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Abstract. This paper addresses the numerical approximation of Young measures appear-
ing as generalized solutions to scalar non-convex variational problems. We prove a priori

and a posteriori error estimates for a macroscopic quantity, the stress. For a scalar three
well problem we show convergence of other quantities such as Young measure support and

microstructure region. Numerical experiments indicate that the computational effort in the

solution of the large optimization problem is significantly reduced by using an adaptive mesh
refinement strategy based on a posteriori error estimates in combination with an active set

strategy due to Carstensen and Roub́ıček (2000).

1. Introduction

A scalar model example in the context of phase transitions in crystalline solids reads:

(P )

{

Seek u ∈ A := {v ∈ W 1,2(Ω) : v|ΓD
= uD}

such that I(u) = infv∈A I(v).

Here, Ω ⊆ R
n is a bounded Lipschitz domain, ΓD ⊆ ∂Ω a closed subset of ∂Ω with positive

surface measure, and uD ∈ W 1/2,2(ΓD) is the trace of some function ũD ∈ W 1,2(Ω). The
energy functional I : A → R is for v ∈ A defined by

I(v) :=

∫

Ω

W (∇v(x)) dx + α

∫

Ω

|u0(x) − v(x)|2 dx −
∫

Ω

f(x)v(x) dx −
∫

ΓN

g(x)v(x) dsx,

where u0, f ∈ L2(Ω), g ∈ L2(ΓN) for ΓN := ∂Ω \ ΓD, and α ≥ 0. An energy density W that
can be derived from a three dimensional model with one-dimensional symmetry [BHJPS] is
given by N + 1 wells s0, ..., sN ∈ R

n and numbers s0
0, ..., s

0
N ∈ R and reads

(1.1) W (s) = min
j=0,...,N

(|s − sj|2 + s0
j ) for all s ∈ R

n.

This function W serves as a model energy density but more generally we will consider
mappings W : R

n → R which are continuous and satisfy quadratic growth conditions.
The contributions in I which involve f and g represent outer body forces while the integral

of W (∇v) measures the stored energy in Ω. A mechanical interpretation of the term α‖u0 −
v‖2

L2(Ω) may be obtained from a model of a thin crystal plate glued to a rigid substrate

[CL]. Similar scalar minimization problems arise in optimal control theory [R]. For ease of

Date: May 5, 2004.

1991 Mathematics Subject Classification. 65K10, 65N15, 49M20.
Key words and phrases. Non-convex variational problems, microstructure, finite elements, error estima-

tion, adaptivity, multiple scales.
1



presentation, we restrict the analysis to quadratic growth conditions (p = 2) but stress that
the estimates can easily be generalized to other growth conditions (2 ≤ p < ∞).

It is well known that existence of solutions for (P ) depends on convexity properties of W : If
W is convex then there exists a solution which is unique provided W is strictly convex or α >
0. In case that W fails to be convex then I is not weakly lower semicontinuous and solutions
may not exist. In the latter case, infimizing sequences are generically enforced to develop
oscillations and do therefore not converge to a global minimizer of I. To be able to deal with
this phenomenon, we will consider appropriate (weak∗) limits of infimizing sequences for (P )
which contain the most important information and which show where infimizing sequences
develop oscillations. Those limits are measure valued functions called Young measures and
arise as solutions for an extended problem (EP ). The numerical approximation of the
extended problem has been proposed in [NW, R, Kr, CR, P1, RK] and in [KrP] for a non-
convex variational problem in the theory of micromagnetics. It is our aim to establish
error estimates for the numerical treatment of the extended problem. We note however
that our analysis is restricted to scalar problems. The practically more relevant case of non-
convex vectorial variational problems requires an efficient characterization of gradient Young
measures and is excluded from our considerations.

The idea for the derivation of a priori and a posteriori error estimates is that the dis-
cretized extended problem may be regarded as a perturbation of a discretization of a relaxed
(convexified) problem which has been analyzed in [CP]. This perturbation consists in the
difference between the convex hull of the energy density itself and the convex hull of a dis-
crete approximation of the energy density. Employing the concept of subdifferentials in the
theory of non-smooth optimization we show that a dual variable, occurring in the discretized
extended problem, converges to a macroscopic quantity of the relaxed problem and prove re-
lated error estimates. Moreover, we prove computable error estimates that allow for adaptive
mesh refinement and which characterize a reliable relation between the two scales involved.

The “Active Set Strategy” of [CR] to solve a discretization of (EP ) efficiently for a fixed
triangulation of Ω is a multilevel scheme and depends on a good guess of a solution. Based on
our error estimates we propose the embedding of that scheme into an adaptive mesh refining
algorithm. We report the performance of the resulting algorithm for two examples. Our
overall observation is that the algorithm performs very efficient but depends on a good solver
for large optimization problems. For a two dimensional problem a numerical experiment
indicates linear complexity of our solving strategy.

