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1 Introduction

Thermal expansion in metallic bodies may create enormous elastic stresses if the tem-
perature profile varies considerably. It occurs both within manufacturing processes (es-
pecially heat treatment of large bulks) and sometimes in working regimes, too. These
“thermo-elastic” stresses may trigger activated inelastic processes, typically slip plastic-
ity or even damage. Here we focus on plasticity and consider also hardening effects.
Mechanical energy dissipated during the plastic deformation is converted to changes of
an internal structure of the material due to hardening but also to heat, which ultimately
couples the mechanical and heat parts. Moreover, thermal expansion leads to heat pro-
duction/consumption due to adiabatic effects.

There is an extensive engineering literature addressing thermoplasticity in thermally
expanding materials, employing computationally sophisticated models, e.g. [1, 7, 8, 14,
21, 25], sometimes even at large strains [9, 13, 15, 26, 27] but lacking a rigorous mathe-
matical justification.

Mathematically supported theories seem, however, nearly missing for a long time.
This was mainly because the relevant L1-theory for the heat equation was developed
only in the 1990s [4, 5], and the mathematical theory for rate-independent processes
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is even more recent, cf. [11, 12, 16, 17, 19, 20], as well as the interpolation technique
of the adiabatic-heat term in three-dimensional case [22], and the coupling with rate-
independent processes with viscous/inertial effects [23] and thermal effects [24].

The main mathematical difficulties are related to finite strain and multiplicative plas-
ticity at finite strains, in evolution driven even by mere elastic response if kinetic effects
are counted, and coupling of rate-independent processes with rate-dependent ones. In
fact, each of the above mentioned three difficulties represents itself a hard open problem,
especially in a three-dimensional setting and if no regularization (e.g. by capillarity or
higher viscosity is involved). This is why we adopt the following simplifications: small
strains and strain-driven linearized additive plasticity, and a linear viscoelastic response.
On the other hand, we allow for a fully rate-independent plastic flow rule although, of
course, the whole system is necessarily rate dependent due to the heat transfer, and
here also due to considered kinetic and viscous effects. As mentioned above, we also
consider hardening to avoid spatial concentration of plastic strains as has been studied
in the isothermal case in [11] which, in general, would lead to awkward interactions of
concentrating plastic-strain rate with thermal effects. Recently, rigorous mathematical
studies for thermoviscoplasticity at small strains had been performed in [3] (considering,
however, a rate-dependent plastic flow rule and no thermal expansion effects) and, as
mentioned above, in [24] (considering general analytical scheme for a slightly different
class of generalized standard materials with gradient theories for internal parameters but
without numerical analysis and the modification for the linearized non-gradient plasticity
only outlined in [24, Remark 4.5 with Example 5.1]).

The model will be formulated in Section 2 where also its thermodynamics will be
exposed. We confine ourselves to trace-free plastic strain and to isotropic materials as
far as both elastic response and thermal expansion are concerned. This implies a math-
ematically important cancellation effect owing to the fact that the thermal-expansion
strain is diagonal and thus orthogonal to the “plastic stress”, cf. (2.22) below. Although
this restricts generality and excludes e.g. single-crystal plasticity which is remarkably
anisotropic, important applications in engineering which standardly treat polycrystalline
(and thus isotropic) metals are allowed by the presented theory.

The main purpose of this paper, performed in Sections 3 and 4, is to develop an imple-
mentable numerical scheme for this model and prove its stability, i.e. a-priori estimates,
and also convergence to a suitably defined weak solution of the model. In Section 5,
the efficiency of the proposed numerical strategy is demonstrated on a 3D example. We
illustrate it on a physically motivated example, exhibiting rate-dependent effects of ther-
mal coupling producing residual elastic stresses and plastic deformation depending on
rate of heat treatment of a steel workpiece.

2 The model within thermodynamics

We consider a bounded Lipschitz domain Ω ⊂ Rd, d ≤ 3. The state variables will be
the displacement u : Ω → Rd, the plastic strain π ∈ Rd×d

dev , possibly a scalar isotropic
hardening parameter η, and the temperature θ : Ω → R, where

Rd×d
dev :=

{
A∈Rd×d

sym ; tr(A) = 0
}

and Rd×d
sym :=

{
A∈Rd×d; A⊤ = A}. (2.1)

The variables (π, η) =: z play the role of internal parameters. We consider plastic
response determined by a convex closed neighbourhood of the origin, say S ⊂ Rd×d

sym ×R,
defining an elasticity domain, while its boundary is called the yield surface and has the
meaning of the stress that triggers the evolution of plastic strains; we refer to Section 5

2



for a specific example. Let δS denote its indicator function and δ∗S the Fenchel-Legendre

conjugate functional to δS with respect to the inner product σ : e =
∑d

i,j=1 σijeij . Note

that the physical dimension of σ : e is Pa=J/m3 so that S determining the degree-1
positively homogeneous “plastic” dissipation potential δ∗S, acting on the dimensionless
tensor π and on the dimensionless internal hardening variable η, has indeed the dimension
J/m3. For a simpler notation, we write

ζ1(π̇, η̇) := δ∗S(π̇, η̇). (2.2)

We remark that the condition 0 ∈ int(S) implies that ζ1 = δ∗S is coercive. The set S
must be unbounded. More specifically, we assume that

S = S0 ⊕ S1, S0 ⊂ Rd×d
dev × R convex, S1 the orthogonal complement of Rd×d

dev × R.
(2.3)

This implies that ζ1 is finite only on Rd×d
dev × R and that π(t) ∈ Rd×d

dev a.e. in Ω provided
that π0 ∈ Rd×d

dev a.e. in Ω.
Considering a Kelvin-Voigt-type viscous material, our model will consist of the equi-

librium equation balancing inertial, viscous, and elastic mechanical forces,

̺
∂2u

∂t2
− div

(
D
∂e(u)

∂t

)
− div

(
C(e(u)−π−Eθ)

)
= 0, (2.4)

where ̺ is the mass density, D the tensor determining the viscous-type response, C the
tensor determining the elastic response, and E the thermal expansion tensor, while the
evolution of the internal parameters π and η are governed by the inclusion

∂ζ1

(∂π
∂t
,
∂η

∂t

)
+

(
Cπ+Hπ
bη

)
∋

(
Ce(u)

0

)
(2.5)

where b > 0 is an isotropic hardening coefficient and H is a symmetric positive semidef-
inite fourth-order tensor determining the kinematic hardening, and the heat trans-
fer/production is governed by the equation

cv(θ)
∂θ

∂t
− div

(
K(θ)∇θ

)
= ζ1

(∂π
∂t
,
∂η

∂t

)
+ 2ζ2

(∂e(u)
∂t

)
− θE : C

∂e(u)

∂t
(2.6)

where cv = cv(θ) is the heat capacity and K = K(θ) is the thermal conductivity tensor,

ζ2(ė) =
1

2
Dė : ė (2.7)

is the pseudopotential of viscous-dissipative forces, “ : ” denotes the product of two (d×d)-
tensors, and e(u) is the small-strain tensor defined as

eij(u) =
1

2

(∂ui

∂xj
+
∂uj

∂xi

)
. (2.8)

Throughout this paper, we assume isotropic thermal expansion, i.e.

E = αI (2.9)

with α a single thermal-expansion coefficient. It is important that (2.9) together with
the further isotropy (2.19) below will imply that (2.5) does not depend explicitly on tem-
perature (since the driving forces ∂

∂π
ψ and ∂

∂η
ψ with ψ from (2.25) below are independent

of θ) and ensures the orthogonality (2.22) below.
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Using the identity [∂ζ1]
−1 = ∂ζ∗1 , the inclusion (2.5) can equivalently be written in a

form which is more standard in engineering literature, namely
(
∂π/∂t
∂η/∂t

)
∈ ∂ζ∗1

(
σ − Hπ
−bη

)
with σ = C

(
e(u)−π

)
, (2.10)

which reveals that Hπ is in the position of the back stress to the elastic stress σ. This is
also known as Ziegler’s type model [28].

The above equations/inclusion (2.4)–(2.8) are to hold on the space/time domain
Q := (0, T ) × Ω with T > 0 a fixed time horizon.

As we focus on processes in the bulk, we consider only the simplest boundary condi-
tions, namely a prescribed normal stress and heat flux on Γ := ∂Ω:

(
D
∂e(u)

∂t
+ C

(
e(u)−π−Eθ

))
ν = g on Γ, (2.11a)

(
K(θ)∇θ

)
· ν = f on Γ, (2.11b)

where “ · ” denotes the scalar product of two vectors and ν is the outward normal to Γ.
The energetics of the model plays with the mechanical part of the internal energy

Φ(u, π, η) :=
1

2

∫

Ω

C(e(u)−π) : (e(u)−π) + πHπ + bη2 dx, (2.12)

the kinetic energy

Tkin(u̇) :=
1

2

∫

Ω

̺|u̇|2 dx, (2.13)

the dissipation energy rate

Ξ(u̇, π̇, η̇) :=

∫

Ω

ζ1
(
π̇, η̇

)
+ 2ζ2

(
e(u̇)) dx (2.14)

with ζ1 from (2.2) and ζ2 from (2.7), the thermal part of the internal energy

E(θ) :=

∫

Ω

h(θ) dx, where h(θ) :=

∫ θ

0

cv(w)dw, (2.15)

and the power of external mechanical forces and heating

F (t, u̇) =

∫

Γ

g(t, x)·u̇(x) + f(t, x) dS, (2.16)

The energetics of the model (2.4)–(2.6) can be obtained by testing (2.4), (2.5), and (2.6)
respectively by the velocity ∂u

∂t
, by the plastic strain rate ∂π

∂t
, and by 1, which gives after

using Green’s formula for both (2.4) and (2.6) together with the boundary conditions
(2.11) and eventually by summation the energy balance

d

dt

(
Tkin

(∂u
∂t

)
+ Φ(u, π, η) + E(θ)

)
= F

(
t,
∂u

∂t

)
; (2.17)

cf. (3.7d) below.
We consider an initial-boundary-value problem for the system (2.4)–(2.8). Hence, we

take the initial conditions

u(0, ·) = u0,
∂u

∂t
(0, ·) = u̇0, π(0, ·) = π0, η(0, ·) = η0, θ(0, ·) = θ0. (2.18)
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Also, the non-negativity of temperature is ensured provided θ0 ≥ 0 and provided the
boundary heat flux f is non-negative, cf. also the proof of Proposition 4.4 below.

Throughout the article, we will rely on the following data qualification. The positive
definite fourth order tensors C = [Cijkl], D = [Dijkl] are assumed to be symmetric and
isotropic so that in fact

Cijkl = λeδijδkl + µe

(
δikδjl + δilδjk

)
,

Dijkl = λvδijδkl + µv

(
δikδjl + δilδjk

)
,

with µe, µv > 0, λe > −2

d
µe, λv > −2

d
µv, (2.19)

with δ denoting here the Kronecker symbol, λ’a and µ’s are the Lamé constants. Thus
the elastic stress is Ce = λetr(e)I + 2µee with I = [δij ] denoting the unit matrix, and
corresponding energy is 1

2
Ce : e = 1

2
λe|tr(e)|2 + µe|e|2 and, as a quadratic form of e, it is

positive definite if d ≤ 3, and similarly also the quadratic form e 7→ 1
2
De : e is positive

definite. In fact, for the analysis presented below, we need the isotropy only for C but
it would be physically inconsistent to have D anisotropic.

