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1. INTRODUCTION

Nonconvexr optimization problems often lack any solution because of fast oscil-
lations of minimizing sequences that eventually break lower semicontinuity with
respect to a weak convergence, cf. [44] and references therein for a survey in case of
scalar variational problems on which we will focus in this paper. Therefore, a re-
laxation is urgent to solve such problems in a suitably generalized sense. The most
general way of relaxation is certainly a suitable continuous extension, using also a
suitable linear-space structure not necessarily completely coherent with the linear
structure occuring in the formulation of the original problem. Thus extended, also
called relaxzed, problems then may get a convex structure even if the original prob-
lem does not have any. For a large class of problems, (generalized) Young measures
(cf. e.g. [2, 42]) represent a suitable tool.

The relaxed problems can be discretized by a theory of approximation of (general-
ized) Young measures developed recently in [40, 41, 42], see also [32, 37, 38]. Numer-
ical solution of the relaxed problems can be often performed directly, without ap-
proximating the original, non-relaxed problem, cf. [27, 28, 29, 32, 33, 34, 35, 42, 43].
If the (additively coupled, cf. e.g. () below) problem is linear in a lower-order term
(i.e. G(z,-) in (*P) is linear), such approach leads to a linear-programming prob-
lem and was shown very efficient in [4]. In the quadratic case, it naturally leads
to a quadratic-programming problem, which is a considerably less efficient but still

possible approach if the dimensionality is not too high, cf. [13, 32, 29, 43]. For
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non-quadratic case, one can still consider an iterative scheme leading to sequential-
quadratic-programming algorithm, which is however even less efficient, cf. [31]. For
other numerical approaches for the approximation of nonconvex variational problems
we refer to [8, 11, 12, 14, 16, 17, 30].

Therefore, especially in a multidimensional case, a more efficient approach is desir-
able. We propose to approximate the relaxed problem not quadratically (in contrast
to [31]) but linearly so that the auxiliary problems are as those in [4]. The idea of
so-called sequential linear programming (=SLP) is not completely new and has been
used in other context, e.g., in [19, 36, 49].

The goal of this paper is to demonstrate the usage of this, otherwise fairly (though
not absolutely) general approach, on a concrete problem of scalar multidimensional
variational calculus:

o Mivimize  @(u) = [ F(z, Vula) + Glr.u(a) do.

subject to  uw e W'(Q), ulpn = up,

with € C R" a bounded domain with the Lipschitz boundary 02 and up €
W=1/PP(9Q) given. Let us point out that we confine ourselves to additively cou-
pled problems, in contrast to general problems involving the functional ®(u) :=
Jq ¢(z,u(z), Vu(z))dz; i.e. we consider only the special case ¢(z,u,s) = F(z,s) +
G(z,u). It should be mentioned that this restriction seems unfortunately quite im-
portant for the linearization and the Banach-fixed-point techniques because, e.g.,
the estimate (3.6) below does not seem to be transferable to the general case. For
the case that G is affine in u the linearized problem equals (8) and we general-
ize existing error estimates for the approximation of relaxed formulations of () to
nonquadratic growth conditions under general assumptions.

The outline and the main contributions of this paper read as follows: We intro-
duce the employed relaxation of the nonconvex variational problem () in Section 2
and prove convergence of a linearization in Section 3. Section 4 is devoted to the
numerical analysis of the linearized problems. Besides an a-priori error estimate
that relates three different scales, we establish an a-posteriori estimate which al-
lows for adaptive mesh refinement. An efficient and reliable iterative algorithm to
solve the discrete problems is provided in Section 5. In Section 6 we report on the
performance of our algorithm applied to a scalar 2-well problem which has been
proposed in [8, 10] as a benchmark model problem for the numerical approximation
of scalar nonconvex variational problems. Finally, Section 7 further illustrates (and
outlines some widening of) applicability of our algorithm; in particular, modelling
of compatible phase transitions in elastic solids, optimal shape design problems, and
certain phase transitions in antiplane shear settings are mentioned there.

2. THE YOUNG-MEASURE RELAXATION

In this section we define the employed relaxation of (8) which is a continuous
extension of () to measure valued solutions and has been established, e.g., in [42].
We briefly state the relaxed problem (R ) and the main results concerning the
connections between () and (RY).

Let M, (R") be the set of probability measures on R", i.e., the set of all non-
negative Radon measures p satisfying fRn p(ds) = 1. The set of LP-Young measures



YP(;R™) is defined as
(21) YR = {V € LY (Q; M (R™)) : / |s|Pry(ds) dz < oo}
aJrn

Here v, = v(z) € M (R") for almost all z € Q and the index “w” in
L2(Q; M (R")) stands for “weakly* measurable”, which means that given any
v € Co(R") := {w e C(R") : limyyoc w(s) = 0} the mapping z — [, v(s)vz(ds) is
Lebesgue measurable in ).

The fundamental theorem on Young measures [2] (cf. also [42, Lemma 3.2.7])
allows to compute weak limits of continuous functionals applied to weakly convergent
sequences in LP. We will assume that ' : Q@ x R* - Rand G : 2 x R — R are
Carathéodory functions satisfying, for almost all z € €2, all s € R", and all u € R,

(2.2) c1ls]P < F(x,8) < ea(1 + |s]P),
(2.3) |G (z,u)| < a(z) + c3|ulf,

where p > 1, ¢1,¢9,¢c3 > 0, a € L'(Q), and 1 < ¢ < pn/(n — p) if p < n and
1 < g < o if p>n. Then we will consider the already annonced relaxed problem
in the form:

Minimize — ®(u,v):= / [/ F(x,s)vy(ds) + G(z,u(x)) | dz,
9] n
(RP) subject to / svy(ds) = Vu(z) for a.a. x € Q,
ueWhHr(Q), ve (4R, ulsg = up.

The following assertion [13], showing that (93 ) is indeed a proper relaxation of (B),
is based on results from [25] and, in fact, translates some results of [42, Propositions
5.2.1, 5.2.6 and 3.4.15]:

Proposition 2.1. (See [13, Proposition 1]) Assume (2.2) and (2.3). There holds:

(i)  (RP) admits a solution.

(ii) inf(P) = min(RP).

(iii) The embedding 1 : WP(Q) — WH(Q) x YP(Q;RY), v — (v,0v,), of
any infimizing sequence for (B) has a weakly convergent subsequence whose
(weakx weak* ) limit is a solution to (RP).

(iv) Fach solution to (RP) is the (weak X weak*) limit of the embedding 1 :
WhP(Q) — WP(Q) x YP(; R™) of some infimizing sequence for ().

3. AN ITERATIVE ALGORITHM TO APPROXIMATE (RJ3)

The relaxation obviously linearized the problem as far as the highest term con-
cerns. Also, the equality constraint in (9893 ) is linear. The only possibly nonlinear
term in (P ) is G(z,-) and our iterative scheme will be based on a linearization of
this term. This gives the following conceptual fixed-point algorithm (App).

Algorithm (AFP) .

(a) Choose epp > 0, u® € WP(Q), u®|s09 = up, and set k := 1.
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(b) Solve the following linear optimization problem (RP*)):

Minimize 3" (u, v):= /Q [ / F(,5)wa(d)

(m‘ﬁ(k)) +GL(~’U; u(k—l))(u _ U(kl)):| dz,

subject to / svy(ds) = Vu(z) for a.a. x € Q,
{ ue Whr(Q), ve (4R, ulsg = up.

Denote the solution to (RPHX)) by (u®,v*)): assumptions made later will
guarantee this solution to be unique.

(c) If [[u® — ulk=V|12q) > erpp, set k:=k + 1 and go to (b).

(d) Stop.

Throughout this article we assume, in addition to (2.2) and (2.3), that the convex
hull of F(x,-), denoted by F**(z,-), is continuously differentiable for almost all
x € Q and there exist ¢, > 0, {z > 0, and s* € R, |s*| = 1, such that, for almost
all x € Q, for all all s;, 59 € R”, and all uy, us € R, there holds

(3.1) ca(s™ - (s1=52))" < ([F7]y (2, 1) = [F7]y (2, 52)) - (51 = s2),
(3.2) |G (2, u1) — G (2, u9)| < lgluy — usl.

