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Abstract. A simple criterion that allows the efficient local coarsening of triangulations created by
bisections is devised and analyzed. Under a mild condition on the initial triangulation the proposed
criterion allows to gradually reverse the entire refinement without employing its history explicitly.
Numerical experiments underline the efficiency of the resulting algorithm.

1. Introduction

Adaptive mesh refinement is a popular tool for the efficient discretization of partial differen-
tial equations and is now well understood for linear elliptic problems [Stev07, CKNS08]. For
time-dependent and nonlinear problems coarsening is an important ingredient to develop efficient
adaptive strategies, e.g., when interfaces or singularities advance in time or during an iterative
method the refined region of the triangulation should follow the interface or singularity. Exam-
ples of partial differential equations for which such phenomena occur are phase field models and
geometric evolution problems.

Most available coarsening strategies store the complete refinement history of the grid, i.e., the
binary tree of bisections, explicitly and then reverse entire refinement steps in order to guarantee
conformity of the resulting coarsened triangulation. A local coarsening strategy that allows to
remove single nodes of a two-dimensional triangulation has been devised, analyzed, and successfully
tested in [CZ07]. The criterion states that configurations of four or two neighbouring triangles
around one node can be coarsened if the node is the newest vertex for all of those triangles. This
coarsening criterion characterizes patches of nodes that result from the compatible bisection of two
neighbouring triangles that share their refinement edge or of one triangle whose refinement edge
belongs to the boundary. Related ideas for local coarsening have also been outlined in [Kos94].

In this article we demonstrate that the same criterion can be applied in any dimension. The
generalized criterion states that a node can be coarsened locally if and only if it is the newest
vertex of all elements it belongs to and is not a node of the initial triangulation. Such nodes are
exactly those nodes that are created by compatible bisections of edge patches. By this we mean
the bisection of an edge in a triangulation which is the refinement edge of all elements it belongs
to. For the criterion to be applicable we assume that the given triangulation is obtained from an
initial one by a successive bisection of compatible edge patches. Employing a recursive refinement
algorithm from [Kos94, Stev08] we show that triangulations obtained with bisection algorithms that
are equivalent to completion strategies satisfy this requirement under mild conditions on the initial
triangulation. We thereby give a more constructive and general proof of the assertions in [CZ07].

The outline of this paper is as follows. We povide equivalent characterizations of nodes that
can be coarsened locally in Section 2, discuss a refinement algorithm that leads to triangulations
which can be entirely coarsened in Section 3, specify an appropriate choice of refinement edges in
Section 4, and illustrate the performance of the coarsening criterion in numerical experiments in
Section 5.

Date: June 3, 2010.
Key words and phrases. Bisection, coarsening, adaptivity, partial differential equations, finite elements.

1



2. Compatible edge patch bisection and local coarsening

Let T be a conforming triangulation of a polyhedral Lipschitz domain Ω ⊂ Rd consisting of
simplices called elements. Here, conforming means that the boundary of Ω is matched exactly by
subsimplices of elements and the intersection of two disjoint elements is either empty or an entire
subsimplex of both elements. We let E(T ) denote the set of all one-dimensional subsimplices in T
called edges and define the edge patch TE of an edge E ∈ E(T ) as

TE := {T ∈ T : E ⊂ T}.
Similarly, N (T ) is the set of nodes (vertices of simplices) in T and the node patch Tz of a node
z ∈ N (T ) is defined as

Tz := {T ∈ T : z ∈ T}.
We assume that for any triangulation T we are given a function R : T → E(T ) which associates to
each element T ∈ T its refinement edge R(T ) ∈ E(T ). The sons s1(T ) and s2(T ) are the simplices
that result from bisecting T along its refinement edge R(T ) ∈ E(T ). The newly created vertex on
the edge R(T ) is called the newest vertex of s1(T ) and s2(T ). The father of a simplex T ′ is the
element T = f(T ′) such that either T ′ = s1(T ) or T ′ = s2(T ).