One can derive thermodynamics of the above model by postulating the Helmholtz
free energy as

ψ(e, π, η, θ) =
1

2
C

(
e−π−Eθ

)
:
(
e−π−Eθ

)
+

1

2
Hπ:π +

b

2
η2 − θ2

2
CE:E − φ0(θ). (2.20)

Then entropy is given by

s = s(e, θ) := − ∂

∂θ
ψ = φ′

0(θ) − E:Ce. (2.21)

Note that the mechanical variables separate from temperature in (2.21) and thus cv =
cv(e, θ) = θ ∂

∂θ
s(e, θ) = θφ′′

0(θ) in (2.6) does not depend on these mechanical variables,
which facilitates the analysis very considerably. This separation effect is due to the
orthogonality

Cπ : E = α
(
λetr(π)I + 2µeπ

)
: I = α

(
dλe+2µe

)
tr(π) = 0, (2.22)

which is owing to (2.3) together with (2.9) and (2.19) provided also tr(π0) = 0.
The equation (2.6) itself can be written in the form of the entropy equation as

θ
∂s

∂t
− div(K∇θ) = ξ with dissipation rate ξ := ζ1

(∂π
∂t
,
∂η

∂t

)
+ 2ζ2

(∂e(u)
∂t

)
. (2.23)

Note that
∫
Ω
ξ dx = Ξ(∂u

∂t
, ∂π

∂t
, ∂η

∂t
) with Ξ from (2.14). At least formally, assuming posi-

tivity of temperature and f ≥ 0, and realizing that always ξ ≥ 0, from (2.23) we can see
the Clausius-Duhem inequality

d

dt

∫

Ω

s dx =

∫

Ω

div
(
K
∇θ
θ

)
+

K∇θ · ∇θ
θ2

+
ξ

θ
dx =

∫

Ω

K∇θ · ∇θ
θ2

+
ξ

θ
dx+

∫

Γ

f

θ
dS ≥ 0;

(2.24)

obviously, ξ/θ is the entropy-production rate. Note also that a combination of (2.9),
(2.19), and (2.22) allows us to write ψ from (2.20) in the more specific form

ψ(e, π, η, θ) =
λe

2

∣∣tr(e−π)
∣∣2+ µe

∣∣e−π
∣∣2− α

(
dλe+2µe

)
θ tr(e) +

1

2
Hπ:π +

b

2
η2− φ0(θ)

(2.25)
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where (2.22) was used, too. In fact, (2.24) in the form d
dt

∫
Ω
s dx ≥

∫
Ω

K∇θ·∇θ
θ2 + ξ

θ
dx +∫

Γ
f
θ

dS can conversely serve as the origin of the constitutional relation for the entropy

s = − ∂
∂θ
ψ, cf. (2.21), and the elastic stress σ = ∂

∂e
ψ, cf. (2.10), as well as the driving

force for the flow rule ∂
∂(π,η)

ψ = (Hπ − σ, bζ).

3 Enthalpy transformation and weak formulation

It is desirable to allow for a certain growth of cv(·) if we have the viscosity in the form
De(∂u

∂t
) in order to be able to treat the adiabatic term, cf. [22]. On the other hand, the

technique from [22] specifically relies on Galerkin’s method and does not seem directly
transferable if also the time discretization is involved, which is in turn needed both for
designing a fully discrete scheme and for efficient treatment of the rate-independent flow
rule. The particular difficulty is in limiting a time-discretization of the nonlinear term
cv(θ)

∂θ
∂t

. Therefore, we first write the original system (2.4)–(2.6) in terms of enthalpy
instead of temperature, using so-called enthalpy transformation

w = h0(θ) :=

∫ θ

0

cv(r) dr; (3.1)

thus h0 is a primitive function to cv normalized such that h0(0) = 0. Further, we define

Θ(w) :=

{
h−1

0 (w) if w ≥ 0,

0 if w < 0,
K (w) :=

K(Θ(w))

cv(Θ(w))
, (3.2)

where h−1
0 here denotes the inverse function to h. This transforms the system (2.4)–(2.6)

into the form

̺
∂2u

∂t2
− div

(
De

(∂u
∂t

)
+

(
Ce(u) − Θ(w)E

))
= 0, (3.3a)

∂ζ1

(∂π
∂t
,
∂η

∂t

)
+

(
Cπ + Hπ

bη

)
∋

(
Ce(u)

0

)
, (3.3b)

∂w

∂t
− div

(
K (w)∇w

)
= ζ1

(∂π
∂t
,
∂η

∂t

)
+ 2ζ2

(∂e(u)
∂t

)
+ Θ(w)E:Ce

(∂u
∂t

)
. (3.3c)

We will call (3.3c) shortly the enthalpy equation rather than the heat-transfer equation
in the enthalpy formulation. The boundary conditions (2.11) transforms to

(
De

(∂u
∂t

)
+ C

(
e(u) − π − EΘ(w)

))
ν = g on Γ, (3.4a)

(
K (w)∇w

)
· ν = f on Γ, (3.4b)

while the initial conditions (2.18) transform into

u(0, ·) = u0,
∂u

∂t
(0, ·) = u̇0, π(0, ·) = π0, η(0, ·) = η0, w(0, ·) = h0(θ0). (3.5)

The following definition of a certain sort of a weak solution has been devised in [24],
based on the concept of so-called energetic solution invented by Mielke at al. [12, 16,
19, 20] for the theory of rate independent processes and adapted also for coupling with
viscous/inertial effects in [23]. We refer to [24, Proposition 3.2] for justification (and
not entirely obvious fact) that this definition is indeed selective in the sense that, under
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an additional absolute continuity of ∂π
∂t

and ∂η
∂t

, it gives indeed a conventional notion
of a weak solution. (For an isothermal situation, cf. also [23, Proposition 5.2].) It
should be however emphasized that this additional regularity of ∂π

∂t
and ∂η

∂t
hardly can

be expected due to the fully rate-independent flow rule, which just makes the devised
concept properly fitted with this problem.

We consider an evolution in the time interval I := (0, T ) with a fixed time horizon
T > 0 and denote Q := (0, T ) × Ω, Σ := (0, T ) × ∂Ω, and Ī := [0, T ]. We will
use a standard notation for function spaces, namely the space of the continuous Rk-
valued functions C(Ω̄; Rk), its dual M (Ω̄; Rk) (i.e., up to an isometric isomorphism,
the space of Borel measures), the continuously differentiable functions C1(Ω̄; Rk), the
Lebesgue space Lp(Ω; Rk), the Sobolev space W 1,p(Ω; Rk), and the Bochner space of X-
valued Bochner measurable p-integrable functions Lp(I;X). If X = (X ′)∗, the notation
L∞

w∗(I;X) stands for space of weakly* measurable functions I → X; this space is dual
to the space L1(I;X ′) and, in general, is not equal to L∞(I;X). If X is separable
reflexive, then L∞(I;X) = L∞

w∗(I;X) by Pettis’ theorem, however. Moreover, we denote
by B(Ī;X), Bw∗(Ī;X), BV(Ī;X) or Cw(Ī;X) the Banach space of functions Ī → X
that are bounded Bochner measurable, bounded weakly* measurable, have a bounded
variation or are weakly continuous, respectively; note that all these functions are defined
everywhere on Ī. We will use the notation q′ = q/(q−1) for the conjugate exponent to q.
Instead of u(t, ·) or z(t, ·) or w(t, ·), we will write briefly u(t) or z(t) or w(t), respectively.

Definition 3.1 (Energetic solution.) Assuming (2.19)–(3.10), we call a quadruple
(u, π, η, w) with

u ∈ Cw(I;W 1,2(Ω; Rd)), (3.6a)

∂u

∂t
∈ L2(I;W 1,2(Ω; Rd)) ∩W 1,2(I;W 1,2(Ω; Rd)∗), (3.6b)

π ∈ B(Ī;W 1,2(Ω; Rd×d
dev )) ∩ BV(Ī;L1(Ω; Rd×d

dev )), (3.6c)

η ∈ B(Ī;W 1,2(Ω)) ∩ BV(Ī;L1(Ω)), (3.6d)

w ∈ Lr(I;W 1,r(Ω)) ∩ L∞(I;L1(Ω)) ∩ Bw∗(Ī; M (Ω̄)) with any 1 ≤ r <
d+2

d+1
, (3.6e)

∂w

∂t
∈ M (Ī;W 1+d,2(Ω)∗) (3.6f)

an energetic solution to (3.3) with the initial/boundary conditions (3.5) and (4.3) if the
following five conditions hold:
(i) the weakly formulated momentum-equilibrium equation (3.3a) with (4.3a,b) holds,

i.e. for all v∈C1(Q̄; Rd) such that v|Σ0=0,

∫

Ω

̺
∂u

∂t
(T ) · v(T ) dx+

∫

Q

(
De

(∂u
∂t

)
+ Ce(u) − π − EΘ(w)

)
: e(v)

− ̺
∂u

∂t
· ∂v
∂t

dxdt =

∫

Σ

g · v dxdt+

∫

Ω

̺u̇0 · v(0) dx, (3.7a)

(ii) the weakly formulated enthalpy equation (3.3c) with (4.3c) holds, i.e. for all v∈C1(Q̄)
with v(T ) = 0,

∫

Q

K (w)∇w · ∇v − w
∂v

∂t
− Θ(w)E : Ce

(∂u
∂t

)
v

− De
(∂u
∂t

)
: e

(∂u
∂t

)
v dxdt =

∫

Q̄

v hπ,η(dxdt) +

∫

Ω

w0v(0) dx+

∫

Σ

fv dSdt (3.7b)
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where w0 = h0(θ0) and hπ,η is a measure (=heat produced by rate-independent dis-
sipation) defined by prescribing its values for every closed set of the type A :=
[t1, t2]×B with B a Borel subset of Ω̄ by

hπ,η(A) :=Varζ1

(
(π, η)|B; t1, t2

)
with

Varζ1(z; t1, t2) := sup
k∑

i=1

∫

Ω

ζ1
(
z(si, x)−z(si−1, x)

)
dx (3.7c)

where the supremum is taken over all partitions of the type t1≤s0<...<sk≤t2, k∈N,

(iii) the total energy equality holds, i.e. with Φ and Tkin from (2.12) and (2.13),

Tkin

(∂u
∂t

(T )
)

+ Φ
(
u(T ), π(T ), η(T )

)
+

∫

Ω̄

w(T, dx)

= Tkin

(
u̇0

)
+ Φ

(
u0, π0, η0

)
+

∫

Ω

h0(θ0) dx+

∫

Σ

g · ∂u
∂t

+ fdSdt, (3.7d)

(iv) the “semistability” holds for any π̃ ∈ W 1,2(Ω; Rd×d
dev ) and η̃ ∈ W 1,2(Ω) and for all

t ∈ [0, T ], i.e.

Φ
(
u(t), π(t), η(t)

)
≤ Φ

(
u(t), π̃, η̃

)
+

∫

Ω

ζ1(π̃ − π(t), η̃ − η(t)) dx, (3.7e)

(v) the initial conditions u(0) = u0, π(0) = π0, and η(0) = η0 hold.

