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Abstract. The partial differential equations describing viscoelastic solids in
Kelvin-Voigt rheology at small strains exhibiting also stress-driven Prandtl-Reuss
perfect plasticity are considered and are coupled with a heat-transfer equation
through the dissipative heat produced by viscoplastic effects and through ther-
mal expansion and corresponding adiabatic effects. Numerical discretization of
the resulting thermodynamically consistent model is proposed by implicit time
discretization, suitable regularization, and finite elements in space. Numerical
stability is shown and computational simulations are reported to illustrate the
practical performance of the method. In a quasistatic case, convergence is proved
by careful successive limit passage.
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1. Introduction

Plasticity is an important inelastic dissipative phenomenon in solid mechanics.
The dissipation of the mechanical energy by plastification may lead to an increase
of stored energy by permanent structural changes or, and typically, to heat pro-
duction. In some applications, heat produced by this way is not transferred away
sufficiently fast and leads to temperature variations, which influence in reverse the
plastic processes and makes the problem thermally coupled.

Often, plasticity is accompanied by hardening effects, which makes the analysis
simpler. Yet, in some materials as (some) metals or rocks, these hardening effects
are negligible. This typically leads to the occurrence of shear bands (called also slip
bands or, in rock mechanics, faults). We then speak about perfect plasticity. It intro-
duces serious mathematical difficulties related to the localization of mechanical and
thermal processes to these shear bands. This phenomenon does not seem rigorously
treatable by existing mathematical methods at large strains, however. Therefore, we
confine ourselves to small strains where the so-called bounded-deformation spaces,
invented by P.-M. Suquet [32], can advantageously be exploited. Perfect plasticity
has mathematically been studied in the isothermal case e.g. in [2, 11, 12, 33].

The key feature in the modelling of thermodynamics of perfect plasticity, while
not destroying the characteristic phenomenon of possible localization of thermo-
mechanical process to shear bands, is to involve stress viscosity and also stress-driven
perfect plasticity rather than strain viscosity and strain-driven plasticity, as recently
proposed in [30].

It is needless to emphasize that the problem of thermodynamics of perfect plas-
ticity combines a lot of difficult phenomena and this is why various simplifications
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must be made. Here, besides small strains, we confine ourselves to linearized addi-
tive plasticity and a linear viscoelastic response. On the other hand, we allow for
a fully rate-independent plastic flow rule although, of course, the whole system is
necessarily rate dependent due to the heat transfer, viscous effects, and possibly also
inertial effects (if considered).

The goal of this article is to propose an implementable numerical scheme for
the above problem that is unconditionally stable in an appropriate sense (and, in
particular, a discrete solution exists) and, under certain specific conditions, is even
convergent.

The paper is organized as follows: The equations (or rather also inclusions) and
the particular initial/boundary-value problem is formulated in Section 2 together
with a discussion of its energetics and thermodynamics. The problem is then slightly
transformed by re-scaling temperature (=a so-called enthalpy transformation) and
by shifting the Dirichlet boundary conditions to make them temporarily constant.
The discretization by using a fully-implicit scheme in time, finite elements in space,
regularization, and projection of the transformed discrete temperature to a non-
negative cone is proposed in Section 3 where also the existence of approximate solu-
tions and certain unconditional a-priori estimates are shown. Section 4 demonstrates
an implementation of this scheme and shows illustrative examples. A convergence
analysis is then outlined in Section 5 for special situations. An important issue is to
prove positivity of the rescaled temperature to avoid the aforementioned projection
in the limit.

2. The model within thermodynamics

We consider a bounded Lipschitz domain Ω ⊂ Rd, d ≤ 3. The state variables
will be the displacement u : Ω → Rd, the plastic strain π : Ω → Rd×d

dev , and the
temperature θ : Ω→ R, where

Rd×d
dev :=

{
A∈Rd×d

sym; tr(A) = 0
}

and Rd×d
sym :=

{
A∈Rd×d; A> = A}. (2.1)

The variable π plays the role of a matrix-valued internal parameter. Considering a
Kelvin-Voigt-type viscous material, our model will consist of the equilibrium equation
balancing viscous and elastic stresses,

%
..
u = div σ, σ = σvi + σel, σvi = D.ε, σel = Cε0, (2.2a)

ε+π = e(u) :=
1

2
(∇u)>+

1

2
∇u, ε = ε0+e, e = Eθ, (2.2b)

where the dot denotes the time derivative, % is the mass density, D the tensor
determining the viscous-type response, C the tensor determining the elastic response,
and E the thermal expansion tensor, i.e. the stress σ is

σ = D(e(
.
u)−.π) + C(e(u)−π)− Bθ, where B = CE. (2.3)

We consider plastic response determined by a convex closed neighbourhood of the
origin, say S ⊂ Rd×d

dev , defining an elasticity domain, while its boundary is called the
yield surface and has the meaning of the stress that triggers the evolution of plastic
strains. Let δS denote its indicator function and δ∗S the Fenchel-Legendre conjugate

functional to δS with respect to the inner product σ:e =
∑d

i,j=1 σijeij. Note that the

physical dimension of σ:e is Pa=J/m3 so that S determining the degree-1 positively
homogeneous “plastic” dissipation potential δ∗S, acting on the dimensionless tensor
π, has indeed the dimension J/m3. Usually, S is considered to be bounded, which
implies that δ∗S is finite. We remark that the condition 0 ∈ int(S) implies that
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δ∗S : Rd×d
dev → R is coercive. The evolution of the internal parameters, i.e. here the

plastic strain π, is then governed by the inclusion

∂δ∗S
(.
π
)
3 dev σ, (2.4)

where dev σ := σ − σs is the deviatoric part of σ with σs = 1
d
(trσ)I the spherical

part of σ. The heat transfer/production is governed by the equation

cv(θ)
.
θ − div

(
K(θ)∇θ

)
= δ∗S(

.
π) + D.ε:.ε + θB.ε with

.
ε = C

(
e(
.
u)− .π), (2.5)

where cv = cv(θ) is the heat capacity, and K = K(θ) is the thermal conductivity
tensor. The above equations/inclusion (2.2)–(2.5) are to hold on the space/time
domain Q := (0, T ) × Ω with T > 0 a fixed time horizon. Using the identity
[∂δ∗S]−1 = ∂([δ∗S]∗) = ∂δ∗∗S = ∂δS, the inclusion (2.4) can equivalently be written in
a form which is more standard in the engineering literature, namely

.
π ∈ NS(dev σ) (2.6)

where NS = ∂δS is the normal cone to S.
As we focus on processes in the bulk, we consider only the simplest boundary

conditions, namely a prescribed normal stress on ΓNeu and a heat flux on Γ := ∂Ω:

u = uDir on ΓDir, (2.7a)

σν = 0 on ΓNeu, (2.7b)(
K(θ)∇θ

)
· ν = f on Γ, (2.7c)

where “ · ” denotes the scalar product of two vectors and ν is the outward normal
to Γ.

Throughout this paper, we assume purely isotropical thermal expansion, i.e. B is
purely spherical tensor, or equivalently

devB = 0. (2.8)

Together with πs = 0, this ensures the orthogonality π:Bθ = 0, which is essential for
our analysis because of the lack of sufficient a-priori estimates on the temperature
to deduce compactness in an L∞-space. Due to this orthogonality, the driving force
σ in the flow rule (2.4) can effectively be replaced by σvi+σel with exactly the same
effect.

The energetics of the model can be obtained by testing (2.2) and (2.4) respectively
by the “shifted” velocity

.
u− .uDir (which has zero traces on ΓDir) and by the plastic

strain rate
.
π, which gives after an application of Green’s formula in (2.2) together

with the boundary conditions (2.7) and eventually by summation the mechanical
energy balance∫

Ω

δ∗S(
.
π) + D.ε:.ε +

1

2

∂

∂t

(
%|.u|2 + Cε:ε

)
dx

=

∫
Ω

Bθ:
(.
ε−e(.uDir)

)
+
(
D.ε+Cε

)
:e(
.
uDir)− %

..
u ·.uDir dx. (2.9)

Testing further (2.5) by 1 and using again Green’s formula gives, when summing
with (2.9), the total energy balance

d

dt

( ∫
Ω

%

2
|.u|2 dx︸ ︷︷ ︸

kinetic
energy

+

∫
Ω

1

2
Cε:ε+ Cv(θ) dx︸ ︷︷ ︸

stored and heat parts
of the internal energy

)
=

∫
Ω

σ:e(
.
uDir)− %

..
u ·.uDir dx︸ ︷︷ ︸

power of the external
mechanical loading

+

∫
Γ

f dS︸ ︷︷ ︸
power of the

external heating
(2.10)
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cf. also (5.21c) below written for the shifted displacement u. In (2.10), we denoted

Cv(θ) :=

∫ θ

0

cv(r) dr ; (2.11)

thus Cv is a primitive function to cv normalized such that Cv(0) = 0. In fact, in
(2.10) we also assumed div uDir = 0 which we will later use to facilitate certain
a-priori estimates, cf. (3.11f), and which leads to Bθ:e( .uDir) = 0 due to (2.8).