Definition 2.1. We say that the triangulation Tf results from the triangulation Tc by compatible
bisection of the edge patch Tf,E if E ∈ E(Tc) is the refinement edge for all T ∈ Tc,E and if

Tf =
(
Tc \ Tc,E

)
∪
{
sj(T ) : T ∈ Tc,E , j = 1, 2

}
.

In the following we let T0 be a fixed conforming triangulation of Ω.

Definition 2.2. The class T = T(T0) of conforming triangulations that result from T0 by successive
compatible bisection of edge patches is the set of triangulations for which there exists a sequence
of triangulations (Tj)Lj=0 and edges (Ej)L−1

j=0 such that TL = Tf and for j = 0, 1, ..., L − 1 we have
Ej ∈ E(Tj) and Tj+1 is obtained from Tj by compatible bisection of the edge patch Tj,Ej .

We will show that triangulations in T can be coarsened locally in the sense of the following
definition.

Definition 2.3. Given a triangulation Tf ∈ T we say that the node z ∈ N (Tf ) \ N (T0) can be
coarsened locally if there exists a triangulation Tc ∈ T and an edge E ∈ E(Tc) such that Tf results
from Tc by compatible bisection of the edge patch Tf,E and N (Tf ) = N (Tc) ∪ {z}.
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Figure 1. Compatible bisection of edge patches in two and three dimensions. All
elements share the refinement edge (thick line) and the newly created vertex (filled
circle) can be coarsened locally.

Proposition 2.4. The node z ∈ N (Tf ) \ N (T0) can be coarsened locally if and only if it is the
newest vertex of all elements it belongs to.
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Proof. Suppose that z ∈ N (Tf ) can be coarsened locally, i.e., there exist Tc ∈ T and E ∈ E(Tc)
such that Tf results from the triangulation Tc by compatible bisection of the edge patch Tc,E and
z is newly created. Then z is the newest vertex of all elements it belongs to.

Assume now that z ∈ N (Tf ) \ N (T0) is the newest vertex of all elements it belongs to. Since
z /∈ N (T0) and z is the newest vertex for each T ′ ∈ Tf,z we have that each such T ′ is the son of
some simplex T , e.g., T ′ = s1(T ). If s2(T ) 6∈ Tf,z then there exists a neighbouring element T ′′ to
T ′ with z ∈ T ′′ which results from bisections of s2(T ). But then z could not be the newest vertex
of T ′′. We can thus define

Tc :=
(
Tf \ Tf,z

)
∪
{
f(T ′) : T ′ ∈ Tf,z

}
and it follows that Tf results from Tc by a compatible bisection of the edge patch Tc,E where
E = R(f(T ′)) for an arbitrary element T ′ ∈ Tf,z. It remains to be shown that Tc ∈ T. Since Tf ∈ T
there exist triangulations (Tj)Lj=0 and edges (Ej)L−1

j=0 with TL = Tf and Tj+1 is obtained from Tj by
compatible bisection of the edge patch Tj,Ej . We have E = Ej′ for some 0 ≤ j′ ≤ L− 1 and since z
is the newest vertex of all elements in Tf,z we have Tf,z ⊂ Tk for k = j′+ 1, ..., L. We may therefore
assume that j′ = L− 1, i.e., EL−1 = E and TL−1 = Tc. Hence, Tc ∈ T. �

Local coarsening of conforming refinements of arbitrary triangulations is not always possible.
The triangulation shown in Figure 2 shows that this depends on the choice of refinement edges.
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Figure 2. Triangulation T0 (left; refinement edges are indicated by bars) whose
uniform refinement of level 1 is not conforming (middle). A completion strategy
leads to a triangulation (right) which can not be coarsened locally, i.e., none of the
newly created nodes (filled circles) is the newest vertex (indicated by arrows) of all
elements it belongs to. The numbers in the left part define local orderings of the
vertices of the elements.