Note also that (3.6f) makes values of w(t) well defined in the sense of W 1+n,2(Ω)∗

and (3.6e) further shows that even w(t) ∈ M (Ω̄), which has been exploited in (3.7d)
for the time t = T . It should be emphasized that t 7→ w(t) cannot be expected to be
continuous in any sense because, since ζ1 is homogeneous degree-1, the measure hπ,η may
concentrate at particular time instances.

In addition to (2.19) which guarantees that C and D are positive definite, we will
assume throughout this article that

̺ ≥ 0. (3.8)

Other assumptions are on nonlinearities cv and K, namely we assume:

cv : [0,+∞) → R+ continuous, (3.9a)

∃ω1 ≥ ω ≥ 1, c1 ≥ c0 > 0 ∀θ ∈ R+ : c0(1+θ)ω−1 ≤ cv(θ) ≤ c1(1+θ)ω1−1, (3.9b)

K : R → Rd×d bounded, continuous, and inf
(w,ξ)∈R×Rd, |ξ|=1

K (w)ξ·ξ > 0 (3.9c)

with K from (3.2) below; later in (4.27) we impose further restrictions on ω. As far as
the loading qualification concerns, we assume

g ∈ L2(I;Lq(Γ; Rd)), q ≥ 2−2/d (or q > 1 if d ≤ 2), (3.10a)

f ∈ L1(Σ), f ≥ 0, (3.10b)

u0 ∈W 1,2(Ω; Rd), (3.10c)

u̇0 ∈ L2(Ω; Rd), (3.10d)

π0 ∈ L2(Ω; Rd×d
dev ), (3.10e)

η0 ∈ L2(Ω), η0 > 0, (3.10f)

θ0 ∈ Lω(Ω), θ0 ≥ 0, (3.10g)

where we denoted Σ := I × Γ in (3.10b).
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4 Discretization and numerical analysis

An important phenomenon here is that, proving existence of a solution, we need to pass
to the limit in the non-linear Nemytskĭı operators induced by the dissipation heat ξ.
Another peculiarity is that, due to degree-1 homogeneity of ζ1, the heat equation has its
right-hand side not only in L1(Q) (as it would be in case of higher-degree homogeneity of
dissipative-force potential) but even in measures. Also, it seems difficult to make spatial
discretization of the term −div(K (w)∇w) compatible with the maximum principle even
on acute triangulations if K is nonconstant (and the qualification (3.9b,d) with (4.27)
below exclude constant K if d ≥ 2).

Therefore, a design of a convergent numerical scheme is technically rather delicate.
Following [24], we will use a fully implicit time-discretization with a constant time-step
τ > 0, assuming Kτ = T/τ ∈ N and defining the backward difference operator by

Dtφ
k :=

φk−φk−1

τ
(4.1)

for any sequence {φk}k≥0, combined with a regularization of the momentum equation
and of the flow rule, (using as a parameter just the time-step τ > 0) and of the enthalpy
equation (using a parameter ε = ε(τ) > 0 whose dependence on τ will be implicitly
specified later in (4.34)). More specifically, we consider the following recursive increment
formula

̺D2
tu

k
τ − div

(
De

(
Dtu

k
τ

)
+ C

(
e(uk

τ )−πk
τ−EΘ(wk

τ )
)

+ τ
∣∣e(uk

τ )
∣∣γ−2

e(uk
τ )

)
= 0, (4.2a)

∂ζ1
(
Dtπ

k
τ ,Dtη

k
τ

)
+

(
Cπk

τ +Hπk
τ

bηk
τ

)
∋

(
Ce(uk

τ)
0

)
+ τS

(
πk

τ

ηk
τ

)
, (4.2b)

Dtw
k
τ − div

(
K (wk

τ )∇wk
τ

)
+ ε(τ)|wk

τ |β−2wk
τ (4.2c)

= ζ1
(
Dtπ

k
τ ,Dtη

k
τ

)
+ De

(
Dtu

k
τ

)
:e

(
Dtu

k
τ

)
+ Θ(wk

τ )E:Ce
(
Dtu

k
τ

)
, (4.2d)

for k = 1, ..., Kτ = T/τ with the corresponding boundary conditions

(
De

(
Dtu

k
τ

)
+ C

(
e(uk

τ ) − πk
τ − EΘ(wk

τ )
)

+ τ
∣∣e(uk

τ )
∣∣γ−2

e(uk
τ)

)
ν = gk

τ , (4.3a)
(
K (wk

τ )∇wk
τ

)
· ν = fk

τ (4.3b)

on Γ, starting for k = 1 by using

u0
τ = u0,τ , u−1

τ = u0,τ − τ u̇0, π0
τ = π0,τ , η0

τ = η0,τ , w0
τ = w0 := h0(θ0), (4.4)

where

gk
τ (t, x) :=

1

τ

∫ kτ

(k−1)τ

g(t, x) dt and fk
τ :=

1

τ

∫ kτ

(k−1)τ

f̃τ (t, x) dt. (4.5)

Note that, in (4.4) and (4.5), we regularized the initial values and the boundary flux u0,

z0 and f by u0,τ , z0,τ and f̃τ , respectively, cf. (4.8) below. Moreover, S in (4.2b) is a
regularizing selfadjoint positive definite linear operator having the quadratic potential

1

2

∣∣z
∣∣2
W a,2(Ω)

with some 0 < a < 1/2 (4.6)

applied component-wise in (4.2b), with | · |W a,2(Ω) meaning the standard seminorm in the
Sobolev-Slobodetskĭı fractional-derivative space. Later we can also use its square root
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S 1/2, defined as a selfadjoint positive definite operator such that S 1/2 ◦ S 1/2 = S .
Thus

S : W a,2(Ω) →W a,2(Ω)∗ and S
1/2 : W a,2(Ω) → L2(Ω). (4.7)

Note that we regularized also the initial state for the mechanical part (but not the initial
velocity).

Let us comment the purpose of the regularizing terms. The “γ-term” in (4.2a) and
the “β-term” in (4.2d) are to compensate the superlinear growth of the right-hand-side
terms in the hear equation; the former one has already been used in [24] for a mere time
discretization, while the latter one is here needed because, in the spatially discretized
scheme, we will not be able to test by nonlinear functions of w, in contrast with the
spatially continuous case in [24]. Eventually, the “S -term” in (4.2b) helps to make
a limit passage in space discretization without using numerical integration formulae,
cf. (4.21) below.

As far as the (regularized) initial and boundary conditions and the loading concerns,
we assume

u0,τ∈W 1,γ(Ω; Rd), lim
τ↓0

γ
√
τ
∥∥e(u0,τ )

∥∥
Lγ(Ω;Rd×d)

= 0, lim
τ↓0

u0,τ = u0 in W 1,2(Ω; Rd),

(4.8a)

π0,τ∈W a,2(Ω; Rd×d+1), lim
τ↓0

√
τ
∥∥π0,τ

∥∥
W a,2(Ω;Rd×d+1)

= 0, lim
τ↓0

π0,τ = π0 in L2(Ω; Rd×d),

(4.8b)

η0,τ∈W a,2(Ω; Rd×d+1), lim
τ↓0

√
τ
∥∥η0,τ

∥∥
W a,2(Ω;Rd×d+1)

= 0, lim
τ↓0

η0,τ = η0 in L2(Ω),

(4.8c)

f̃τ∈L∞(Σ), f̃τ ≥ 0, lim
τ↓0

f̃τ = f in L1(Σ). (4.8d)

We will further make a spacial discretization. For this, we assume that we are given
a sequence of triangulations {Th}h>0 of the polyhedral domain Ω without hanging nodes
but otherwise entirely general. We suppose that h > 0 range over countable sets of
positive real numbers with accumulation points at 0, and that maxE∈Th

diam(E) ≤ h.
We consider C0-conforming P1-elements for the approximation of u and w and P0-

elements for the approximation of π and η. The finite-dimensional subspaces of L2(Ω)
and W 1,2(Ω) related to P0- and P1-elements and subordinate to the triangulation Θh

respectively by V0,h and V1,h.
For j = 0, 1, the L2 orthogonal projection onto Vj,h is denoted by Pj,h. We have the

following approximation property at our disposal for any 1 ≤ γ <∞:

∀v ∈ L2(Ω) : P0,hv → v in L2(Ω), (4.9a)

∀v ∈W 1,γ(Ω) : P1,hv → v in W 1,γ(Ω). (4.9b)

Then we devise the Galerkin scheme as follows. We seek (uk
τh, π

k
τh, η

k
τh, w

k
τh) ∈ V d

1,h ×
V d×d

0,h × V0,h × V1,h, with π(·) ∈ Rd×d
dev a.e. on Ω, satisfying

∫

Ω

̺D2
tu

k
τh · v +

(
De

(
Dtu

k
τh

)
+ C

(
e(uk

τh)−πk
τh−EΘ(wk

τh)
)

+ τ
∣∣e(uk

τh)
∣∣γ−2

e(uk
τh)

)
:e(v) dx

=

∫

Γ

gk
τ · v dS ∀v ∈ V d

1,h, (4.10a)
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∫

Ω

ζ1(π̃, η̃) + (Cπk
τh − Ce(uk

τh)+Hπk
τh) : (π̃−Dtπ

k
τh) + bηk

τh(η̃−Dtη
k
τh)

+ τS 1/2πk
τh : S

1/2(π̃−Dtπ
k
τh) + τS 1/2ηk

τhS
1/2(η̃−Dtη

k
τh) dx

≥
∫

Ω

ζ1(Dtπ
k
τh,Dtη

k
τh) dx ∀(π̃, η̃) ∈ V d×d

1,h × V1,h, (4.11a)
∫

Ω

(
Dtw

k
τh + ε(τ)|wk

τh|β−2wk
τh

)
v + K (wk

τh)∇wk
τh · ∇v − ζ1

(
Dtπ

k
τh,Dtη

k
τh

)
v

− De
(
Dtu

k
τh

)
: e

(
Dtu

k
τh

)
v dx (4.11b)

=

∫

Ω

Θ(wk
τh)E : Ce

(
Dtu

k
τh

)
v dx+

∫

Γ

fk
τ,hv dS ∀v ∈ V1,h.

Let us define the piecewise affine interpolant (uτh, πτh, ητh, wτh) by

uτh(t) :=
t− (k−1)τ

τ
uk

τh +
kτ − t

τ
uk−1

τh for t ∈ [(k−1)τ, kτ ], (4.12)

and similarly πτh(t) = t−(k−1)τ
τ

πk
τh + kτ−t

τ
πk−1

τh , and ητh(t) = t−(k−1)τ
τ

ηk
τh + kτ−t

τ
ηk−1

τh and

also wτh(t) = t−(k−1)τ
τ

wk
τh + kτ−t

τ
wk−1

τh for t ∈ [(k−1)τ, kτ ] with k = 0, ..., Kτ := T/τ .
Besides, we define also the back-ward piecewise constant interpolant (ūτh, π̄τh, η̄τh, w̄τh)
by

ūτh(t) := uk
τh, π̄τh(t) := πk

τh, η̄τh(t) := ηk
τh, w̄τh(t) := wk

τh (4.13)

for (k−1)τ < t ≤ kτ , k = 1, ..., Kτ . Similarly, we will later use uτ , ūτ , etc. We will
also use the notation ḡτ and f̄τ defined by ḡτ |((k−1)τ,kτ ] = gk

τ and f̄τ |((k−1)τ,kτ ] = fk
τ for

k = 1, ..., Kτ .