We must naturally assume p > 2 to make (2.2) and (3.1) mutually compatible. In
order to exploit conventional weak-solution theory for the Euler-Lagrange equation
related to (RP*)), we assume that there exist ¢5 > 0 and b € L” (Q) such that, for
almost all x € Q and for all s € R”,

(3:3) [F(@,9)] < b(x) +es(1+ [s]P7).

Lemma 3.1. Let (3.1) and (3.3) be valid. Then the mapping f — u : L*(Q) —
L*(Q), with u € W'P(Q) solving in the weak sense the Dirichlet boundary value
problem

(3.4) —div ([F*]y(x,Vu)) = f,  ulag = un,
15 Lipschitz continuous with the constant (1 given explicitly by
D 8* .
(3.5) b = =2 Dq - := diam(s*, Q) = sup s (z1 — x9).
Cy4 1,260

Proof. Take two right-hand sides f; and f; and the corresponding weak solutions
u1 and uy. Subtract the corresponding weak formulations from each other and test
them by u; — us € WyP(Q). By the fine version of Poincaré’s inequality (which
follows from the one-dimensional Poincaré inequality, see, e.g., Showalter [45, Ch.II,
Lemma 5.1]) and by Hélder’s inequality we get

1
36 gl = wlle < [ (57 V(o - w)da
Q,s* Q

< cl4 ([F V) = [P (2, Vug) - V(i — ug)da
- cl4 Q(f1 = f2)(ur = us)d

1
< C—4||f1—f2||L2(Q)||U1—U2HL2(Q)- 0



For u € W'P(Q), ii|sq = up, let (u,v) solve the following auxiliary problem:

Minimize By (u, 1) = /Q [ / F(, s)uelds) + Gl m)(u - )| d,
(AP;)

subject to / sv,(ds) = Vu(x) for a.a. x € Q,
Rn™
ueW(Q), veP(RY), ulsg = up.
The following Lemma 3.2 shows, in particular, uniqueness in terms of u-component
of solutions to (A;), which enables us to denote u = S(a) for a solution (u,v) to

(APB,).

Lemma 3.2. Let (2.2), (2.3), and (3.1)—(3.3) be valid. Then the mapping S : 4 —
u, L?(Q) — L*(Q), is Lipschitz continuous with the constant

D -0
(3.7) ly = 226
C4

Proof. For (u,v) solving (2A,), v must satisfy the Euler-Lagrange equation for the
coarse relaxation of (AP;), i.e. for the problem of minimization of [, F**(z, Vu) +
G (z,u)(u — u)dz for u € W'P(Q), ulsq = up. This equation is just (3.4) with
f = Gl (z,u). Then, by (3.2), the mapping u > f : L?*(Q) — L?(Q) is obviously
Lipschitz continuous with the constant /;. Composition of this mapping with the
mapping f — u addressed in Lemma 3.1 just gives the mapping S. Its Lipschitz
constant ly is {14, which is just (3.7). O

Lemma 3.3. Let again (2.2), (2.3), and (3.1)=(3.3) be valid. Furthermore, let
G(z,-) be “not much” nonconvexr in the sense (formulated in terms of non-
monotonicity of Gl,) that

1
(3.8) 372—6— Vui,ug € R V(a.a.) 1€Q:
1
(G, ur) = Gy, u2)) (ur = ua) > y(ur — us)?,
and let
(39) DQ’S*EG < 4.

Then the mapping S has a unique fized point u and there is v such that the pair
(u,v) solves the relazed problem (RP).

Proof. The fixed point u € W'P(Q) C L*(€) does exist by the Banach contraction-
mapping principle. Yet, by the definition of S, u = S(u) means that there is v such
that (u, v) solves (M3, ), which implies that u solves the Dirichlet boundary-value
problem for the Euler-Lagrange equation

(3.10) div ([F*),(z, Vu)) = G\ (z,u),  uloo = up.

The nonlinear operator corresponding to (3.10) is monotone, which can be seen from
the estimate

(3.11) /Q([F**]'s(:c, Vuy) = [F*](z, Vus)) - V(ug — up)
+(Go (2, u1) — Gy, u2)) (ug — up) da > <% + ’y) uy — U2||%2(Q) >0,

where (3.6) and (3.8) have been used. Therefore, the potential of (3.10), i.e. the
functional u — [, F**(z, Vu) + G(x,u) dz, is convex on {u € W'?(Q); u|sg = upn}.
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This implies that u minimizes this potential on W'?(Q) under the condition u|gq =
up. Then it suffices to take v € Y?(Q; R") such that

(3.12) F**(z,Vu) = / F(z,s)vy(ds)  and /nsux(ds) = Vu(x)

for a.a. z € Q. Such v does exist due to the definition of the convex envelope F**(z, -)
and due to the Carathéodory property of F' (hence F** is a Carathéodory integrand),
the set-valued mapping z — {v, € M, (R"); (3.12) holds} is measurable and admits
therefore a weak™ measurable selection = — v,; see [42, Proof of Proposition 3.1.9]
for similar arguments. Moreover, the integrability of [5, [s[’v,(ds) required in (2.1)
follows from coercivity (2.2) of F and the fact that [, [, F(z,s)v,(ds)dz is finite.

U

The constants ¢4 in (3.1), {¢ in (3.2), as well as Dq - in (3.5) can be assumed to
be explicitly at our disposal (see Section 6). Then, by standards arguments, we can
state an a-priori estimate in terms of ||u(® — u||2(q) (the adjective “a-priori” refers
here to that both the solution u can be estimated a-priori by ||up||y1-1/ss a0y and

(0

the initial iteration u(?) is chosen a-priori) and an a-posteriori estimate in terms of

Hu(k—l—l) . u(k)||L2(Q):

Proposition 3.4. Let (2.2), (2.3), and (3.1)—(3.3), (3.8) and (3.9) be valid, and let
(u,v) be a solution to (RP). Then, for each j > 0 there holds

(3.13) ||u(]) — u||L2(Q) S f% ||u(0) — UHL2(Q).
Let (u*+D p*+1)) be the output of Algorithm (App). There holds
14
(3.14) u®*D — || 2q) < epp—in-.
1—4

Remark 3.5. One cannot expect any convergence of {v¥)},cn because v con-
structed in (3.12) need not be determined uniquely. In some particular situations,
however, one can prove convergence of the Young measure support and weak con-
vergence of volume fractions [4, 11]. Also, incorporating an estimate (4.7) below,
we deduce convergence of “stresses” in the sense

(3.15) [[F=15(, Vu®*D) = [F(, Vul) ) < Cllu® = ult DL q).

0
HLP'(Q;R"
Remark 3.6. If v-component is forgotten, the iteration of Algorithm (App) can

be written as: Find u*+tY) € W'P(Q), u|sq = up, such that, for all v € W'P(Q),
v|aq = 0, there holds

(3.16) /[F**]'s(:c, Vulk*)) . Voyds = — / G (z,u®)v de
0 0

(see also Lemma 4.1 below). Since we did not want to include F** in the computa-
tions, we defined the iteration by a minimization problem involving also v.

Remark 3.7. The assumptions (3.1) and (3.3) involve F** whose explicit knowl-
edge is, however, rather exceptional; the examples in Sections 6 or 7 are such an
exception. Extreme difficulties in explicit evaluation of F™** even in very special case
can be seen in [7, 11, 18]. It should be emphasized that (3.3) can be deduced from
(2.2). Unfortunately, it is not obvious whether (3.1) can be verified without explicit
knowledge of F**. However, it should be amphasized that (3.1) is not needed for
the implementation of Algorithm (App) and whenever the Algorithm converges, it
converges ultimately to a solution of (R ); hence, it is worth trying numerical us-
age of the Algorithm even if (3.1) is not verified in a particular case in question.
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Besides, even if F** is explicitly known so that one can think about minimizing
u [ F*(z,Vu) + G(x,u) dz which is algorithmically “cheaper” than solving
(RP), the Young-measure solution contains more information than pure knowledge
of the underlying “deformation” u so the effort made by implementing a “more ex-
pensive” algorithm is not completely lost; cf. e.g. [15, 18, 39] for usage of Young
measures to construct minimizing sequences in this or similar circumstances. More-
over, Algorithm (App) circumvents difficulties arising from degenerate convexity
(i.e., lacking uniform strict convexity) of F**.