To simplify the treatment of the nonlinear term cv(θ)
.
θ, we introduce a new variable

w substituting the temperature, namely

w = Cv(θ). (2.12)

The use of this re-scaled temperature is called the enthalpy transformation. Further,
we define

K (w) :=
K(Θ(w))

cv(Θ(w))
and B(w) := Θ(w)B with Θ(w) :=

{
C−1

v (w) if w ≥ 0,

0 if w < 0,

(2.13)

where C−1
v here denotes the inverse function to Cv. We incorporate the Dirichlet

condition by an additive shift, i.e. instead of the original u, we consider u+uDir with
a suitable prolongation of uDir inside the domain; in particular, without any loss of
generality, we will assume that(

De(.uDir) + Ce(uDir)
)
ν = 0 on ΓNeu, (2.14)

which will simplify some formulae below. In terms of this shifted displacement,
denoted again by u, and the re-scaled temperature w, the system (2.2)–(2.4)–(2.5)
writes as

%
..
u = div σ + fDir, σ = D.ε + Cε−B(w), (2.15a)

ε = e(u)−π, (2.15b)

fDir = div σDir − %
..
uDir, (2.15c)

∂δ∗S
(.
π
)
3 dev(σ + σDir), σDir = De(.uDir) + Ce(uDir), (2.15d)

.
w − div

(
K (w)∇w

)
= δ∗S

(.
π
)

+
(
D.ε+De(.uDir)+B(w)

)
:(
.
ε+De(.uDir)). (2.15e)

We will call (2.15e) shortly the enthalpy equation rather than the heat-transfer equa-
tion in the enthalpy formulation. The boundary conditions (2.7) transform to

u = 0 on ΓDir, (2.16a)

σν = σDirν on ΓNeu, (2.16b)(
K (w)∇w

)
· ν = f on Γ. (2.16c)

We complete this transformed system with the initial conditions

u(0, ·) = u0,
.
u(0, ·) = u̇0, π(0, ·) = π0, w(0, ·) = w0 on Ω. (2.17)

Of course, the last condition means in fact that the initial temperature is prescribed
as θ0 and then w0 = Cv(θ0).

Remark 2.1. Later, we will assume a non-cooling regime f ≥ 0 in (2.7c). How-
ever, the considerations can be routinely generalized for a more general Robin-type
condition

(
K(θ)∇θ

)
·ν = f −aθ with a ≥ 0, which effectively allows also for cooling

while preserving positivity of temperature.
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Remark 2.2. The thermodynamics of the original model (2.2)–(2.5) can be derived
by postulating the Helmholtz free energy ψ0 as ψ0(εel, θ) = 1

2
Cεel:εel − φ(θ) with

εel = εel(ε, θ) = ε− θE. By substituting for εel, we also denote

ψ(ε, θ) = ψ0(εel(ε, θ), θ) =
1

2
C(ε−θE):(ε−θE)− φ(θ). (2.18)

Then, entropy is given by

s = s(ε, θ) := −ψ′θ(ε, θ) = φ′(θ)− EBθ + Bε. (2.19)

The so-called entropy equation reads

θ
.
s = ξ(

.
π,
.
ε) + div  (2.20)

with the heat flux governed by the Fourier law  = K(θ)∇θ and with the mechanical
dissipation rate ξ(

.
π,
.
ε) = δ∗S(

.
π)+D.ε:.ε. This then takes the form of the heat-transfer

equation

θψ′′θθ(θ)
.
θ − div

(
K(θ)∇θ

)
= ξ − θψ′′θε(ε, θ):

.
ε. (2.21)

Combining (2.18) with cv = cv(ε, θ) := θψ′′θ (ε, θ) = θφ′′(θ)−EBθ, we arrive at (2.5).
Assuming positivity of temperature (as indeed proved later in Section 5), f ≥ 0,
positive-definiteness of K, and realizing that always ξ(

.
π,
.
ε) ≥ 0, from (2.20) we can

formally deduce the Clausius-Duhem inequality

d

dt

∫
Ω

s dx =

∫
Ω

ξ(
.
π,
.
ε) + div 

θ
dx =

∫
Ω

ξ(
.
π,
.
ε)

θ
+ div

(
K
∇θ
θ

)
+

K∇θ·∇θ
θ2

dx

=

∫
Ω

ξ(
.
π,
.
ε)

θ
+

K∇θ·∇θ
θ2

dx+

∫
Γ

f

θ
dS ≥ 0, (2.22)

i.e. the system complies with the 2nd law of thermodynamics. Using (2.8), (2.18),
and (2.19), the internal energy standardly given by ψ+θs results to

ψ + θs =
1

2
C(ε−θE):(ε−θE)− φ(θ) + θ

(
φ′(θ)− EBθ + Bε

)
=

1

2
Cε:ε− φ(θ) + θφ′(θ)− 1

2
EBθ2 =

1

2
Cε:ε+ Cv(θ)− φ(0), (2.23)

which is, up to the constant φ(0), the quantity occurring in (2.10).

3. Discretization of the system (2.15)–(2.17)

It is not entirely easy to design numerically stable and convergent discrete schemes
in coupled systems with super-linear growth of nonmonotone terms, as it is typ-
ically the case of thermodynamically consistent continuum-mechanical problems.
Even mere existence of discrete solutions is a rather fine issue, requiring careful
regularizations of the discrete scheme. Also, it seems difficult to devise a spatial
discretization of the term −div(K (w)∇w) that is compatible with the maximum
principle even on acute triangulations if K is nonconstant (as it is quite typical if
cv is nonconstant); here we overcome this issue by treating the discrete enthalpy
equation rather as an inequality and later prove positivity of the limit enthalpy.

Convergence needs further various fine ingredients, in particular an estimate of
the enthalpy gradient in situations that heat sources have only L1-structure. This
unfortunately requires special nonlinear tests and does not seem transferable to the
spatially discrete case. Thus the convergence can only be expected to be conditional,
as indeed presented in Section 5.
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To cope with the above outlined delicate issues, we follow and modify ideas from
[4, 29, 30]. We will use a fully implicit time-discretization with a constant time-step
τ > 0, assuming Kτ = T/τ ∈ N and defining the backward difference operator by

Dtφ
k :=

φk−φk−1

τ
(3.1)

for any sequence {φk}k≥0, combined with a regularization of the momentum equation
and of the flow rule (using as a regularization parameter a function of the time-step
size η(τ) > 0). More specifically, we consider the following recursive incremental
formula

%D2
tu

k
τ − div

(
σkτ + τ

∣∣Dtε
k
τ

∣∣γ−2
Dtε

k
τ

)
= div σkDir,τ − %D2

tu
k
Dir,τ , (3.2a)

∂δ∗S
(
Dtπ

k
τ

)
+ η(τ)πkτ 3 dev

(
σkτ + σkDir,τ + τ

∣∣Dtε
k
τ

∣∣γ−2
Dtε

k
τ

)
, (3.2b)

Dtw
k
τ − div

(
K (wkτ )∇wkτ

)
= δ∗S

(
Dtπ

k
τ

)
+
(
DDtε

k
τ+De(Dtu

k
Dir,τ )+B(wkτ )

)
:Dt

(
εkτ+e(u

k
Dir,τ )

)
, (3.2c)

with εkτ = e(ukτ )−πkτ , σkτ = DDtε
k
τ+Cεkτ−B(wkτ ), (3.2d)

for k = 1, ..., Kτ = T/τ , where

ukDir,τ (t, x) :=
1

τ

∫ kτ

(k−1)τ

uDir(t, x) dt and σkDir,τ = De(Dtu
k
Dir,τ ) + Ce(ukDir,τ ), (3.3)

and where γ > 1 and η : R+ → R+ is continuous such that η(0) = 0, with the
corresponding boundary conditions

ukτ = 0 on ΓDir, (3.4a)(
σkτ + τ

∣∣e(ukτ )∣∣γ−2
e(ukτ )

)
ν = 0 on ΓNeu, (3.4b)(

K (wkτ )∇wkτ
)
· ν = fkτ :=

1

τ

∫ kτ

(k−1)τ

f̃τ (t, x) dt on Γ, (3.4c)

starting for k = 1 by using

u0
τ = u0,τ , u−1

τ = u0,τ − τ u̇0, π0
τ = π0,τ , w0

τ = w0,τ . (3.5)

Note that, in (3.5) and (3.4c), we regularized the initial values u0, π0, and w0 and

the boundary flux f by u0,τ , π0,τ , w0,τ , and f̃τ , respectively, cf. (3.11) below.
Let us comment on the purpose of the regularizing terms. The “γ-terms” in

(3.2a) and (3.2b) are needed to compensate the superlinear growth of the right-
hand-side terms in the heat equation; it has already been used in [29] for a mere
time discretization. The term η(τ)πkτ in (3.2b) helps to carry out a limit passage
in space discretization, cf. (5.11a) below, and it seems also to have some positive
impact on the calculations, cf. Section 4.3 below. This term is in a position of
a kinematic hardening but with a vanishing coefficient η(τ) like in [2]. Here, this
vanishing hardening is controlled directly by the time step τ .

We will further make a spatial discretization. For this, we assume that we are given
a sequence of triangulations {Th}h>0 of the polyhedral domain Ω without hanging
nodes but otherwise entirely general. We suppose that the maximal diameters h > 0
range over a countable set of positive real numbers with accumulation point at 0,
and that maxE∈Th diam(E) ≤ h.

We consider C0-conforming P1-elements for the approximation of u and w and
P0-elements for the approximation of π. The finite-dimensional subspaces of L2(Ω)
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and W 1,2(Ω) related to P0- and P1-elements and subordinate to the triangulation
Th respectively are denoted by V0,h and V1,h.

Then we devise the Galerkin scheme as follows. We seek (ukτh, π
k
τh, w

k
τh) ∈ V d

1,h ×
V d×d

0,h × V1,h, with πkτh(·) ∈ Rd×d
dev and wkτh(·) ≥ 0 a.e. on Ω, satisfying

∫
Ω

%D2
t

(
ukτh+u

k
Dir,τ

)
·v +

(
σkτh+σ

k
Dir,τ+τ

∣∣Dtε
k
τh

∣∣γ−2
Dtε

k
τh

)
:e(v) dx = 0

for all v∈V d
1,h, (3.6a)∫

Ω

δ∗S(π̃) +
(
σkτh+σ

k
Dir,τ+τ

∣∣Dtε
k
τh

∣∣γ−2
Dtε

k
τh

)
:(π̃−Dtπ

k
τh) + η(τ)πkτh:(π̃−Dtπ

k
τh) dx

≥
∫

Ω

δ∗S(Dtπ
k
τh) dx for all π̃∈V d×d

1,h , π̃(·)∈Rd×d
dev a.e. on Ω, (3.6b)∫

Ω

Dtw
k
τh(v−wkτh) + K (wkτh)∇wkτh·∇(v−wkτh)

≥
∫

Ω

((
DDtε

k
τh+De(Dtu

k
Dir,τ )+B(wkτh)

)
:Dt

(
εkτh+e(u

k
Dir,τ )

)
+ δ∗S

(
Dtπ

k
τh

))
(v−wkτh) dx+

∫
Γ

fkτ (v−wkτh) dS for all v∈V1,h, v ≥ 0, (3.6c)

where σkτh = DDtε
k
τh+Cεkτh+B(wkτh) and εkτh = e(ukτh)−πkτh. (3.6d)

Note that, in fact, (3.6c) uses a projection of the standard Galerkin discretization
of (3.2c) to the cone of non-negative functions.