Lemma 4.1 (Existence and estimates of discrete solutions) Let (2.19), (3.9),
(3.10), and (4.8) hold. Moreover, let

β > 2, γ > max
(
4,

2ω

ω−1

)
, and ω > 1. (4.14)

Then there exists a solution (uk
τh, π

k
τh, η

k
τh, w

k
τh) ∈ V d

1,h×V d×d
0,h ×V0,h×V1,h, with π(·) ∈ Rd×d

dev

a.e. on Ω, for the system (4.10). Moreover,
∥∥uτh

∥∥
W 1,∞(I;W 1,γ(Ω;Rd))

≤ Cτ , (4.15a)
∥∥πτh

∥∥
W 1,∞(I;W a,2(Ω;Rd×d

dev ))
≤ Cτ , (4.15b)

∥∥ηk
τh

∥∥
W 1,∞(I;W a,2(Ω))

≤ Cτ , (4.15c)
∥∥wk

τh

∥∥
W 1,∞(I;W 1,2(Ω))

≤ Cτ (4.15d)

with some Cτ independent of h and with a ∈ (0, 1/2) referring to (4.6).

Sketch of the proof. We can see existence of a solution to (4.10) by a standard argument
for coercive pseudomonotone set-valued operators. The coercivity of the underlying
operator can be shown by testing (4.10a), (4.10b), and (4.10c) by uk

τh ∈ V d
1,h, π

k
τh ∈ V d×d

0,h ,

ηk
τh ∈ V0,h, and wk

τh ∈ V1,h, respectively. Note that these test-functions live in the
corresponding finite-dimensional spaces and are thus legal for this test. It is important
that the right-hand sides of (4.10a,c) have the growth that can be dominated by the
growth of the coercive terms in the left-hand sides; this is ensured by having taken β
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and γ large enough and by the assumption (3.9b) which ensures a sublinear growth of
Θ, namely

Θ(w) ≤
( w

ωc0
+1

)1/ω

− 1 ≤
( w

ωc0

)1/ω

(4.16)

because obviously h0(θ) ≥ ωc0(1+θ)ω − ωc0, cf. the definition (3.2). Realize that the
coercivity can be estimated (up to multiplicative constants) as |e|γ+|π|2+|η|2+|w|β which
indeed dominates the growth of the “right-hand-side terms” is of the type |w|1/ω|e| +
(|π| + |η|)|w| + |e|2|w| + |w|1+1/ω|e|. The term (|π| + |η|)|w| bears the estimation by
δ|π|2 + δ|η|2 + δ|w|β + Cδ and similarly |e|2|w| ≤ δ|e|γ + δ|w|2 + Cδ with any δ > 0 and
some Cδ; here β > 2 and γ > 4 have respectively been used. The last term can be
estimated as |w|1+1/ω|e| ≤ 1

γ
|e|γ + |w|(1+1/ω)γ/(γ−1) ≤ 1

γ
|e|γ + 1

2
|w|2 +Cγ for some Cγ ∈ R;

here the condition γ > 2ω/(ω−1) has originated.
The a-priori estimates (4.15) then follows from the above test by standard procedure,

i.e. by using the Hölder, the Young, and the discrete Gronwall inequalities. 2

Lemma 4.2 (Convergence for h↓0) There is a subsequence of
{(uτh, πτh, ητh, wτh)}h>0 converging for h↓0 weakly* in the topologies indicated in
(4.15) to some (uτ , πτ , ητ , wτ ) and each quadruple obtained by such way is a weak
solution to (4.2)–(4.3), i.e. in term of the interpolants

̺D2
tuτ − div

(
De

(∂uτ

∂t

)
+ C

(
e(ūτ )−π̄τ−EΘ(w̄τ )

)
+ τ

∣∣e(ūτ)
∣∣γ−2

e(ūτ )
)

= 0, (4.17a)

∂ζ1

(∂πτ

∂t
,
∂ητ

∂t

)
+

(
Cπ̄τ+Hπ̄τ

bη̄τ

)
∋

(
Ce(ūτ )

0

)
+ τS

(
π̄τ

η̄τ

)
, (4.17b)

∂wτ

∂t
− div

(
K (w̄τ )∇w̄τ

)
+ ε(τ)|w̄τ |β−2w̄τ (4.17c)

= ζ1

(∂πτ

∂t
,
∂ητ

∂t

)
+ De

(∂uτ

∂t

)
:e

(∂uτ

∂t

)
+ Θ(w̄τ )E:Ce

(∂uτ

∂t

)
,

with the boundary conditions

(
De

(∂uτ

∂t

)
+ C

(
e(ūτ) − π̄τ − EΘ(w̄τ )

)
+ τ

∣∣e(ūτ )
∣∣γ−2

e(ūτ )
)
ν = ḡτ , (4.18a)

(
K (w̄τ )∇w̄τ

)
· ν = f̄τ , (4.18b)

and with the initial conditions (4.4); of course, D2
tuτ in (4.17a) means the piece-

wise constant interpolant in time and (ūτ , π̄τ , ζ̄τ , w̄τ ) is the limit of a subsequence of
{(ūτh, π̄τh, η̄τh, w̄τh)}h>0 and simultaneously also the piece-wise constant interpolant in
time corresponding to (uτ , πτ , ητ , wτ).

Sketch of the proof. By Banach’s selection principle, we first select a weakly* convergent
subsequence. Due to the construction of V1,h, we have the approximation property (4.9b)
at our disposal. Hence we can consider also a sequence {ũτh}h>0 converging strongly to
uτ even in W 1,∞(I;W 1,γ(Ω; Rd)) and such that ũτh : I → V d

1,h; here one must take
into account that τ > 0 is fixed hence only a finite number of values of uτ is to be
approximated by using (4.9b).

Due to the dissipative-heat term in (4.18a), we need to prove the strong convergence
∂
∂t
e(uτh) → ∂

∂t
e(uτ ) in L2(Q; Rd×d). To this goal, we first use the so-called d-monotonicity
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of e 7→ Ce + |e|γ−2e to prove the strong convergence e(ūτh) → e(ūτ ) in Lγ(Q; Rd×d) by
the estimate

τ
(∥∥e(ūτh)

∥∥γ−1

Lγ(Q;Rd×d)
−

∥∥e(ūτ )
∥∥γ−1

Lγ(Q;Rd×d)

)(∥∥e(ūτh)
∥∥

Lγ(Q;Rd×d)
−

∥∥e(ūτ )
∥∥

Lγ(Q;Rd×d)

)

≤
∫

Q

Ce(ūτh−ūτ ):e(ūτh−ūτ ) + τ
(∣∣e(ūτh)

∣∣γ−2
e(ūτh) −

∣∣e(ūτ )
∣∣γ−2

e(ūτ )
)
:e(ūτh−ūτ) dxdt

+

∫

Ω

1

2
De(uτh(T )−uτ (T )):e(uτh(T )−uτ(T )) dx

≤
∫

Q

C
(
π̄τh + Θ(w̄τh)E

)
:e(ūτh−ũτh) − ̺D2

tuτh · (ūτh−ũτh)

−
(

Ce(ūτ ) + τ
∣∣e(ūτ )

∣∣γ−2
e(ūτ ) + De

(∂uτ

∂t

))
:e(ūτh−ũτh) dxdt+

∫

Σ

ḡτ ·(ūτh−ũτh) dSdt

+

∫

Q

Ce(ūτh−ūτ ):e(ũτh−ūτ ) + τ
(∣∣e(ūτh)

∣∣γ−2
e(ūτh) −

∣∣e(ūτ)
∣∣γ−2

e(ūτ )
)
:e(ũτh−ūτ) dxdt

+

∫

Ω

1

2
De(uτh(T )−uτ (T )):e(ũτh(T )−uτ(T )) dx→ 0. (4.19)

The second inequality in (4.19) is due to the inequality De(Dtu
k
τ ) : e(uk

τ ) ≥ 1
2
Dt(De(uk

τ ) :

e(uk
τ )), which is just a generalization of the elementary algebraic inequality of the type

(a−b)a ≥ 1
2
a2 − 1

2
b2. The convergence to zero in (4.19) for h↓0 is because τ > 0 is

fixed so that trivially D2
tuτh → D2

tuτ in L2(Q; Rd) due to the Rellich compact embedding
W 1,2(Ω) ⋐ L2(Ω), and furthermore also Θ(w̄τh) → Θ(w̄τ ) certainly in L2(Q) (in fact
even in a much smaller Lebesgue space L2dω/(d−2)−ǫ(Q) with ǫ > 0) due to the compact
embedding W 1,2(Ω) and π̄τh → π̄τ in L2(Q; Rd×d) due to the compact embedding W a,2(Ω)
so that (π̄τh + CΘ(wτh)E) : e(ūτh − ūτ) → 0 weakly in L1(Q).

Then, we use the strong monotonicity of e 7→ De to estimate, for some c > 0,

c
∥∥∥
∂e(uτh−uτ )

∂t

∥∥∥
2

L2(Q;Rd×d)
≤

∫

Q

D
∂e(uτh−uτ )

∂t
:
∂e(uτh−uτ )

∂t
dxdt

≤
∫

Q

D
∂e(uτh−uτ )

∂t
:
∂e(uτh−uτ)

∂t
dxdt+

∫

Ω

1

2
Ce(uτh(T )−uτ (T )):e(uτh(T )−uτ (T )) dx

=

∫

Q

−̺D2
tuτh

∂(uτh−ũτh)

∂t

−
(
Cπτh + CΘ(wτh)E + D

∂e(uτ )

∂t
+ τ

∣∣e(uτh)
∣∣γ−2

e(uτh)
)
:
∂e(uτh−ũτh)

∂t
dxdt

+

∫

Σ

ḡτ ·
∂(uτh−ũτh)

∂t
dSdt−

∫

Ω

1

2
Ce(uτ (T )):e(uτh(T )−uτ (T )) dx

+

∫

Q

D
∂e(uτh−uτ )

∂t
:
∂e(ũτh−uτ )

∂t
dxdt

+

∫

Ω

1

2
Ce(uτh(T )−uτ (T )):(e(ũτh(T )−uτ (T ))) → 0. (4.20)

The convergence to zero for h↓0 again relies on τ > 0 fixed so that again D2
tuτh → D2

tuτ ,
and πτh → πτ in L2(Q; Rd×d) due to Rellich’s compact embedding W 1,2(Ω) ⋐ L2(Ω),
and because that the strong convergence e(uk

τh) → e(uk
τ ) in Lγ(Q; Rd×d) has already

been proved.
Furthermore, we use again the compact embedding W a,2(Ω) ⋐ L2(Ω) so that, thanks
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to the regularizing operator S , we have convergence also in

ζ1(Dtπ
k
τh,Dtη

k
τh) → ζ1(Dtπ

k
τ ,Dtη

k
τ ) strongly in L∞(I;L2(Ω)) (4.21)

because τ > 0 is considered fixed. Altogether, we proved strong convergence of the heat
sources in L1(Q).

Then, using still the weak upper semicontinuity argument for S -terms in (4.11a)
summed over particular time levels, the claimed limit passage from (4.10) to the
boundary-value problem (4.17)–(4.18) formulated weakly is easy to be seen. In par-
ticular, the limit passage from (4.2b) to (4.17b) uses also the approximation property
(4.9b). 2

Note that (4.2c) has the right-hand side in L2(Ω) since γ ≥ 4 and since πk
τ −πk−1

τ and
ηk

τ−ηk−1
τ are certainly in L2(Ω; Rd×d) and L2(Ω), respectively, hence the weak formulation

of (4.2c) is understood standardly.
Let us abbreviate the regularized stored energy by Φτ , i.e.

