. x 2 
;u 2 W 1;p(
); � 2 Yp(
;Rn); uj�
 = uD:Denote the solution to (RP(k)) by (u(k); �(k)); assumptions made later willguarantee this solution to be unique.(
) If jju(k) � u(k�1)jjL2(
) � "FP, set k := k + 1 and go to (b).(d) Stop.Throughout this arti
le we assume, in addition to (2.2) and (2.3), that the 
onvexhull of F (x; �), denoted by F ��(x; �), is 
ontinuously di�erentiable for almost allx 2 
 and there exist 
4 > 0, `G � 0, and s� 2 Rn , js�j = 1, su
h that, for almostall x 2 
, for all all s1; s2 2 Rn , and all u1; u2 2 R, there holds
4(s� � (s1�s2))2 � �[F ��℄0s(x; s1)� [F �� ℄0s(x; s2)� � (s1 � s2);(3.1) jG0u(x; u1)�G0u(x; u2)j � `Gju1 � u2j:(3.2)We must naturally assume p � 2 to make (2.2) and (3.1) mutually 
ompatible. Inorder to exploit 
onventional weak-solution theory for the Euler-Lagrange equationrelated to (RP(k)), we assume that there exist 
5 > 0 and b 2 Lp0(
) su
h that, foralmost all x 2 
 and for all s 2 Rn ,j[F ��℄0s(x; s)j � b(x) + 
5(1 + jsjp�1):(3.3)Lemma 3.1. Let (3.1) and (3.3) be valid. Then the mapping f 7! u : L2(
) !L2(
), with u 2 W 1;p(
) solving in the weak sense the Diri
hlet boundary valueproblem �div �[F �� ℄0s(x;ru)� = f; uj�
 = uD;(3.4)is Lips
hitz 
ontinuous with the 
onstant `1 given expli
itly by`1 = D
;s�
4 ; D
;s� := diamhs�;
i = supx1;x22
s� � (x1 � x2):(3.5)Proof. Take two right-hand sides f1 and f2 and the 
orresponding weak solutionsu1 and u2. Subtra
t the 
orresponding weak formulations from ea
h other and testthem by u1 � u2 2 W 1;p0 (
). By the �ne version of Poin
ar�e's inequality (whi
hfollows from the one-dimensional Poin
ar�e inequality, see, e.g., Showalter [45, Ch.II,Lemma 5.1℄) and by H�older's inequality we get1D
;s� jju1 � u2jj2L2(
) � Z
 �s� � r(u1 � u2)�2dx(3.6) � 1
4 Z
 �[F ��℄0s(x;ru1)� [F ��℄0s(x;ru2)� � r(u1 � u2)dx= 1
4 Z
(f1 � f2)(u1 � u2)dx� 1
4 jjf1 � f2jjL2(
)jju1 � u2jjL2(
):



5For �u 2 W 1;p(
), �uj�
 = uD, let (u; �) solve the following auxiliary problem:(AP�u) 8>>>><>>>>: Minimize ���u(u; �) := Z
 �ZRn F (x; s)�x(ds) +G0u(x; �u)(u� �u)� dx;subje
t to ZRn s�x(ds) = ru(x) for a.a. x 2 
;u 2 W 1;p(
); � 2 Yp(
;Rn); uj�
 = uD:The following Lemma 3.2 shows, in parti
ular, uniqueness in terms of u-
omponentof solutions to (AP�u), whi
h enables us to denote u = S(�u) for a solution (u; �) to(AP�u).Lemma 3.2. Let (2.2), (2.3), and (3.1){(3.3) be valid. Then the mapping S : �u 7!u, L2(
)! L2(
), is Lips
hitz 
ontinuous with the 
onstant`2 = D
;s�`G
4 :(3.7)Proof. For (u; �) solving (AP�u), u must satisfy the Euler-Lagrange equation for the
oarse relaxation of (AP�u), i.e. for the problem of minimization of R
 F ��(x;ru) +G0u(x; �u)(u � �u)dx for u 2 W 1;p(
), uj�
 = uD. This equation is just (3.4) withf = G0u(x; �u). Then, by (3.2), the mapping �u 7! f : L2(
) ! L2(
) is obviouslyLips
hitz 
ontinuous with the 
onstant `G. Composition of this mapping with themapping f 7! u addressed in Lemma 3.1 just gives the mapping S. Its Lips
hitz
onstant `2 is `1`G, whi
h is just (3.7).Lemma 3.3. Let again (2.2), (2.3), and (3.1){(3.3) be valid. Furthermore, letG(x; �) be \not mu
h" non
onvex in the sense (formulated in terms of non-monotoni
ity of G0u) that9
 � � 1̀1 8u1; u2 2 R 8(a.a.) x2
 :(3.8) �G0u(x; u1)�G0u(x; u2)�(u1 � u2) � 
(u1 � u2)2;and let D
;s�`G < 
4:(3.9)Then the mapping S has a unique �xed point u and there is � su
h that the pair(u; �) solves the relaxed problem (RP ).Proof. The �xed point u 2 W 1;p(
) � L2(
) does exist by the Bana
h 
ontra
tion-mapping prin
iple. Yet, by the de�nition of S, u = S(u) means that there is � su
hthat (u; �) solves (RPu), whi
h implies that u solves the Diri
hlet boundary-valueproblem for the Euler-Lagrange equationdiv �[F �� ℄0s(x;ru)� = G0u(x; u); uj�
 = uD:(3.10)The nonlinear operator 
orresponding to (3.10) is monotone, whi
h 
an be seen fromthe estimateZ
�[F ��℄0s(x;ru1)� [F ��℄0s(x;ru2)� � r(u1 � u2)(3.11) +�G0u(x; u1)�G0u(x; u2)�(u1 � u2) dx � � 1̀1 + 
� jju1 � u2jj2L2(
) � 0;where (3.6) and (3.8) have been used. Therefore, the potential of (3.10), i.e. thefun
tional u 7! R
 F ��(x;ru)+G(x; u) dx, is 
onvex on fu 2 W 1;p(
); uj�
 = uDg.



6This implies that u minimizes this potential on W 1;p(
) under the 
ondition uj�
 =uD. Then it suÆ
es to take � 2 Yp(
;Rn) su
h thatF ��(x;ru) = ZRnF (x; s)�x(ds) and ZRns�x(ds) = ru(x)(3.12)for a.a. x 2 
. Su
h � does exist due to the de�nition of the 
onvex envelope F ��(x; �)and due to the Carath�eodory property of F (hen
e F �� is a Carath�eodory integrand),the set-valued mapping x 7! f�x 2M+1 (Rn); (3.12) holdsg is measurable and admitstherefore a weak* measurable sele
tion x 7! �x; see [42, Proof of Proposition 3.1.9℄for similar arguments. Moreover, the integrability of RRn jsjp�x(ds) required in (2.1)follows from 
oer
ivity (2.2) of F and the fa
t that R
 RRn F (x; s)�x(ds) dx is �nite.The 
onstants 
4 in (3.1), `G in (3.2), as well as D
;s� in (3.5) 
an be assumed tobe expli
itly at our disposal (see Se
tion 6). Then, by standards arguments, we 
anstate an a-priori estimate in terms of ku(0) � ukL2(
) (the adje
tive \a-priori" refershere to that both the solution u 
an be estimated a-priori by jjuDjjW 1�1=p;p(�
) andthe initial iteration u(0) is 
hosen a-priori) and an a-posteriori estimate in terms ofku(k+1) � u(k)kL2(
):Proposition 3.4. Let (2.2), (2.3), and (3.1){(3.3), (3.8) and (3.9) be valid, and let(u; �) be a solution to (RP ). Then, for ea
h j � 0 there holdsjju(j) � ujjL2(
) � `j2 jju(0) � ujjL2(
):(3.13)Let (u(k+1); �(k+1)) be the output of Algorithm (AFP). There holdsjju(k+1) � ujjL2(
) � "FP `21� `2 :(3.14)Remark 3.5. One 
annot expe
t any 
onvergen
e of f�(k)gk2N be
ause � 
on-stru
ted in (3.12) need not be determined uniquely. In some parti
ular situations,however, one 
an prove 
onvergen
e of the Young measure support and weak 
on-vergen
e of volume fra
tions [4, 11℄. Also, in
orporating an estimate (4.7) below,we dedu
e 
onvergen
e of \stresses" in the sensek[F ��℄0s(�;ru(k+1))� [F ��℄0s(�;ru(k))k%Lp0(
;Rn) � Cku(k) � u(k�1)k2L2(
):(3.15)Remark 3.6. If �-
omponent is forgotten, the iteration of Algorithm (AFP) 
anbe written as: Find u(k+1) 2 W 1;p(
), uj�
 = uD, su
h that, for all v 2 W 1;p(
),vj�
 = 0, there holdsZ
[F ��℄0s(x;ru(k+1)) � rv dx = � Z
G0u(x; u(k))v dx(3.16)(see also Lemma 4.1 below). Sin
e we did not want to in
lude F �� in the 
omputa-tions, we de�ned the iteration by a minimization problem involving also �.Remark 3.7. The assumptions (3.1) and (3.3) involve F �� whose expli
it knowl-edge is, however, rather ex
eptional; the examples in Se
tions 6 or 7 are su
h anex
eption. Extreme diÆ
ulties in expli
it evaluation of F �� even in very spe
ial 
ase
an be seen in [7, 11, 18℄. It should be emphasized that (3.3) 
an be dedu
ed from(2.2). Unfortunately, it is not obvious whether (3.1) 
an be veri�ed without expli
itknowledge of F ��. However, it should be amphasized that (3.1) is not needed forthe implementation of Algorithm (AFP) and whenever the Algorithm 
onverges, it
onverges ultimately to a solution of (RP ); hen
e, it is worth trying numeri
al us-age of the Algorithm even if (3.1) is not veri�ed in a parti
ular 
ase in question.