The outline of the rest of this paper is as follows. We state the extended problem in Section
2 and proceed in Section 3 with some notation, a construction of discrete Young measures,
and the formulation of the discrete problem. Section 4 gives the announced error analysis
as the main contribution of this work. Section 5 is devoted to the analysis of convergence
of various quantities in a scalar three well problem. The “Active Set Strategy” of [CR] and
its embedding into an adaptive mesh refinement algorithm are given in Section 6. Finally,
in Section 7, we report on numerical results for two specifications of (P ) which illustrate the
theoretical results of this article.
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2. Young Measures and Extended Problem

In this section we recall the notion of Young measures which are mappings from Ω into
the space of probability measures on R

n and allow for the computation of certain limits of
weakly∗ convergent sequences in Lebesgue spaces.

Definition 2.1. Let M(Rn) be the set of all signed Radon measures on R
n and let PM(Rn)

be the subset of probability measures on R
n, i.e., the set of all non-negative Radon measures

µ ∈ M(Rn) satisfying
∫

Rn µ(ds) = 1. The set of L2-Young measures Y2(Ω; Rn) is defined as

Y2(Ω; Rn) := {ν ∈ L∞
w (Ω;M(Rn)) : νx ∈ PM(Rn) for a.a. x ∈ Ω,

∫

Ω

∫

Rn

|s|2 νx(ds) dx < ∞}.

Here νx := ν(x) for x ∈ Ω and L∞
w (Ω;M(Rn)) consists of those mappings ν ∈ L∞(Ω;M(Rn))

for which the mapping x 7→
∫

Rn v(s) νx(ds) is measurable whenever v ∈ C(Rn) satisfies
lim|s|→∞ v(s) = 0.

Infimizing sequences for (P ) generate Young measures in the sense of the following state-
ment which is a consequence of the fundamental theorem on Young measures [Y, B, KiP, R].
Throughout this paper we assume that there exist constants c1, c2 > 0 such that

(2.1) c1|s|2 − c2 ≤ W (s) ≤ c2(1 + |s|2) for all s ∈ R
n.

Lemma 2.1 ([P2],Lemma 4.3). Let (uj) ⊆ A be an infimizing sequence for (P ), i.e. I(uj)→
infv∈A I(v). Then, there exist u ∈ A, ν ∈ Y2(Ω; Rn), and a subsequence (uk) such that uk ⇀ u
(weakly) in W 1,2(Ω),

∫

Ω

W (∇uk(x)) dx →
∫

Ω

∫

Rn

W (s) νx(ds) dx,

and, for almost all x ∈ Ω, there holds ∇u(x) =
∫

Rn s νx(ds). �

The Young measure ν generated by an infimizing sequence (uj) for (P ) describes oscilla-
tions in that sequence in a statistical way [B]. Together with the weak limit u, we obtain
the most relevant information about (P ). If we express the limit of I(uj) in terms of u and
ν we obtain the extended problem (EP ).

(EP )











Seek (u, ν) ∈ B := {(v, µ) ∈ W 1,2(Ω) ×Y2(Ω; Rn) :

v|ΓD
= uD,∇v(x) =

∫

Rn s µx(ds) for a.a. x ∈ Ω},
such that I(u, ν) = inf(v,µ)∈B I(v, µ).

The extended energy functional I is for (v, µ) ∈ B defined by

I(v, µ) :=

∫

Ω

∫

Rn

W (s) µx(ds) dx + α

∫

Ω

|u0 − v|2 dx −
∫

Ω

fv dx −
∫

ΓN

gv dsx.

The following theorem shows that (EP ) is a correct extension of (P ). Limits in B refer to
the (weak, weak∗)-topology in W 1,2(Ω) × Y2(Ω; Rn) (cf. [R] for details). Via the mapping
ι : A → B, u 7→ (u, δ∇u), where for almost all x ∈ Ω and all v ∈ C(Rn) with lim|s|→∞ v(s) = 0
the Dirac measure δ∇u(x) ∈ PM(Rn) is defined by

∫

Rn v(s) δ∇u(x)(ds) = v(∇u(x)), A can be
embedded continuously into B.
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Theorem 2.1 ([R], Proposition 5.2.1). (i) (EP ) admits a solution.
(ii) infv∈A I(v) = min(w,µ)∈B I(w, µ).
(iii) The embedding ι : A → B of each infimizing sequence for (P ) has a convergent subse-
quence whose limit is a solution to (EP ).
(iv) Each solution to (EP ) is the limit of the embedding ι : A → B of an infimizing sequence
for (P ). �

Carathéodory’s Theorem implies that there exist solutions (u, ν) ∈ B to (EP ) such that
for almost all x ∈ Ω the probability measure νx is a convex combination of at most n + 1
Dirac measures (cf. [R], Corollary 5.3.3). This fact motivates the discretization of (EP )
introduced in Section 3 and the algorithm of [CR] to efficiently approximate (EP ).