Φτ (u, π, η) := Φ(u, π, η) +
τ

γ

∥∥e(u)
∥∥γ

Lγ(Ω;Rd×d)
+

1

2

∣∣(π, η)
∣∣2
W a,2(Ω;Rd×d+1)

=

∫

Ω

1

2
C(e(u)−π) : (e(u)−π) +

1

2
Hπ : π +

b

2
η2

+
τ

γ
|e(u)|γ dx+

τ

2

∣∣π
∣∣2
W a,2(Ω;Rd×d)

+
τ

2

∣∣η
∣∣2
W a,2(Ω)

. (4.22)

Lemma 4.3 (Still further a-priori information) For any k = 1, ..., Kτ , the follow-
ing “discrete mechanical energy” balance holds:

Tkin

(
Dtu

k
τ

)
+ Φτ

(
uk

τ , π
k
τ , η

k
τ

)
+ τ

k∑

l=1

∫

Ω

ζ1
(
Dtπ

k
τ ,Dtη

k
τ

)
+ De

(
Dtu

k
τ

)
: e

(
Dtu

k
τ

)
dx

≤ Tkin

(
u̇0) + Φτ

(
u0,τ , π0,τ , η0,τ ) + τ

k∑

l=1

( ∫

Ω

Θ(wl
τ )E:Ce

(
Dtu

k
τ

)
dx+

∫

Γ

gl
τ ·Dtu

l
τ dS

)

(4.23)

as well as the following “discrete total energy” balance holds:

Tkin

(
Dtu

k
τ

)
+ Φτ

(
uk

τ , π
k
τ , η

k
τ

)
+

∫

Ω

wk
τ dx ≤ Tkin

(
u̇0

)
+ Φτ

(
u0,τ , π0,τ , η0,τ

)
+

∫

Ω

w0 dx

+ τ
k∑

l=1

(∫

Γ

gl
τ ·Dtu

l
τ + f l

ext,τdS − ε(τ)

∫

Ω

|wl
τ |β−2wl

τ dx

)
, (4.24)

and also the “discrete semistability”

Φτ (u
k
τ , π

k
τ , η

k
τ ) ≤ Φτ (u

k
τ , π̃, η̃) +

∫

Ω

ξ1(π̃ − πk
τ , η̃ − ηk

τ ) dx (4.25)

holds for any (π̃, η̃) ∈ W a,2(Ω; Rd×d
dev ×R), where Φτ and Tkin are from (4.22) and (2.13),

respectively.

Proof. Let us use a short-hand notation z := (π, η) for this proof. Taking (uk
τ , z

k
τ , w

k
τ )

solving (4.2), we can test (4.2a,b) respectively by Dtu
k
τ and Dtz

k
τ . By using the convexity

of Φτ from (4.22) and by summation over time steps, we obtain (4.23).
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Now, to get (4.24), we still add (4.2d) tested by 1 and summed over time steps to
(4.23); here it is important that the dissipative/adiabatic terms mutually cancel in the
mechanical and the thermal parts.

As for (4.25), we use that (4.2b) is the sufficient (and, of course, also necessary)
optimality condition for zk

τ to minimize the convex functional Φτ (u
k
τ , ·)+

∫
Ω
ζ1(·−zk−1

τ )dx,
which gives

Φτ

(
uk

τ , z
k
τ

)
+

∫

Ω

τζ1

(zk
τ−zk−1

τ

τ

)
dx ≤ Φτ

(
uk

τ , z̃
)

+

∫

Ω

τζ1

( z̃−zk−1
τ

τ

)
dx

for any z̃ and then, by using that ζ1 is homogeneous degree-1 and thus satisfies the
triangle inequality ζ1(z

k
τ−zk−1

τ ) ≤ ζ1(z̃−zk
τ ) + ζ1(z

k
τ−zk−1

τ ), which altogether gives

Φτ

(
uk

τ , z
k
τ

)
≤ Φτ

(
uk

τ , z̃
)

+

∫

Ω

ζ1
(
z̃−zk−1

τ

)
− ζ1

(
zk

τ−zk−1
τ

)
dx

≤ Φτ

(
uk

τ , z̃
)

+

∫

Ω

ζ1
(
z̃−zk

τ

)
dx, (4.26)

arriving thus just to (4.25). 2

Proposition 4.4 (Uniform a-priori estimates) Let, beside the assumptions from
Lemma 4.1, also (2.3) hold and the exponent ω from (3.9b) satisfy

ω >
2d

d+2
. (4.27)

Then, for some C and Cτ , it holds

∥∥uτ

∥∥
W 1,2(I;W 1,2(Ω;Rd))

≤ C, (4.28a)
∥∥π̄τ

∥∥
L∞(I;L2(Ω;Rd×d

dev ))∩BV(Ī;L1(Ω;Rd×d
dev )))

≤ C, (4.28b)
∥∥η̄τ

∥∥
L∞(I;L2(Ω))∩BV(Ī;L1(Ω)))

≤ C, (4.28c)
∥∥w̄τ

∥∥
L∞(I;L1(Ω))∩Lr(I;W 1,r(Ω))

≤ Cr with any 1 ≤ r < d+2
d+1

, (4.28d)
∥∥∥
∂wτ

∂t

∥∥∥
L1(I;W 1+d,2(Ω)∗)

≤ C, (4.28e)

∥∥∥̺
∂uτ

∂t

∥∥∥
L∞(I;L2(Ω;Rd))∩BV(Ī;W 1,∞

Γ0
(Ω;Rd)∗)

≤ C , (4.28f)

∥∥uτ

∥∥
L∞(I;W 1,γ(Ω;Rd))

≤ Cτ−1/γ , (4.28g)
∥∥π̄τ

∥∥
L∞(I;W a,2(Ω;Rd×d

dev ))
≤ Cτ−1/2, (4.28h)

∥∥η̄τ

∥∥
L∞(I;W a,2(Ω))

≤ Cτ−1/2, (4.28i)
∥∥w̄τ

∥∥
Lβ(Q)

≤ Cτε(τ)
−1/β . (4.28j)

Note that ∂
∂t
uτ is piece-wise constant in time with possible jumps at times t = kτ , so

that ̺ ∂2

∂t2
uτ is a measure, which is why (4.28f) involves BV-space.

Ideas of the proof. For particular details as far as (4.28a-i) concerns, see [24, proof of
Proposition 4.2]; in contrast to [24], here we have used g qualified as L2(I;Lq(Γ; Rd))
in (3.10a) instead of a bulk force in L1(I;L2(Ω; Rd)) and also we have admitted ̺ = 0,
which however is just a simplified case. Let us just outline the scenario: As we already
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got rid of the spatial discretization, from the maximum principle one can see that wτ ≥ 0.
¿From (4.24) then one gets the L∞-parts of (4.28b-d) and (4.28f-i). Then one uses the
L1-theory for the evolutionary heat equation [4, 5] based on the test by 1 − 1/(1+w̄τ)

δ,
δ > 0, combined with the interpolation of the adiabatic term by using several-times
Gagliardo-Nirenberg inequality as in [22, 24], which eventually gives (4.28a) and the rest
of (4.28b-d). Then (4.28e) and the BV-part of (4.28f) follow by the already obtained
estimates.

Eventually, for τ > 0 fixed, we already mentioned that the right-hand side of the
discrete heat equation (4.2d) is in L2(Ω) so that the right-hand side of (4.18a), let us
denote it by r̄τ for a moment, is in L∞(I;L2(Ω)) so that we can still test the discrete
heat equation by wτ to obtain (4.28j). 2

In general, Cτ in (4.28j) may depend not only on τ but implicitly also on ε = ε(τ) and
then (4.28j) says nothing more than wτ ∈ Lγ(Q) only, unless one has some more specific
information about this implicit dependence. Here, it is, however, for γ sufficiently large,
one can show that Cτ even does not depend on ε(τ) at all. Let us present the calculations
only for the physically relevant case, i.e. d = 3 (while for d ≤ 2 it is even less restrictive).

Lemma 4.5 Let d = 3, let the assumptions from Lemma 4.1 and (4.27) hold, and
let, in addition, γ > 76/17. Then (4.28j) holds with Cτ = Cτ−2(γ+1)/(2βγ) for some C
independent of τ .

Note that the condition γ > 76/17
.
= 4.47 may (but need not, depending on ω)

slightly strengthen (4.14).

Proof of Lemma 4.5. In fact, by testing the heat equation (4.2d) by wτ , we can see that

the constant Cτ is proportional to ‖r̄τ‖2/β

L2(I;L6/5(Ω))
. Thus it is desirable to estimate r̄τ in

L2(I;L6/5(Ω)) independently of ε = ε(τ).
By (4.28a), we have ‖e(∂uτ

∂t
)‖L2(Q;Rd×d) ≤ C. By (4.28g), we have

‖e(uτ )‖L∞(I;Lγ(Ω;Rd×d)) ≤ C/τ1/γ , so that, realizing the equidistance of the partition with

the time-step τ , we have also ‖e(∂uτ

∂t
)‖L∞(I;Lγ(Ω;Rd×d)) ≤ C/τ1+1/γ . Interpolating these

estimates with the weights 1
2

and 1
2

yields

∥∥∥e
(∂uτ

∂t

)∥∥∥
L4(I;L4γ/(γ+2)(Ω;Rd×d))

≤ C

τ (γ+1)/(2γ)
. (4.29)

Thus we have the estimate for the viscous part of the dissipative heat

∥∥∥Ce
(∂uτ

∂t

)
: e

(∂uτ

∂t

)∥∥∥
L2(I;L2γ/(γ+2)(Ω))

≤ C

τ (γ+1)/γ
. (4.30)

Note that the desired embedding L2(I;L2γ/(γ+2)(Ω)) ⊂ L2(I;L6/5(Ω)) needs here γ ≥ 3,
which always holds due to (4.14). As to the adiabatic heat, we use the interpola-
tion between two estimates in (4.28d), i.e. between L∞(I;L1(Ω)) and Lr(I;W 1,r(Ω))
with r < 5/4, with the weight λ and 1−λ with sufficiently small λ > 5/8 to obtain
wτ ∈ L10/3(I;Lq(Ω)) with q < 5/4. As Θ has the sublinear polynomial growth with
an exponent less than 5/6, c.f. (4.16) with ω > 6/5 due to (4.27), we then have the
temperature Θ(w̄τ ) ∈ L4(I;L6q/5(Ω)). By (4.29), we have

∥∥∥Θ(w̄τ )E : Ce
(∂uτ

∂t

)∥∥∥
L2(I;L12γq/(2γω+19)(Ω))

≤ C

τ (γ+1)/(2γ)
. (4.31)

Here the desired embedding L4(I;L12γq/(2γω+19)(Ω)) ⊂ L2(I;L6/5(Ω)) is possible provided
γ is sufficiently large, namely γ > 76/17.