7Besides, even if F �� is expli
itly known so that one 
an think about minimizingu 7! R
 F ��(x;ru) + G(x; u) dx whi
h is algorithmi
ally \
heaper" than solving(RP), the Young-measure solution 
ontains more information than pure knowledgeof the underlying \deformation" u so the e�ort made by implementing a \more ex-pensive" algorithm is not 
ompletely lost; 
f. e.g. [15, 18, 39℄ for usage of Youngmeasures to 
onstru
t minimizing sequen
es in this or similar 
ir
umstan
es. More-over, Algorithm (AFP) 
ir
umvents diÆ
ulties arising from degenerate 
onvexity(i.e., la
king uniform stri
t 
onvexity) of F ��.4. Dis
retization of (RP(k))The fairly general 
onstru
tion of �nite-dimensional 
onvex subsets of Yp(
;Rn)has been performed rigourously in [13, 32, 40, 41, 42℄ by using systemati
ally dualityarguments. Referring to these works, we present brie
y the resulting dis
retizationof (RP(k)).4.1. The basi
 
onstru
tion and dis
rete optimality 
onditions. For a dis-
retization of the polyhedral (polygonal if n = 2) bounded Lips
hitz domain 
 � Rn ,let us 
onsider a regular triangulation T of 
. We will refer to T rather through itsmesh parameter h := maxT2T diam(T ). We setVh(
) := fvh 2 W 1;1(
); 8T 2T : vhjT aÆneg;(4.1) Lh(
) := fph 2 L1(
); 8T 2T : phjT 
onstantg:(4.2)The notations Vh(
;Rn) and Lh(
;Rn) for Rn -valued fun
tions will be used, too.By IT : C(
)! Vh(
) we denote the nodal interpolation operator asso
iated to Tand we de�ne a fun
tion hT 2 Lh(
) by hT jT := diam(T ) for all T 2 T .Let us assume, for simpli
ity, uniformW 1;1-estimates for all dis
rete solutions andlet us 
onsider a suÆ
iently large but bounded, polyhedral, 
onvex set ! � Rn whereall gradients of dis
rete solutions will live. This seems in a

ord with our examplein Se
t. 6, otherwise we would have additionally to make a limit passage with !to Rn as in [13, Proposition 2℄. Furthermore, we 
onsider a regular triangulation� of ! with nodes N� and will refer to � rather through its mesh parameter d :=maxT2� diam(T ).We de�neYd;h(
;Rn) := ��2Yp(
;Rn); 8T 2T 8s2N� 9�Ts 2 [0; 1℄ :Xs2N� �Ts = 1; �jT = Xs2N� �Ts Æs�:The 
losed 
onvex set Yd;h(
;Rn) 
onsists of all T -elementwise homogeneous Lp-Young measures whi
h are supported in the nodes of � .Given an approximation u(k�1)d;h of u(k�1), the set Yd;h(
;Rn) allows for an imme-diate dis
retization of (RP(k)):
(RP(k)d;h) 8>>>>>>>><>>>>>>>>:

Minimize ��(k)d;h(ud;h; �d;h) := Z
�ZRn F (x; s) [�d;h℄x(ds)+G0u(x; u(k�1)d;h )(ud;h � u(k�1)d;h )�dx;subje
t to ZRn s[�d;h℄x(ds) = rud;h(x) for a.a. x 2 
;ud;h 2 Vh(
); �d;h 2 Yd;h(
;Rn); ud;hj�
 = IT uDj�
:



8Existen
e of a solution (u(k)d;h; �(k)d;h) to (RP(k)d;h) is guaranteed if (RP(k)d;h) is feasible.Optimality 
onditions, invented in [42℄, are the key towards an error analysis andan eÆ
ient implementation of (RP(k)d;h).Lemma 4.1. (See [42, Proposition 5.5.3℄.) Let (u(k)d;h; �(k)d;h) 2 Vh(
) � Yd;h(
;Rn)be su
h that, for almost all x 2 
, there holds ru(k)d;h(x) 2 int(!). Then the pair(u(k)d;h; �(k)d;h) is a solution to (RP(k)d;h) if and only if it is feasible for (RP(k)d;h) and thereexists �(k)d;h 2 Lh(
;Rn) su
h that, for almost all x 2 
, we havemaxs02N���(k)d;h(x) � s0 � F (x; s0)� = ZRn �(k)d;h(x) � s� F (x; s)[�(k)d;h℄x(ds);(4.3)and, for all vh 2 Vh(
) with vhj�
 = 0, there holdsZ
 �(k)d;h � rvh dx + Z
G0u(x; u(k�1)d;h ) vh dx = 0:(4.4)Remark 4.2. The problem (RP(k)d;h) has a stru
ture of a minimization problemwith a linear 
ost fun
tional, linear 
onstraints, and a 
onvex set of admissible pairs(ud;h; �d;h), and (4.3){(4.4) are just 
onventional Karush-Kuhn-Tu
ker optimality
onditionsmodi�ed to this 
on
rete 
ase. The fun
tion �(k)d;h is the Lagrange multiplierfor the 
onstraint rud;hjT = RRn s�d;hjT (ds), T 2 T , involved in (RP(k)d;h).Any solution (u(k)d;h; �(k)d;h) to (RP(k)d;h) is still a solution to (RP(k)d;h) modi�ed byrepla
ing F (x; �) by the 
onvex hull of its nodal interpolant Fd on � , Fd(x; �) :=I�F (x; �); we put Fd(x; �) = +1 in Rn n !. Thus we 
an state the following lemmain whi
h �s[F ��d ℄ denotes the subgradient of the 
onvex, 
ontinuous, � -pie
ewise aÆnefun
tion F ��d (x; s) with respe
t to s.Lemma 4.3. (See [4, 13℄.) Assume that (u(k)d;h; �(k)d;h) is a solution to (RP(k)d;h) and�(k)d;h 2 Lh(
;Rn) satis�es the 
onditions of Lemma 4.1. Then, for almost all x 2 
,it holds �(k)d;h(x) 2 �s[F ��d ℄(x;ru(k)d;h(x)):If for almost all x 2 
 the mappings F (x; �) and F ��(x; �) are of 
lass C1;1lo
 and if�F (x; �)j!��� = �F ��(x; �)�j! then there holds

�(k)d;h � [F ��℄0s(�;ru(k)d;h)

Lp0(
;Rn) � 
6d 

[F ��℄00s

L1(
�!;Rn�n):(4.5)Remark 4.4.(i) The 
ondition F (x; �); F ��(x; �) 2 C1;1lo
 
an be weakened to F (x; �); F ��(x; �) 2C1;�lo
 for some � 2 (0; 1℄. We then have to repla
e d in (4.5) by d�.(ii) SuÆ
ient 
onditions for F ��(x; �) 2 C1;�lo
 and expli
it estimates forjj[F ��℄00s(x; �)jjC1;�(Br(0)) are given in [23, 3℄.(iii) The proof of Lemma 4.3 uses the fa
t that ! is dis
retized into triangles ortetrahedra so that nodal values are extremal values.4.2. An a-priori error estimate. To estimate the error u(k)d;h � u(k) for solutionsu(k)d;h and u(k) to (RP(k)d;h) and (RP(k)), respe
tively, we employ the auxiliary problem(AP�u) introdu
ed in Se
tion 3 but with u(k�1)d;h in pla
e of �u. A

ording to Lemma 3.1there holds for solutions (~u(k); ~�(k)) to (APu(k�1)d;h ) and (u(k); �(k)) to (RP(k)),k~u(k) � u(k)kL2(
) � `Gku(k�1)d;h � u(k�1)kL2(
):(4.6)