3. Triangulations created by bisections

Under mild conditions on T0 and for an appropriate choice of refinement edges, cf. Lemma 3.1
below, the bisection algorithm of [Kos94, Stev08] specified below terminates and produces the
smallest conforming refinement of the given triangulation T in which the element T ∈ T is refined.
Given T ′ ∈ T the setN(T , T ′) consists of all elements T ′′ ∈ T that share a side (a (d−1)-dimensional
subsimplex) with T ′ and contain the refinement edge R(T ′) of T ′; the element T ′′ ∈ N(T , T ′) is said
to be compatibly divisible with T ′ if it has the same refinement edge as T ′, i.e., if R(T ′′) = R(T ′).
Note that the edge patch TR(T ) can be compatibly bisected if and only if for all T ′ ∈ TR(T ) and all
T ′′ ∈ N(T , T ′) we have that T ′′ ∈ TR(T ) and T ′′ and T ′ are compatibly divisible.
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function T ′ = refine[T , T ]
K := ∅; F = {T}
do Fnew := ∅

forall T ′ ∈ F do

forall T ′′ ∈ N(T , T ′) with T ′′ 6∈ F ∪K do

if T ′′ compatibly divisible with T ′

Fnew = Fnew ∪ {T ′′}
else T := refine[T , T ′′]

add to Fnew the son of T ′′ that shares a side with T ′

endif
endfor

endfor
K := K ∪ F
F := Fnew

until F = ∅
create T ′ from T by simultaneously bisecting all T ′ ∈ K

A call of the function refine bisects a compatible edge patch or recursively refines further ele-
ments until the edge patch T̃R(T ) (with respect to the refined intermediate conforming triangulation)
can be compatibly bisected. In two dimensions, the algorithm follows a chain of neighbouring el-
ements connected by refinement edges until two neighbouring elements have the same refinement
edge or the refinement edge belongs to the boundary. Then, the pair of compatibly divisible ele-
ments or the element at the boundary is bisected and recursively, the compatible pairs of previous
elements in the chain and sons of bisected neighbours are refined, cf. Figure 3. In higher dimensions
there are in general several elements that contain the refinement edge of a given element and the
algorithm has to follow several chains which themselves may branch, cf. Figure 4.
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Figure 3. Elements 5 and 3 are not compatibly divisible (left) so that a recursive
call of refine is required in order to refine element 5. After the compatible bisection
of the refinement edge of element 3 (middle), a compatible bisection of the refinement
edge of the initially marked element 5 is carried out. The refined triangulation (right)
is a result of a sequence of compatible edge patch bisections.

In order to show that the triangulation T ′ and all intermediate triangulations, generated in the
recursive execution of a call of refine, belong to T we need the following lemma. We say that the
possibly nonconforming triangulation T is a refinement of T0 if it is obtained from T0 by repeated
bisection of refinement edges. A refinement T of T0 is called a uniform refinement of T0 if it results
from bisecting each element in T0 a fixed number of times, i.e., if all elements in T have the same
refinement level.

Lemma 3.1 ([Stev08]). Suppose that T0 and the function R are such that every uniform refinement
of T0 is conforming. If T is a conforming refinement of T0 then for T ′ ∈ T and T ′′ ∈ N(T , T ′)
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Figure 4. The refinement of T (shaded gray) requires recursive refinements of
elements that share the refinement edge (thick line) with T . The newly created
nodes can be coarsened locally in reverse order to their creation.

either T ′ and T ′′ are compatibly divisible or the son of T ′′ that shares a side with T ′ is compatibly
divisible with T ′.

Sufficient conditions on the triangulation T0 and an appropriate choice of the refinement edges
that imply the conditions of the lemma are discussed in Section 4 below.

Proposition 3.2. Suppose that the assumption of Lemma 3.1 is satisfied. Then, each call of the
function refine with an element T and a triangulation T that is a conforming refinement of T0
leads to a compatible bisection of the edge patch T̃R(T ) with respect to the current, possibly refined,
conforming triangulation T̃ . In particular, if T ′ = refine[T , T ] then T ′ is obtained from T by a
successive compatible bisection of edge patches.