3. Discretization of (EP )

3.1. Finite Element Spaces and Notation. Let T be a regular triangulation of Ω into
triangles (n = 2) or tetrahedra (n = 3) in the sense of [Ci], i.e., there are no hanging
nodes, the domain is matched exactly, i.e., Ω = ∪T∈T T , and T satisfies the maximum angle
condition. Therefore, ∂Ω is assumed to be polygonal. The extremal points of T ∈ T are
called nodes and N denotes the set of all such nodes. Let K := N \ΓD be the subset of free
nodes. The set of edges (respectively faces if n = 3) E = conv {z1, ..., zn} ⊆ ∂T for pairwise
distinct z1, ..., zn ∈ N and T ∈ T is denoted as E . A partition E = EΩ ∪ ED ∪ EN is given by
EN := {E ∈ E : E ⊆ ΓN}, ED := {E ∈ E : E ⊆ ΓD}, and EΩ := E \ (ED ∪ EN). The set

Lk(T ) := {vh ∈ L∞(Ω) : ∀T ∈ T , vh|T ∈ Pk(T )}

consists of all (possibly discontinuous) T –elementwise polynomials of degree at most k.
Define

S1(T ) := L1(T ) ∩ C(Ω) and S1
D(T ) := {uh ∈ S1(T ) : uh|ΓD

= 0} ⊆ W 1,2
D (Ω)

where W 1,2
D (Ω) := {v ∈ W 1,2(Ω) : v|ΓD

= 0}. Let (ϕz : z ∈ N ) be the nodal basis of S1(T ),
i.e., ϕz ∈ S1(T ) satisfies ϕz(x) = 0 if x ∈ N \ {z} and ϕz(z) = 1. A function hT ∈ L0(T ) is
defined by hT |T = hT := diam (T ) for all T ∈ T . Moreover, let hE ∈ L∞(∪E) be defined by
hE |E = hE := diam (E) for all E ∈ E .

The nodal interpolation operator associated to a triangulation T is denoted by PT . If
τ is a triangulation of a convex domain ω and v ∈ C(ω) we extend Pτv to R

n by setting
Pτv(s) = Pτv(Pω(s)) where Pω denotes the orthogonal projection onto ω.

Suppose g ∈ L2(ΓN ) is such that g|E ∈ W 1,2(E) for all E ∈ EN and, for each node
z ∈ N ∩ ΓN where the outer unit normal nΓN

on ΓN is continuous, g is continuous. We set

(3.1) S1
N (T , g) := {τh ∈ S1(T )n : ∀E ∈ EN ∀z ∈ E ∩ N , τh(z) · nΓN

|E = g(z)}

and note that S1
N(T , g) 6= ∅ if n = 2. We will assume that S1

N (T , g) 6= ∅ if n = 3.
Throughout this article c, C > 0 denote mesh-size independent, generic constants. For

1 ≤ p ≤ ∞ and an integer ℓ > 0, ‖ · ‖Lp(Ω) stands for ‖ · ‖Lp(Ω;Rℓ), and ‖ · ‖ abbreviates
‖ · ‖L2(Ω). The operator ∂E · /∂s denotes the edgewise derivative along (subsets of) ∂Ω.
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3.2. Discrete Young Measures. We define a convex, discrete (i.e., finite-dimensional)
subset of the set of L2-Young measures Y2(Ω; Rn) following ideas of [R, CR, MRS].

Definition 3.1 ([R], Example 3.5.4). Given a convex polygonal set ω ⊆ R
n and regular

triangulations τ of ω with nodes Nτ and T of Ω we set

Y Md,h(Ω; Rn) :=
{

νd,h ∈ Y2(Ω; Rn) : ∀z ∈ Nτ ∃az ∈ L0(T ), az ≥ 0 and
∑

z∈Nτ

az(x) = 1 a.e. in Ω, νd,h,x =
∑

z∈Nτ

az(x)δz for a.e. x ∈ Ω},

where δz denotes the Dirac measure supported in the atom z ∈ R
n ∩ Nτ . By d and h we

denote the maximal mesh-size in τ and T , respectively, and refer to τ and T through these
quantities.

3.3. Discretized Extended Problem. For regular triangulations T of Ω and τ of a convex
Lipschitz domain ω ⊆ R

n and an approximation uD,h ∈ S1(T )|ΓD
of uD we consider the

following discrete problem (EPd,h).

(EPd,h)











Seek (ud,h, νd,h) ∈ Bd,h := {(vh, µd,h) ∈ S1(T ) × Y Md,h(Ω; Rn) : vh|ΓD
= uD,h,

∇vh(x) =
∫

Rn s µd,h,x(ds) for a.e. x ∈ Ω},
such that I(ud,h, νd,h) = inf(vh,µd,h)∈Bd,h

I(vh, µd,h).

An existence result for (EPd,h) follows as for (EP ).