16



Eventually, by the L∞-parts of (4.28b,c), we have also ‖∂πτ

∂t
‖L∞(I;L2(Ω;Rd×d+1)) ≤ C/τ

which can be still interpolated (with the weight 1
2

and 1
2
) with ‖∂πτ

∂t
‖L1(I;L1(Ω;Rd×d+1)) ≤ C

due to the BV-part of (4.28b), and similarly for ∂πτ

∂t
due to the BV-part of (4.28c), so

that the remaining contribution to the dissipative heat can be estimated as

∥∥∥ζ1
(∂πτ

∂t
,
∂ητ

∂t

)∥∥∥
L2(I;L4/3(Ω))

≤ C

τ 1/2
. (4.32)

Thus

Cτ ∼
∥∥r̄τ

∥∥2/β

L2(I;L6/5(Ω))
= O

( 1

τ 2(γ+1)/(2βγ)

)
. (4.33)

2

Proposition 4.6 (Convergence for τ↓0) Let ε = ε(τ) be chosen to converge to 0 for
τ↓0 sufficiently fast so that

lim
τ↓0

Cβ−1
τ ε(τ)1/β = 0, (4.34)

with Cτ refering to (4.28j). Then there is a subsequence of {(uτ , πτ , ητ , wτ)}τ>0 weakly*
convergent in the topologies indicated in (4.28a-f), cf. Remark 4.7, to some (u, π, η, w)
and, if the initial conditions (π0, η0) are semistable with respect to u0 in the sense

Φ(u0, π0, η0) ≤ Φ(u0, π̃, η̃) +

∫

Ω

ζ1(π̃ − π0, η̃ − η0) dx (4.35)

for all (π̃, η̃) ∈ L2(Ω; Rd×d
dev ×R), then (u, π, η, w) is an energetic solution according Defi-

nition 3.1.

Sketch of the proof. For some details see [24, proof of Proposition 4.3 and Remark 4.5],
the essential differences are the regularizing S - and β-terms. Let us again use the
short-hand notation z := (π, η) for this proof.

First, by Banach’s selection principle, we select a weakly* convergent subsequence.
By the generalized Helly principle z̄τ (t) → z(t) = (π(t), η(t)) weakly in L2(Ω; Rd×d

dev × R)
for all t ∈ [0, T ] as well as ūτ (t) → u(t) weakly in W 1,2(Ω; Rd), and also w̄τ (t) → w(t)
weakly* in M (Ω̄).

To pass to the limit in (4.17a) by-part integrated over I to the weakly formulated
momentum equation (3.7a) is simple because all terms are either linear, or enjoys com-
pactness (which concerns Θ(w)-term), or vanishes due to the estimate (4.28g) since

∣∣∣
∫

Q

|e(ūτ)|γ−2e(ūτ):e(v) dxdt
∣∣∣ ≤

∥∥e(ūτ )
∥∥γ−1

Lγ(Q;Rd×d)

∥∥e(v)
∥∥

Lγ(Q;Rd×d)
= O(τ 1/γ) → 0.

To pass to the limit in the semi-stability (4.25) towards (3.7e), we need to construct
a so-called joint-recovery sequence, cf. [18]. Here it essentially means that, for any
ẑ = (π̂, η̂) ∈ L2(Rd×d

dev × R) with η̂ − η(t) ≥ δ∗P0
(π̂ − π(t)), we need to find a sequence

ẑτ = (π̂τ , η̂τ ) in W a,2(Ω; Rd×d+1) such that

lim sup
τ↓0

Φτ (uτ (t), ẑτ ) − Φτ (uτ(t), zτ (t)) +

∫

Ω

ξ1(ẑτ − zτ (t))dx

≤ Φ(u(t), ẑ) − Φ(u(t), z(t)) +

∫

Ω

ξ1(ẑ − z(t))dx. (4.36)
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In fact, the true Gibbs’ stored energy would still yield the term
∫
Γ
gτ (t) · (ẑτ − zτ (t))dS

which, however, could easily be shown to converge to zero if the construction (4.37)
below is adopted.

Let us denote the standard mollifier [·]δ by convolution with a standard posi-
tive kernel whose support is of diameter proportional to δ. Thus we can rely on
‖ [z]δ‖W 1,2(Ω) ≤ Cδ−1‖z‖L2(Ω) so that, by interpolation with ‖ [z]δ‖L2(Ω) ≤ C‖z‖L2(Ω),
one gets ‖ [z]δ‖W a,2(Ω) ≤ Cδ−a‖z‖L2(Ω). Then, for z ∈ L2(Ω), we have also [z]δ → z in
L2(Ω) for δ → 0. We take the joint-recovery sequence as

ẑτ := zτ (t) +
[
ẑ − z(t)

]
δ(τ)

with δ(τ) := τ 1/(4a). (4.37)

We rely on the quadratic form of Φτ , which by the binomial formula results to

Φτ (u, ẑ) − Φτ (u, z) =

∫

Ω

1

2
(C+H)(π̂−π) : (π̂+π) − Ce(u) : (π̂−π)

+
b

2
(η̂−η)(η̂+η) +

τ

2
S

1/2(ẑ−z) : S
1/2(ẑ+z) dx. (4.38)

By (4.37), we have

ẑτ − zτ (t) = [ẑ − z(t)]δ(τ) → ẑ − z(t) strongly in L2(Ω; Rd×d+1), (4.39)

which causes the convergence

(C+H)π̂τ : π̂τ − (C+H)πτ (t) : πτ (t) = (C+H)(π̂τ−πτ (t)) : (π̂τ+πτ (t))

= (C+H)[π̂−π(t)]δ(τ) : (π̂τ+πτ (t))

→ (C+H)(π̂−π(t)) : (π̂+π(t)) = (C+H)π̂ : π̂ − (C+H)π(t) : π(t) (4.40)

weakly in L1(Ω). Similarly, we can converge the term b
2
|η̂τ |2 − b

2
|ητ (t)|2 =

b
2
(η̂τ−ητ (t))(η̂τ+ητ (t)). The further term in the difference Φτ (uτ (t), ẑτ )−Φτ (uτ (t), zτ (t))

in (4.36) admits the limit

Ce(uτ (t)) : (π̂τ−πτ (t)) = Ce(uτ (t)) : [π̂−π(t)]δ(τ) → Ce(u(t)) : (π̂−π(t)) (4.41)

weakly in L1(Ω), where we used (4.39). Moreover, to limit the S -term in (4.36), by
(4.6) we have |z|W a,2(Ω) = ‖S 1/2z‖L2(Ω) and, by the choice of δ(τ) in (4.37), we have also

‖ [z]δ(τ)‖W a,2(Ω) = O(τ−1/4). This implies that

∥∥S
1/2(ẑτ−zτ (t))

∥∥
L2(Ω;Rd×d+1)

=
∥∥S

1/2([ẑ−z(t)]δ(τ))
∥∥

L2(Ω;Rd×d+1)

=
∥∥S

1/2
∥∥

L (W a,2(Ω),L2(Ω))

∥∥[ẑ−z(t)]δ(τ)

∥∥
W a,2(Ω);Rd×d+1)

= O(τ−1/4)

while
∥∥S

1/2(ẑτ+zτ (t))
∥∥

L2(Ω;Rd×d+1)
=

∥∥S
1/2(2zτ (t)+[ẑ−z(t)]δ(τ))

∥∥
L2(Ω;Rd×d+1)

= O(τ−1/2)

due to (4.28h,i). Thus the remaining term in the difference Φτ (uτ(t), ẑτ )−Φτ (uτ (t), zτ (t))
in (4.36) can be estimated as

∫

Ω

τS 1/2(ẑτ−zτ (t)) : S
1/2(ẑτ+zτ (t)) dx = O(τ 1/4) → 0. (4.42)

Still we need to pass in the ξ1-term in (4.36) but, by (4.39), we have also
ξ1(ẑτ−zτ (t)) = ξ1([ẑ−z(t)]δ(τ)) → ξ1(z−z(t)) certainly in L1(Ω) (in fact even in L2(Ω)).
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Here we also used that, as the kernel in the mollifier is positive, [·]δ remains in the convex
set dom(ξ1), hence ξ1(ẑτ−zτ (t)) <∞ a.e. on Ω provided ξ1(ẑ−z(t)) <∞. Altogether, we
can show (4.36) even as an equality with “lim”, and thus we also proved the semistability
(3.7e) instead of just mere inequality with “limsup”.

The limit passage in the energy inequality (4.24) for k = Kτ to (3.7d) with “≤” is
due to weak lower semicontinuity together with the convergence Φτ (u0,τ , z0,τ ) → Φ(u0, z0)
which uses (4.8a-c).

Having already proved the semistability (3.7e), we can show the lower energy estimate
(3.7d) with “≥” by a Riemann-sum approximation of Lebesgue integral and thus energy
equality as far as z-component concerns, i.e.

Φ(u(T ), z(T )) + Varζ1(z; 0, T ) ≥ Φ(u0, z0) +

∫

Q

C(e(u)−π):e
(∂u
∂t

)
dxdt; (4.43)

for this rather technical argument we refer to [16], or in this “semi-stable” context
rather to [24, Step 7 in the proof of Proposition 4.3]. Here it is also important that

we have already proved (3.7a), from which we can also get the information ∂2

∂t2
u ∈

L2(I;W 1,∞
Γ0

(Ω; Rd)∗) (which does not follow directly from (4.28f)), and then we can test

it by v := ∂
∂t
u which is in duality with ∂2

∂t2
u to get the energy balance (as an equality)

as far as the u-component concerns. By summing it with (4.43), we thus obtain the
mechanical energy balance (cf. (4.23)) with “≥”, i.e.

Tkin

(∂u
∂t

(T )
)

+ Φ
(
u(T ), z(T )

)
+ Varζ1(z; 0, T ) +

∫

Q̄

De
(∂u
∂t

)
: e

(∂u
∂t

)
dx

≥ Tkin

(
u̇0) + Φ

(
u0, z0) +

∫

Q

Θ(w)E : Ce
(∂u
∂t

)
dx+

∫

Γ

g·∂u
∂t

dS. (4.44)

Now, referring to the measure hz corresponding to ζ1(
∂z
∂t

) defined in (3.7c), then like
in [24] we have
∫

Q̄

hz(dxdt) + 2

∫

Q

ζ2

(
e(
∂u

∂t
)
)

dxdt = Varζ1(z; 0, T ) + 2

∫

Q

ζ2

(
e(
∂u

∂t
)
)

dxdt

≤ lim inf
τ↓0

∫

Q

ζ1

(∂zτ

∂t

)
+ 2ζ2

(
e(
∂uτ

∂t
)
)

dxdt ≤ lim sup
τ↓0

∫

Q

ζ1

(∂zτ

∂t

)
+ 2ζ2

(
e(
∂uτ

∂t
)
)

dxdt

≤ lim sup
τ↓0

( ∫

Ω

̺

2
|u̇0|2 −

̺

2

∣∣∣
∂uτ

∂t
(T )

∣∣∣
2

dx+ Φτ (0,τ , z0,τ )

− Φτ

(
uτ(T ), zτ (T )

)
+

∫

Q

Θ(w̄τ )E:Ce
(∂uτ

∂t

)
dxdt−

∫

Σ

ḡτ ·
∂uτ

∂t
dSdt

)

≤
∫

Ω

̺

2
|u̇0|2 −

̺

2

∣∣∣
∂u

∂t
(T )

∣∣∣
2

dx+ Φ(u0, z0) − Φ
(
u(T ), z(T )