9Combining the optimality 
onditions of Lemma 4.1 with the estimates of Lemma 4.3,(4.6), and the Euler-Lagrange equations for the solution u(k) to (RP(k)), one 
anprove the error estimate of Proposition 4.5 below. Some arguments in the proofare similar to those in [4, 11℄. The fo
us of the result presented here is the rights
aling of d, h, and k. Some notation is ne
essary to estimate the error 
aused bythe approximation of non-homogeneous boundary data.Let E(T ) denote the set of sides (=edges if n = 2 or fa
es if n = 3) in T , andlet hE 2 L1([E(T )) be de�ned by hE jE := hE := diam(E) for E 2 E(T ). For� 2 C(�
) satisfying �jE 2 W 2;2(E) for all E 2 E(T ) with E � �
, let �2E�=�s2denote the sidewise se
ond derivative of � on �
.Proposition 4.5. Assume that there exist 1 < % � 2, 0 � � <1, and 
7 > 0 su
hthat, for almost all x 2 
 and all s1; s2 2 Rn , there holdsj[F ��℄0s(x; s1)� [F ��℄0s(x; s2)j% � 
7 �1 + js1j� + js2j��(4.7) ��[F ��℄0s(x; s1)� [F ��℄0s(x; s2)� � (s1 � s2):Suppose that the 
onditions of Lemma 4.1 and Lemma 4.3 are satis�ed and uD 2C(
) is su
h that uDjE 2 W 2;2(E) for all E 2 E(T ) with E � �
. Moreover, let(~u(k); ~�(k)) be a solution to (APu(k�1)d;h ). Then, there holdsku(k)�u(k)d;hk2L2(
) � C1 � infwh2Vh(
);whj�
=IT uDj�
kr(~u(k)�wh)k%0Lp(
;Rn)+ku(k�1)�u(k�1)d;h k2L2(
)+ 


h3=2E �2EuD�s2 


2L2(�
;R(n�1)�(n�1)) + d 

[F ��℄00s

L1(
�!;Rn�n)�:The 
onstant C1 > 0 is independent of k and the triangulations T and � but dependson an a-priori bound for kr~u(k)kLp(
) + kru(k)d;hkLp(
).Proof. Let v 2 W 1;p(
) satisfy vj�
 = (IT uD � uD)j�
. The triangle inequality andthe �ne version of Poin
ar�e's inequality, 
f. (3.6), yieldku(k)d;h � u(k)kL2(
) � ku(k)d;h � ~u(k) � vkL2(
) + kvkL2(
) + k~u(k) � u(k)kL2(
)� D1=2
;s� ks� � r(u(k)d;h � ~u(k) � v)kL2(
) + kvkL2(
) + k~u(k) � u(k)kL2(
)� D1=2
;s� ks� � r(u(k)d;h � ~u(k))kL2(
) + 
8kvkW 1;2(
) + k~u(k) � u(k)kL2(
);we used that u(k)d;h� ~u(k)�v vanishes on �
. A result in [6℄ shows that we 
an 
hoosev su
h that kvkW 1;2(
) � 
9


h3=2E �2EuD�s2 


L2(�
;R(n�1)�(n�1)):Employing (4.6) we thus haveku(k)d;h � u(k)kL2(
) � D1=2
;s� ks� � r(u(k)d;h � ~u(k))kL2(
)(4.8) + 
8
9


h3=2E �2EuD�s2 


L2(�
;R(n�1)�(n�1)) + `2ku(k�1)d;h � u(k�1)kL2(
):Assumption (3.1) implies
42 ks� � r(u(k)d;h � ~u(k))k2L2(
)(4.9) � 12 Z
�[F ��℄0s(x;ru(k)d;h)� [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx:



10Following the argumentation in [11, Proof of Theorem 2℄ we dedu
e from (4.7) that12
10k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn)(4.10) � 12 Z
�[F ��℄0s(x;ru(k)d;h)� [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dxwhere 
10 > 0 is independent of T and � but involves the a-priori boundkr~u(k)kLp(
;Rn) + kru(k)d;hkLp(
;Rn) � 
11whi
h follows from (2.2). Inserting �(k)d;h and employing H�older's inequality,Lemma 4.3, and the a-priori bound 
11, we inferZ
([F ��℄0s(x;ru(k)d;h)� [F ��℄0s(x;r~u(k))) � r(u(k)d;h � ~u(k)) dx(4.11)� Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx+k[F ��℄0s(�;ru(k)d;h)� �(k)d;hkLp0(
;Rn)kr(u(k)d;h � ~u(k))kLp(
;Rn)� Z
��(k)d;h�[F ��℄0s(x;r~u(k))��r(u(k)d;h�~u(k)) dx+ 
6
11d k[F ��℄00skL1(
�!;Rn�n):The Euler-Lagrange equations for ~u(k), Lemma 4.1, and H�older's inequality prove,for arbitrary vh 2 Vh(
) � W 1;p(
) with vhj�
 = 0,Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx(4.12) = Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k) � vh) dx� k�(k)d;h � [F ��℄0s(�;r~u(k))kLp0(
;Rn) kr(u(k)d;h � ~u(k) � vh)kLp(
;Rn):The triangle inequality and Lemma 4.3 yieldk�(k)d;h � [F ��℄0s(�;r~u(k))kLp0(
;Rn)(4.13) � k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))kLp0 (
;Rn) + 
6dk[F ��℄00skL1(
�!;Rn�n):Employing (4.13) in (4.12) and Young's inequality ab � a%=% + b%0=%0 for 
ertaina; b � 0 showsZ
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k)) dx(4.14) � 12
10% k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn)+�1 + (2
10)%0=%% �kr(u(k)d;h � ~u(k) � vh)k%0Lp(
;Rn) + 
%6d%k[F ��℄00sk%L1(
�!;Rn�n):The 
ombination of (4.9){(4.11) with (4.14) yields, after absorbing1=(2
10%) k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn) on the right-hand side,%� 12
10%k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn) + 
42 ks� � r(u(k)d;h � ~u(k))k2L2(
)� �1 + (2
10)%0=%% � infvh2Vh(
);vhj�
=0 kr(u(k)d;h � ~u(k) � vh)k%0Lp(
;Rn)+ 
6
11dk[F ��℄00skL1(
�!;Rn�n) + 
%6d%k[F ��℄00sk%L1(
�!;Rn�n):Using this estimate in (4.8), 
hoosing vh = wh � u(k)d;h for arbitrary wh 2Vh(
) with whj�
 = IT uDj�
, and estimating d%k[F ��℄00sk%L1(
�!;Rn�n) �
12dk[F ��℄00skL1(
�!;Rn�n) sin
e % > 1 and d � 
13, proves the proposition.



11A simple indu
tion argument proves an estimate for the error ku(k)d;h � ukL2(
).Theorem 4.6. Under the same 
onditions of Proposition 4.5 there holdsku� u(k)d;hk2L2(
) � C2 `2k2 ku� u(0)k2L2(
) + kXj=1 infwh2Vh(
);whj�
=IT uDj�
kr(~u(j) �wh)k%0Lp(
;Rn)+ku(0)�u(0)d;hk2L2(
)+k�dk[F ��℄00skL1(
�!;Rn�n)+