Proof. Owing to the assumption the recursion of refine terminates, cf. [Stev08], and we argue by
induction over the depth of the recursion. Suppose first that the call refine[T , T ] does not lead to
a recursion, i.e., no further calls of refine. Then, after termination of the do loop we have that K is
the edge patch of the refinement edge of T , i.e., K = TR(T ), and R(T ) is the refinement edge of all
elements in K. The last command in the function refine thus performs a compatible bisection of
the edge patch TR(T ). Otherwise, if further, recursive calls of refine are required then the algorithm
recursively bisects those neighbouring elements of T (elements that share a side with T ) which are
not compatibly divisible with T so that according to Lemma 3.1 the new neighbours are compatibly
divisible with T . This procedure is repeated with the neighbours of the (new) neighbours of T until
all neighbouring elements contained in the set K are compatibly divisible. Moreover, all elements
in K have the same refinement edge and after termination K coincides with the edge patch T̃R(T )

(with respect to the recursively refined triangulation T̃ ). �

The triangulation shown in the left part of Figure 2 shows that the recursion of the function refine
may not terminate if the assumption of Lemma 3.1 is not satisfied, i.e., if a uniform refinement of
T0 is not conforming.

4. Choice of refinement edges

A tagged element T = (z0, ..., zd)γ is a pair of an ordered sequence (z0, .., zd) of d + 1 vectors in
Rd such that conv{z0, ..., zd} is an element and a nonnegative integer γ ∈ {0, ..., d− 1} called type
of the element. The refinement edge of a tagged element T = (z0, ..., zd)γ is the edge z0zd. The
refinement edges of the two sons of a tagged element are then defined via the type γ of T by setting

s1(T ) := (z0, y, z1, ..., zγ , zγ+1, . . . , zd−1)γ+1mod d

s2(T ) := (zd, y, z1, ..., zγ , zd−1, . . . , zγ+1)γ+1mod d

If γ = 0 or γ = d− 1 then the right-hand sides are to be understood as s1(T ) = (z0, y, z1, ..., zd−1)1
and s2(T ) = (zd, y, zd−1, ..., z1)1 or s1(T ) = (z0, y, z1, ..., zd−1)0 and s2(T ) = (zd, y, z1, ..., zd−1)0,
respectively. The reflected element TR := (zd, ..., z0)γ has the same sons as T = (z0, ..., zd)γ . Two
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neighbouring tagged elements T and T ′ are called reflected neighbours if the ordered sequences of
T and T ′ or TR and T ′ coincide on all but one position.

This bisection scheme was introduced and analyzed in [Mau95, Tra97] and it was shown that
shape regularity is preserved. A motivation for this scheme is that for an initial partition of a cube
into Kuhn simplices (cf. Definition 5.1 below) with assigned type 0, the scheme always bisects the
longest edge of an element.

An appropriate local numbering and tagging of the elements in the initial triangulation T0 guar-
antees that the assumption of Lemma 3.1 is satisfied. In additon to the requirement that T0 is
conforming, i.e., the intersection of two disjoint elements is either empty or a common subsimplex
(i.e., a node, an edge, or a side), we assume that the elements in T0 are tagged elements with the
following property:

(R) All tagged elements in T0 are of the same type γ. Two neighbouring tagged elements
T = (z0, ..., zd)γ and T ′ = (z′0, ..., z

′
d)γ in T0 are reflected neighbours if z0zd or z′0z

′
d belongs

to T ∩T ′. Otherwise the pair of neighbouring children of T and T ′ are reflected neighbours.
For two-dimensional triangulations it is shown in [BDD04] that it is possible to choose an initial
local numbering and tagging which implies condition (R). The triangulation shown in the left part
of Figure 2 with the indicated orderings and with assigned types 0 shows that not every local
numbering and tagging implies (R). For triangulations of three- or higher-dimensional domains a
refinement of the initial triangulation may be necessary to define an appropriate local numbering
and tagging, cf. [Kos94, Stev08] for details. If (R) is satisfied then the assumptions of Lemma 3.1
are fulfilled.