Let us define the piecewise affine interpolants uτh, πτh, wτh, στh, and ετh by

[
uτh, πτh, wτh, στh, ετh

]
(t) :=

t− (k−1)τ

τ

(
ukτh, π

k
τh, w

k
τh, στh, ετh

)
+
kτ − t
τ

(
uk−1
τh , πk−1

τh , wk−1
τh , σk−1

τh , εk−1
τh

)
for t ∈ [(k−1)τ, kτ ] (3.7)

with k = 0, ..., Kτ := T/τ . Besides, we define also the backward piecewise constant
interpolants ūτh, π̄τh, w̄τh, σ̄τh, and ε̄τh by

[
ūτh, π̄τh, w̄τh, σ̄τh, ε̄τh

]
(t) :=

(
ukτh, π

k
τh, w

k
τh, σ

k
τh, ε

k
τh

)
for (k−1)τ < t ≤ kτ (3.8)

with k = 1, ..., Kτ . We will also use the notation ḡτ and f̄τ defined by ḡτ |((k−1)τ,kτ ] =
gkτ and f̄τ |((k−1)τ,kτ ] = fkτ for k = 1, ..., Kτ .
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In terms of the interpolants, the scheme (3.6) can be written as∫
Q

%
[.
uτh+

.
uDir,τ

].
τ ·v +

(
σ̄τh+τ

∣∣.ετh∣∣γ−2 .
ετh+σ̄Dir,τ

)
:e(v) dxdt = 0 ∀v∈L1(I;V d

1,h),

(3.9a)∫
Q

δ∗S(v) +
(
σ̄τh + σ̄Dir,τ + τ

∣∣.ετh∣∣γ−2 .
ετh
)
:
(
π̃−.πτh

)
+ η(τ)π̄τh:

(
π̃−.πτh

)
dxdt

≥
∫
Q

δ∗S
(.
πτh
)

dxdt ∀π̃∈L1(I;V d×d
0,h ), π̃(·)∈Rd×d

dev a.e. on Q, (3.9b)∫
Q

.
wτh
(
v−w̄τh

)
+
(
K (w̄τh)∇w̄τh

)
·∇
(
v−w̄τh

)
dxdt

≥
∫
Q

((
D.ετh+De(.uDir,τ )+B(w̄τh)

)
:
(.
ετh+e(

.
uDir,τ )

)
+ δ∗S

(.
πτh
))(

v−w̄τh
)

dxdt

+

∫
Σ

f̄τ
(
v−w̄τh

)
dSdt ∀v∈L1(I;V1,h), v(·) ≥ 0 a.e. on Q, (3.9c)

with ετh = e(uτh)−πτh, σ̄τh = D.ετh+Cε̄τh−B(w̄τh), ε̄τh = e(ūτh)−π̄τh. (3.9d)

In (3.9a), [
.
uτh]τ denotes the linearly interpolated time-derivative so that its time de-

rivative [
.
uτh]

.
τ is thus piecewise constant and takes the values D2

tu
k
τh on the subinter-

vals ((k−1)τ, kτ), k = 1, ..., T/τ . A similar meaning has also the term [
.
uτh+

.
uDir,τ ]τ .

Throughout this article we make the following assumptions:

cv : [0,+∞)→ R+ continuous, (3.10a)

∃ω > 1, c0 > 0 ∀θ∈R+ : cv(θ) ≥ c0(1+θ)ω−1, (3.10b)

C,D symmetric, positive definite, (3.10c)

K :R→ Rd×d bounded, continuous, and inf
(w,ξ)∈R×Rd, |ξ|=1

K (w)ξ·ξ > 0; (3.10d)

with K from (2.13); later in (5.18) we impose further restrictions on ω. As far as the
initial conditions and loading qualification (and its regularization) are concerned, we
assume

u0 ∈ W 1,1(Ω;Rd), (3.11a)

π0 ∈ L1(Ω;Rd×d
dev ),

{√
η(τ)π0,τ

}
τ>0

bounded in L2(Ω;Rd×d
dev ), (3.11b)

e(u0)−π0 ∈ L2(Ω;Rd×d
sym),

{
e(u0,τ )−π0,τ

}
τ>0

bounded in L2(Ω;Rd×d
sym), (3.11c)

w0 ∈ L1(Ω), w0,τ ∈ L2(Ω),
{
w0,τ

}
τ>0

bounded in L1(Ω), (3.11d)

f ∈ L1(Σ),
{
f̃τ
}
τ>0

bounded in L1(Σ), (3.11e)

uDir ∈ W 2,1(I;W 1,2(Ω;Rd)), div
.
uDir = 0, (3.11f)

where we denoted Σ := I × Γ in (3.11e).

Lemma 3.1 (Existence and estimates of discrete solutions). Let (3.10) and (3.11)
hold. Moreover, let γ > max(4, 2ω

ω−1
). Then there exists a solution (ukτh, π

k
τh, w

k
τh) ∈

8



V d
1,h × V d×d

0,h × V1,h, with πkτh(·) ∈ Rd×d
dev a.e. on Ω, for the system (3.6). Moreover,∥∥uτh∥∥W 1,∞(I;L2(Ω;Rd))

≤ C if % > 0, (3.12a)∥∥e(uτh)− πτh∥∥L∞(I;L2(Ω;Rd×dsym ))
≤ C, (3.12b)∥∥wkτh∥∥L∞(I;L1(Ω))

≤ C (3.12c)∥∥e(.uτh)− .
πτh
∥∥
Lγ(Q;Rd×dsym )

≤ Cτ−1/γ, (3.12d)∥∥π̄τh∥∥L∞(I;L2(Ω;Rd×ddev ))
≤ Cη(τ)−1/2, (3.12e)

where C does not depend on τ and h. Furthermore, we have∥∥uτh∥∥W 1,∞(I;L2(Ω;Rd))
≤ Cτ , (3.13a)∥∥e(uτh)− πτh∥∥W 1,∞(I;Lγ(Ω;Rd×dsym ))

≤ Cτ , (3.13b)∥∥πτh∥∥W 1,∞(I;L2(Ω;Rd×ddev ))
≤ Cτ , (3.13c)∥∥wkτh∥∥W 1,∞(I;W 1,2(Ω))
≤ Cτ (3.13d)

with some Cτ dependent on τ (but not on h). If ω ≥ 2, then also∥∥e(uτh)∥∥W 1,1(I;L1(Ω;Rd×dsym ))
≤ C, (3.14a)∥∥e(uτh)− πτh∥∥W 1,2(I;L2(Ω;Rd×dsym ))

≤ C, (3.14b)∥∥πτh∥∥W 1,1(I;L1(Ω;Rd×ddev ))
≤ C, (3.14c)

where, similarly as in (3.12), C does not depend on τ and h.

Sketch of the proof. We can see existence of a solution to (3.2) by a standard
argument for coercive pseudomonotone set-valued operators; cf. e.g. [17] for a gen-
eral infinite-dimensional concept or, here, [26, Section5.3] for inclusions with pseu-
domonotone operators whose set-valued part has a convex potential. (Here, in fact,
we need only the finite-dimensional variant which is even simpler.) The coercivity of
the underlying operator can be shown by considering a scaling factor ετ > 0 and test-
ing (3.6a), (3.6b), and (3.6c) by ukτh, 0, and (1+ετ )w

k
τh, respectively. Note that these

test-functions live in the corresponding finite-dimensional spaces and (1+ετ )w
k
τh ≥ 0,

and are thus legal for this test. It is important that the right-hand sides of (3.2a,c)
have the growth that can be dominated by the growth of the coercive terms in the
left-hand sides if ετ > 0 is taken sufficiently small; this is ensured by having taken
γ large enough and by the assumption (3.10b) which ensures a sublinear growth of
Θ and thus also of B, namely∣∣B(w)

∣∣ ≤ |B|(ωw
c0

+1
)1/ω

− |B| ≤ |B|
(ωw
c0

)1/ω

(3.15)

because obviously Cv(θ) ≥ c0((1+θ)ω−1)/ω, cf. the definition (2.13). Realize that
the sum of the left-hand sides of (3.2) can be estimated (up to an additive constant)
from below by

τ |ε|γ + η(τ)|π|2 + ετ |w|2. (3.16)

This indeed dominates the growth of the “right-hand-side terms” is of the type
|w|1/ω|ε|+ |π| |w|+ |ε|2|w|+ |w|1+1/ω|ε|. More in detail, the heat-production δ∗S-term
can be estimated as

δ∗S

(π−πk−1
τh

τ

)
ετw ≤

1

τ
Kετ

∣∣π−πk−1
τh

∣∣ |w| ≤ K

2τ
ε1/2τ

∣∣π−πk−1
τh

∣∣2 +
K

2τ
ε3/2τ |w|2

9



with K = sup|π̇|≤1 δ
∗
S(π̇), and then absorbed in the left-hand side (3.16) if ετ <

4τ 2 min(1, η(τ)2)/K2; note that K < ∞ because int(S) 3 0. Similarly |ε|2|w| ≤
δ|ε|γ + δ|w|2 + Cδ with any δ > 0 and some Cδ; here γ > 4 has been used. The last
term can be estimated as |w|1+1/ω|ε| ≤ δ|ε|γ + δ−1/(γ−1)|w|(1+1/ω)γ/(γ−1) ≤ δ|ε|γ +
δ|w|2 + Cδ for arbitrary δ > 0 and some Cδ ∈ R; here the condition γ > 2ω/(ω−1)
has originated.