h3=2E �2EuD�s2 


2L2(�
;R(n�1)�(n�1))�!:Proof. The triangle inequality and Proposition 3.4 showku� u(k)d;hkL2(
) � `k2 ku� u(0)kL2(
) + ku(k) � u(k)d;hkL2(
):Iterated appli
ation of Proposition 4.5 proves Theorem 4.6.A density argument and Theorem 4.6 prove 
onvergen
e u(k)d;h ! u in L2(
) for(d; h)! 0 and k !1 (for d; h� 1=k), where d and h are the maximal meshsizesof � and T , respe
tively. If ~u(j), j = 0; 1; 2; :::; k, satis�es ~u(j) 2 W 1+�;p(
) for some� 2 (0; 1℄ so that infwh2Vh(
);whj�
=IT uDj�
 kr(~u(j) � wh)k%0=2Lp(
;Rn) � 
14h�for some � 2 (0; 1℄ and j = 0; 1; 2; :::; k, we may 
hoose u(0)d;h = IT u(0), d = h2�, and,provided `2 < 1, log(h�= log(`2)) � k � log(h�= log(`2)) + 1 to verifyku� u(k)d;hkL2(
) � C 02�1 + log(h�= log(`2))� h�:(4.15)Remark 4.7. Similarly as in Remark 3.7, expli
it knowledge of F �� is not neededfor (4.5) and the estimate of Theorem 4.6 sin
e expli
it bounds for F ��(x; �)00 areprovided in [3℄ in terms of F only.4.3. An a-posteriori error estimate. Sin
e in general higher regularity is notavailable or � may be very small in (4.15), a-posteriori error estimates that allowfor adaptive mesh re�nement 
ould yield improved 
onvergen
e rates.Let �h 2 Lh(
;Rn) and E 2 E(T ). For E � �
 set ��h� �nE := 0. If E = T�\T+for T�; T+ 2 T let nE 2 Rn be the unit ve
tor perpendi
ular to E pointing from T�to T+ and de�ne ��h� � nE := ��hjT+ � �hjT�� � nE:Theorem 4.8. Under the same 
onditions of Proposition 4.5 and if G0u(�; u(k�1)d;h ) 2W 1;p0(
) there holdsku(k) � u(k)d;hk2L2(
) + k�(k)d;h � [F ��℄0s(�;ru(k))k%Lp0(
;Rn)(4.16) � C3 � XE2E(T ) hEk��(k)d;h� � nEkp0Lp0(E)�1=p0+C4�ku(k�1) � u(k�1)d;h k2L2(
) + 


h3=2E �2EuD�s2 


2L2(�
;R(n�1)�(n�1))+ kh2TrG0u(�; u(k�1)d;h )kLp0(
;Rn) + d k[F ��℄00skL1(
�!;Rn�n)�:The 
onstants C3; C4 > 0 are independent of k and the meshsizes of T and � butdepend on an a-priori bound for kr~u(k)kLp(
;Rn) + kru(k)d;hkLp(
;Rn).



12Proof. Arguing as in (4.9){(4.11) we have, for all vh 2 Vh(
) with vhj�
 = 0,
42 k�� � r(u(k)d;h � ~u(k))k2L2(
) + 12
10 k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn)� Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k) � vh) dx + 
6
11d k[F ��℄00skL1(
�!;Rn�n):Inserting v 2 W 1;p(
) with vj�
 = (IT uD�uD)j�
 and employing the Euler-Lagrangeequations for ~u(k) provesZ
��(k)d;h � [F ��℄0s(x;r~u(k))� � r(u(k)d;h � ~u(k) � vh) dx= Z
 �(k)d;h � r(u(k)d;h � ~u(k) � v � vh) dx + Z
G0u(x; u(k�1)d;h )(u(k)d;h � ~u(k) � v � vh) dx+ Z
��(k)d;h � [F ��℄0s(x;r~u(k))� � rv dx:Arguing as in (4.12)-(4.14) showsZ
��(k)d;h � [F ��℄0s(x;r~u(k))� � rv dx � �1 + (2
10)%0=%%0 �krvk%0Lp(
;Rn)+ 
%6d%k[F ��℄00sk%L1(
�!;Rn�n) + 12
10%k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn):A T -elementwise integration by parts, div �(k)d;hjT = 0, and H�older and Cau
hy in-equalities yieldZ
�(k)d;h � r(u(k)d;h � ~u(k) � v � vh) dx = XE2E(T ) ZE��(k)d;h� � nE (u(k)d;h � ~u(k) � v � vh) ds� � XE2E(T ) hE k��(k)d;h� � nEkp0Lp0 (E)�1=p0� XE2E(T ) h1�pE ku(k)d;h � ~u(k) � v � vhkpLp(E)�1=pThe weak interpolation operator J : W 1;p0 (
)! Vh(
) \W 1;p0 (
) of [9℄ satis�es, forw 2 W 1;p0 (
) and f 2 W 1;p0(
),Z
 f(w � Jw) dx � 
15kh2TrfkLp0(
;Rn)kwkW 1;p(
);XE2E(T ) h1�pE k(w � Jw)kpLp(E) � 
p15kwkpW 1;p(
):Setting vh = J(u(k)d;h � ~u(k) � v) and 
ombining the previous estimates shows, afterabsorbing terms on the right-hand side and using d � 
13,
42 ks� � r(u(k)d;h � ~u(k))k2L2(
) + %� 12
10% k[F ��℄0s(�;ru(k)d;h)� [F ��℄0s(�;r~u(k))k%Lp0(
;Rn)� 
16� XE2E(T ) hEk��(k)d;h� � nEkp0Lp0 (E)�1=p0ku(k)d;h � ~u(k) � vkW 1;p(
) + 
17�krvk%0Lp(
;Rn)+ d k[F ��℄00skL1(
�!;Rn�n) + kh2TrG0u(�; u(k�1)d;h )kLp0(
;Rn)ku(k)d;h � ~u(k) � vkW 1;p(
)�:Choosing v as in the proof of Proposition 4.5, employing an a-priori bound for ku(k)d;h�~u(k) � vkW 1;p(
), and using (4.8) proves the asserted estimate for ku(k) � u(k)d;hkL2(
).An appli
ation of the estimatek[F ��℄0s(�;ru(k))� [F ��℄0s(�;r~u(k))k%Lp0 (
;Rn) � 
18ku(k�1) � u(k�1)d;h k2L2(
);whi
h follows from (4.7) as (4.6) (
f. (4.10)), 
on
ludes the proof.Remark 4.9. The 
ondition G0u(�;ru(k�1)d;h ) 2 W 1;p0(
) 
an be dropped. This re-sults in a 
omputable term whi
h is not ne
essarily of higher order.



13Setting �E := h1=p0E k[�(k)d;h℄ �nEkLp0 (E) and assuming that d� h and for j = k� 1; kthere holds ku(j)d;h � u(j)k2L2(
) � k�(k)d;h � [F ��℄0s(�;ru(k))k%Lp0(
;Rn);Theorem 4.8 proves a reliability-estimate, with \h:o:t:" denoting \higher orderterms",k�(k)d;h � [F ��℄0s(�;ru(k))kLp0(
;Rn) + h:o:t: � C3 � XE2E(T ) �p0E�1=(%p0) =: �R;R:The inverse estimation te
hniques of [47℄ allow for the 
onverse, eÆ
ien
y-, estimatewith a di�erent exponent,�R;E := �%R;R � C 03k�(k)d;h � [F ��℄0s(�;ru(k))kLp0(
;Rn) + h:o:t:The gap between �R;E and �R;R is known as a reliability-eÆ
ien
y-gap [11℄. Undersimilar assumptions one 
an show [4℄C5 inf�h2Vh(
;Rn) k�(k)d;h � �hkLp0(
;Rn) � k�(k)d;h � [F ��℄0s(�;ru(k))kLp0(
;Rn) + h:o:t:� C 05 inf�h2Vh(
;Rn) k�(k)d;h � �hk1=%Lp0(
;Rn):If [F ��℄0s(�;ru(k)) is smooth, e.g., in W 2;p0, we have C5 = 1. Sin
e the 
omputationof the in�mum appears too expensive an approximation 
an be de�ned through theaveraging-operator A : L1(
;Rn)! Vh(
;Rn) of [9℄,�A;E = �%A;R := k�(k)d;h �A�(k)d;hkLp0(
) � inf�h2Vh(
;Rn) k�(k)d;h � �hkLp0 (
;Rn):5. Effi
ient implementation by the a
tive-set strategyAs the dimensionality of (RP(k)d;h) is usually very high but the optimal Youngmeasure is typi
ally supported only on rather low-dimensional sets, it is 
ertainlydesirable to redu
e the dimensionality by exploiting a 
ertain a-priori information toput the expe
tedly \non-a
tive" points out of 
al
ulations and also to have a 
ertainreliable a-posteriori information to 
he
k whether we did it 
orre
tly.This information 
omes from the optimality 
onditions in Lemma 4.1. However,the HamiltonianH(x; s) = �(k)d;h(x)�s�F (x; s) appearing in these 
onditions is usuallynot known and has to be estimated from previous iterations in an iterative algorithm.Indeed, this adaptivity idea, let us 
all it a
tive-set strategy was proposed and �rstimplemented in [13℄, and further used in [4, 28, 29, 43℄. The iterative algorithm inquestion is the su

essive re�nement of a triangulation of !. The a
tive-set strategywas also implemented in [31℄ where the iterative algorithm arises by the sequentialquadrati
 programming approa
h.We brie
y re
all the 
entral idea for the a
tive-set strategy and refer to [13℄ andAlgorithm (AT0;�;�;L;m) below for its pra
ti
al realization to solve (RP(k)d;h) eÆ
iently.The support Supp � of � 2 Yp(
;Rn) is given bySupp � := �(x; s)2
�Rn ; s 2 supp �x	where supp �x � Rn is the support of the probability measure �x; Supp � is de�nedup to a set of zero measure.Given A � 
�N� we de�ne a subset of Yd;h(
;Rn) byYd;h;A(
;Rn) = �� 2 Yd;h(
;Rn); Supp � � A	:



14The lower-dimensional subproblem (RP(k)d;h;A) is then de�ned as follows.
(RP(k)d;h;A)

8>>>>>>>>>><>>>>>>>>>>:
Minimize ��(k)d;h(ud;h; �d;h) = Z
�ZRn F (x; s) [�d;h℄x(ds)+G0u(x; u(k�1)d;h )(ud;h � u(k�1)d;h )�dx;subje
t to ZRns[�d;h℄x(ds) = rud;h(x) for a.a. x2
;ud;hj�
 = IT uDj�
;ud;h 2 Vh(
); �d;h 2 Yd;h;A(
;Rn):Assume that we are given an approximation ~�h 2 Lh(
;Rn) to the Lagrange multi-plier �(k)d;h 2 Lh(
;Rn) o

urring in the optimality 
onditions of Lemma 4.1. If ~�h is
lose enough to �(k)d;h and if A is de�ned through ~�h as in the following propositionthen any solution to (RP(k)d;h;A) is a solution to (RP(k)d;h).Proposition 5.1. (See [13, Corollary 1℄.) Let (u(k)d;h; �(k)d;h) be a solution to (RP(k)d;h)with 
orresponding multiplier �(k)d;h and let ~�h 2 Lh(
;Rn). If for " 2 Lh(
) and allT 2 T there holds sups2! ��(�(k)d;h � ~�h)jT � s �� � 12 "jTand ifA = n(x; s)2
�N� ; ~�h(x) � s� F (x; s) � maxs02N��~�h(x) � s0 � F (x; s0)�� "(x)o;then any solution to (RP(k)d;h;A) is a solution to (RP(k)d;h).Proof. The optimality 
onditions of Lemma 4.1 guaranteeSupp �d;h � B := n(x; s) 2 
�N� ;�(k)d;h � s� F (x; s) = maxs02N���(k)d;h � s0 � F (x; s0)�o:Therefore (
f. [13℄), it suÆ
es to show B � A. For almost all x 2 
 and all s 2 Rnsu
h that (x; s) 2 B there holds by assumption on " and de�nition of B,~�h(x) � s� F (x; s) � �(k)d;h(x) � s� F (x; s)� "(x)=2= maxs02N���(k)d;h � s0 � F (x; s0)�� "(x)=2� maxs02N��~�h � s0 � F (x; s0)�� "(x):Hen
e we have (x; s) 2 A.Given some ~�h we do not know " in general. We may however 
hoose some positive" 2 Lh(
), de�ne A as in Proposition 5.1, 
ompute a solution to (RP(k)d;h;A), verifythe optimality 
onditions of Lemma 4.1, and enlarge " to repeat this pro
edure untilthe optimality 
onditions are satis�ed.6. Illustrative example: 2D broken extremalWe want to illustrate our algorithm on the so-
alled Tartar's broken-extremalexample [35℄ whi
h is modi�ed for the multidimensional 
ase like in [11, Se
t. 8℄ or[14, 16℄. To be more spe
i�
, let us 
onsider n = 2, 
 := (0; K)2 with some K > 0



15and, for almost all x 2 
, all s 2 Rn , and all u 2 R,F (x; s) := js� aj2js+ aj2;(6.1) G(x; u) := (u� g(a � x))2 with(6.2) g(�) := � 3128(� � �b)5 � 13(� � �b)3;(6.3)for a = (
os�; sin�) with � = �=6 and for �b = 1=2. Note that (6.1) (when shiftedby a 
onstant) �ts with (2.2) for p = 4.Then (
f. [35℄) the relaxed problem (RP ) has the unique solutionu(x) = 8<: g(a � x) for a � x 2 (0; �b);(a � x� �b)324 + (a � x� �b) for a � x 2 (�b;p2);(6.4a) �x = 8<: 1� a � ru(x)2 Æ�a + 1 + a � ru(x)2 Æa for a � x 2 (0; �b);Æru(x) for a � x 2 (�b;p2);(6.4b)provided we 
hoose the boundary data uD := uj�
 with u just from (6.4a). Herewe 
an take a bene�t from an expli
it knowledge (6.5) of F �� although, as alreadypointed out in Remarks 3.7 and 4.7, our algorithm itself does not exploit the infor-mation (6.5) below.Lemma 6.1. (See [11, Propositions 1{3℄.) Let F be as in (6.1). For almost allx 2 
 and all s 2 Rn there holdsF ��(x; s) = maxfjsj2 � 1; 0g2 + 4�jsj2 � (a � s)2�:(6.5)Moreover, for almost all x 2 
 and all s1; s2 2 Rn , we have��[F ��℄0s(x; s1)� [F ��℄0s(x; s2)��2 � 8 �1 + js1j2 + js2j2�� �[F ��℄0s(x; s1)� [F ��℄0s(x; s2)� � (s1 � s2);8 �a? � (s1 � s2)�2 � �[F ��℄0s(x; s1)� [F ��℄0s(x; s2)� � (s1 � s2);with a? = (sin�;� 
os�).Remark 6.2. For almost all x 2 
 and all s 2 Rn there holds F ��(x; s) = F (x; s)if and only if jsj � 1. Hen
e only gradients of modulus � 1 lead to a non-trivialYoung measure.Let us point out that Lemma 6.1 proves 
4 = 8 and s� = a? in (3.1) for F from(6.1) and we have `G = 2 in (3.2) for G de�ned by (6.2), while D
;s� � p2K in(3.5). Obviously, (3.8) holds even with 
 = 2 > �1=`2 in as G(x; �) from (6.2) isuniformly 
onvex. Lemma 3.3 therefore ensures 
onvergen
e of Algorithm (AFP) inthis 
ase if `2 = D
;s�`G
4 � K2p2 < 1;i.e., if the size K of the square 
 is less than 2p2. For our numeri
al experimentswe 
hose K = 1.Furthermore, the 
onvex domain ! := (�m;m)2 � R2 is triangulated by uniformtriangulations � with meshsize d > 0. More pre
isely, a uniform triangulation � of! with meshsize d 
an be de�ned through the nodesN� := �s2R2 ; 9i; j 2 f�M; :::;Mg : s = � imM ; jmM ��;(6.6)