Proposition 3.1 ([R], Proposition 5.5.1). If Bd,h 6= ∅ then (EPd,h) admits a solution. �

Remarks 3.1. (i) There holds Bd,h 6= ∅ if the diameter of ω is large enough.
(ii) For efficient approximations one has to assume a uniform bound on the gradient of a
solution for (EP ). Based on optimality conditions stated below one may however enlarge
ω successively to obtain a correct discrete solution. Therefore, no a priori bound on the
gradient of an exact solution for (EP ) will be assumed.
(iii) For a triangulation T of Ω with Nn free nodes and a triangulation τ of ω with Nn atoms
the number of degrees of freedom in (EPd,h) is N2n if h ≈ d ≈ 1/N .

3.4. Optimality Conditions. The following lemma describes optimality conditions for
(EPd,h) which are key ingredients for the subsequent analysis.

Lemma 3.1 ([CR], Proposition 4.3). Assume ω = R
n. The pair (ud,h, νd,h) ∈ Bd,h is a

solution for (EPd,h) if and only if there exists λd,h ∈ L0(T )n such that, for almost all x ∈ Ω,
we have

max
s∈ω

Hλd,h
(x, s) =

∫

Rn

Hλd,h
(x, s) νd,h,x(ds),

where Hλd,h
(x, s) := λd,h(x) · s − PτW (s), and, for all vh ∈ S1

D(T ), there holds
∫

Ω

λd,h · ∇vh dx = 2α

∫

Ω

(u0 − ud,h)vh dx +

∫

Ω

fvh dx +

∫

ΓN

gvh dsx. �

Remark 3.1. The elementwise constant function λd,h is the Lagrange multiplier for the con-
straint ∇ud,h|T =

∫

Rn s νd,h|T (ds), T ∈ T , in (EPd,h).
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For the practical implementation a bounded domain ω and a finite discretization of ω has
to be chosen. We formulate appropriate computable conditions that imply Lemma 3.1.

Lemma 3.2. Assume that ω is bounded and Br0
(0) := {s ∈ R

n : |s| < r0} ⊆ ω for some
r0 > 0. Let (ud,h, νd,h) ∈ Bd,h, λd,h ∈ L0(T )n, and assume

∫

Ω

λd,h · ∇vh dx = 2α

∫

Ω

(u0 − ud,h)vh dx +

∫

Ω

fvh dx +

∫

ΓN

gvh dsx.

If for almost all x ∈ Ω the mapping s 7→ λd,h(x) · s − PτW (s), s ∈ ω, attains its maximum

in some s∗x ∈ Br0
(0), if 2r0c1 ≥ ‖λ‖L∞(Ω), and if for almost all x ∈ Ω

(3.2) r0‖λ‖L∞(Ω) − c1r
2
0 + c2 ≤ λd,h(x) · s∗x − W (s∗x),

then the conditions of Lemma 3.1 are satisfied, i.e., (ud,h, νd,h) is a solution for (EPd,h).

Proof. It suffices to show that for almost all x ∈ Ω, any extension τ̃ of τ to R
n, and all

s ∈ Nτ̃ \ Br0
(0) there holds λd,h(x) · s − Pτ̃W (s) ≤ Hλd,h

(x, s∗x) since then the optimality
conditions of Lemma 3.1 are satisfied (with ω̃ = R

n and τ̃ ). In view of (2.1) there holds

λd,h(x) · s − Pτ̃W (s) ≤ ‖λd,h‖L∞(Ω)|s| − c1|s|2 + c2.

Since 2r0c1 ≥ ‖λ‖L∞(Ω) the mapping t 7→ ‖λd,h‖L∞(Ω)t − c1t
2 + c2, t ≥ r0, is monotonically

decreasing and since ‖λd,h‖L∞(Ω)r0 − c1r
2
0 + c2 ≤ Hλd,h

(x, s∗x) we have λd,h(x) · s−Pτ̃W (s) ≤
Hλd,h

(x, s∗x) for all s ∈ Nτ̃ \Br0
(0) which implies the same estimate for all s ∈ R

n\Br0
(0). �

4. Error Estimates for (EPd,h)

We now turn to the formulation of error estimates for solutions for (EPd,h). We prove that
the Lagrange multiplier λd,h converges to a macroscopic quantity, the stress, that appears
naturally in (P ) and also in the convexified problem (P ∗∗). To estimate the distance between
λd,h and the exact stress we will regard (EPd,h) as a perturbation of a discretization of (P ∗∗).

(P ∗∗) Seek u ∈ A such that I∗∗(u) = inf
v∈A

I∗∗(v).

Here, the energy functional I∗∗ is defined for v ∈ A and the convex envelope W ∗∗ of W by

I∗∗(v) :=

∫

Ω

W ∗∗(∇v(x)) dx + α

∫

Ω

|u0 − v|2 dx −
∫

Ω

fv dx −
∫

ΓN

gv dsx.