Knowing existence of the solution ukτh, π
k
τh, and wkτh ≥ 0, we can also perform the

test of (3.6a), (3.6b), and (3.6c) by Dtu
k
τh, 0, and 1+wkτh ≥ 0, respectively. This

leads to a cancellation of the dissipative and adiabatic terms. By using the convexity
of the underlying regularized stored energy

Φτ (u, π) :=
1

2

∫
Ω

C(e(u)−π):(e(u)−π) + η(τ)|π|2 dx, (3.17)

and by summation over time steps, we obtain the following “discrete total energy”
balance:

Tkin

(
Dtu

k
τh

)
+ Φτ

(
ukτh, π

k
τh

)
+

∫
Ω

wkτh dx+ τ 2

k∑
l=1

∫
Ω

∣∣Dtε
l
τh

∣∣γdx
≤ Tkin(u̇0) + Φτ

(
u0, π0,τ

)
+

∫
Ω

w0 dx

+ τ
k∑
l=1

(∫
Ω

(
DDte

l
Dir,τ+CelDir,τ

)
:Dtε

l
τh + DDte

l
Dir,τ :Dte

l
Dir,τdx+

∫
Γ

f lτ dS

)
,

(3.18)

where we abbreviated elDir,τ = e(ulDir,τ ). Cf. [30, proof of Prop.1] for de-
tails. Importantly, we used also (2.8) and (3.11f) for the orthogonality
B(wlτh)

)
:elDir,τ = 0. Note that (3.18) is indeed the discrete variant of (2.10) af-

ter the shift of the Dirichlet conditions. Then we execute the by-part summa-
tions

∑k
l=1 DDte

l
Dir,τ :Dtε

l
τh = DDte

k
Dir,τ :ε

k
τh−

∑k
l=2 DD2

t e
l
Dir,τ :ε

l−1
τh −DDte

1
Dir,τ :ε

0
τh and∑k

l=1 CelDir,τ :Dtε
l
τh = CekDir,τ :ε

k
τh −

∑k
l=2 CDte

l
Dir,τ :ε

l−1
τh − Ce1

Dir,τ :ε
0
τh. The a-priori

estimates (3.12) then follows from the above test by standard procedure, i.e. by
using Hölder’s, Young’s, and the discrete Gronwall inequality. It is essential that
we have wkτh ≥ 0 guaranteed just by the hard constraints. Also note that, to make
Φτ (u0, π0,τ ) bounded (uniformly in τ > 0), we needed to approximate π0 by π0,τ and
assume (3.11b).

If ω ≥ 2, we can also execute the test of (3.6a), (3.6b), and (3.6c) by Dtu
k
τh, 0,

and 1/2+wkτh ≥ 0, respectively. We can then see parts of the dissipative terms on
the left-hand side, namely

Tkin

(
Dtu

k
τh

)
+ Φτ

(
ukτh, π

k
τh

)
+

1

2

∫
Ω

wkτh dx

+ τ
k∑
l=1

∫
Ω

1

2
DDt

(
εkτh+e

k
Dir,τ

)
:Dt

(
εkτh+e

k
Dir,τ

)
+

1

2
δ∗S(Dtπ

k
τh) + τ

∣∣Dtε
l
τh

∣∣γdx
≤ Tkin(u̇0) + Φτ

(
u0, π0,τ

)
+

1

2

∫
Ω

w0 dx+ τ

k∑
l=1

(∫
Ω

1

2
B(wkτh):Dt

(
εkτh+e

k
Dir,τ

)
+
(
DDte

l
Dir,τ+CelDir,τ

)
:Dtε

l
τh + DDte

l
Dir,τ :Dte

l
Dir,τdx+

1

2

∫
Γ

f lτ dS

)
. (3.19)
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Now the adiabatic terms did not cancel, but can be estimated simply (without any
interpolation) by the estimate

B(wkτh):Dt

(
εkτh+e

k
Dir,τ

)
≤ 1

4ε
|B(wkτh)|2 + ε

∣∣Dt(ε
k
τh+e

k
Dir,τ )

∣∣2
≤ |B|

2

4ε

(ωwkτh
c0

)2/ω

+ ε
∣∣Dt(ε

k
τh+e

k
Dir,τ )

∣∣2
≤ Cε,ω + Cε,ωw

k
τh + ε

∣∣Dt(ε
k
τh+e

k
Dir,τ )

∣∣2 (3.20)

with some Cε,ω depending on ε > 0 and ω ≥ 2, and then handled by the dis-
crete Gronwall inequality. The dissipative terms then yield (3.12b,c) and, realizing
‖e( .uτh)‖L1(Q;Rd×d) ≤ meas(Ω)1/2‖e( .uτh)−

.
πτh‖L2(Q;Rd×d) + ‖ .πτh‖L1(Q;Rd×d), we eventu-

ally obtain also (3.14a). 2

Let us emphasize that the a-priori estimates (3.12) and, if ω ≥ 2, also (3.14) are
uniform in both τ and h and guarantee thus a certain unconditional numerical sta-
bility of the approximation scheme as far as the elastic strain ε, velocity

.
u, enthalpy

w, and (if ω ≥ 2) also plastic strain π and strain rate
.
ε concerned. As already

mentioned, the convergence will however be guaranteed only conditionally with h
passing to 0 sufficiently fast with respect to τ , cf. Section 5.

4. Computational implementation and simulations

We want to illustrate the applicability of the above model and its approximation
by implementing it and performing specific experiments documenting both ther-
momechanical phenomena of converting mechanical-to-thermal energy (Section 4.1)
and thermal-to-mechanical energy (Section 4.2) together with a concentration ten-
dency due to arising shear bands. Besides, we discuss and document some interesting
numerical issues in Section 4.3.

In our implementation, we neglect inertial and viscous effects, and temperature
dependence of the heat capacity. Thus, in the numerical experiments reported below,
we consider cv > 0 constant and set % := 0 and D := 0. We also consider an isotropic
material, i.e. with the symmetric positive definite fourth order tensor C = [Cijkl],
i.e.

Cijkl = λδijδkl + µ
(
δikδjl+δilδjk

)
with µ > 0, λ > −2

d
µ, (4.1a)

Eij = αδij, hence Bij = α(dλ+ 2µ)δij, (4.1b)

Kij = κδij, (4.1c)

S :=
{
s̃ ∈ Rd×d

dev ; |s̃| ≤ σyield

}
(4.1d)

with δ denoting here the Kronecker symbol, λ and µ are the Lamé constants, α the
thermal-expansion coefficient, | · | the Frobenius norm, and σyield > 0 a so-called
yield stress. Thus the elastic stress is Cε = λtr(ε)I + 2µε with I = [δij] denoting
the unit matrix, and the corresponding energy density is 1

2
Cε:ε = 1

2
λ|tr(ε)|2 +

µ|ε|2 which defines a positive definite quadratic form of ε. Note that both (3.10c)
for C and (2.8) are satisfied. We further made the simplification that we did not
implement the nonlinear γ-terms in (3.6a,b); these terms were introduced in (3.6)
for the only purpose to guarantee (anyhow nonconstructively) existence of a solution
to this nonlinear system in the proof of Lemma 3.1 which we facilitate in numerical
implementation quite explicitly by checking convergence of the iterative solver we
use. Moreover, in our particular simulations, the discrete w was always well away
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from zero, hence we did not need to implement the enthalpy equation as a variational
inequality (3.6c) and only a-posteriori check positivity of the obtained wτh.

For our computational experiments, we considered a 2-dimensional specimen de-
picted on Figure 1 made of conventional steel. We summarize the employed data:

• Material data:
heat capacity cv = 3.2MJm−3K−1,
heat transfer coefficient κ = 80Wm−1K−1,
thermal-expansion coefficient α = 2 · 10−5K−1,
Young’s modulus E = 137GPa, Poisson ratio ν = 0.3,
plastic yield stress σyield := 450MPa.

• Geometry of the specimen: d = 2, Ω = (−5L
2
, 5L

2
) × (−L

2
, L

2
) for L = 10−2m,

ΓDir = Γtop
Dir ∪ Γbottom

Dir , Γtop
Dir = (−5L

2
, L

2
) × {L

2
}, Γbottom

Dir = (−L
2
, 5L

2
) × {−L

2
}, cf.

Figure 1.

• Initial conditions: u0(x) = αθ0x for x ∈ Ω, π0 := 0, and θ0 = 300 K.

• Experiment 1 – mechanically induced plastification: uDir(t, x) = 0 for x ∈
Γbottom

Dir and

(uDir)2(t, x) =

{
−t 2·10−3m/s (fast loading regime)

−t 2·10−4m/s (slow loading regime)
for x∈Γtop

Dir

thermal isolation (i.e. f(t, ·) = 0 on Γ).

• Experiment 2 – thermally induced plastification: mechanical loading de-
activated, i.e. uDir(t, x) = 0 for x ∈ Γbottom

Dir and (uDir)2(t, x) = 0 for x ∈ Γtop
Dir,

and

f(t, x) =

{
80 MJ/m2s (fast heating regime)

8 MJ/m2s (slow heating regime)
for x∈Γtop

Dir∪Γbottom
Dir

otherwise f(t, ·) = 0 on the rest of the boundary Γ\(Γtop
Dir∪Γbottom

Dir ).

The Lamé coefficients in (4.1a) are defined through λ = νE/((1+ν)(1−2ν)) and
µ = E/(2(1+ν)). Notice that we consider slightly more general boundary conditions
than (2.7), i.e., only the normal displacement on Γtop

Dir is prescribed (and gradually
increasing in time). Yet it still allows for an extension satisfying (3.11f).

��������������������������������

���������
���������
���������
���������

���������������
���������������
���������������
���������������

����������������

Γtop
Dir=normal Dirichlet

fixing and heating

fixing and heating
Γbottom

Dir =DirichletL = 1cm Γbottom
Dir =Dirichlet fixing

loading (compression)
Γtop

Dir=normal Dirichlet

Figure 1. Geometry for the 2D example:
Left: Experiment 1 (mechanical-loading),
Right: Experiment 2 (heating).