)
+

∫

Q

Θ(w)E:Ce
(∂u
∂t

)
dxdt

−
∫

Σ

g·∂u
∂t

dSdt ≤ Varζ1(z; 0, T ) + 2

∫

Q

ζ2

(
e(
∂u

∂t
)
)

dxdt. (4.45)

The inequalities in (4.45) are successively by the lower weak* semicontinuity, by general
comparison “liminf≤ limsup”, by the discrete mechanical-energy inequality (4.23) for
k = Kτ , by the upper weak* semicontinuity and the obvious non-negativity Φτ −Φ ≥ 0
and by the convergence

Θ(w̄τ )E:Ce
(∂uτ

∂t

)
→ Θ(w)E:Ce

(∂u
∂t

)
weakly in L1(Q) (4.46)
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and also by (4.8b) so that τ |z0,τ |2W a,2(Ω;Rd×d+1)
→ 0, and finally by (4.44). Thus we have

equality in the above chain of inequalities (4.45). This allows us to say that ζ1(
∂zτ

∂t
) → hz

weakly* in measures on Q̄ and ζ2(
∂e(uτ )

∂t
) → ζ2(

∂e(u)
∂t

) even strongly in L1(Q).
This allows for the limit passage in the enthalpy equation. In addition, by using

(4.34), we also get rid of the regularizing β-term. More specifically, for any smooth z,
we can estimate this term by using (4.28j) as

∣∣∣
∫

Q

ε(τ)
∣∣w̄τ

∣∣β−2
w̄τz dxdt

∣∣∣ ≤ ε(τ)
∥∥w̄τ

∥∥β−1

Lβ(Q)

∥∥z
∥∥

Lβ(Q)
≤ ε(τ)

(
Cτε(τ)

−1/β
)β−1

(4.47)

= Cβ−1
τ ε(τ)1/β → 0.

Having (3.7b) already at disposal, we also obtain (3.6) and we can test (3.7b) by
v := 1 which is obviously in duality with ∂w

∂t
∈ L1(I;W 1+d(Ω)∗), and summing it with

(4.44), we obtain (3.7d) with “≥”. As the opposite inequality has already been discussed,
altogether we proved the total energy equality (3.7d). 2

Remark 4.7 The weak* topologies mentioned in Proposition 4.6 are meant, of course,
in suitably extended spaces because (4.28b,c,e) involves L1-spaces on which weak*
topology is not defined at all. As to (4.28e), we consider M (Ī;W 1+d,2(Ω)∗) rather
than L1(I;W 1+d,2(Ω)∗), as used already in (3.6f). As to (4.28b,c), we enlarge
M (Ī;L1(Ω; Rd×d

dev )) and M (Ī;L1(Ω)) to the Borel measures M (Ī×Ω̄; Rd×d
dev ) and M (Ī×Ω̄)

so that the rate of plastic deformation ∂πτ

∂t
and hardening ∂ητ

∂t
are a-priori bounded in

C(Ī×Ω̄; Rd×d
dev )∗ and C(Ī×Ω̄)∗, respectively. Then, after having the information that the

limit is a solution, one can a-posteriori obtain the L1-information as far as π(t) and η(t)
concern.

Corollary 4.8 (Conditional convergence for h↓0 and τ↓0) Let d ≤ 3, let the as-
sumptions from Lemma 4.1 and (4.27) hold with γ > 76/17, let (4.35) hold, and let

ε(τ) = o
(
τ (γ+1)(β−1)/(β2γ)

)
. (4.48)

Then:
(i) The convergence (in terms of subsequences) of the weak solutions to (4.17)–(4.18)

with (4.4) towards energetic solutions according Definition 3.1 for τ↓0, claimed in
Proposition 4.6, holds.

(ii) There is a function H : R+ → R+ such that every subsequence in the set
{(uτh, πτh, ητh, wτh)}h>0,τ>0,h≤H(τ) of the Galerkin approximate solutions obtained by
(4.10) which converges for h↓0 and τ↓0 weakly* in the topologies indicated in (4.28a-
f) yields, as its limit (u, π, η, w), an energetic solution according Definition 3.1.

Proof. Note that, using Lemma 4.5, we have (4.33) which, together with (4.48), guaran-
tees (4.34). Then Proposition 4.6 guarantees the claimed convergence.

To prove (ii), let us first note that all spaces involved in (4.28a-f) have separable
preduals; here we again have in mind the extension the L1-space occuring in (4.28b,c,e)
as in Remark 4.7. In this way, we ensure all occuring weak* topologies compact and
metrizable if restricted on any closed ball Bρ(0) centered at the origin 0 of the radius
ρ referring to norms in (4.28a-f). We use ρ so large that all estimates (4.28a-f) yield a
subset of Bρ−1(0); as to (4.28d), we can consider just one r which is sufficiently large
(with respect to ω) that is used for interpolation which yields (4.28d), cf. again [22, 24]
for details.
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Then we consider the set S0 of all energetic solution in accord to Definition 3.1
which lie Bρ−1(0). We have already proved that S0 is non-empty. Similarly, for τ > 0,
we consider the set Sτ of the solutions (uτ , πτ , ητ , wτ) ∈ Bρ−1(0) to the problem (4.17)–
(4.18) with (4.4). In Lemmas 4.1-4.2 and Proposition 4.4, we proved that the sets Sτ are
nonempty for any τ > 0. Then, considering again the metric generating the mentioned
weak* topology on Bρ(0), we denote by Nǫ(S) ⊂ Bρ(0) a ǫ-neighbourhood of a set
S ⊂ Bρ(0), i.e. Nǫ(S) := ∪s∈SNǫ(s)∩Bρ(0) where Nǫ(s) is an ǫ-neighbourhood of s with
respect to the above mentioned metric. Note that Nǫ(S), being a union of open sets, is
always open in Bρ(0) and thus Bρ(0)\Nǫ(S) is always compact, if nonempty.

For all ǫ > 0, there is τǫ > 0 such that Sτ ⊂ Nǫ(S0) for all 0 < τ ≤ τǫ; indeed, if ǫ is
so large that Nǫ(S0) = Bρ(0), there is nothing to prove since always Sτ ⊂ Bρ(0), while
in the opposite case, supposing the contrary, we would find a sequence in the nonempty
compact set Bρ(0)\Nǫ(S0) and, again by arguments as in Proposition 4.6, we could show
that (even all) its cluster point(s) for τ → 0 would again be the solution(s), i.e. belong to
S0, which is however a contradiction with being in Bρ(0)\Nǫ(S0) ⊂ Bρ(0)\S0. Beside,
we can assume τǫ → 0 for ǫ→ 0, e.g. τǫ ≤ ǫ.

Let us now denote by Sτh the set of the solutions (uτh, πτh, ητh, wτh) whose existence
has been proved in Lemma 4.1. It should be emphasized that we even cannot exclude
that Sτh ∩ Bρ(0) = ∅. Anyhow, fixing τ > 0, we can show that there is H(τ) > 0 such
that, for any 0 < h ≤ H(τ), even Sτh ⊂ Nτ (Sτ). Assume the contrary, i.e. for each
H > 0 one can find some 0 < hH ≤ H such that (uτhH

, πτhH
, ητhH

, wτhH
) lies outside

Nτ (Sτ ). By Lemma 4.2, we could then take a subsequence converging for H → 0 in
the weak* topology indicated in (4.15) to some limit lying in Sτ . As this topology is
finer than the metrizable topology considered so far, this subsequence would converge
in this coarser topology and eventually (i.e. for H small enough) would lie in Bρ(0) or,
more precisely, in the compact set Bρ(0)\Nτ (Sτ ), which would show that this limit is
simultaneously in Bρ(0)\Nτ (Sτ ) and in Sτ , which is not possible.

Merging the obtained inclusions Sτh ⊂ Nτ (Sτ ) and Sτ ⊂ Nǫ(S0), we can deduce
Sτh ⊂ Nτ (Sτ ) ⊂ Nτ (Nǫ(S0)) = Nτ+ǫ(S0) ⊂ Nτǫ+ǫ(S0) ⊂ N2ǫ(S0). Altogether, we
thus have shown that for this H(τ) and for any 0 < h ≤ H(τ), any discrete solution
(uτh, πτh, ητh, wτh) ∈ Sτh ⊂ Nτǫ+ǫ(S0), and that this holds for any τ ≤ τǫ. As we can
push ǫ→ 0 (and also τǫ → 0), we verify the convergence claimed in (ii). 2

5 Computational implementation and 3D simula-

tions

In our implementation we made the simplification S = 0 and solved the variational
inclusion exactly, making use of the fact that ωk

τh ∈ ∂δ∗S(dtz
k
τh) holds if and only if dtz

k
τh ∈

∂δS(ωk
τh), where zk

τh = (πk
τh, η

k
τh) and ωk

τh = (σ̃k
τh, ξ

k
τh) = (C(e(uk

τh)−πk
τh)−Hπk

τh,−bηk
τh).

For our numerical simulation, we neglected the kinematic hardening by putting H = 0.
We introduce Ak

τh := dte(u
k
τh)− τ−1C−1σ̃k−1

τh and use the identity πk
τh = e(uk

τh)−C−1ωk
τh

to recast the flow rule as

(
Ak

τh − τ−1C−1σ̃k
τh, dtη

k
τh

)
∈ ∂δS(σ̃k

τh, ξ
k
τh). (5.1)

For certain material laws and stress-strain relations it is possible to derive an explicit
formula for the unique solution σ̃k

τh, η
k
τh of (5.1) in terms of (given) Ak

τh, ξ
k−1
τh , and τ .

As above, we employ the linear stress-strain relation σ̃k
τh = C εk

τh = λe tr εk
τhI + 2µe ε

k
τh

for the elastic strain tensor εk
τh = e(uk

τh) − πk
τh. We consider mere isotropic hardening
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defined through the von-Mises yield function Φ(σ̃, ξ) := |dev σ̃| − σ̃y(1 + qHξ) and the
corresponding set of admissible pairs of elastic stresses and driving forces for hardening

S :=
{
(σ̃, ξ) ∈ Rd×d

sym × R; |dev σ̃| ≤ σ̃y(1 + qHξ)
}
, (5.2)

where σ̃y is the yield stress, qH the hardening parameter, and “dev ” denotes the trace
free part of a tensor. With these definitions we are in the setting of [10, Theorem 3.2] and
may deduce that for given Ak

τh, ξ
k−1
τh , and τ > 0 there exists a unique solution (σ̃k

τh, η
k
τh)

of (5.1) given by

σ̃k
τh = Σ(Ak

τh, ξ
k−1
τh , τ) := (λe + 2µe/d)tr

(
τAk

τh

)
I + F (Ak

τh, ξ
k−1
τh , τ)dev

(
τAk

τh

)
(5.3)

where

F (Ak
τh, ξ

k−1
τh , τ) =





eσy

(1+bq2
H eσ2

y)

(
(1+qHξk−1

τh )

|dev
(

τAk
τh

)
|
+ bq2

H σ̃y

)
for |dev

(
τAk

τh

)
| ≥ eσy(1+qHξk−1

τh )

2µe
,

2µ for |dev
(
τAk

τh

)
| ≤ eσy(1+qHξk−1

τh )

2µe
,

and

ξk
τh =





1
qH eσy

(|dev σ̃k
τh| − σ̃y) for |dev

(
τAk

τh

)
| ≥ eσy(1+qHξk−1

τh )