4. DISCRETIZATION OF (9%‘13(’“))

The fairly general construction of finite-dimensional convex subsets of Y?(Q; R")
has been performed rigourously in [13, 32, 40, 41, 42] by using systematically duality
arguments. Referring to these works, we present briefly the resulting discretization

of (RPH).

4.1. The basic construction and discrete optimality conditions. For a dis-
cretization of the polyhedral (polygonal if n = 2) bounded Lipschitz domain Q C R”,
let us consider a regular triangulation 7 of 2. We will refer to 7 rather through its
mesh parameter h := maxpcr diam(7). We set

(4.1) Va(Q) = {vp € Wh(Q); YT ET : wyr affine},
(4.2) Ly(Q) = {pn€ L*(Q); VI €T : pp|r constant}.

The notations V3 (Q;R") and L, (2;R") for R”-valued functions will be used, too.
By Z7 : C(Q) — V,(Q2) we denote the nodal interpolation operator associated to T
and we define a function hy € L,(2) by hy|r := diam(T') for all T € T.

Let us assume, for simplicity, uniform W1 >-estimates for all discrete solutions and
let us consider a sufficiently large but bounded, polyhedral, convex set w C R” where
all gradients of discrete solutions will live. This seems in accord with our example
in Sect. 6, otherwise we would have additionally to make a limit passage with w
to R” as in [13, Proposition 2|. Furthermore, we consider a regular triangulation
7 of w with nodes N, and will refer to 7 rather through its mesh parameter d :=
maxre, diam(7).

We define
Vin(;RY) = {yeyp(Q;R"); VI €T VseN, 30T €0,1]:

ol =1 vlr=)Y 9355}.

SEN sEN

The closed convex set V;,(2; R") consists of all T-elementwise homogeneous LP-

Young measures which are supported in the nodes of 7.

Given an approximation ugf,zl) of u*=1) the set Yan(2;R") allows for an imme-

diate discretization of (RPH):

(
Minimize %) (ugp, vap) = / < / F(x,5) [Van]e(ds)
Q n

(mm(k)) ) + G (, udkh 1))(Udh - ngh ))>d:r:

l/dh = Vuy h( ) for a.a. x € €,

G Vh(Q), Vah € Yar(SERY),  uanloo = Iruplan.

subject to

\
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Existence of a solution (ugk,)l, l/ékh) (9‘{‘130”1) is guaranteed if (%‘Bdh) is feasible.
Optimality conditions, invented in [42], are the key towards an error analysis and
an efficient implementation of (9‘{‘,]32]“,)1)

Lemma 4.1. (See [42, Proposition 5.5.3].) Let (u ((1})1 dh) € V() X Yanr(S;RY)
be such that, for almost all v € ), there holds Vudh(:c) € int(w). Then the pair
(u(d]f,)l, l/ék,z) is a solution to (9‘{‘}3[“1) if and only if it is feasible for (%‘B(dk,)l) and there
exists )\(d]f,)1 € Ly(4; R™) such that, for almost all x € Q, we have

k k k
(43)  max(\j() s~ Flo.s)) = / Nir(@) - s = F(z, )il (ds),
and, for all v, € Vi, (Q) with v,|sq = 0, there holds
(4.4) / )\gf,)l - Vup dz + / G (z, ugf,:l)) vp dz = 0.

Q Q

Remark 4.2. The problem (9‘{‘,]32]“,)1) has a structure of a minimization problem
with a linear cost functional, linear constraints, and a convex set of admissible pairs
(wap, Van), and (4.3)-(4.4) are just conventional Karush-Kuhn-Tucker optimality
conditions modified to this concrete case. The function )\fi’f,)l is the Lagrange multiplier

for the constraint Vugy|r = fRn svap|r(ds), T € T, involved in (9‘{‘}32’6}1)

Any solution (u&k,)l,y[(lk,z) to (9‘{‘,]3%) is still a solution to (%‘B%) modified by
replacing F'(x,-) by the convex hull of its nodal interpolant F; on 7, Fy(z,-) :=
Z,F(z,-); we put Fy(x,-) = 4oc in R* \ @. Thus we can state the following lemma
in which 0,[F};*] denotes the subgradient of the convex, continuous, 7-piecewise affine
function F;*(x, s) with respect to s.

Lemma 4.3. (See [4, 13].) Assume that (u&k,)l,l/[(lk,z) is a solution to (%‘B&kg) and
)\Ellf,)l € Ly(2; R™) satisfies the conditions of Lemma 4.1. Then, for almost all x € €,
it holds

A (2) € O[F; ] (2, Vull) (x)).

If for almost all x € Q the mappings F(z,-) and F*(x,-) are of class C,.! and if
(F(z,)).)" = (F™(2,"))|w then there holds

(45) P = LG Vgl ey < o [ ooy

Remark 4.4.

(i)  The condition F(z,-), F**(z,-) € C! can be weakened to F(z,-), F**(z,-) €
O for some a € (0, 1]. We then have to replace d in (4.5) by d°.

(ii) Sufficient conditions for F**(z,-) € C.% and explicit estimates for
[[[F**]3(x,-)||cra(m, (o)) are given in [23, 3].

(iii) The proof of Lemma 4.3 uses the fact that w is discretized into triangles or
tetrahedra so that nodal values are extremal values.

4.2. An a-priori error estimate. To estimate the error u&k,)l — u® for solutions

ugk,)l and u® to (%‘ng,)l) and (RPH), respectively, we employ the auxiliary problem
(AP, ) introduced in Section 3 but with u(d]f,fl) in place of @. According to Lemma 3.1

there holds for solutions (a®), #®)) to (AP ) and (u®, v®) to (RP®H),
d,h

(4.6) 3% — u®| 2y < lalluly? —u® V|2
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Combining the optimality conditions of Lemma 4.1 with the estimates of Lemma 4.3,
(4.6), and the Euler-Lagrange equations for the solution u®) to (RP™), one can
prove the error estimate of Proposition 4.5 below. Some arguments in the proof
are similar to those in [4, 11]. The focus of the result presented here is the right
scaling of d, h, and k. Some notation is necessary to estimate the error caused by
the approximation of non-homogeneous boundary data.

Let £(7) denote the set of sides (=edges if n = 2 or faces if n = 3) in T, and
let he € L>®(UE(T)) be defined by he|p := hp = diam(E) for E € £(T). For
¢ € C(09) satisfying ¢|p € W2(E) for all E € £(T) with E C 99, let 82¢/0s>
denote the sidewise second derivative of ¢ on 0f).

Proposition 4.5. Assume that there exist 1 < 0 <2, 0 < 0 < 00, and c¢; > 0 such
that, for almost all x € Q0 and all s1,s9 € R, there holds

(4.7) I[F*](z, 81) — [F*], (2, $9)|? < ¢ (1+ 15117 + |s2]° )
< ([FTy(@, 51) = [F]y(2, 82)) - (51— s2).
Suppose that the conditions of Lemma 4.1 and Lemma 4.3 are satisfied and up €

C(Q) is such that up|p € W?%(E) for all E € £(T) with E C 0Q. Moreover, let
(a®, 9 *)) be a solution to (AP w-1). Then, there holds
d,h

N ’ _ k—1
[u® — ulf)1220) < Cl( inf (V@™ —wn) |3 + [0 V= ul e
wp EVR(Q),
wplon= ITUD\BQ

h3 /2 3§UD
£ 9s?