16where M is a positive integer satisfying m=d � 1 � M � m=d. The elements in �are 
hosen as halved squares with sides of lengths m=M and p2m=M .For parameters � 2 f0; 1=2g, � 2 [1; 2℄, a positive numberm 2 R, a list of positiveintegers L = (L(0); L(1); L(2); :::), and an initial triangulation T0 of 
 we used thefollowing algorithm to approximate (RP ) on a sequen
e of uniformly (� = 0) andadaptively (� = 1=2) re�ned triangulations Tj, j = 0; 1; 2; :::. The algorithm 
an beemployed to any spe
i�
ation of (RP ) (though 
onvergen
e has to be proved forea
h situation) and 
ombines adaptive mesh re�nement with a nested �xed pointiteration and the a
tive set strategy introdu
ed in the pre
eding se
tions. Theparameter � determines the ratio of the meshsizes of the triangulations of 
 and !.The sequen
e of integers L is needed for the realization of the a
tive set strategy.Given j � 0 and a triangulation Tj of 
 with Nj nodes the number hj is de�ned byhj = 1=pNj. The algorithm terminates if a suitable stopping 
riterion is satis�edand then the output is an approximate solution (uj; �j) 2 Vhj (
)� Ydj ;hj(
;R2) to(RP ) for some j � 0 and a triangulation �j of ! = (�m;m)2 with meshsize dj = h�j .Algorithm (AT0;�;�;L;m).(a) Set j := 0, k := 0, ` := 0, and 
hoose u(k)j 2 Vhj(
) su
h that u(k)j j�
 =ITjuDj�
. Choose �j;` 2 Lh(
;R2), set " :=1, and dj;` := 2L(j)h�j .(b) Generate a uniform triangulation �j;` of ! = (�m;m)2 with meshsize dj;` andwith nodes N�j;` as in (6.6).(
) De�neA := n(x; s)2
�N�j; ;̀ �j;`(x)�s� F (x; s) > maxs02N�j;` �j;`(x)�s0 � F (x; s0)� "o:Enlarge A appropriately to ensure feasibility of (RP(k+1)dj;`;hj ;A).(d) Solve the linear optimization problem (RP(k+1)dj;`;hj ;A) to obtain a solution(~uj; ~�j;`) 2 Vhj(
)�Ydj;`;hj ;A(
;R2) and a Lagrange multiplier ~�j 2 Lhj (
;R2).(e) If, for almost all x 2 
 and all s 2 N�j;`, it holds~�j(x) � s� F (x; s) � ZR2�~�j(x) � s0 � F (x; s0)�~�j;`;x(ds0) + h2�jthen:(e1) if ` < L(j), then set �j;`+1 := ~�j, dj;`+1 := dj;`=2, " := dj;`=2, ` := ` + 1,and go to (b).(e2) if ` = L(j), then set u(k+1)j := ~uj, �(k+1)j;` := ~�j;`, ` := 0, and go to (g).(f) Set " := 2", �j;` := ~�j, and go to (
).(g) If ku(k+1)j � u(k)j kL2(
) � h2j set uj := u(k+1)j , �j := ~�(k+1)j;` , k := 0, and go to (j).(h) Set k := k + 1, dj;` := 2L(j)h�j , " := hj=2, �j;` := ~�j and go to (b).(j) Compute error indi
ators �E for all sides E 2 E(Tj) in Tj.(k) Terminate if a stopping 
riterion is satis�ed.(l) Mark the side E 2 E(Tj) for re�nement if �E � �maxE02E(Tj) �E0.(m) Generate a new triangulation Tj+1. Set �j+1;` := �j;L(j), u(k)j+1 := uj, " := hj,dj+1;` := 2L(j+1)h�j+1, j := j + 1, and go to (b).



17Remark 6.3.(i) A 
omputable 
riterion is available to enlarge m in (e) and thereby guaranteethat it is large enough [4℄.(ii) Feasibility of (RP(k+1)dj;`;hj ;A) in Step (
) of the algorithm 
an be a
hieved, e.g.,by enlarging A su
h that Æru(k)j 2 Ydj;`;hj ;A(
;R2).(iii) Stopping 
riteria in (k) of Algorithm (AT0;�;�;L;m) 
an be, e.g., kuj �uj�1kL2(
) � "stop, k�j � �j�1kLp0(
) � "stop, or PE2E(Tj) �p0E � "stop for some"stop > 0, or j = J for some J � 1.(iv) Sin
e in the optimal 
ase we have kuj � ukL2(
) � Ch2j we 
hose "FP = h2j asa stopping 
riterion for the �xed point iteration.(v) The toleran
e h2�j for the veri�
ation of the maximum prin
iple in (e) guaran-tees �j(x) = [F ��℄0s(x;ruj(x)) +O(h�j ) for almost all x 2 
.(vi) The 
hoi
es of " for the de�nition of A in (
) are motivated by Proposition 5.1.(vii) We refer to [47℄ for details on red-green-blue re�nement strategies to obtain are�ned regular triangulation from the error indi
ators �E in (m).(viii) Steps (b)-(e) of the algorithm realize the a
tive set strategy as proposed in[13℄.(ix) Sin
e optimization toolboxes provide a Lagrange multiplier ~� based on duality(and hen
e the inner produ
t in) RN , ~� has to be res
aled by 1=jT j, i.e.,�(k)d;hjT := ~�jT=jT j, in order to satisfy the 
onditions of Lemma 4.1.
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Figure 1. Initial triangulation T0 in the example.For the numeri
al approximation of (RP ) spe
i�ed through (6.1)-(6.3) we 
hoosea 
oarse initial triangulation T0 of 
 whi
h 
onsists of 32 
ongruent triangles withN0 = 25 nodes, 
f. Figure 1. We used m = 2, employed L = (4; 2; 2; 2; :::), and triedall 
ombinations of � 2 f1; 3=2; 2g and � 2 f0; 1=2g. Moreover, we used �0;0 = 0and u(0)0 = IT0uD in Step (a) of the algorithm to start the iteration. As a stopping
riterion we used j = J for various positive integers J .Figure 2 shows the solution u2 2 Vh2(
) on the uniform triangulation T2 for � = 1and the support of the dis
rete Young measure solution restri
ted to two di�erentelements. The triangulation T2 is obtained by two red-re�nements of T0 and 
onsistsof 256 elements and has 225 free nodes. The displayed triangulation of ! = (�2; 2)2admits 4761 nodes and we observe that the a
tive set strategy a
tivates only a fewnodes (or atoms) whi
h are very 
lose to the support of the exa
t Young measuresolution. In the middle plot of Figure 2 we observe some a
tive nodes 
lose to zerowhi
h results from Step (
) of the algorithm to ensure feasibility of the optimizationproblem (RP(k+1)dj;`;hj;A).For a 
omparison we displayed the solution u12 2 Vh12(
) on the adaptively gen-erated triangulation T12 for � = 3=2 together with the support of the asso
iatedYoung measure solution restri
ted to two di�erent elements in Figure 3. The trian-gulation T12 admits a 
omparable number of degrees of freedom as the one shown
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0.3Figure 2. Solution on a uniformly re�ned triangulation (top) for� = 1 and support of the asso
iated dis
rete Young measure (indi
atedby 
ir
les) restri
ted to the elements 
onvf(5; 4); (4; 5); (4; 4)g=16(middle) and 
onvf(8; 12); (9; 11); (9; 12)g=16 (bottom) (indi
ated bya darker shading in the upper right plot). The magni�ed regions dis-play volume fra
tions larger than 1/1000.in Figure 2 but the mesh on ! is �ner be
ause of the di�erent 
hoi
e of �. Theadaptive re�nement strategy re�nes the mesh towards the line fx 2 
; x � a = �bgalong whi
h the exa
t solution has a dis
ontinuity in the gradient. This appearsreasonable sin
e by our 
hoi
e of � uniform triangulations do not resolve that lineand the approximation error in a neighbourhood of it is expe
ted to be large onuniform meshes.Table 1 displays for � = 0, i.e., for uniform mesh re�nement, � = 1, and j =0; 1; 2 the number of free nodes in Tj, the minimal integer K for whi
h ku(K+1)j �u(K)j kL2(
) � h2j , the number of iterations in the a
tive set strategy in the last stepof the �xed point iteration and for the highest level L(j) in the a
tive set strategy,the number of atoms in the triangulation �j;L(j), as well as the average number
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10.950.90.850.80.75Figure 3. Solution on an adaptively re�ned triangu-lation (top) for � = 3=2 and support of the asso
iateddis
rete Young measure (indi
ated by 
ir
les) restri
tedto the elements 
onvf(5; 5); (4; 4); (5; 4)g=16 (middle) and
onvf(10; 12); (8; 12); (9; 13)g=16 (bottom) (indi
ated by a darkershading in the upper right plot). The magni�ed regions displayvolume fra
tions larger than 1/1000.of a
tive atoms per element. It is remarkable that less than 4% of the possibleatoms are a
tivated by Algorithm (AT0;�;�;L;m). Be
ause of the nested iteration,i.e., 
hoosing the solution on a 
oarse triangulation as the starting value for the�xed point iteration on the re�ned triangulation, the algorithm performs very fewiterations for the �xed point iteration on one triangulation Tj. The number ofiterations in the maximum prin
iple grows rapidly in this example. This behaviourmight be 
aused by the 
hoi
e of the parameter " = hj (motivated by the estimatek�j+1 � �jkL4=3(
;R2) � Chj whi
h holds if the exa
t solution of (RP ) is smooth)whi
h seems too optimisti
 in this example.