For the experiments, we use τ = 2−mT and h = 2−mL for m = 6, i.e. our trian-
gulation consists of 40.960 triangles with edges of the length 2−mL resulting from 6
so-called red-refinements of the coarse mesh with 10 triangles depicted on Figure 1.
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The displacements in all figures below are depicted magnified by a factor 20. Al-
ways, four snapshots are depicted, namely for t = 32τ , 64τ , 96τ , and 128τ = T . For
slow experiments we used T = 0.5s (i.e. τ = T/128 ∼ 4·10−3s) while for fast experi-
ments we used T = 0.05s (i.e. τ = T/128 ∼ 0.4·10−3s). Particular numerical issues
about the choice of a triangulation with the interplay of the numerical hardening
parameter η will be discussed in Section 4.3 below.

The nonlinear systems of mechanical and heat equations was decoupled and then
alternatingly iterated at each time step. The equations arising at each iteration from
the mechanical system were solved by a semismooth Newton method, cf. [9, 31].
The implementation of the Newton method was done in MATLAB in the spirit
of [1, 9, 16]. In our experiments the Newton scheme always terminated within at
most 8 iterations to achieve an `2-norm of the residual vector (defined through nodal
basis functions) less than 10−7J. Moreover, in all time steps, less than 7 fixed point
iterations were sufficient to achieve an absolute change of the temperature in the
H1 norm less than 10−6Km1/2.

4.1. Experiment 1: plastification via mechanical loading. To illustrate the
rate-dependence of the coupled model we displayed in Figure 2 snapshots of the
evolution of the plastic strain for different speeds of mechanical loading. The fast
process is shown in the left column and the 10 times slower one in the plots of the
right column.

0

1%

Figure 2. Experiment 1: Modulus of plastic strain |πh| evolving in time;
fast loading (left column) and slow loading (right column).

In both cases a shear band develops, indicated by the localized plastic strain
along the line that connects the points on the boundary where the type of boundary
condition changes. The corresponding temperatures are shown in Figure 3 and we
can see that the heating due to the heat generated by plastification is more localized
around the shear band in the case of fast loading (left column) than for slow loading
where it rather diffuses out of the shear band (right column). It is interesting to
note that the displacements differ significantly at the critical points of the boundary.
Owing to the rather localized temperature variations in the case of fast loading (left
column) the body expands rather locally around the shear band and this leads to
a different profile of the deformed boundary than in the slow loading process (right
column). In other words, the difference between the left and the right columns on
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300 K

305 K

Figure 3. Experiment 1: Temperature θh evolving in time; fast loading
(left column) and slow loading (right column).

Figure 2 documents the influence of the thermal coupling, and there would be no
difference in an isothermal case.

4.2. Experiment 2: plastification via external heating. To illustrate the effect
of thermal expansion, we “pumped” the heat through the Dirichlet part of the
(mechanical) boundary instead of the mechanical load considered in Section 4.1.
¿From the snapshots shown in Figures 4 and 5 for fast (left column) and slow
(right column) heating, we can see that the body expands where heat is pumped or
generated and this is localized to the neighbourhoods of the fixed part of the body
and later, to a smaller extent, also around the shear band, if it arises. In contrast
to the first experiment, the formation of the shear band is now very rate dependent
and we can see it pronounced especially under fast heating. A localization of plastic
stresses is also observed for the slow heating (right column) but the magnitude of
the plastic strain is considerably smaller. Another difference is that the shape of
the plastified region is not exactly straight, i.e. the shear band is rather diffused, cf.
also Figure 9 below.

0

1.5%

Figure 4. Experiment 2: Modulus of plastic strain |πh| evolving in time;
fast external heating (left column) and slow external heating (right col-

umn).
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300 K

1100 K

Figure 5. Experiment 2: Temperature θh evolving in time; fast external
heating (left column) and slow external heating (right column).

4.3. Suppressing mesh dependence. In Experiment 1 from Section 4.1, we study
the dependence of our numerical solution on the choice of the numerical hardening
parameter η = η(τ) in (3.2b) and on geometric properties of the underlying tri-
angulations. For the results shown in Figure 7 we used the hardening parameters
η(τ) = η0(τ/s)β for η0 = 108MPa and for three choices of β = 1, 3/2, 2 (top to bot-
tom), and we tried two choices of the triangulations whose directions either match
the expected direction of the expected shear band (right) or form an angle of π/4
with it (left). These were obtained from six uniform refinements of the triangu-
lations shown in Figure 6. In a sense, these are two extreme cases that may be
non-generic.

Figure 6. Two different triangulations tested, depicted for m = 0 before
their refinements for m = 6. Left: matching the expected shear band,
right: not matching the expected shear band.

We observe that the displacement and the plastic strain do not differ significantly
on the two triangulations, when the hardening parameter is given by η(τ) = η0τ/s
(upper row). For the choice η(τ) = η0(τ/s)3/2 we see moderate differences in the
solution (middle row) while for η(τ) = η0(τ/s)2 critical mesh-dependence of the
numerical solution occurs. The corresponding temperatures shown in Figure 8 show
similar effects that are less pronounced. These results motivated us to employ
η(τ) = η0τ

3/2 in the above presented experiments, where we always intentionally
used the triangulation that does not match the direction of the shear band to avoid
an artificial improvement of the approximation.

In Experiment 2, the shear band does not have the shape of a straight line, which
gave us another opportunity to study the influence of different triangulations. We
compared the plastic strains at the final time for triangulations consisting of halved
squares along the directions (1, 1) and (−1, 1) in Figure 9. Moreover, we used
the small hardening parameter η(τ) = η0(τ/s)2. Surprisingly, we do not observe
significant differences in the numerical solutions. The plastic strains are slightly
more localized in the case of the triangulation with diagonals parallel to the direction
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Figure 7. Modulus of plastic strain |πh| for Experiment 1 (fast) for t = T
for hardening parameters η(τ) = η0(τ/s)β for β = 1, 3/2, 2 (from top to
bottom) on non-matching (left) and matching triangulations (right). The
mesh dependence is pronounced for smaller η.

Figure 8. Temperature profiles corresponding to Figure 7.

(1, 1) but the choice of triangulation does not seem to influence the geometry of the
shear band. This is likely because the “S” shaped shear bend is not compatible with
any of these two triangulations, and it also documents that this “S” shape is the
actual mechanical phenomenon.

Figure 9. Modulus of plastic strain |πh| for t = T in the Experi-
ment 2 (fast) on triangulations resulting from six refinements of the ones
shown in Figure 6 and for the small hardening parameter η(τ) = η0(τ/s)2.

5. Convergence analysis of the scheme (3.6) in special cases

Convergence ultimately needs estimates in particular on the gradient of enthalpy w
to the limit especially in the non-linear Nemytskĭı operators arising by temperature
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dependence of cv which, in turn, is required to comply with (3.10b). Under L1-
heat sources, this needs special ‘nonlinear” test ‘functions 1 − 1/(1+w̄)δ that do
not seem to be available for spatially discrete problems. This is why the rigorous
convergence proof seems possible only in two successive steps, first h → 0 (holding
still in rather general situations) and only afterwards τ → 0, which altogether yield
only conditional convergence, cf. Remark 5.5 below. A further peculiarity is that,
due to the degree-1 homogeneity of δ∗S, the heat equation has its right-hand side not
only in L1(Q) (as it would be in case of higher-degree homogeneity of dissipative-
force potential) but even in measures. For this, the key trick is to recover the
exact energy balance in the limit. Here another peculiarity occurs, namely that
the required by-part integration in time does not seem to work if the strain rate
concentrates, which allows only for rather very conditional results either considering
only quasistatic problems (% = 0) or qualifying a-priori the limit in the dynamical
case, cf. also Remark 5.6 below.

We consider an evolution in the time interval I := (0, T ) with a fixed time horizon
T > 0 and denote Q := (0, T ) × Ω, Σ := (0, T ) × ∂Ω, and Ī := [0, T ]. We will use
a standard notation for function spaces, namely the space of the continuous Rk-
valued functions C(Ω̄;Rk), its dual M (Ω̄;Rk) (i.e., up to an isometric isomorphism,
the space of Borel measures), the continuously differentiable functions C1(Ω̄;Rk),
the Lebesgue space Lp(Ω;Rk), the Sobolev space W 1,p(Ω;Rk), and the Bochner space
of X-valued Bochner measurable p-integrable functions Lp(I;X). If X = (X ′)∗, the
notation L∞w∗(I;X) stands for space of weakly* measurable functions I → X; this
space is dual to the space L1(I;X ′) and, in general, is not equal to L∞(I;X). If
X is separable reflexive, then L∞(I;X) = L∞w∗(I;X) by Pettis’ theorem, however.
Moreover, we denote by B(Ī;X), Bw∗(Ī;X), BV(Ī;X) or Cw(Ī;X) the Banach
space of functions Ī → X that are bounded Bochner measurable, bounded weakly*
measurable, have a bounded variation or are weakly continuous, respectively; note
that all these functions are defined everywhere on Ī. We will use the notation
q′ = q/(q−1) for the conjugate exponent to q.