The constant Cy > 0 is independent of k and the triangulations T and T but depends

|

L2(AQ;R(n—1)x (n—1)) +d H F** ”HLoo Qxw; R"*"))'

on an a-priori bound for ||V ™| ) + ||Vu,(i]2||Lp(Q)

Proof. Let v € WP(Q) satisfy v|sq = (Zrup — up)|asa. The triangle inequality and
the fine version of Poincaré’s inequality, cf. (3.6), yield

k k ~ ~
) — u®| 20y < ul) — a® —v]lp2 + [0l z2@) + 18* — u®| 120

sDé{,i*||s*-v<u£f,1—a<k>—v>||m + o] 2@ + [[8® — u®| 120
< D2 ||s* - V() — ™) 120 +cs|| i + 1% = a®]| 120

we used that ugk,)l —i*¥) —y vanishes on 9. A result in [6] shows that we can choose

v such that

< h3/23§UD
||7)||W1,2(Q) S Cg £ as L2 BQR(" 1) (n— 1))
Employing (4.6) we thus have
(4.8) gy = uBl120) < D2 15" - V() = @®) 120
0%u
3/2 D
+euca| ! 53 L2(QR(n— DX (n—1)) + b —u* e

Assumption (3.1) implies

Cap k ~
(49)  Flls" V(g — i)

<5 [ (o V) = [P (0. V) - D = %) da,
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Following the argumentation in [11, Proof of Theorem 2] we deduce from (4.7) that

QR"

@10) Gl - [P V) g,

1
<5 [ (P2 Ful) ~ [P o, 92)) - V(alf) - 2% do
Q
where c¢19 > 0 is independent of 7 and 7 but involves the a-priori bound
||Vﬂ(k)||Lp(Q;Rn) + ||VUEIITI?L||LP(Q;R") <cn

which follows from (2.2). Inserting )\(d]fz and employing Holder’s inequality,
Lemma 4.3, and the a-priori bound ¢y, we infer

(4.11)/([F**] (2, Vul)) = [F*](z, Va®)) - V(ulf) — a®) do

Y

N

< / O — [P (2, Va®)) - V() — ) da
Q
sk k k k ~
I Vi) = A L e IV () — @) [ ogimn)

< / (Ag’f,)l—[F**]’s(a:,V&(k)))-V(ugf,)l—&(k))da:qtcGCHd||[F**];’||LM(QXW;RM).
Q

=

The Euler-Lagrange equations for @), Lemma 4.1, and Hoélder’s inequality prove,
for arbitrary v, € V,,(Q) € WP(Q) with vj,|g0 = 0,

(4.12) /()\k F) (2, Va®)) - V() — a®) da

>

- / (A — [Pz, Va®)) - V() - a® — ) da
Q

k Kk ~ k ~
< MG = [P Va® ) | ey [V (@l = @5 = 0) [ o(men)-
The triangle inequality and Lemma 4.3 yield
k % -
(4.13) NS = [F150, Va™)| o
s k sk ~ sk
< NELC V) — [F21C Va®) | o ey + Codll[F*12] o (@1 xmnsny-

Employing (4.13) in (4.12) and Young’s inequality ab < a?/o + b¢ /¢ for certain
a,b > 0 shows

(4.14) / (B~ [F) (2. va®)) - V) - a®) da

1 ok ok
3org F TG Fuga) = [FT( VAl

(2610)@/9 k B / ®5k
+<1 + T) HV(UEU)l —a*) - U)o ageny + G NE TSl 70 (0 pmnny-

<

QR”

The combination of (4.9)7(4.1) With (4.14) yields, after absorbing

1/(2e100) [[[F* T, Vulf)) = [F*1, (-, Va®)[|2 , ) on the right-hand side,
Kk C4 * k ~
S 11 V) = [P Vi) g 5||s V() = @)
(2010)gl/9 . *)  ~(k )
<(1+7) f V(u —u()—v gp Rn
N 0 vaVh(g)l,vh\an:o H ( d;h h)HL (R")

+CGCIIdH[F**]’SIHLOO(QXLU;R"X") + ngQH[F**]’SIH%OO(QXLU;R"X")'
Using this estimate in (4.8), choosing v, = w, — u&k,)l for arbitrary w, €
Vi(Q) with wplasa = Zruplsn, and estimating dg||[F**]'s'||ioo(wa;an) <
cr2d||[F**]7|| oo (@xwirnxny since o > 1 and d < ¢y3, proves the proposition. O
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A simple induction argument proves an estimate for the error ||ugk,)l — ul|r2()

Theorem 4.6. Under the same conditions of Proposition 4.5 there holds

k
||u_udh||L2 < O (ﬂgk ||U_U(O)||%2(Q) +Z inf ||V(11(7) _wh)”ip(n;kn)

’LUhEVh(Q),
2
Lz 3QR(n 1)x(n— 1))

]_1whbn:ITUDbn
k k
lu— w20y < 06 Jlu— u®| 2y + [u® — {20

3/28 Up

0s?

TR AT [ P 1

Proof. The triangle inequality and Proposition 3.4 show

Iterated application of Proposition 4.5 proves Theorem 4.6. O

A density argument and Theorem 4.6 prove convergence uflk,)l — u in L*(Q) for
(d,h) — 0 and k — oo (for d,h < 1/k), where d and h are the maximal meshsizes
of 7 and T, respectively. If 49), j = 0,1,2, ..., k, satisfies () € W'+#2(Q) for some
p € (0,1] so that

inf |V — wn)||5 e < c1ah?

Wh EVh (Q)z
whlaa=ITunlan

for some a € (0,1] and j =0,1,2, ..., k, we may choose “510})1 =Z;u, d = h?**, and,

provided £y < 1, log(h®/'°8(*2)) < k < log(h®/'°e(2)) 1 1 to verify
(4.15) = ul)]| 120y < O3 (1 + log(h®/ 8 pe.,

Remark 4.7. Similarly as in Remark 3.7, explicit knowledge of F** is not needed
for (4.5) and the estimate of Theorem 4.6 since explicit bounds for F**(x,:)" are
provided in [3] in terms of F only.

4.3. An a-posteriori error estimate. Since in general higher regularity is not
available or o may be very small in (4.15), a-posteriori error estimates that allow
for adaptive mesh refinement could yield improved convergence rates.

Let 0y € Ly(€;R") and E € E(T). For E C 0Q set [0}] np:=0. f E=T_NT;
for T, T, € T let ng € R" be the unit vector perpendicular to £ pointing from 7"
to T’y and define

[O'h] ‘Mg ‘= (Uh|T+ - O'h‘T_) ‘NE.

Theorem 4.8. Under the same conditions of Proposition 4.5 and if G-, udkh 1)) €

W7 (Q) there holds

k k sk
(4.16) ||u<'“>—u&,,1||i2<m+||A&,,1—[F Lo VN
1/p'
< G > el nEn’;p,(E))
EeS

+C ||u(k—1) || +‘ 3/235UD

4 LA 082 llL2(8;R(n-1)x(n-1))
FIRTGCu ) L sy + ™o >)

The constants C3,Cy > 0 are independent of k and the meshsizes of T and T but
depend on an a-priori bound for ||Vﬂ(k)||Lp(Q;Rn) + ||VU$])1||LP(Q;Rn).
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Proof. Arguing as in (4.9)—(4. 11) we have, for all v, € V() with v,|sq = 0,

Dot V() — a®)|2.q +—||[F**]< Vulin) = [, va®y e,

QR”

< / () — [ (2, va®)) -V(ug’jg — ™ — ) Az + coennd [|[F*™)" || oo (massmnsny.
Q

Inserting v € WP (Q) with v|sq = (Zrup—up)|sq and employing the Euler-Lagrange
equations for ) proves

/ (A — [Pz, Va®)) - V() — a® — ) da
/ uk a® — oy — ) dx-i—/G' x udkh 1))(u(k,)l—ﬂ(k)—v—vh)d$

+/ )\((i]f})l [ (x, V' ))) - Voduz.

Y

Arguing as in (4.12)-(4.14) shows

[0 =P 9a)) - Fode < (1+
Q

+ cgd?IIF 17

)||w||zpm;w>

NF1 (-, Vulh) — [P va®)|e,

(2010)9’/9
gl

Loo( QXwR"X") 92¢ 100 QRn

A T-elementwise integration by parts, div )\El’f,)l\;p = 0, and Holder and Cauchy in-
equalities yield

JRRC R SRR EATES ol AL R ATt
Q

EES

( Z el nEH”’ ) ( Z his " g~ —v—vhH’ip(E))l/p

Be&(T Be&(T
The weak interpolation operator .J : W, (Q) — V,(Q) N W, P(Q) of [9] satisfies, for
we WiP(Q) and f € W (Q),

[ 1w T0)do < csllB59 s g 0l

S hPllw = )b, < Asllw .
Eec&(T)

Setting v, = J(u&k,)l — @® — v) and combining the previous estimates shows, after
absorbing terms on the right-hand side and using d < ¢;3,

Cqy o k - 0~ k o
Sls" - Vg = ¥ +r'” T V) = [FTC VI o
1/ _
<c16( Z hg| A nE||Lp,(E)> ||Ud’h—u(k)_v||W1,p(Q)+Cl7<||Vv||§p(Q;Rn)
Ee&(T
+d||[F**J;'||Lm<mRnxn>+||h VG, (ol e 1 = 15 = 0oy ).