Definition 4.1. For a solution u ∈ A for (P ∗∗) we define the stress σ := DW ∗∗(∇u) ∈ L2(Ω)n.

Theorem 4.1 ([CP], Theorem 2). (P ∗∗) admits a solution u ∈ A such that

(4.1)

∫

Ω

DW ∗∗(∇u) · ∇v dx − 2α

∫

Ω

(u0 − u)v dx −
∫

Ω

fv dx −
∫

ΓN

gv dsx = 0

for all v ∈ W 1,2
D (Ω). If DW ∗∗ satisfies, for all F, G ∈ R

n,

(4.2) |DW ∗∗(F ) − DW ∗∗(G)|2 ≤ C (DW ∗∗(F ) − DW ∗∗(G)) · (F − G)

then for two solutions u, w ∈ A for (P ∗∗) there holds DW ∗∗(∇u) = DW ∗∗(∇w), i.e., σ is
unique. If in addition to (4.2) α > 0 or W ∗∗ is strictly convex then u = w. �
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Remarks 4.1. (i) If W is as in (1.1) then DW ∗∗ satisfies (4.2).
(ii) For a solution (u, ν) ∈ B for (EP ) and a solution w for (P ∗∗) we have, provided W, W ∗∗ ∈
C1(Rn), for almost all x ∈ Ω, [F, KiP]

∫

Rn

DW (s) νx(ds) = DW ∗∗(∇w(x)).

(iii) A result in [CaM] shows σ ∈ W 1,2
loc (Ω).

In order to obtain a version of (4.1) in the discrete setting (EPd,h) we need to differentiate
the non-smooth convexification of PτW . To do this we apply the concept of subdifferentials.

Definition 4.2. For a convex function V : R
n → R and ς ∈ R

n the subdifferential of V at ς
is defined by

∂V (ς) := {ξ ∈ R
n : V (ς + ζ) − V (ς) ≥ ζ · ξ for all ζ ∈ R

n}.
Remarks 4.2 ([Cl]). (i) If V is Gâteaux differentiable in ς ∈ R

n then ∂V (ς) = {∇V (ς)}.
(ii) V has a minimum in ς ∈ R

n if and only if 0 ∈ ∂V (ς). �

The following lemma shows that the finite-dimensional minimization problem (EPd,h) may
be seen as a perturbation of a discretization of (P ∗∗).

Lemma 4.1. Let W cx
d := ((PτW )|ω)∗∗ denote the convexification of the restriction of PτW

to ω. Assume that (ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n satisfy the conditions of Lemma 3.2.
Then (ud,h, νd,h) minimizes the modified energy functional

I
′
(vh, µd,h) :=

∫

Ω

∫

Rn

W cx
d (s) µd,h,x(ds) dx + α

∫

Ω

|u0 − vh|2 dx −
∫

Ω

fvh dx −
∫

ΓN

gvh dsx,

among all (vh, µd,h) ∈ Bd,h. Moreover,

λd,h(x) ∈ ∂W cx
d (∇ud,h(x)) for a.e. x ∈ Ω.

Proof. For s ∈ ω we have by Carathéodory’s Theorem [R],

W cx
d (s) = ((PτW )|ω)∗∗(s) = inf

s1,...,sn+1∈ω,
θ1,...,θn+1∈[0,1],

Pn+1
i=1

θi=1,
Pn+1

i=1
θisi=s

n+1
∑

i=1

θiPτW (si).

Since PτW |ω is τ -elementwise affine, it suffices to use the nodal values of PτW in the calcu-
lation of W cx

d , i.e.,

(4.3) W cx
d (s) = ((PτW )|ω)∗∗(s) = inf

θz∈[0,1],
P

z∈Nτ
θz=1,

P

z∈Nτ
θzz=s

∑

z∈Nτ

θzPτW (z).

Assume that there exists s ∈ conv {z1, ..., zn+1} = t ∈ τ , z1, ..., zn+1 ∈ Nτ such that s =
∑n+1

i=1 αizi but W cx
d (s) 6= ∑n+1

i=1 αiW
cx
d (zi) with αi ∈ [0, 1],

∑n+1
i=1 αi = 1. If W cx

d (s) >
∑n+1

i=1 αiW
cx
d (zi) then W cx

d (s) was not convex. If W cx
d (s) <

∑n+1
i=1 αiW

cx
d (zi) then W cx

d was not

the largest convex function satisfying W cx
d ≤ PτW |ω. Therefore, W cx

d (s) =
∑n+1

i=1 αiW
cx
d (zi),

so that W cx
d is τ -elementwise affine and PτW

cx
d |ω = W cx

d . To prove that (ud,h, νd,h) minimizes
7



the functional I
′
it suffices to verify the optimality conditions from Lemma 3.2 with PτW

replaced by PτW
cx
d . For this it is sufficient to show that, for almost all x ∈ Ω, there holds

(4.4) max
s∈ω

(λd,h(x) · s − PτW (s)) = max
s∈ω

(λd,h(x) · s − W cx
d (s))

and

(4.5)

∫

Rn

(λd,h(x) · s − W cx
d (s)) νd,h,x(ds) =

∫

Rn

(λd,h(x) · s − PτW (s)) νd,h,x(ds).