We will define the space of functions with bounded deformations and satisfying
the Dirichlet boundary conditions (2.16) by

BD(Ω;Rd):=
{
u∈L1(Ω;Rd); e(u)∈M (Ω̄;Rd×d

sym)
}

(5.1)

and moreover we define the space of admissible pairs (u, π) satisfying also the Dirich-
let boundary conditions (2.16) by

Q :=
{

(u, π) ∈ BD(Ω;Rd)×M (Ω∪ΓDir;Rd×d
dev );

e(u)−π|Ω∈L2(Ω;Rd×d
sym), us νdS+ π|ΓDir

= 0 on ΓDir

}
, (5.2)

where as b means the symmetrized tensorial product 1
2
(a⊗ b+ b⊗ a). We will also

use the spaces where velocities will typically live:

V :=
{
v∈L∞(I;L2(Ω;Rd)); e(v)∈L1(Q;Rd×d

sym), div v∈L2(Q), v|ΓDir
= 0
}
, (5.3)

For j = 0, 1, the L2-orthogonal projection onto Vj,h is denoted by Pj,h. We have
the following approximation property at our disposal for any 1 ≤ γ <∞, cf. e.g. [8]:

∀v ∈ W 1,γ(Ω) : P1,hv → v in W 1,γ(Ω), (5.4a)

∀v ∈ L2(Ω) : P0,hv → v in L2(Ω). (5.4b)
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Lemma 5.1 (Convergence for h↓0). Let again (3.10) and (3.11) hold, γ >
max(4, 2ω

ω−1
), and, in addition, let

f(·) ≥ 0 a.e. on Σ, (5.5a)

w0(·) ≥ w0,min > 0 a.e. on Ω. (5.5b)

Then there is a subsequence of {(uτh, πτh, wτh)}h>0 converging for h↓0 weakly* in
the topologies indicated in (3.13) to some (uτ , πτ , wτ ) and each triple obtained by
such way is a weak solution to (3.2)–(3.4), i.e. in term of the interpolants

%
[.
uτ
].
τ − div

(
σ̄τ + τ

∣∣.ετ ∣∣γ−2.
ετ
)

= div σ̄Dir,τ − %
[.
uDir,τ

].
τ , (5.6a)

∂δ∗S
(.
πτ
)

+ τκ0π̄τ 3 dev
(
σ̄τ + σ̄Dir,τ + τ

∣∣.ετ ∣∣γ−2.
ετ
)
, (5.6b)

.
wτ − div

(
K (w̄τ )∇w̄τ

)
= δ∗S

(.
πτ
)

+
(
D.
ετ + e(

.
uDir,τ ) + B(w̄τ )

)
:
(.
ετ + e(

.
uDir,τ )

)
, (5.6c)

ετ = e(uτ )−πτ , σ̄τ = D.
ετ+Cε̄τ−B(w̄τ ), ε̄τ = e(ūτ )−π̄τ , (5.6d)

with the boundary conditions

uτ = 0 on ΓDir, (5.7a)(
σ̄τ + τ

∣∣.ετ ∣∣γ−2.
ετ
)
ν = 0 on ΓNeu, (5.7b)(

K (w̄τ )∇w̄τ
)
· ν = f̄τ on Γ, (5.7c)

and with the initial conditions (3.5); here, (ūτ , π̄τ , w̄τ ) is the piece-wise constant
interpolant in time corresponding to (uτ , πτ , wτ ) and simultaneously also the limit of
the same subsequence of {(ūτh, π̄τh, w̄τh)}h>0.

Note that (5.6c) has the right-hand side in L∞(I;L2(Ω)) since γ ≥ 4 and since
πkτ−πk−1

τ is certainly in L2(Ω;Rd×d) for any k = 1, ..., Kτ , hence the weak formulation

of (5.6c) is understood standardly; here also the regularization w0τ and f̃τ is used.

Proof of the Lemma 5.1. For clarity, we split the proof into four steps.

Step 1 – selection of subsequences: By Banach’s selection principle, we first select
a weakly* convergent subsequence in the spaces indicated in (3.13). Due to the
construction of V1,h, we have the approximation property (5.4) at our disposal.
Hence we can consider also a sequence {(ũτh, π̃τh)}h>0 converging strongly to (uτ , πτ )
even in W 1,∞(I;W 1,2(Ω;Rd) × L2(Ω;Rd×d

dev )) and simultaneously e(ũτh) − π̃τh →
e(uτ ) − πτ strongly in W 1,∞(I;Lγ(Ω;Rd×d

sym)) and such that (ũτh, π̃τh) : I → V d
1,h ×

V d×d
0 ; here one must take into account that τ > 0 is fixed hence only a finite number

of values of (uτ , πτ ) is to be approximated by using (5.4). We can choose

ũτh := P1,huτ and π̃τh := P0,hπτ . (5.8)

Step 2 – strong convergence
.
ετh →

.
ετ and πτh → πτ : Due to the dissipative-heat

terms in (5.6c), we need to prove the mentioned strong convergence. To achieve
this goal, we test the Galerkin identity (3.6a) by Dt(u

k
τh−ũkτh) and the Galerkin

inequality (3.6b) by Dtπ̃
k
τh; note that we approximated (uτ , πτ ) by (ũτh, π̃τh) in order

to be able to make such a test. Then we sum it up for k = 1, ..., l ≤ T/τ and use
the so-called d-monotonicity of Dγ,τ : Lγ(Ω×[0, t];Rd×d)→ Lγ/(γ−1)(Ω×[0, t];Rd×d) :
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ε 7→ Dε+ τ |ε|γ−2ε. Considering t = lτ , this leads to

τ
(∥∥.ετh∥∥γ−1

Lγ(Ω×[0,t];Rd×d)
−
∥∥.ετ∥∥γ−1

Lγ(Ω×[0,t];Rd×d)

)(∥∥.ετh∥∥Lγ(Ω×[0,t];Rd×d)
−
∥∥.ετ∥∥Lγ(Ω×[0,t];Rd×d)

)
+ d
∥∥.ετh−.ετ∥∥2

L2(Ω×[0,t];Rd×d)
+
η(τ)

2

∥∥πτh(t)−πτ (t)∥∥2

L2(Ω;Rd×d)

≤
∫ t

0

∫
Ω

(
Dγ,τ (

.
ετh)−Dγ,τ (

.
ετ )
)
:(
.
ετh−

.
ετ ) dxdt+

η(τ)

2

∫
Ω

∣∣πτh(t)−πτ (t)∣∣2dx

≤
∫ t

0

∫
Ω

(
Dγ,τ (

.
ετh)+Cε̄τh−Dγ,τ (

.
ετ )−Cε̄τ

)
:(
.
ετh−

.
ετ )

+ %
[.
uτh−

.
uτ
].
τ ·(
.
uτh−

.
uτ ) + η(τ)(π̄τh−π̄τ ):(

.
πτh−

.
πτ ) dxdt

≤
∫ t

0

∫
Ω

(
B(w̄τh)+σ̄Dir,τ

)
:
(.
ετh−

.
ε̃τh
)

+ δ∗S(
.
π̃τh)− δ∗S(

.
πτh) (5.9a)

+%
[.
uτh
].
τ ·(
.
ũτh−

.
uτ )+

(
Dγ,τ (

.
ετh)+Cε̄τh

)
:(
.
ε̃τh−

.
ετ )+η(τ)π̄τh:(

.
π̃τh−

.
πτ ) (5.9b)

−%
[.
uτ
].
τ ·(
.
uτh−

.
uτ )−

(
Dγ,τ (

.
ετ )+Cε̄τ

)
:(
.
ετh−

.
ετ )−η(τ)π̄τ :(

.
πτh−

.
πτ ) dxdt→ 0,

(5.9c)

where d > 0 denotes the positive-definiteness constant of D, cf. (3.10c). We used the
inequalities D2

tu
k
τ :Dtu

k
τ ≥ 1

2
Dt|Dtu

k
τ |2 and Dεkτ :Dtε

k
τ ≥ 1

2
Dt(Dεkτ :εkτ ) and similar also

for the π-terms, which is just a generalization of the elementary algebraic inequality
of the type (ak−ak−1)ak ≥ 1

2
a2
k − 1

2
a2
k−1, together with the “telescopical” effect∑l

k=1
1
2
a2
k − 1

2
a2
k−1 = 1

2
a2
l ≥ 0 if a0 = 0.

Let us show the convergence to 0 in (5.9). We have B(w̄τh) → B(w̄τ ) certainly
in L2(Q) (in fact even in a much smaller Lebesgue space L2dω/(d−2)−ε(Q) with ε > 0)

due to the compact embedding W 1,2(Ω) b L2(Ω) so that B(w̄τh):(
.
ετh−

.
ε̃τh) → 0

weakly in L1(Q). Also, we use

lim sup
h→0

∫ t

0

∫
Ω

δ∗S(
.
π̃τh)− δ∗S(

.
πτh)dxdt = lim

h→0

∫ t

0

∫
Ω

δ∗S(
.
π̃τh)dxdt

− lim inf
h→0

∫ t

0

∫
Ω

δ∗S(
.
πτh)dxdt ≤

∫ t

0

∫
Ω

δ∗S(
.
πτ )dxdt−

∫ t

0

∫
Ω

δ∗S(
.
πτ )dxdt = 0. (5.10)

Hence the terms in (5.9a) converge to 0 for h→ 0.
Furthermore, as τ > 0 is fixed, {[ .uτh]

.
τ}h>0 is bounded in L∞(0, t;L2(Ω;Rd)) and.

ũτh →
.
uτ strongly in L∞(0, t;L2(Ω;Rd)). Similar arguments hold for the other terms

in (5.9b), which shows that also (5.9b) converge to 0 for h→ 0.
Also, again relying on τ > 0 fixed, we have the weak L2-convergence

.
uτh →

.
uτ ,.

ετh →
.
ετ , and

.
πτh →

.
πτ , which shows that also (5.9c) converge to 0.

Altogether, from (5.9) considered for t = T , one can see ‖.ετh‖Lγ(Q;Rd×d) →
‖.ετ‖Lγ(Q;Rd×d), which, together with

.
ετh ⇀

.
ετ and the uniform convexity of the

Banach space Lγ(Q;Rd×d), gives the strong convergence
.
ετh →

.
ετ in Lγ(Q;Rd×d).

Considering (5.9) for arbitrary t = lτ , l = 1, ..., T/τ , one can also see πτh → πτ in
L∞(I;L2(Ω;Rd×d)).

Step 3 – limit passage in (3.6): Based on the convergences proved in Step 2, we have

D.ετh:.ετh → D.ετ :.ετ strongly in L∞(I;L2(Ω)), (5.11a)

δ∗S(
.
πτh)→ δ∗S(

.
πτ ) strongly in L∞(I;L2(Ω)) (5.11b)

because τ > 0 is considered fixed. For (5.11a), we used that γ ≥ 4. Altogether, we
proved strong convergence of the heat sources in L1(Q).
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Then, having such a strong convergence, we can perform the desired limit passage
to the boundary-value problem (5.6a,b)–(5.7) formulated weakly completed with the
limit of (3.9c), i.e. the variational inequality∫

Q

.
wτ
(
v−w̄τ

)
+
(
K (w̄τ )∇w̄τ

)
·∇
(
v−w̄τ

)
dxdt

≥
∫
Q

((
D.ετ+De(.uDir,τ )+B(w̄τ )

)
:
(.
ετ+e(

.
uDir,τ )

)
+ δ∗S

(.
πτ
))(

v−w̄τ
)

dxdt

+

∫
Σ

f̄τ
(
v−w̄τ

)
dSdt ∀v ∈ L1(I;W 1,2(Ω)), v(·) ≥ 0 a.e. on Q, (5.12)

In particular, the limit passage from (3.9a) to (5.6a) uses also the approximation
property (5.4a) while (5.4b) was used for (3.9b) → (5.6b).