2µe
,

ξk−1
τh for |dev

(
τAk

τh

)
| < eσy(1+qHξk−1

τh )

2µe
,

and ηk
τh = −b−1ξk

τh. In particular, the plastic phase occurs for |dev
(
τAk

τh

)
| ≥ σ̃y(1 +

qHξ
k−1
τh )/(2µe). For explicit formulas in case of other plastic material behavior such as

plasticity with linear kinematic hardening we refer the reader to [10].
In addition to the simplifications S = 0 and H = 0, we neglect inertial and viscous

effects, kinematic hardening, and temperature dependence of the heat capacity. Thus, in
the numerical experiments reported below, we consider cv > 0 constant and set ̺ := 0 and
D := 0. The discrete scheme (4.2a)-(4.2d) then reduces to the following coupled quasi-
stationary, displacement and temperature formulation: Given (uk−1

τh , ξk−1
τh , ωk−1

τh , θk−1
τh ) ∈

V d
1,h × V0,h × V d×d

0,h × V1,h find (uk
τh, θ

k
τh) ∈ V d

1,h × V1,h such that uk
τh|Γ0 = uD,τh1 and

∫

Ω

Σ
(
Ak

τh

[
uk

τh

]
, ξk−1

τh , τ
)

: e(v) dx =

∫

Ω

CEθk
τh : e(v) dx, (5.4)

cv
(
dtθ

k
τh, w

)
+

∫

Ω

K∇θk
τh·∇w dx =

∫

Ω

σ̃k
τh:dtπ

k
τhw dx− b−1

∫

Ω

ξk
τhdtξ

k
τhw dx (5.5)

for all v ∈ V d
1,h with v|Γ0 = 0 and all w ∈ V1,h.

The implementation of the approximation scheme was done in MATLAB in the spirit
of [2, 10] and equations (5.4)-(5.5) were decoupled and solved with a fixed-point itera-
tion. In this implementation, the nonlinear system of equations (5.4) is approximated
with a Newton iteration and all occurring systems of linear equations are solved using
MATLAB’s backslash operator. In our experiments the Newton scheme always termi-
nated within at most 4 iterations to achieve an ℓ2 norm of the residual vector (defined
through nodal basis functions) less than 10−7J. Moreover, in all time steps, less than 6
fixed point iterations were sufficient to achieve an absolute change of the temperature in
the H1 norm less than 10−6Km1/2.

We used the scheme (5.4)–(5.5) to simulate the plasticization through thermal
expansion of a steel cubic-shaped specimen subject to an external heating, starting
from room temperature and without initial plastic strain. Focusing on this process, we
neglect surface loading, i.e. g = 0. To demonstrate interesting rate-dependence of the
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whole system, we considered different speeds of the heating regime but with the same
total energy pumped into the specimen. This is specified in the following example:

• Material data: heat capacity cv = 3.2MJm−3K−1, heat transfer coefficient κ =
80Wm−1K−1, thermal-expansion coefficient α = 2·10−5K−1, the Young’s modulus
E = 137GPa, the Poisson ratio ν = 0.3. The set of admissible stresses is defined
through σ̃y := 450MPa and qH = 10−3Pa−1. The plastic part of the free energy
is defined through the parameter b = 10−3Pa.

• Geometry of the specimen: d := 3, Ω := (−L/2, L/2)3 for L = 2 · 10−2m.

• Initial conditions: u0(x) = αθ0x for x ∈ Ω, π0 := 0, η0 := 0, and θ0 = 300 K.

• Heating regime: considering T = 1.5s and given t∗ ∈ [0, T ], we put the heat flux

f(t, x) :=

{
t−1
∗ · 106Jm−2 for t < t∗

0 for t ≥ t∗
(5.6)

for t ∈ [0, T ] and x ∈ Γ.
Let us remark that the Lamé constants used in (2.19) are calculated, as standard,

λe = νE/((1+ν)(1−2ν)) and µe = E/(2(1+ν)). The value of the heat capacity cv
corresponds to the capacity per mass 400J/kg K if the mass density of the conventional

steel 8·103kg/m3 is considered. The overall energy pumped into the body
∫ T

0

∫
Γ
f dSdt =∫ t∗

0

∫
Γ
f dSdt = 106Jm−2meas2(Γ) is thus 2400J independently of t∗.

We simplify computationally this model problem by exploiting the symmetry of data,
i.e. both of geometry and of the initial conditions as well as of the heating sources,
and restricting to the subdomain Ω′ := (0, L/2)3. This enforces us to implement glid-
ing boundary conditions along the three sides Si := {(x1, x2, x3) ∈ Ω̄′; xi = 0} with
i = 1, 2, 3, i.e., to impose (homogeneous) Dirichlet conditions on ui on Si and a (homo-
geneous) Neumann condition on the remaining components of u as well as on w. Thus
we pre-select only some symmetrical solutions of the original problem on Ω. One should
realize that, due to lack of rigorous uniqueness proof, only the whole set of solutions must
be symmetric and non-symmetric solutions may exist. Anyhow, this set contains also
some symmetric solutions, which can be proved just by applying the previous arguments
to the problem reduced on Ω′.

For a triangulation of Ω′ into 2560 tetrahedra obtained from three uniform refinements
of a coarse triangulation of Ω′ into 5 tetrahedra (i.e. h = 2−3

√
3L/2 ≈ 0.2 · 10−2m) and

used for both equations (5.4) and (5.5), we employed the time-step size τ = vh with
v = 0.05m s−1. Figure 1 illustrates the evolution defined through t∗ = 0.075s. The heat
energy is pumped through the sides of the body, which leads to higher temperatures
along the sides and especially the edges and the corners. This non-uniform temperature
(and thus thermal expansion) distribution enforces elastic stresses which are large along
the edges of Ω and cause an expansion of the body. At t ≈ 0.035s the stresses attain
the yield stress in vicinity of the edges and trigger plastic strain evolution. In contrast
with it, there is no plastic strain around the free corners (only one of which is depicted
on Figures 1 and 2 due to the smaller computational domain Ω′ & Ω, which is is due to
the fact that the deformation is there locally a compression and no shear forces occur.
When the external heat flux f is switched off at t∗ = 0.075s, the average temperature in
Ω′ no longer increases and the temperature equidistributes after some time. In contrast,
the stresses cannot equidistribute and the specimen cannot entirely return towards its
initial stress-free state if plasticised at some regions (here along edges) during the fast
heating process. Figure 1(middle bottom snapshot) indeed shows remaining elastic stress
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Figure 1: Displacement (magnified by factor 60) together with temperature θτh(t, ·),
postprocessed modulus of stresses |στh(t, ·)|, and postprocessed modulus of plastic strain
|πτh(t, ·)| (from left to right) for t = 0.025, 0.05, 0.075, 0.15, 0.3s (from top to bottom)
with f defined through (5.6) with t∗ = 0.075s.

24



0
0.005

0.01
0.015 0

0.005
0.01

0.015
0

0.005

0.01

0.015

 

 0 %

0.005 %

0.010 %

0.015 %

0.020 %

0.025 %

0.030 %

0.035 %

0.040 %

0.045 %

0.050 %

0
0.005

0.01
0.015 0

0.005
0.01

0.015
0

0.005

0.01

0.015

 

 0 %

0.005 %

0.010 %

0.015 %

0.020 %

0.025 %

0.030 %

0.035 %

0.040 %

0.045 %

0.050 %

Figure 2: Postprocessed modulus of plastic strain |πτh(t, ·)| for t = t∗ = 0.075s and the
mesh sizes h = 2−ℓ

√
310−2m, ℓ = 3, 4, 5 (from left to right). The finest mesh has 163 840

tetrahedral elements.

especially in the central region of the specimen.
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Figure 3: Total discrete energy and work of external heat (left). The relative difference
between the total discrete energy and the external forces is small and converges linearly
to zero as h→ 0 (right).

Figure 2 illustrates, in particular, that for decreasing mesh-sizes the plastic strain
becomes more and more symmetric. The asymmetry on coarse meshes is expectedly
due to the anisotropy of the underlying triangulation, although, due to lack of rigorous
uniqueness proof, only the whole set of solutions to the limit problem (i.e. h = 0) must
be symmetric and non-symmetric solutions may exist, and we thus even cannot claim
that the concrete approximate solutions approximate any symmetric solution and exhibit
some tendency for symmetry.

In Figure 3 we graphically studied the validity of a discrete energy balance analogous
to the continuous one in (3.7d). The left plot of Figure 3 shows the total discrete energy
Eh

tot and the work of external heat W h
ext plus initial energy Eh

tot(0), defined by

Eh
tot(tk) :=

∫

Ω

cvθ
k
τh +

1

2
C−1σ̃k

τh : σk
τh + b|ξk

τh|2 dx, W h
ext(tk) :=

k∑

ℓ=0

τ

∫

Γ

g ds.

The two quantities almost coincide for all t ∈ [0, T ] and the right plot of Figure 3 shows
their relative distance δh defined through

δh(tk) :=

∣∣Eh
tot(tk) − Eh

tot(t0) −W h
ext(tk)

∣∣
∣∣Eh

tot(0) +W h
ext(tk)

∣∣
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Figure 4: L2 norms of discrete stresses (left) and plastic strains (right) as functions of the
relative time t/t∗ for heating times t∗ = 0.075, 0.15, 0.3s. The plastic material behaviour
becomes less pronounced as the external heating happens slower.

for h
.
= 2−ℓ

√
310−2m, ℓ = 3, 4, 5. We observe that the relative difference is small and

decays linearly to zero as the mesh-size becomes small. The increase of the quantities by
approximately 300J corresponds to an eighth of the total energy pumped into the entire
specimen Ω.
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Figure 5: Thermal part of the energy for different speed of the heating regimes given by
(5.6) for t∗ = 0.075, 0.15, 0.3s. The detailed picture (right) shows that final temperature
is slightly lower if the material was more plasticized during the heating.

In Figure 4 we displayed for different values of t∗ the L2 norms of the stresses σ̃k
τh −

CEPh,0θ
k
τh and plastic strains πk

τh as functions of t/t∗. The L2 norm of the stresses
increases within the relative-time interval [0, 1]. For small values of t∗, i.e., for a faster
heating of the specimen, the material is plasticised in large domains. Since for slow
heating of the specimen, the temperature rather equidistributes and does not lead to
large elastic stresses so that no plasticity occurs at all, if t∗ is 0.3 s or bigger. Finally,
in Figure 5 we plotted the thermal part of the energy, i.e., the quantity cv

∫
Ω
θk

τh dx
(i.e., up to a factor cv|Ω| = 25.6J/K, the average temperature) as a function of t/t∗. We
see that the achieved average temperature is slightly lower for more pronounced plastic
process, i.e. for faster heating (=a shorter time t∗) because bigger part of the heat energy
pumped into the body is converted into remaining plastic changes of the material and
to the elastic stored energy due to the mentioned remaining elastic stress. This effect
is, however, relatively very small (cf. Fig. 5–left) because the energetics of mechanical
processes is “cheaper” than the thermal energetics, and can only be made visible on
some detailed zoom (cf. Fig. 5–right).
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[17] Mielke, A., Roub́ıček, T.: Numerical approaches to rate-independent processes and appli-
cations in inelasticity. Math. Modelling Numer. Anal. 43 (2009), 399–428.
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