Choosing v as in the proof of Proposition 4.5, employing an a-priori bound for ||u(dk,)1—

™ — v|ly1p(0), and using (4.8) proves the asserted estimate for |[u® — ugf,)lﬂLz(Q)
An application of the estimate

IEY( Vu®) = [F2 (¢, va®))2,
which follows from (4.7) as (4.6) (cf. (4.10)), concludes the proof. O

"(QR") < ClSHU(k_ ) - udh ||L2

Remark 4.9. The condition G/ (-, Vugf};l)) € W' (Q) can be dropped. This re-
sults in a computable term which is not necessarily of higher order.
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Setting np 1= hl/p ||[)\d h] gl 1 (p) and assuming that d < h and for j =k —1,k
there holds

[uf), — @220y < IAS) = [P, Vu®)[2, oo

Theorem 4.8 proves a reliability-estimate, with “h.o.t.” denotlng “higher order
terms”,

" 1/ (ep")
IAG = [P0 Vu) gy + hot < Gy (30 ) = mm
Ec&(T)
The inverse estimation techniques of [47] allow for the converse, efficiency-, estimate
with a different exponent,

k Kk
nrp =g e < CHING = [F15( Vu®) | 1y en) + Dot

The gap between ng g and ng g is known as a reliability-efficiency-gap [11]. Under
similar assumptions one can show [4]
(k) i *x]1 [ (k) ,
Cs Jhe‘}?gw ||)‘dh Uh”U"(Q;]R") < ||)‘d,h [F S Var) | (SHR?) + h.o.t.
! : 1/9
S C5 Uhe‘}:}g;R” ||)\dh B Uh” QRn)'

If [F*]' (-, Vu®) is smooth, e.g., in W??'| we have C5 = 1. Since the computation
of the infimum appears too expensive an approximation can be defined through the
averaging-operator A : L'(Q; R") — V;,(Q; R") of [9],

k k . k
Nae = 775\,3 = ||)\Ei,l)z - A)‘(d,l)anP'(Q) ~ ahex}ﬁsf'z;Rn) ||)‘(df)1 - Uh||LP'(Q;R“)'

5. EFFICIENT IMPLEMENTATION BY THE ACTIVE-SET STRATEGY

As the dimensionality of (%‘B%) is usually very high but the optimal Young
measure is typically supported only on rather low-dimensional sets, it is certainly
desirable to reduce the dimensionality by exploiting a certain a-priori information to
put the expectedly “non-active” points out of calculations and also to have a certain
reliable a-posteriori information to check whether we did it correctly.

This information comes from the optimality conditions in Lemma 4.1. However,
the Hamiltonian H(z, s) = )\gf,)l(:r)-s—F(x, s) appearing in these conditions is usually
not known and has to be estimated from previous iterations in an iterative algorithm.
Indeed, this adaptivity idea, let us call it active-set strateqy was proposed and first
implemented in [13], and further used in [4, 28, 29, 43]. The iterative algorithm in
question is the successive refinement of a triangulation of w. The active-set strategy
was also implemented in [31] where the iterative algorithm arises by the sequential
quadratic programming approach.

We briefly recall the central idea for the active-set strategy and refer to [13] and
Algorithm (A7 6.5.1.m) below for its practical realization to solve (%‘ng,)l) efficiently.

The support Supp v of v € YP(2; R") is given by

Suppv := {(z,s) EQXR"; s € suppvy}

where supp v, C R” is the support of the probability measure v,; Supp v is defined
up to a set of zero measure.

Given A C Q x N; we define a subset of V,,(; R*) by
Vina(RY) = {u € Van(;R"); Suppr C A}.
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The lower-dimensional subproblem (%‘B&?,Z,A) is then defined as follows.

([ Minimize @gﬁu¢my¢m::/ﬁ</mﬁst)pidAdg
Q n
+ Gl uly ) (wap — ulfy V) ) da,

subject to / S[van)z(ds) = Vugp(x) for a.a. €9,

Uanloo = Lruplaq,
L Ugpn € Va(),  Van € Vana(;RY).

Assume that we are given an approximation A\, € L, (Q; R") to the Lagrange multi-

plier )\gf,)l € L,(Q;R") occurring in the optimality conditions of Lemma 4.1. If A, is

close enough to )\,(f,)1 and if A is defined through ), as in the following proposition

then any solution to (9‘{‘,]32]’“,)1’/4) is a solution to (9‘{‘,]3&,)1)

Proposition 5.1. (See [13, Corollary 1].) Let (u&k,)l,y[(lk,z) be a solution to (%‘ng,)l)
with corresponding multiplier )\(d]f,)1 and let N, € Ly(SuR™). If for e € Ly(Q) and all
T €T there holds

~ 1
sup ‘()\glk,)1 — )l - 5‘ < §S\T

scw

and if

A= {(x,s)EQx/\/}; M(7) - s — F(,5) > max (\y(z) - s' — F(z,5)) —6(1‘)},

s'eN;
then any solution to (%‘B(d]f,)w) is a solution to (%‘B(dk,)l)
Proof. The optimality conditions of Lemma 4.1 guarantee

Supp va, C B = {(:1:, $) € AX N A s — F(z,s) = max ()\l(]lk,)Z -s' — F(z,s")) }
) s,e r )

Therefore (cf. [13]), it suffices to show B C A. For almost all z € Q and all s € R”
such that (z,s) € B there holds by assumption on ¢ and definition of B,

M(@) s — F(z,s) > M) (x) s — F(x,5) — 2(x)/2
= max ()\,(ik,)l v’ = F(z,5)) —e(x)/2
> max (-8 — F(x,5)) — e(x).

Hence we have (z,s) € A. O

Given some \j, we do not know ¢ in general. We may however choose some positive
e € Ly(2), define A as in Proposition 5.1, compute a solution to (%‘ng}l’A), verify
the optimality conditions of Lemma 4.1, and enlarge € to repeat this procedure until
the optimality conditions are satisfied.

6. ILLUSTRATIVE EXAMPLE: 2D BROKEN EXTREMAL

We want to illustrate our algorithm on the so-called Tartar’s broken-extremal
example [35] which is modified for the multidimensional case like in [11, Sect. 8] or
[14, 16]. To be more specific, let us consider n = 2, Q := (0, K)? with some K > 0
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and, for almost all z € €2, all s € R”, and all u € R,

(6.1) F(z,s) = |s —al?|s + a]?,
(6.2) G(z,u) = (u— g(a-x))* with
3

(63 9(6) = ~1ox(E ~ 6)° — 5 (6~ &)"

for a = (cos ¢, sin ¢) with ¢ = 7/6 and for & = 1/2. Note that (6.1) (when shifted
by a constant) fits with (2.2) for p = 4.
Then (cf. [35]) the relaxed problem (9% ) has the unique solution

gla-x) for a -z € (0,&,),
(6.4a) wu(z) = cr—&)3
%—i—(a-x—&)) for a -z € (&, V/2),
1—a-Vu(zx) 1+a-Vu(zx)
Oy v, = 3 et g% frewe(0s)
6Vu(ac) fora-x e (fba \/5),
provided we choose the boundary data up := u|gsq with u just from (6.4a). Here

we can take a benefit from an explicit knowledge (6.5) of F** although, as already
pointed out in Remarks 3.7 and 4.7, our algorithm itself does not exploit the infor-
mation (6.5) below.

Lemma 6.1. (See [11, Propositions 1-3].) Let F be as in (6.1). For almost all
x € Q and all s € R" there holds
(6.5) F**(z,s) = max{[s|” — 1,0}* + 4(|s|* — (a - 5)?).
Moreover, for almost all x € Q) and all s1, 5o € R", we have
[Py s0) = [Fl (@ s < 8 (14 [l + [s2f”)
x ([F™(x, 51) = [F*]i(x, 52)) - (51— 52),
8 (51 = )" < ("Il 50) = [F]i(w.2)) - (51 = 52).
with a* = (sin ¢, — cos ).
Remark 6.2. For almost all x € Q and all s € R" there holds F**(x, s) = F(z, s)

if and only if |s| > 1. Hence only gradients of modulus < 1 lead to a non-trivial
Young measure.