Step 4 – positivity of enthalpy wτ : Eventually, we prove positivity of the enthalpy.
We adapt a comparison argument from [14, Section 4.2.1] to the time-discrete set-
ting, improving thus also [25]. Written (5.12) in the classical form, we obtain the
estimate

.
wτ − div

(
K (w̄τ )∇w̄τ

)
= δ∗S

(.
πτ
)

+
(
D.ετ+De(.uDir,τ )+B(w̄τ )

)
:
(.
ετ+e(

.
uDir,τ )

)
+ r̄τ

≥ d
∣∣.ετ+e(.uDir,τ )

∣∣2 + B(w̄τ ):
(.
ετ+e(

.
uDir,τ )

)
≥ d

2

∣∣.ετ+e(.uDir,τ )
∣∣2 − 1

2d
|B(w̄τ )|2 ≥ −

ω2|B|2

2dc2
0

w̄2
τ , (5.13)

where r̄τ ≥ 0 is the “reaction” multiplier to the constraint wkτ ≥ 0 involved in the
limit variational inequality arising from (3.6c) and d > 0 is as in (5.9). The equality
in (5.13) is just (5.12) written in the classical form in the sense of distributions.
Note that we used also the first inequality in (3.15) from which B(w) ≤ |B|ω|w|/c0

follows. We compare (5.13) with the solution to the difference equation

Dtχ
k
τ = −ω

2|B|2

2dc2
0

(χkτ )
2 ∀ k = 1, . . . , Kτ , (5.14)

to be solved recursively starting from the initial datum χ0 = w0,min > 0 with
w0,min from (5.5b). In fact, this is an implicit discretization of the Riccati ordinary-
differential equation

.
χ + ω2|B|2χ2/(2dc2

0) = 0 which, for χ(0) = w0,min > 0, gives
a sub-solution of the (continuous) heat equation. This initial-value problem has
the solution χ(t) = 2dc2

0/(ω
2|B|2t+ 2dc2

0/w0,min). The implicit discretization of this
decaying convex solution to the mentioned Riccati equation is always above in the
sense χkτ > χ(kτ). Thus we have

χkτ > χ∗ := min
t∈[0,T ]

χ(t) =
2dc2

0

ω2|B|2T + 2dc2
0/w0,min

> 0 ∀ k = 1, . . . , Kτ . (5.15)

We subtract (5.13) from (5.14) written as
.
χτ = −ω2|B|2χ̄2

τ/(2dc
2
0) the piecewise affine

χτ taking values χkτ at t = kτ and the corresponding piecewise constant χ̄τ . Both χτ
and χ̄τ are considered spatially constant. We then make the test by (w̄τ−χ̄τ )− ≤ 0,
integrate over Ω at each t ∈ I, use Green’s formula, and exploit the fact that f̄τ ≥ 0
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a.e. in Σ. Thus, using also convexity of ((·)−)2, we obtain

1

2

d

dt

∫
Ω

(
(wτ−χτ )−

)2
dx ≤

∫
Ω

(w̄τ−χ̄τ )−(
.
wτ−

.
χτ )dx

≤
∫

Ω

ω2|B|2

2dc2
0

(
w̄2
τ−χ̄2

τ

)(
w̄τ−χ̄τ

)−
−K (w̄τ )∇w̄τ ·∇

(
w̄τ−χ̄τ

)−
dx−

∫
Γ

f̄τ
(
w̄τ−χ̄τ

)−
dS ≤ 0, (5.16)

where the last inequality also due to

K (w̄τ )∇w̄τ ·∇
(
w̄τ−χ̄τ

)−
= K (w̄τ )∇(w̄τ−χ̄τ

)
·∇
(
w̄τ−χ̄τ

)−
= K (w̄τ )∇(w̄τ−χ̄τ

)−·∇(w̄τ−χ̄τ)− ≥ 0 (5.17)

a.e. on Ω, due to wτ ≥ 0, and also due to (5.5a). Realizing the initial condition
(wτ (0)−χτ (0))− = (w0−w0,min)− = 0 due to (5.5b), we easily conclude that (wτ −
χτ )

− = 0 a.e. on Q, whence wτ ≥ χτ ≥ χ∗ > 0 a.e. in Q. This shows, in particular,
that the constraint w̄τ ≥ 0 in the variational inequality (5.12) is never active and
thus the limit problem is an equality, as indeed formulated in (5.6c). 2

The following Propositions 5.2–5.4 have essentially been proved in [30, Prop.2-3
and Rem.5]. For completeness, let us very briefly summarize the results and sketch
basic ideas.

Proposition 5.2 (Uniform a-priori estimates for (5.6)). Let (3.10), (3.11), and
(5.5) hold, γ > max(4, 2ω

ω−1
), and, in addition, let the exponent ω from (3.10b)

satisfy

ω >
2d

d+2
. (5.18)

Then, for some C and Cr, it holds∥∥uτ∥∥W 1,∞(I;L2(Ω;Rd))
≤ C if % > 0, (5.19a)∥∥e(uτ )∥∥W 1,1(I;L1(Ω;Rd×dsym ))
≤ C, (5.19b)∥∥div uτ

∥∥
W 1,2(I;L2(Ω))

≤ C, (5.19c)∥∥πτ∥∥W 1,1(I;L1(Ω;Rd×ddev ))
≤ C, (5.19d)∥∥e(uτ )− πτ∥∥W 1,2(I;L2(Ω;Rd×dsym ))

≤ C, (5.19e)∥∥w̄τ∥∥L∞(I;L1(Ω))∩Lr(I;W 1,r(Ω))
≤ Cr with any 1 ≤ r < d+2

d+1
, (5.19f)∥∥.wτ∥∥L1(I;W 1+d,2(Ω)∗)

≤ C, (5.19g)∥∥στ∥∥L2(Q;Rd×dsym )
≤ C, (5.19h)∥∥e(.uτ )− .

πτ
∥∥
Lγ(Q;Rd×dsym )

≤ Cτ−1/γ, (5.19i)∥∥π̄τ∥∥L∞(I;L2(Ω;Rd×ddev ))
≤ Cη(τ)−1/2. (5.19j)

In particular, if % > 0, the velocity
.
uτ is bounded in the Banach space V from (5.3).

Sketch of the proof. First a-priori estimates, namely (5.19a), (5.19j), and the L∞-
part of (5.19f), can directly be inherited from (3.12). If ω ≥ 2, from (3.14), we can
also inherit the estimates (5.19b), (5.19d), and (5.19e). Here we will get them even
for smaller ω as specified in (5.18).
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Then one uses the L1-theory for the evolutionary heat equation [5, 6] based on
the test by 1− 1/(1+w̄τ )

δ, δ > 0, combined with the interpolation of the adiabatic
term by using repeatedly the Gagliardo-Nirenberg inequality as in [27, 29], which
eventually allows us to bound the dissipation, yielding (5.19d) and (5.19e), and to
bound the enthalpy gradient, yielding the second part of (5.19f). ¿From (5.19d) and
(5.19e) one gets also (5.19b). Moreover, B(w̄τ ) is shown bounded in L2(Q) and then
from (5.19e) we obtain (5.19h). As tr

.
π = 0, (5.19e) implies that div

.
uτ = tr e(

.
uτ ) =

tr(e(
.
uτ )−

.
π) = tr

.
ετ bounded in L2(Q), i.e. (5.19c). The boundedness of

.
uτ in V

follows from (5.19a-c). 2

It remains to carry out a final limit passage with τ → 0 towards the continuous
model. This requires a suitable definition of a weak-type solution. The following
definition of a certain sort of a weak solution has been devised in [29], based on
the concept of so-called energetic solution invented by Mielke at al. [15, 21, 23,
24] for the theory of rate independent processes and adapted also for the coupling
with viscous/inertial effects in [28]. Here still further adaptations to cope with
concentrations of strains is needed and implemented in the following definition; for
a more detailed discussion especially about the semistability (5.21d) we refer to [30].

Definition 5.3. (Energetic solution.) Assuming (4.1a) and (3.11), we call a
triple (u, π, w) with

u ∈ B(I; BD(Ω;Rd)), (5.20a)

ε = e(u)−π ∈ W 1,2(I;L2(Ω;Rd×d
sym)), (5.20b)

.
u ∈ V from (5.3), (5.20c)

π ∈ B(Ī;W 1,2(Ω;Rd×d
dev )) ∩ BV(Ī;L1(Ω;Rd×d

dev )), (5.20d)

w ∈ Lr(I;W 1,r(Ω)) ∩ L∞(I;L1(Ω)) ∩Bw∗(Ī; M (Ω̄)), (5.20e).
w ∈M (Ī;W 1+d,2(Ω)∗) (5.20f)

with any 1 ≤ r < d+2
d+1

an energetic solution to (2.15) with the initial/boundary
conditions (2.17) and (3.4) if the following five conditions hold:
(i) the weakly formulated momentum-equilibrium equation (2.15a-c) with (2.16a,b)

holds, i.e. for all v∈C1(Q̄;Rd) such that v(t, ·)|ΓDir
=0 for all t and v(T, ·)=0,

∫
Q

(
D.
ε+Cε−B(w)

)
:e(v)− %.u·.v dxdt

=

∫
Ω

%u̇0·v(0) dx−
∫
Q

(
Dε(.uDir)+Cε(uDir)

)
:e(v) + %

..
u Dir·v dxdt, (5.21a)

(ii) the weakly formulated enthalpy equation (2.15e) with (3.4c) holds, i.e. for all
v∈C1(Q̄) with v(T ) = 0,

∫
Q

K (w)∇w·∇v − w.
v −

(
B(w) + D.