Theorem 4.1 ([Stev08]). Suppose that T0 satisfies (R). Then every uniform refinement of T0 is
conforming.

5. Numerical Experiments

For our numerical experiments we employ triangulations that are assembled from scaled and
translated copies of a partition TKuhn of the cube C = (0, 1)d which satisfies condition (R).

Definition 5.1. Given a permutation π of {1, ..., d} the associated tagged Kuhn simplex is the
tagged element (zπ0 , ..., z

π
d )0, where zπ0 = (0, ..., 0) and zπk =

∑k
j=1 eπ(j) for k = 1, ..., d and {e1, ..., ed}

denotes the canonical basis of Rd. The triangulation TKuhn consists of all n! tagged Kuhn simplices.

Since zπ0 = 0 = (0, ..., 0) and zπd = 1 = (1, ..., 1) for every permutation π of {1, ..., d} we have that
the line segment 0, 1 is the refinement edge of every element in TKuhn. Hence, the triangulation
TKuhn enables us to define triangulations T0 which satisfy condition (R) of domains Ω ⊂ Rd that
can be partitioned into transformed rectangles or parallelepipeds for d = 2 and d = 3, respectively.
The triangulations TKuhn for d = 2 and d = 3 are shown in Figure 5.

Figure 5. Partition of a square and a cube into Kuhn simplices.

Given a triangulation T and a set M ⊆ T of elements marked for refinement a refinement
step consists in repeatedly executing the function refine with elements in M until all elements
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Figure 6. Local refinement and coarsening of the Fichera cube: partition into
Kuhn simplices (upper left), triangulation after six refinement steps (upper right),
and the triangulations after two and five coarsening steps (lower plots). A sixth
coarsening step leads to the initial triangulation.

in M have been refined. This produces the smallest conforming refinement of T in which all
elements in M are refined, cf. [Stev08]. For a subset C ⊆ N (T ) of nodes marked for coarsening, a
coarsening step consists in coarsening all nodes in C which can be coarsened locally. For an efficient
implementation of the coarsening step it turned out to be useful to store the sons s1(T ) and s2(T )
one after another in the list of elements at the position of their father T , cf. Figure 3.

5.1. Local resolution of a corner singularity. We choose Ω := (−1, 1)3 \ [0, 1]3 and let T0
be the triangulation consisting of seven translated copies of TKuhn, cf. the left plot of Figure 6.
A sequence T0, ..., T6 is created by marking all elements in the triangulation Tj that contain the
node z = 0 for refinement and carrying out a refinement step. The resulting triangulation T6
is shown in the second plot of Figure 6. We then repeatedly mark all nodes for coarsening and
carry out a coarsening step. The resulting triangulations after two and five coarsening steps are
displayed in the third and fourth plot of Figure 6, respectively. Six coarsening steps result in the
initial triangulation, i.e., the entire local refinement can be reversed by repeatedly applying the
coarsening criterion. In this example the refinement steps do not lead to recursions. Therefore, the
same number of coarsening steps reverses the entire refinement. This is not the case in general.

5.2. Local resolution of a moving interface. Let Ω := (0, 5) × (0, 1)d−1 and let T0 be the
triangulation of Ω consisting of five translated copies of TKuhn. Given ∆t > 0 we inductively
generate a sequence of triangulations T0, T1, ... by defining Tj through coarsening and refinement of
Tj−1 as follows:

(i) repeatedly mark those nodes in Tj−1 for coarsening which belong to elements that do not
intersect the plane {x ∈ Rd : x1 = j∆t} until no such nodes exist or none of them can be
coarsened locally

(ii) carry out four refinement steps where the set of marked elements consists of those elements
that intersect the plane {x ∈ Rd : x1 = j∆t}

Figure 7 shows the triangulations with d = 2 and d = 3 for ∆t = 1/4 and j = 2, 3, 6, 10. We see
that only a region close to the moving plane {x ∈ Rd : x1 = j∆t} is refined and this refinement is
entirely coarsened subsequently.
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