Since W cx
d ≤ PτW (s)|ω, we only have to show that

max
s∈ω

(λd,h(x) · s − PτW (s)) ≥ max
s∈ω

(λd,h(x) · s − W cx
d (s))

and
∫

Rn

W cx
d (s) νd,h,x(ds) ≥

∫

Rn

Pτ (s) νd,h,x(ds).

Let s ∈ ω be maximizing in the right-hand side of (4.4), i.e.,

λd,h(x) · s − W cx
d (s) = max

s∈ω
(λd,h(x) · s − W cx

d (s)).

By definition of W cx
d there exist θ1, ..., θn+1 ∈ [0, 1],

∑n+1
i=1 θi = 1, and z1, ..., zn+1 ∈ Nτ such

that
∑n+1

i=1 θizi = s and W cx
d (s) =

∑n+1
i=1 θiPτW (zi). By linearity of s 7→ λd,h(x) · s we have

λd,h(x) · s − W cx
d (s) =

n+1
∑

i=1

θi

(

λd,h(x) · zi − PτW (zi)
)

≤
n+1
∑

i=1

θi max
s∈ω

(λd,h(x) · s − PτW (s)) = max
s∈ω

(λd,h(x) · s − PτW (s)),

which proves (4.4). If
∫

Rn

W cx
d (s) νd,h,x(ds) <

∫

Rn

PτW (s) νd,h,x(ds),

the explicit representation of W cx
d contradicts the fact that (ud,h, νd,h) is minimal for I. We

have thus shown (4.5) which yields the optimality conditions. The maximum principle of
Lemma 3.1, the convexity of the mapping s 7→ W cx

d (s) − λd,h(x) · s together with Jensen’s
inequality, and the identity ∇ud,h(x) =

∫

Rn s dνd,h,x(s) yield, for almost all x ∈ Ω,

max
s∈ω

(λd,h(x) · s − W cx
d (s)) =

∫

Rn

(λd,h(x) · s − W cx
d (s)) νd,h,x(ds)

≤ λd,h(x) · ∇ud,h(x) − W cx
d (∇ud,h(x)).

Remark 4.2 shows, for almost all x ∈ Ω, 0 ∈ −λd,h(x) + ∂W cx
d (∇ud,h(x)). �

Another definition is needed for the a priori and a posteriori error estimates. It concerns
the approximation of DW ∗∗ by the multi-valued mapping ∂W cx

d .

Definition 4.3. For A ⊆ R
n and a multi-valued mapping S : A → 2R

n

, where 2R
n

denotes
the power set of R

n, let
‖S‖L∞(A;2Rn ) := sup

t∈A
sup

s∈S(t)

|s|.
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4.1. A Priori Error Estimates. The following theorem shows that the multiplier λd,h for
a solution (ud,h, νd,h) ∈ Bd,h for (EPd,h) approximates the unique quantity σ = DW ∗∗(∇u)
for a solution u ∈ A for (P ∗∗).

Theorem 4.2. Assume that DW ∗∗ satisfies (4.2) and u ∈ A solves (P ∗∗). Assume that
(ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n satisfy the conditions of Lemma 3.1. There holds

‖σ − λd,h‖ + α‖u − ud,h‖ ≤ C inf
(vh,µd,h)∈Bd,h

(

‖∇(u − vh)‖ + α‖u − vh‖
)

+ C‖∂W cx
d − DW ∗∗‖L∞(ω;2Rn ) + |Ω|

√
C ′‖∂W cx

d − DW ∗∗‖1/2

L∞(ω;2Rn )
.

Proof. The triangle inequality, estimate (4.2), and Hölder’s inequality show

1

2
‖σ − λd,h‖2 ≤ ‖σ − DW ∗∗(∇ud,h)‖2 + ‖DW ∗∗(∇ud,h) − λd,h‖2

≤C

∫

Ω

(DW ∗∗(∇u) − DW ∗∗(∇ud,h)) · ∇(u − ud,h) dx + ‖DW ∗∗(∇ud,h) − λd,h‖2

= C

∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(u − ud,h) dx + C

∫

Ω

(λd,h − DW ∗∗(∇ud,h)) · ∇(u − ud,h) dx

+ ‖λd,h − DW ∗∗(∇ud,h)‖2

≤C

∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(u − ud,h) dx + C‖λd,h − DW ∗∗(∇ud,h)‖‖∇(u − ud,h)‖

+ ‖λd,h − DW ∗∗(∇ud,h)‖2.

The Euler-Lagrange equations (4.1) for u and Lemma 3.1 yield, for all wh ∈ S1
D(T ),

∫

Ω

(σ − λd,h) · ∇wh dx + 2α

∫

Ω

(u − ud,h)wh dx = 0.