ε + Dε(.uDir)
)
:
(.
ε+ε(

.
uDir)

)
v dxdt

=

∫
Q̄

v
∣∣.π∣∣

S
(dxdt) +

∫
Ω

w0v(0) dx+

∫
Σ

fv dSdt, (5.21b)
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(iii) the total energy equality holds:∫
Ω

%

2
|.u(T )|2 +

1

2
Cε(T ):ε(T ) dx+

∫
Ω̄

w(T, dx) =

∫
Ω

%

2
|u̇0|2 +

1

2
Cε0:ε0 dx

+

∫
Ω

w0 dx+

∫
Σ

f dSdt+

∫
Q

De(.uDir):e(
.
uDir)+Ce(uDir):

.
ε−%..u Dir·

.
u dxdt, (5.21c)

(iv) the “semistability” holds for any ũ ∈ BD(Ω;Rd) and π̃ ∈M (Ω̄;Rd×d
dev ) such that

ε̃ := e(ũ)−π̃ ∈ L2(Ω;Rd×d
sym) and for a.a. t ∈ [0, T ], i.e.∫

Ω

1

2
Cε(t):ε(t) + s(t):ε(t)dx ≤

∫
Ω

1

2
Cε̃:ε̃+ s(t):ε̃dx+

∫
Ω̄

δ∗S(·)
[
π̃−π(t)

]
(dx), (5.21d)

with the “partial stress” s(t) := D.
ε(t)−B(w(t))+σDir(t), (5.21e)

(v) the initial conditions u(0) = u0 and π(0) = π0 hold.

In (5.21b), | .π|S ∈ M (Q̄) denotes the total variation of the measure
.
π ∈

M (Q̄;Rd×d
dev ) with respect to δ∗S; in case of (4.1d), we have just | .π|S = σyield|

.
π|

with | .π| the standard total variation, while in general | .π|S is defined by prescribing
its values for every closed set of the type A := [t1, t2]×B with B a Borel subset of
Ω̄ by

∣∣.π∣∣
S
(A) := sup

k∑
i=1

∫
Ω

δ∗S
(
π(si, x)−π(si−1, x)

)
dx (5.22)

where the supremum is taken over all partitions t1≤s0<...<sk≤t2, k∈N.
It is not surprising that we will be able to prove existence of an energetic solution

only for suitably qualified initial conditions (u0, π0, w0) that can be interpreted as
some sort of a “gentle” start. Standardly, we assume that the triple (u0, π0, w0) is
semistable at t = 0, which needs here, however, a special care because

.
ε(t) occurring

in s(t) in (5.21d) is well defined only for a.a. t and not just for t = 0. The simplest
option [30], consistent also with Section 4, how to overcome this trouble is to assume
π0 = 0 and to guarantee even π(t, ·) = 0 and also u(·, x) constant for all t ∈ [0, t0]
with some t0 > 0 because then simply

.
ε(0) = 0. This happens if u minimizes the

stored energy, and temperature is equilibrated. We can equally require that such an
extension exist on [−t0, 0] and prescribe the initial condition (without any ambitions
of generality) and their regularization used in (3.5) as

u0 = u0,τ ∈ W 1,∞(Ω;Rd), π0 = π0,τ , w0 = w0,τ ≥ 0 constant on Ω, (5.23a)

u0 minimizes u 7→
∫

Ω

1

2
Ce(u):e(u) + (B(w0)−σDir(0)):e(u) dx. (5.23b)

The other, rather implicit and technical assumption formulated in [2] is that, for
all t ∈ [0, T ] and all (u, π) ∈ Q the following holds:

If E(t, u, π) ≤ E(t, u+û, π+π̂) +R(π̂) for all (û, π̂) ∈ Q0,

then E(t, u, π) ≤ E(t, u+ũ, π+π̃) +R(π̃) for all (ũ, π̃) ∈ Q,

}
(5.24)

where we abbreviated E(t, u, π) :=
∫

Ω
(1

2
Cε+s(t)):ε dx with ε = e(u)−π and R(π̇) :=∫

Ω∪ΓDir
δ∗S(·)π̇(dx), and where Q is from (5.2) and

Q0 :=
{

(u, π)∈W 1,1(Ω;Rd)×L1(Ω;Rd×d
dev ); u=0 on ΓDir, e(u)−π∈L2(Ω;Rd×d

sym)
}
.
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It was proved essentially in [11] (cf. [2, Prop. 3.3]) that the condition (5.24) is satisfied
for a certain special C (in particular for C from (4.1a)) and is Γ and the boundary
of ΓDir is smooth. It was conjectured in [2] that (5.24) holds more generally.

As far as the (regularized) loading concerns, we assume

f̃τ∈L∞(Σ), f̃τ ≥ 0, lim
τ↓0

√
τ
∥∥f̃τ∥∥L2(I;L4/3(Γ))

= 0, lim
τ↓0

f̃τ = f in L1(Σ). (5.25)

Proposition 5.4 (Convergence for τ↓0). Let d ≤ 3, let (3.10), (3.11), (5.5), (5.18),
and (5.23)–(5.25) hold, and γ > max(4, 2ω

ω−1
),. Then:

(i) there is a subsequence of {(uτ , πτ , wτ )}τ>0 and (u, π, w) such that

(ūτ , π̄τ )→ (u, π) weakly* in L∞(I; BD(Ω;Rd)×M (Ω̄;Rd×d
sym)), (5.26a)

ετ = e(uτ )−πτ → ε = e(u)−π weakly in W 1,2(I;L2(Ω;Rd×d
sym)), (5.26b)

w̄τ → w strongly in Lr(Q), 1 ≤ r < (d+2)/d, (5.26c)

w̄τ (t)→ w(t) weakly* in M (Ω̄) ∀t ∈ Ī . (5.26d)

π̄τ (t)→ π(t) weakly* in M (Ω̄) ∀t ∈ Ī . (5.26e)

div
.
uτ → div

.
u weakly in L2(Q). (5.26f)

(ii) Moreover, if % = 0 (=the quasi-static case), then any (u, π, w) obtained in this
way is an energetic solution of the problem (2.15) with the initial/boundary
conditions (2.17) and (3.4) according Definition 5.3 and the stresses converges
strongly, i.e.

στ → σ = D(e(
.
u)−.

π)+C(e(u)−π)−B(w) strongly in L2(Q;Rd×d
sym), (5.27)

(iii)Also, if % > 0 and dev σDir ∈ L∞(Q;Rd×d
dev ) is assumed, and, in addition, e(

.
u)

happens to be absolutely continuous, i.e. e(
.
u) ∈ L1(Q;Rd×d

sym), then this triple
(u, π, w) is an energetic solution to (2.15)-(2.17)-(3.4) and (5.27) holds, too.

The proof of the points (i)–(ii) can be found in [30]. The point (iii) can be proved
by modification in the spirit of [30, Remark 5], the only important ingredients being
the by-part integration formula∫

Ω

%

2
|.u(T )|2dx−

∫
Ω

%

2
|.u(0)|2dx =

〈
%
..
u,
.
u
〉

=

∫
Q

fDir·
.
u− στ :e(

.
u) dxdt

=

∫
Q

fDir·
.
u− tr(σs)div

.
u− dev σ:dev e(

.
u) dxdt (5.28)

where we used the decomposition of the stress to the spherical and the deviatoric
parts, i.e. στ = σs

τ + dev στ and where 〈·, ·〉 refers to the duality pairing on V ∗ × V
from (5.3). Here, it is important that div

.
u ∈ L2(Q) has been inherited from (5.19c)

and that dev(σ+σDir) ∈ S a.e. has already been proved so that dev σ ∈ L∞(Q;Rd×d
dev )

since dev σDir ∈ L∞(Q;Rd×d
dev ) is assumed. Standardly, (5.28) is first proved for

mollified u’s by conventional calculus and then by letting these mollifiers converge
to the limit. Usually, one can rely on the strong convergence but it does not work
if the original distribution that is mollified were not any L1-function but only a
measure. This is why we had to assume e(

.
u) ∈ L1(Q;Rd×d

sym). This assumption

e(
.
u) ∈ L1(Q;Rd×d

sym) together with we have
.
u ∈ V give the sense to the integral

on the right-hand side of (5.28), which allows the rigorous proof of (5.28). Let us
emphasize that (5.28) is needed to keep the energy balance which is further needed
to show (5.27) which is eventually vitally needed to converge the dissipative heat in
the enthalpy equation.

24



Remark 5.5 (Merging space and time convergence). The joint convergence for h↓0
and τ↓0 is not obvious, unfortunately. Following [4, Corollary 4.8], one can at least
prove existence of a function H : R+ → R+ such that every subsequence in the
set {(uτh, πτh, wτh)}h>0,τ>0,h≤H(τ) which converges for h↓0 and τ↓0 weakly* in the
topologies indicated in (3.12a-c) and, if ω ≥ 2, also in (3.14) yields, as its limit
(u, π, η, w), an energetic solution according Definition 5.3. Yet, any more specific
form of H seems difficult to obtain.

Remark 5.6 (Dynamical case). The assumption of non-concentration of strain rate
in Proposition 5.4 (or even rather only of dev e(

.
u) ∈ L1(Ω;Rd×d

sym), which would suffice
for (5.28)) is hardly to be ensured a-priori; note that, by (5.19b) and (5.26b), we
have only

.
π ∈ M (Q̄;Rd×d

sym) and e(
.
u)− .π ∈ L2(Q;Rd×d

sym) so that e(
.
u) ∈ M (Q̄;Rd×d

sym)
in general. This makes the convergence assertion in the dynamical case rather
vague. It is not clear whether it is “only” a mathematical difficulty or whether it is
related with some physical phenomenon of dissipation of energy during impacts of
elastic waves on shear bands, similarly like it may possibly happen during impacts
on a unilateral Signorini boundary contact (which remains for a long time an open
difficult problem).
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2005.
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