Let us point out that Lemma 6.1 proves ¢; = 8 and s* = a* in (3.1) for F from
(6.1) and we have g = 2 in (3.2) for G defined by (6.2), while Do, < V2K in
(3.5). Obviously, (3.8) holds even with v = 2 > —1/{5 in as G(z,-) from (6.2) is
uniformly convex. Lemma 3.3 therefore ensures convergence of Algorithm (App) in
this case if
_ Das-la < K

C4 V2

i.e., if the size K of the square € is less than 2v/2. For our numerical experiments

l

we chose K = 1.

Furthermore, the convex domain w := (—m, m)? C R? is triangulated by uniform
triangulations 7 with meshsize d > 0. More precisely, a uniform triangulation 7 of
w with meshsize d can be defined through the nodes

(6.6) N, = {seR2; Ji,j € {-M,...,M}: s= (; —)}
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where M is a positive integer satisfying m/d —1 < M < m/d. The elements in 7
are chosen as halved squares with sides of lengths m/M and /2m /M.

For parameters © € {0,1/2}, 8 € [1, 2], a positive number m € R, a list of positive
integers L = (L(0), L(1), L(2),...), and an initial triangulation 7y of 2 we used the
following algorithm to approximate (J83) on a sequence of uniformly (© = 0) and
adaptively (© = 1/2) refined triangulations 7;, j =0, 1,2, .... The algorithm can be
employed to any specification of (R ) (though convergence has to be proved for
each situation) and combines adaptive mesh refinement with a nested fixed point
iteration and the active set strategy introduced in the preceding sections. The
parameter [ determines the ratio of the meshsizes of the triangulations of €2 and w.
The sequence of integers L is needed for the realization of the active set strategy.
Given j > 0 and a triangulation 7; of € with N; nodes the number h; is defined by
hj = l/m The algorithm terminates if a suitable stopping criterion is satisfied
and then the output is an approximate solution (u;, v;) € Vi, (Q) x Vg, 5, (4 R?) to
(RP) for some j > 0 and a triangulation 7; of w = (—m, m)? with meshsize d; = hf.

Algorithm (A7 6.6.0,m)-

(a) Set j := 0, k := 0, £ := 0, and choose ugk) € Vi, (Q) such that u |3Q =
T7uplaq. Choose Aj, € Ly (S R?), set & := oo, and dj, := = QLU )hﬂ
(b) Generate a uniform triangulation 7;, of w = (—m, m) with meshs1ze dj, and

with nodes N, as in (6.6).

(c) Define
A= {(:1: §)EQAXN ;5 Aju(x)-s — F(x,5) > max Njo(z)-s" = F(z, ") —5}.
s'e ‘r ¥
Enlarge A appropriately to ensure feasibility of (%‘Bdkj}hj )

(d) Solve the linear optimization problem (%‘Bdkjlh 4) to obtain a solution

(@), 7j0) € Vi, (Q) X Va, ,.n,,4(Q; R?) and a Lagrange multiplier 5\]' € Ly, (4 R?).
(e) If, for almost all 2 € Q and all s € N7, ,, it holds

5\](!,5) -5 — F(LE, S) < /R2 (5\7(1‘) . — F(IE, S’))ﬁj,f,x(dsl) + h;ﬂ

then:
(e1) if £ < L(j), then set Njor1 := Aj, djgsr = djg)2, € := djs)2, € = { + 1,
and go to (b).
(e2) if £ = L(j), then set u(kﬂ) = 1, u](.’k;l) = Uj, £:= 0, and go to (g).
(f) Set € := 2e, )\]g =\, and go to (c).
(g) If ||u (k+1) ||L2 < b3 set u; = ung) vj = J(k;l) k=0, and go to (j).
(h) Set k —k+1 dj g —2’? hﬂ £:=h;/2, \js:=\; and go to (b).
(j) Compute error indicators ng for all sides E € E(T) in 7;.
(k) Terminate if a stopping criterion is satisfied.
(I) Mark the side E € £(T;) for refinement if np > © maxpres(r;) N
(m) Generate a new triangulation 7j41. Set Aji10 := Aj (), ugli)l = uj, € 1= hj,
djy1,0:= 2L(]+1)h§+1, j:=j+1, and go to (b).
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Remark 6.3.

(i) A computable criterion is available to enlarge m in (e) and thereby guarantee
that it is large enough [4].

(ii) Feasibility of (9‘{‘,]3 k+1 ) in Step (c) of the algorithm can be achieved, e.g.,
by enlarging A such that 0o, ® € Va, 1, A2 R?).

(iii) Stopping criteria in (k) of Algorithm (A7 e6.,m) can be, eg. [u; —
Uj— 1||L2 < Estops ||)‘ j*lHLP’(Q) < Estopy OT ZEGSU})U}]E‘ < Estop for some
Estop > 0, or]—JforsorneJ>1

(iv) Since in the optimal case we have ||u; — ul|r2@q) < Ch} we chose epp = h as
a stopping criterion for the fixed point 1terat10n

(v)  The tolerance h2’8 for the verification of the maximum principle in (e) guaran-
tees \j(z) = [F**] (z, Vu;(z)) + O(h?) for almost all = € Q.

(vi) The choices of € for the definition of A in (c) are motivated by Proposition 5.1.

(vii) We refer to [47] for details on red-green-blue refinement strategies to obtain a
refined regular triangulation from the error indicators 7z in (m).

(viii) Steps (b)-(e) of the algorithm realize the active set strategy as proposed in
[13].

(ix) Since optimization toolboxes provide a Lagrange multiplier ) based on duality
(and hence the inner product in) RN, X has to be rescaled by 1/|T], i.e.,
)\gf,“T := |r/|T|, in order to satisfy the conditions of Lemma 4.1.

Ficure 1. [Initial triangulation 7 in the example.

For the numerical approximation of (R} ) specified through (6.1)-(6.3) we choose
a coarse initial triangulation 7, of €2 which consists of 32 congruent triangles with
Ny = 25 nodes, cf. Figure 1. We used m = 2, employed L = (4,2,2,2,...), and tried
all combinations of § € {1,3/2,2} and © € {0,1/2}. Moreover, we used A\go = 0
and u(()o) = Zr,up in Step (a) of the algorithm to start the iteration. As a stopping
criterion we used 7 = J for various positive integers J.

Figure 2 shows the solution uy € V},(€2) on the uniform triangulation 7; for § =1
and the support of the discrete Young measure solution restricted to two different
elements. The triangulation 7 is obtained by two red-refinements of 7; and consists
of 256 elements and has 225 free nodes. The displayed triangulation of w = (—2,2)?
admits 4761 nodes and we observe that the active set strategy activates only a few
nodes (or atoms) which are very close to the support of the exact Young measure
solution. In the middle plot of Figure 2 we observe some active nodes close to zero
which results from Step (c) of the algorithm to ensure feasibility of the optimization
problem (%‘Bdkﬁ],,q)

For a comparison we displayed the solution uiy € V3,,(2) on the adaptively gen-
erated triangulation Ti for f = 3/2 together with the support of the associated
Young measure solution restricted to two different elements in Figure 3. The trian-
gulation 7, admits a comparable number of degrees of freedom as the one shown
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FIGURE 2. Solution on a uniformly refined triangulation (top) for
[ = 1 and support of the associated discrete Young measure (indicated
by circles) restricted to the elements conv{(5,4),(4,5),(4,4)}/16
(middle) and conv{(8,12),(9,11),(9,12)}/16 (bottom) (indicated by
a darker shading in the upper right plot). The magnified regions dis-
play volume fractions larger than 1/1000.

in Figure 2 but the mesh on w is finer because of the different choice of 3. The
adaptive refinement strategy refines the mesh towards the line {x € Q;z - a = &}
along which the exact solution has a discontinuity in the gradient. This appears
reasonable since by our choice of ¢ uniform triangulations do not resolve that line
and the approximation error in a neighbourhood of it is expected to be large on
uniform meshes.