We thus have
∫

Ω

(σ − λd,h) · ∇(u − ud,h) dx + 2α

∫

Ω

(u − ud,h)
2 dx

=

∫

Ω

(σ − λd,h) · ∇(u − ud,h − wh) dx + 2α

∫

Ω

(u − ud,h)(u − ud,h − wh) dx

≤ ‖σ − λd,h‖‖∇(u − ud,h − wh)‖ + 2α‖u − ud,h‖‖u − ud,h − wh‖.
The combination of the last two estimates shows after absorption of ‖σ−λd,h‖ and ‖u−ud,h‖,

‖σ − λd,h‖2 + α‖u − ud,h‖2 ≤ C
(

‖∇(u − ud,h − wh)‖2 + α‖u − ud,h − wh‖2

+ ‖λd,h − DW ∗∗(∇ud,h)‖‖∇(u − ud,h)‖ + ‖λd,h − DW ∗∗(∇ud,h)‖2
)

.

Lemma 4.1 ensures λd,h(x) ∈ ∂W cx
d (∇ud,h(x)) and by construction of Bd,h we have ∇ud,h(x) ∈

ω for almost all x ∈ Ω. This implies

‖λd,h − DW ∗∗(∇ud,h)‖2 ≤
∫

Ω

sup
s∈∂W cx

d
(∇ud,h(x))−DW ∗∗(∇ud,h)

|s|2 dx

≤ |Ω| sup
t∈ω

sup
s∈∂W cx

d
(t)−DW ∗∗(t)

|s|2 = |Ω|‖∂W cx
d − DW ∗∗‖2

L∞(ω;2Rn ).
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Letting wh = vh − ud,h for arbitrary (vh, µd,h) ∈ Bd,h and estimating ‖∇(u − ud,h)‖ ≤ C
(which follows from the growth conditions (2.1)) we verify the assertion of the theorem. �

For a given energy density W and an appropriate triangulation τ of ω the term ‖∂W cx
d −

DW ∗∗‖L∞(ω;2Rn ) can be estimated by the mesh-size of the discretization τ of ω. We refer to
Theorem 5.1 below for an estimate for a three well energy density.

Remarks 4.3. (i) Theorem 4.2, Theorem 5.1 below, and density of finite element spaces in
A prove λd,h → σ in L2(Ω) for (d, hT ) → 0 and, if α > 0, we also have ud,h → u in L2(Ω).

If u ∈ C(Ω) we may choose vh in Theorem 4.2 as the nodal interpolant of u and then we
can estimate the error in powers of the mesh-size depending on smoothness properties of u.
Since in general u has no higher regularity properties, computable error bounds are needed.
(ii) Owing to non-uniqueness of u and degeneracy of (EP ) we cannot expect strong conver-
gence ud,h → u in W 1,2.

4.2. A Posteriori Error Estimates. In this section two a posteriori error estimates, which
are computable bounds for the error ‖σ−λd,h‖, are given. The first error estimate is similar
to classical residual based a posteriori error estimates for elliptic partial differential equations
[V] and employs jumps of normal components of λd,h across edges. Recall from the definition
of (EPd,h) that ω is a fixed convex subset of R

n.

Definition 4.4. For E ∈ EΩ and T1, T2 ∈ T with E = T1∩T2 let nE be the unit vector normal
to E, pointing from T1 into T2. For λd,h ∈ L0(T )n define

[λd,h · nE ] :=

{

(λd,h|T2
− λd,h|T1

) · nE for E ∈ EΩ, T1, T2 ∈ T , E = T1 ∩ T2,
g − λd,h|T · nΓN

|E for E ∈ EN , T ∈ T , E ⊆ ∂T.

Theorem 4.3. Assume that DW ∗∗ satisfies (4.2) and u ∈ A solves (P ∗∗). Let (ud,h, νd,h) ∈
Bd,h and λd,h ∈ L0(T )n satisfy the conditions of Lemma 3.1. Then,

‖σ − λd,h‖2 + α‖u − ud,h‖2 ≤ C
{

(

∑

T∈T

h2
T‖(f + div λd,h + 2α(u0 − ud,h))‖2

L2(T )

)1/2

+
(

∑

E∈EΩ∪EN

hE‖[λd,h · nE ]‖2
L2(E)

)1/2
+ ‖∂W cx

d − DW ∗∗‖L∞(ω;2Rn ) + ‖h3/2
E ∂2

EuD/∂s2‖L2(ΓD)

}

+ |Ω|‖∂W cx
d − DW ∗∗‖2

L∞(ω;2Rn ).