20 The same numbers are displayed for � = 1=2, i.e., adaptive mesh-re�nement, and� = 3=2 in Table 2. Owing to the larger 
hoi
e of � the number of possible atomsgrows faster but less than 3% of them are a
tivated by the a
tive set strategy. Again,the number of �xed point iterations is very small but in 
ontrast to the numbers foruniform mesh re�nement, the numbers of iterations in the maximum prin
iple seemto remain bounded.j dof(Tj) FP-it's MP-it's # atoms/jTjj # a
tive atoms/jTjj0 9 3 1 289 9.31 49 3 12 1369 21.32 225 3 30 4761 65.1Table 1. Degrees of freedom (=dof) in Tj, numbers of �xed point(FP-) and maximum prin
iple (MP-) iterations, numbers of possibleatoms, and average number of a
tivated atoms per element in the �naliteration on Tj for uniform mesh re�nement and � = 1.j dof(Tj) FP-it's MP-it's # atoms/jTjj # a
tive atoms/jTjj0 9 3 2 1089 17.81 12 3 2 2401 32.22 20 3 2 3721 44.23 34 3 1 5929 48.34 37 3 1 6561 55.35 52 3 3 9409 71.56 59 3 4 11025 73.67 70 3 7 13689 85.48 83 3 2 17689 93.99 121 3 6 29929 120.510 146 3 3 37249 122.611 147 3 2 38809 131.612 152 3 6 40401 131.6Table 2. Degrees of freedom (=dof) in Tj, numbers of �xed point(FP-) and maximum prin
iple (MP-) iterations, numbers of possibleatoms, and average number of a
tivated atoms per element in the �naliteration on Tj for adaptive mesh re�nement and � = 3=2.For all 
ombinations of � 2 f0; 1=2g and � 2 f1; 3=2; 2g we displayed the errorkuj � ukL2(
) against degrees of freedom in Tj for j = 0; 1; 2; ::: with a logarithmi
s
aling used for both axes in Figure 4. We observe that the adaptive re�nementstrategy for � = 3=2 leads to smaller errors than the uniform re�nement strategyfor � = 3=2 at 
omparable numbers of degrees of freedom in Tj larger than 100, andalso to an improved experimental 
onvergen
e rate. For the theoreti
ally motivated
hoi
e � = 2 we were not able to 
ompute solutions on meshes with more than 100degrees of freedom in Tj. The numeri
al results indi
ate however that the 
hoi
e� = 2 is too pessimisti
 in this example and � = 1 appears suÆ
ient for uniformmesh-re�nement. For the adaptive strategy the 
hoi
e � = 1 gave suboptimal resultsbut � = 3=2 led to reasonable solutions.For all 
ombinations of � 2 f0; 1=2g and � 2 f1; 3=2; 2g in Algorithm (AT0;�;�;L;m)Figure 5 displays the error k�j � �kL4=3(
;R2) for � = [F ��℄0s(�;ru) on various trian-gulations. We observe that the stress error de
reases optimally with rate 1=2 for
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Figure 4. L2 error for all 
ombinations of � 2 f0; 1=2g and � 2f1; 3=2; 2g in Algorithm (AT0;�;�;L;m).
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Figure 5. Stress error for uniform and adaptive mesh re�nementand � = 1; 3=2; 2.(�; �) = (1=2; 3=2). The plot also shows that the 
hoi
e � = 1 is not suÆ
ient foradaptive mesh re�nement. The stress error for (�; �) = (0; 3=2) is smaller than theerror for (�; �) = (0; 1) so that the 
hoi
e � = 1 might lead to suboptimal resultsfor the stress error in this example.In Figure 6 we displayed the stress error together with the error estimators �R;R,�R;E, �A;R, and �A;E for (�; �) = (0; 1); (1=2; 3=2). The stress error seems to de
ayfaster (with optimal experimental 
onvergen
e rate 1/2) for adaptive mesh re�ne-ment and � = 3=2, while the plot indi
ates a suboptimal experimental 
onvergen
erate 1/6 for uniform re�nement and � = 1. The error estimator �A;E serves as agood approximation of the stress error in 
ontrast to �A;R and �R;R whi
h 
onvergeslower and have to be regarded as reliable upper bounds. To make a �nal 
on
lusionabout the performan
e of the error estimators one would however have to use �nermeshes as we may may still be in the preasymptoti
 range for dof(Tj) � 250.
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Figure 6. Stress error and error estimators for (�; �) = (0; 1) and(�; �) = (1=2; 3=2) in Algorithm (AT0;�;�;L;m).7. Further examplesThe s
alar 
hara
ter of the addressed variational problems as well as the assump-tion (3.1) restri
ts appli
ation area of our approa
h 
onsiderably. Hen
e it is worthoutlining appli
ability of our algorithm to three spe
i�
 models having de�nite in-terpretations.7.1. Compatible phase transitions in elasti
 solids. This �rst example is out ofthe s
alar framework used throughout this paper and illustrates how the appli
ationsof the algorithm 
an be widened to ve
torial problems at least in spe
ial 
ases. Giventwo symmetri
 matri
es E1; E2 2 Rn�nsym su
h that E2 � E1 = (a 
 b + b 
 a)=2 fora; b 2 Rn with jbj = 1, and a symmetri
, positive-de�nite fourth order tensor C , thefun
tion F (x; E) = F (E) := 12 minj=1;2 jC 1=2(E � Ej)j2; E 2 Rn�nsym(7.1)leads to a simple model for 
ompatible phase transitions in 
ertain elasti
 solidsat small strains provided, of 
ourse, (P) employs W 1;p(
;Rn) instead of W 1;p(
),appropriate fun
tions G and uD, and the symmetri
 gradient "(u) := 12(ru+ruT )instead of ru. We refer to [1, 12℄ for spe
i�
ations of E1; E2 and C that modela tetragonal-to-mono
lini
 transformation in a high-temperature super
ondu
tor.Owing to the work of [26℄ and the 
hoi
e of E1; E2, formulation (RP ) (with Rnrepla
ed by Rn�nsym ) is a proper relaxation of (P). The following lemma shows that thekey assumptions (3.1) and (4.7) of our analysis are indeed satis�ed in this example.Lemma 7.1. Let F be de�ned through (7.1). Then F �� satis�es (3.1) and (4.7).Proof. It is shown in [5℄ that F ��(E) = 12 min�2[0;1℄ jC 1=2(E � (1� �)E1 � �E2)j2 =12 min�2[0;1℄ jC 1=2(E�E1��A)j2 where A := (a
b+b
a)=2. If �(E) 2 [0; 1℄ satis�esF ��(E) = 12 jC 1=2(E �E1 � �(E)A)j2 then (with \ : " denoting the s
alar produ
t in



23Rn�n) 1jC 1=2Aj2 C (E � E1) : A 8<: � 0; for �(E) = 0;= �(E); for �(E) 2 (0; 1);� 1; for �(E) = 1:(7.2)A

ording to [3℄ there holds F �� 2 C1(Rn�nsym ) and this implies that [5℄[F ��℄0(E) = C (E � E1 � �(E)A):Given E; ~E 2 Rn�nsym let � 2 R and A? 2 Rn�nsym satisfy CA? : A = 0 and E � ~E =�A+ A?. Writing � := �(E) and ~� := �( ~E) we have([F ��℄0(E)� [F ��℄0( ~E)) : (E � ~E) = C ��A+ A? � (� � ~�)A� : ��A+ A?�= ��2 � �(� � ~�)�jC 1=2Aj2 + jC 1=2A?j2:Sin
e � = 1jC 1=2Aj2 C (E� ~E ) : A, the estimates in (7.2) allow for �2��(��~�) � 0. Thisproves (3.1) sin
e A? is the proje
tion of E1 � E2 onto the orthogonal 
omplementof A. The identity([F ��℄0(E)� [F ��℄0( ~E)) : (E � ~E)� jC �1([F ��℄0(E)� [F ��℄0( ~E))j2= C ��A+ A? � (� � ~�)A� : �(� � ~�)A�= �2jC 1=2Aj2 � �(� � ~�)jC 1=2Aj2leads to the proof of (4.7).Let us remark that extension to more than 2 wells is not simple at all, and hasbeen done by Smyshlyaev and Willis [48℄ for a 3-well problem while only 
ertainestimates are known for more than 3-wells [22℄.7.2. Optimal shape design problems. Given 
 � R2 , a positive number � <j
j, and two positive numbers �1 < �2 the following domain optimization problemmodels the optimal mixture of two materials and o

urs in solid and 
uid me
hani
s:Find u 2 W 1;2(
) and ! � 
 su
h that uj�
 = 0, j!j = a, and the pair (u; !) isminimal for I(u;!) := Z
 12�(x)jru(x)j2 + u(x) dx;with �j! = �1 and �j
n! = �2. It has been shown in [21℄ that this problem 
anbe redu
ed to the following saddle point problem: Find (�; u) 2 R �W 1;2(
) withuj�
 = 0 whi
h are optimal insup�2R infu2W 1;2(
)uj�
=0 Z
 ��(ru(x)) + u(x) dx + C0�:Here, �� is expli
itly determined by � (see [21, 11℄ for details) and �1; �2, is non-
onvex, and satis�es our assumptions (2.2), (2.3), and (4.7). Therefore, for ea
h� 2 R we re
over a s
alar variational problem of the type (P) with G(x; u) = u.The assumption (3.1) is not satis�ed but not needed for our approximation s
hemebe
ause the resulting relaxed problem is linear and the algorithm 
onverges alwaysin one iteration. This situation is s
rutinized in [4℄.