Table 1 displays for © = 0, i.e., for uniform mesh refinement, § = 1, and j =
0,1,2 the number of free nodes in 7;, the minimal integer K for which ||u§-K+1) —
U;K)HLQ(Q) < h?, the number of iterations in the active set strategy in the last step
of the fixed point iteration and for the highest level L(j) in the active set strategy,
the number of atoms in the triangulation 7; (), as well as the average number
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FIGURE 3. Solution on an adaptively refined triangu-
lation (top) for B = 3/2 and support of the associated

discrete  Young measure (indicated by circles) restricted
to the elements conv{(5,5),(4,4),(5,4)}/16 (middle) and
conv{(10,12),(8,12),(9,13)}/16 (bottom) (indicated by a darker
shading in the upper right plot). The magnified regions display
volume fractions larger than 1/1000.

of active atoms per element. It is remarkable that less than 4% of the possible
atoms are activated by Algorithm (A7 e.,.m). Because of the nested iteration,
i.e., choosing the solution on a coarse triangulation as the starting value for the
fixed point iteration on the refined triangulation, the algorithm performs very few
iterations for the fixed point iteration on one triangulation 7;. The number of
iterations in the maximum principle grows rapidly in this example. This behaviour
might be caused by the choice of the parameter ¢ = h; (motivated by the estimate
[Aj+1 = Ajllpasarey < Chy which holds if the exact solution of () is smooth)
which seems too optimistic in this example.
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The same numbers are displayed for © = 1/2, i.e., adaptive mesh-refinement, and
[ = 3/2 in Table 2. Owing to the larger choice of 5 the number of possible atoms
grows faster but less than 3% of them are activated by the active set strategy. Again,
the number of fixed point iterations is very small but in contrast to the numbers for
uniform mesh refinement, the numbers of iterations in the maximum principle seem
to remain bounded.

g | dof(7;) | FP-it’s | MP-it’s | # atoms/|T;| | # active atoms/|7;|
0 9 3 1 289 9.3
1 49 3 12 1369 21.3
2| 225 3 30 4761 65.1

TABLE 1. Degrees of freedom (=dof) in 7;, numbers of fixed point
(FP-) and maximum principle (MP-) iterations, numbers of possible
atoms, and average number of activated atoms per element in the final
iteration on 7; for uniform mesh refinement and g = 1.

J | dof(7;) | FP-it’s | MP-it’s | # atoms/|T;| | # active atoms/|7T}|
0 9 3 2 1089 17.8
1 12 3 2 2401 32.2
2 20 3 2 3721 44.2
3 34 3 1 0929 48.3
4 37 3 1 6561 55.3
5t 52 3 3 9409 71.5
6 59 3 4 11025 73.6
7 70 3 7 13689 85.4
8 83 3 2 17689 93.9
9 121 3 6 29929 120.5
10 146 3 3 37249 122.6
11 147 3 2 38809 131.6
12 152 3 6 40401 131.6

TABLE 2. Degrees of freedom (=dof) in 7;, numbers of fixed point
(FP-) and maximum principle (MP-) iterations, numbers of possible
atoms, and average number of activated atoms per element in the final
iteration on 7; for adaptive mesh refinement and 5 = 3/2.

For all combinations of © € {0,1/2} and § € {1,3/2,2} we displayed the error
|u; — ul[12() against degrees of freedom in 7; for j = 0,1,2,... with a logarithmic
scaling used for both axes in Figure 4. We observe that the adaptive refinement
strategy for 5 = 3/2 leads to smaller errors than the uniform refinement strategy
for = 3/2 at comparable numbers of degrees of freedom in 7; larger than 100, and
also to an improved experimental convergence rate. For the theoretically motivated
choice f = 2 we were not able to compute solutions on meshes with more than 100
degrees of freedom in 7;. The numerical results indicate however that the choice
[ = 2 is too pessimistic in this example and § = 1 appears sufficient for uniform
mesh-refinement. For the adaptive strategy the choice 5 = 1 gave suboptimal results
but = 3/2 led to reasonable solutions.

For all combinations of © € {0,1/2} and € {1,3/2,2} in Algorithm (A7, .6,6.0,m)
Figure 5 displays the error [|[Aj — Al|p4/3q,pz) for A = [F**]((+, Vu) on various trian-
gulations. We observe that the stress error decreases optimally with rate 1/2 for
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FIGURE 5. Stress error for uniform and adaptive mesh refinement
and 5 =1,3/2,2.

(0,8) = (1/2,3/2). The plot also shows that the choice 5 = 1 is not sufficient for
adaptive mesh refinement. The stress error for (0, 5) = (0,3/2) is smaller than the
error for (©,3) = (0,1) so that the choice 5 = 1 might lead to suboptimal results
for the stress error in this example.

In Figure 6 we displayed the stress error together with the error estimators ng g,
Nr.E, Nar, and na g for (©,6) = (0,1),(1/2,3/2). The stress error seems to decay
faster (with optimal experimental convergence rate 1/2) for adaptive mesh refine-
ment and § = 3/2, while the plot indicates a suboptimal experimental convergence
rate 1/6 for uniform refinement and § = 1. The error estimator 14 g serves as a
good approximation of the stress error in contrast to n4 g and ng gz which converge
slower and have to be regarded as reliable upper bounds. To make a final conclusion
about the performance of the error estimators one would however have to use finer
meshes as we may may still be in the preasymptotic range for dof(7;) < 250.
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FIGURE 6. Stress error and error estimators for (0, 4) = (0,1) and
(©,8) =(1/2,3/2) in Algorithm (Ax.0.8.0.m)-

7. FURTHER EXAMPLES

The scalar character of the addressed variational problems as well as the assump-
tion (3.1) restricts application area of our approach considerably. Hence it is worth
outlining applicability of our algorithm to three specific models having definite in-
terpretations.

7.1. Compatible phase transitions in elastic solids. This first example is out of
the scalar framework used throughout this paper and illustrates how the applications
of the algorithm can be widened to vectorial problems at least in special cases. Given
two symmetric matrices F, By € R\ such that By — Fy = (a ® b+ b® a)/2 for

a,b € R" with |b| = 1, and a symmetric, positive-definite fourth order tensor C, the
function

(7.1) F(z,E) = F(F) := ilg\cl/?(E—Ej)P, Ec Ru

B m
j=1, Y

N | —

leads to a simple model for compatible phase transitions in certain elastic solids
at small strains provided, of course, () employs WP (Q; R") instead of W*(Q),
appropriate functions G and up, and the symmetric gradient e(u) := 1(Vu + Vu”)
instead of Vu. We refer to [1, 12] for specifications of E;, Fy and C that model
a tetragonal-to-monoclinic transformation in a high-temperature superconductor.
Owing to the work of [26] and the choice of E, Ey, formulation () (with R”
replaced by R") is a proper relaxation of (3). The following lemma shows that the
key assumptions (3.1) and (4.7) of our analysis are indeed satisfied in this example.

Lemma 7.1. Let F be defined through (7.1). Then F** satisfies (3.1) and (4.7).

Proof. 1t is shown in [5] that F**(E) = L minggo,i [C?(E — (1 — 0)Ey — 0E,)|* =
T mingeo 1) |CV?(E— E; —0A)|* where A:= (a®b+b®a)/2. If §(E) € [0, 1] satisfies

F*(E) = |C'/?(E — B, — 0(E)A)|? then (with “:” denoting the scalar product in
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Rnxn)
1 <0, for (E) =0,
> 1, for 0(F) =1

According to [3] there holds F** € C'(R2%") and this implies that [5]

[F*](E) = C(E - E\ — 0(E)A).

Given E,E € RYM let o € R and A" € R satisfy CA' : A=0and E— E =

m ym

aA+ At Writing 0 := 0(E) and 6:= 0(E) we have

(F(B) — [F*1(E) : (E - B) = ClaA+ A' = (0 - 0)A) s (aA + A")
= (a2 _ 04(9 B 9))|C1/2A|2 + |(C1/2AJ'|2.

Since o = WC(E—E) : A, the estimates in (7.2) allow for a2—a(6—6) > 0. This
proves (3.1) since At is the projection of E; — E, onto the orthogonal complement

of A. The identity

([F*(E) = [F*(E) : (E - E) — |CTH([F*](B) — [F*](E))[?
=C(ad+A"—(0-0)4): ((6—0)A)
= ?|C2AP? — a(f — 0)|CV2 AP

leads to the proof of (4.7). O

Let us remark that extension to more than 2 wells is not simple at all, and has
been done by Smyshlyaev and Willis [48] for a 3-well problem while only certain
estimates are known for more than 3-wells [22].

7.2. Optimal shape design problems. Given ) C R?, a positive number a <
|©2|, and two positive numbers p; < po the following domain optimization problem
models the optimal mixture of two materials and occurs in solid and fluid mechanics:
Find v € W'2(Q) and w C Q such that ulpq = 0, |w| = a, and the pair (u,w) is
mainimal for

I(u;w) ::/Q%u(x)|Vu(x)|2+u(x) dz,

with (|, = p1 and pjor, = je. It has been shown in [21] that this problem can
be reduced to the following saddle point problem: Find (\,u) € R x WH2(Q) with
u|go = 0 which are optimal in

sup  inf / O, (Vu(z)) + u(z) dz + CoA.
AER  ueW:2(Q) [¢)
ulpn=0
Here, @, is explicitly determined by A (see [21, 11] for details) and py, j19, is non-
convex, and satisfies our assumptions (2.2), (2.3), and (4.7). Therefore, for each
A € R we recover a scalar variational problem of the type () with G(x,u) = u.
The assumption (3.1) is not satisfied but not needed for our approximation scheme
because the resulting relaxed problem is linear and the algorithm converges always
in one iteration. This situation is scrutinized in [4].
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7.3. Phase transitions in antiplane shear settings. Nonlinear elasticity under
very special circumstances leads to a so-called antiplane shear setting; cf. the survey
paper by Horgan [24]. A multi-well stored energy then corresponds to various natu-
ral configurations of the material, called phases; cf. [20, 46] for this antiplane setting.
For example, a two-dimensional double-well problem considered in [15, 20, 46] em-
ploys

(7.3) F(x,8) = s? +asy —bs, a,b>0.

This F'(z,-) allows for an explicit convex envelope

(74)  F*(z,) =8 + { —b?/(4a) if s, € [~ /b/(20), \/b/(2a)],

asy — bss  otherwise.

Here F** satisfies (3.1) with s* = (1,0) and ¢4 = 1, but (3.3) would have to be
naturally modified and an anisotropic Sobolev space would have to be used. As to
the weighted uniform monotonicity (4.7) of an inverse to [F**],(z, -), it holds here in
a suitable “anisotropic” modification with o = 2 (resp. 4/3) and o = 1 (resp. 3) with
respect to s; (resp. so) because |[F**].(z,-)| has a growth as power o = 1 (resp. 3)
with respect to sy (resp. ss).

A more general case considers k phases described by the gradients {s;}¥_, ¢ R",
positive-definite matrices {C;}j_, C R of “elastic” moduli, offsets {w;};_; C R,
and elastic response near the phases that can be described by the potential

1
(7.5) F(x,s) = F(s):= Z:rrlnnk <§|C’Z.1/2(s —si)* + wi>.

The following lemma describes the convex envelope of F' and proves that all our
assumptions are satisfied if k <n and C, = ... = C, =: C..

Lemma 7.2. Let F(z,s) = F(s) be as in (7.5) with C; = C € R positive
definite, 1 = 1,2, ..., k.
(i) For s € R™ there holds

k k
1 2
7.6 F**(s) = min = |CY?(s — 0;s;,)| + 0;w;.
(7.6) (= min 50" =D bl
O1+...+0=1 = =

(i1) If for s € R" the convex-combination coefficients 6;, i = 1,..., k, are optimal in

(7.6) then

(7.7) [F*]'(s) = C(s — Z 05:).

(1ii) For s,5 € R there holds
18 [CHIFT6) - FUT@)P < (F1G6) - FT@) - (s - 3,

(iv) Let L C R™ be a linear subspace of R* and oy € L+ (here orthogonality is defined
through the scalar product (s,$) — (Cs) - §) such that conv {s1, sa, ..., 55} C o+ L.
Let (*+ € L* such that |CV/20+| = 1. For s,5 € R" there holds

(Ct (s =3)" < (IF*](s) = [F1(3)) - (s = 3).

Proof. (i) Formula (7.6) follows from showing that F**(s) is bounded from above
by the right-hand side RHS(s) of (7.6), that RHS is a convex function, and that
RHS(s) < F(s). The fact that F** is the largest convex function below F
yields (7.6).



25

(17) For a proof of (7.7) let s € R” and 6;, i = 1, ..., k, be optimal for s in (7.6), and
let us abbreviate (s, wg) = S, 0i(s;, w;). For any s' € R" and ¢ € R we have

F**(s 1 t5') < %|Cl/2(s s — 59)[2 + wp.
Hence, there holds
F** (s 18') = P (s) < g|C2(s 415" = 50)? = 02 (s = 50)
= %C(s +ts' —sg) - (s +ts' — s9) — %C(s — 5¢) - (5 — 8p)
= (s — o) - (1) + %t201/25’2.
Since we know from [3] that F** € C'(R") we have, for [t| < tg,
F**(s+ts') = F*™*(s) + t[F*](s) - s' + (1)
with (t)/|t| — 0 for t — 0. Hence, for all |t| < ¢, there holds

P = O =) o < =H0 L

and this implies (by choosing an appropriate sign for ¢ — 0)
(C(s — sg) — [F*]'(s)) - s' = 0.

Since s' € R was arbitrary we deduce [F**]'(s) = C'(s — sp).

. - n : k
(ii7) Given any s,5 € R", let 0;,0, € [0,1], ¢ = 1,...,k be such that ) 6, =
S 0 =1and

1 1
F**(s) = 5\01/2(3 —59)P+wy and F**(3) = §|Cl/2(§ — 5,)|? + 10,

‘01/28"2

where (sg,wg) = 32 0;(si, w;) and (3,,1,) = 31_, 0i(si, w;). (7.7) shows
CTH(IF™)'(s) = [F*](3))|" = C(s — 59— 5+ 50) - (5 — 59 — 5+ 5,)
and
([FT(s) = [F)'(3)) - (s = 8) = Cs = 89 = 5+ 3,) - (s = 3).
Using Zle 0i = Zle 0; = 1 we find
([ (s) = [F](3)) - (s = 8) = |[CTH([F™](s) = [F]'(3))
= C(s—5sg— 5435, (59— 3,)
(

Gl = s (30— 80— Ol — 5 (9= 5,

M~

0iC(s = s9) + (sg— se) + > _0:C(5 = 35) - (3, — s¢)

By choice of 0;,i =1, ..., k, for each ¢ € {1, ..., k} the mapping f,: [0,1] = R,
o [CY2 (s —asg — (1 — a)sg)|?/2 4 awy + (1 — a)w,
has a minimum in « = 1, i.e., f;(1) <0, or

—C(S—Sg)-(Sg—Sg)-FU)g—wgSO.
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The same argument shows for all £ € {1,..., N},
—C(5—35,) - (8, — s¢) + W, —wp < 0.

Hence, the right-hand side of (7.9) is non-negative and this implies (7).
(iv) Let sp,5;, € L and s*, 55 € L* such that, with respect to the scalar product
(x,y)c:= (Cz) -y, we have the orthogonal decompositions

s—ly=s;+s and §—/ly=35;+ 5.
Let 0;, 0, € [0,1] and (s, wy), (5,,W,) be as in the proof of (ii). Using repeatedly
orthogonality of elements in L and L+ we verify
([F)'(s) = [F*]'(3) - (s = 8) = |CY2(s = 4) P

(s — 89— 345,86 8)c—(s7—35,s" -3¢
§e — (st — 5t

=(s—59g— 5+ 5,5 — 55,8 —8)c

= (sp, —S9g— S+ 5,5 —3)c

= (s, —Sg— S+ Sy, 50 — Sp)c + (St — S9 — S, + 55,5 — Sg — 5+ )¢
:<SL—89—§L+§Q,SQ—§Q>C+<SL—59—§L+§Q,8L—89—§L+§g>c
:<SL—89—§L+§Q,SQ—§Q>C+‘01/2(SL—89—§L+§£,)‘2

> (s, — g — S+ Sp, 50 — Sp)C

=(s—59g— 5+ 35,5 — S,)c-

This right-hand side equals the right-hand side of (7.9) which has been shown to be
non-negative in the proof of (iii). O
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