247.3. Phase transitions in antiplane shear settings. Nonlinear elasti
ity undervery spe
ial 
ir
umstan
es leads to a so-
alled antiplane shear setting; 
f. the surveypaper by Horgan [24℄. A multi-well stored energy then 
orresponds to various natu-ral 
on�gurations of the material, 
alled phases; 
f. [20, 46℄ for this antiplane setting.For example, a two-dimensional double-well problem 
onsidered in [15, 20, 46℄ em-ploys F (x; s) = s21 + as42 � bs22; a; b > 0:(7.3)This F (x; �) allows for an expli
it 
onvex envelopeF ��(x; �) = s21 +� �b2=(4a) if s2 2 ��pb=(2a);pb=(2a)�;as42 � bs22 otherwise:(7.4)Here F �� satis�es (3.1) with s� = (1; 0) and 
4 = 1, but (3.3) would have to benaturally modi�ed and an anisotropi
 Sobolev spa
e would have to be used. As tothe weighted uniform monotoni
ity (4.7) of an inverse to [F ��℄0s(x; �), it holds here ina suitable \anisotropi
" modi�
ation with % = 2 (resp. 4/3) and � = 1 (resp. 3) withrespe
t to s1 (resp. s2) be
ause j[F ��℄0s(x; �)j has a growth as power � = 1 (resp. 3)with respe
t to s1 (resp. s2).A more general 
ase 
onsiders k phases des
ribed by the gradients fsigki=1 � Rn ,positive-de�nite matri
es fCigki=1 � Rn�nsym of \elasti
" moduli, o�sets fwigki=1 � R,and elasti
 response near the phases that 
an be des
ribed by the potentialF (x; s) = F (s) := mini=1;:::;k�12 jC1=2i (s� si)j2 + wi�:(7.5)The following lemma des
ribes the 
onvex envelope of F and proves that all ourassumptions are satis�ed if k � n and C1 = ::: = Ck =: C.Lemma 7.2. Let F (x; s) = F (s) be as in (7.5) with Ci = C 2 Rn�nsym positivede�nite, i = 1; 2; :::; k.(i) For s 2 Rn there holdsF ��(s) = min�i2[0;1℄�1+:::+�k=1 12��C1=2(s� kXi=1 �isi)��2+ kXi=1 �iwi:(7.6)(ii) If for s 2 Rn the 
onvex-
ombination 
oeÆ
ients �i, i = 1; :::; k, are optimal in(7.6) then [F ��℄0(s) = C�s� kXi=1 �isi�:(7.7)(iii) For s; ~s 2 Rn there holds��C�1�[F ��℄0(s)� [F ��℄0(~s)���2 � �[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s):(7.8)(iv) Let L � Rn be a linear subspa
e of Rn and `0 2 L? (here orthogonality is de�nedthrough the s
alar produ
t (s; ~s) 7! (Cs) � ~s) su
h that 
onv fs1; s2; :::; skg � `0 + L.Let `? 2 L? su
h that jC1=2`?j = 1. For s; ~s 2 Rn there holds�C`? � (s� ~s)�2 � �[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s):Proof. (i) Formula (7.6) follows from showing that F ��(s) is bounded from aboveby the right-hand side RHS(s) of (7.6), that RHS is a 
onvex fun
tion, and thatRHS(s) � F (s). The fa
t that F �� is the largest 
onvex fun
tion below Fyields (7.6).



25(ii) For a proof of (7.7) let s 2 Rn and �i, i = 1; :::; k, be optimal for s in (7.6), andlet us abbreviate (s�; w�) =Pki=1 �i(si; wi). For any s0 2 Rn and t 2 R we haveF ��(s+ ts0) � 12 jC1=2(s+ ts0 � s�)j2 + w�:Hen
e, there holdsF ��(s+ ts0)� F ��(s) � 12 jC1=2(s+ ts0 � s�)j2 � 12 jC1=2(s� s�)j2= 12C(s+ ts0 � s�) � (s+ ts0 � s�)� 12C(s� s�) � (s� s�)= C(s� s�) � (ts0) + 12t2jC1=2s0j2:Sin
e we know from [3℄ that F �� 2 C1(Rn) we have, for jtj � t0,F ��(s+ ts0) = F ��(s) + t[F ��℄0(s) � s0 + '(t)with '(t)=jtj ! 0 for t! 0. Hen
e, for all jtj � t0 there holdstjtj�[F ��℄0(s)� C(s� s�)� � s0 � �'(t)jtj + jtj2 jC1=2s0j2and this implies (by 
hoosing an appropriate sign for t! 0)�C(s� s�)� [F ��℄0(s)� � s0 = 0:Sin
e s0 2 Rn was arbitrary we dedu
e [F ��℄0(s) = C(s� s�).(iii) Given any s; ~s 2 Rn , let �i; %i 2 [0; 1℄, i = 1; :::; k be su
h that Pki=1 �i =Pki=1 %i = 1 andF ��(s) = 12 jC1=2(s� s�)j2 + w� and F ��(~s) = 12 jC1=2(~s� ~s%)j2 + ~w%where (s�; w�) =Pki=1 �i(si; wi) and (~s%; ~w%) =Pii=1 %i(si; wi). (7.7) shows��C�1�[F ��℄0(s)� [F ��℄0(~s)���2 = C(s� s� � ~s+ ~s%) � (s� s� � ~s+ ~s%)and �[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s) = C(s� s� � ~s+ ~s%) � (s� ~s):Using Pki=1 %i =Pki=1 �i = 1 we �nd�[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s)� jC�1([F ��℄0(s)� [F ��℄0(~s))j2= C(s� s� � ~s+ ~s%) � (s� � ~s%)= C(s� s�) � (s� � ~s%)� C(~s� ~s%) � (s� � ~s%)= kX̀=1 %`C(s� s�) � (s� � s`) + kX̀=1 �`C(~s� ~s%) � (~s% � s`)= kX̀=1 %`�C(s� s�) � (s� � s`)� w� + w`�+ kX̀=1 �`�C(~s� ~s%) � (~s% � s`)� ~w% + w`�:
(7.9)
By 
hoi
e of �i, i = 1; :::; k, for ea
h ` 2 f1; :::; kg the mapping f` : [0; 1℄! R,� 7! jC1=2(s� �s� � (1� �)s`)j2=2 + �w� + (1� �)w`has a minimum in � = 1, i.e., f 0̀(1) � 0, or�C(s� s�) � (s� � s`) + w� � w` � 0:



26The same argument shows for all ` 2 f1; :::; Ng,�C(~s� ~s%) � (~s% � s`) + ~w% � w` � 0:Hen
e, the right-hand side of (7.9) is non-negative and this implies (iii).(iv) Let sL; ~sL 2 L and s?; ~s? 2 L? su
h that, with respe
t to the s
alar produ
thx; yiC := (Cx) � y, we have the orthogonal de
ompositionss� `0 = sL + s? and ~s� `0 = ~sL + ~s?:Let �i; %i 2 [0; 1℄ and (s�; w�), (~s%; ~w%) be as in the proof of (iii). Using repeatedlyorthogonality of elements in L and L? we verify�[F ��℄0(s)� [F ��℄0(~s)� � (s� ~s)� jC1=2(s? � ~s?)j2= hs� s� � ~s+ ~s%; s� ~siC � hs? � ~s?; s? � ~s?iC= hs� s� � ~s+ ~s%; s� ~siC � hs? � ~s?; s� ~siC= hsL � s� � ~sL + ~s%; s� ~siC= hsL � s� � ~sL + ~s%; s� � ~s%iC + hsL � s� � ~sL + ~s%; s� s� � ~s + ~s%iC= hsL � s� � ~sL + ~s%; s� � ~s%iC + hsL � s� � ~sL + ~s%; sL � s� � ~sL + ~s%iC= hsL � s� � ~sL + ~s%; s� � ~s%iC + ��C1=2(sL � s� � ~sL + ~s%)��2� hsL � s� � ~sL + ~s%; s� � ~s%iC= hs� s� � ~s+ ~s%; s� � ~s%iC :This right-hand side equals the right-hand side of (7.9) whi
h has been shown to benon-negative in the proof of (iii).A
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