Proof. Recall from the proof of Theorem 4.2 that, for w ∈ W 1,2(Ω) satisfying w|ΓD
= uD −

uD,h and vh ∈ S1
D(T ), there holds

C‖σ − λd,h‖2+2α‖u − ud,h‖2 ≤
∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(u − ud,h − w − vh) dx

+ 2α

∫

Ω

(u − ud,h)(u − ud,h − w − vh) dx + |Ω|‖∂W cx
d − DW ∗∗‖2

L∞(ω;2Rn )

+ C|Ω|‖∂W cx
d − DW ∗∗‖L∞(ω;2Rn ) + ‖σ − λd,h‖‖∇w‖ + 2α‖u − ud,h‖‖w‖.

We employ the weak approximation operator J : W 1,2
D (Ω) → S1

D(T ) of [Ca, CB] and set
vh := J v. We then have (cf. [CB], Theorem 2.1)

(4.6) ‖∇ vh‖ + ‖h−1
T (v − vh)‖ + ‖h−1/2

E (v − vh)‖L2(∪E) ≤ C‖∇v‖
10



The Euler-Lagrange equations (4.1) for u, an elementwise integration by parts, and (4.6)
show for v := u − ud,h − w ∈ W 1,2

D (Ω)

∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(v −J v) dx + 2α

∫

Ω

(u − ud,h)(v − J v) dx

=
∑

T∈T

∫

T

(f + div λd,h)(v − J v) dx + 2α

∫

Ω

(u0 − ud,h)(v −J v) dx

+
∑

E∈EΩ∪EN

∫

E

[λd,h · nE ](v − J v) dsx

≤ C
(

(

∑

T∈T

h2
T‖(f + div λd,h + 2α(u0 − ud,h))‖2

L2(T )

)1/2

+
(

∑

E∈EΩ∪EN

hE‖[λd,h · nE]‖2
L2(E)

)1/2
)

‖∇v‖.

The combination of the last two estimates together with the a priori bound ‖∇v‖ ≤ ‖∇(u−
ud,h)‖ + ‖∇w‖ ≤ C and minw|ΓD

=uD−uD,h
‖w‖W 1,2(Ω) ≤ C‖h3/2

E ∂2
EuD/∂s2‖2

L2(ΓD) (cf. [BCD],

Lemma 3.1) shows the assertion after absorption of ‖σ − λd,h‖ and ‖u − ud,h‖. �

Remarks 4.4. (i) The term ‖h3/2
E ∂2

EuD/∂s2‖L2(ΓD) is of higher order.
(ii) The terms ‖∂W cx

d − DW ∗∗‖2
L∞(ω;2Rn )

and ‖∂W cx
d − DW ∗∗‖L∞(ω;2Rn ) are of higher order

provided d ≪ hT (cf. Theorem 5.1). It will be shown later in Section 6 that the assumption
d ≪ hT does not lead to inefficiency of our numerical schemes.
(iii) The a priori error estimate of Theorem 4.2 and the a posteriori error estimate of Theorem
4.3 yield a gap between reliability and efficiency of the error estimates with respect to the
discretization parameter h. While the a priori estimate gives optimal convergence results

(for smooth solutions) we face a loss of a factor h
1/2
T in the a posteriori estimate due to

degeneracy of the problem.

Our second error estimate is related to Zienkiewicz-Zhu (ZZ) error estimators (see, e.g.,
[CB]) for elliptic partial differential equations.

Theorem 4.4. Assume that DW ∗∗ satisfies (4.2) and u ∈ A solves (P ∗∗). Let (ud,h, νd,h) ∈
Bd,h and λd,h ∈ L0(T )n satisfy the conditions of Lemma 3.1. If α = 0 and f ∈ W 1,2(Ω) then

‖σ−λd,h‖2 ≤ C
{

min
τh∈S

1
N

(T ,g)
‖λd,h − τh‖ + ‖h2

T ∇f‖ + ‖h3/2
E ∂2

EuD/∂s2‖L2(ΓD)

+ ‖h3/2
E ∂Eg/∂s‖L2(ΓN ) + ‖∂W cx

d − DW ∗∗‖L∞(ω;2Rn )

}

+ |Ω|‖∂W cx
d − DW ∗∗‖2

L∞(ω;2Rn ).

Proof. As in the proof of Theorem 4.2 we have for w ∈ W 1,2(Ω) with w|ΓD
= uD − uD,h and

vh ∈ S1
D(T )

C‖σ−λd,h‖2 ≤
∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(u − ud,h − w − vh) dx

+ |Ω|‖∂W cx
d − DW ∗∗‖2

L∞(ω;2Rn ) + C|Ω|‖∂W cx
d − DW ∗∗‖L∞(ω;2Rn ) + ‖σ − λd,h‖‖∇w‖.
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Letting τh ∈ S1
N(T , g) and writing v := u − ud,h − w ∈ W 1,2

D (Ω) and vh := J v ∈ S1
D(T ) we

verify, using div λd,h|T = 0, the Euler-Lagrange equation (4.1), an integration by parts, and
Hölder’s inequality,

∫

Ω

(DW ∗∗(∇u)−λd,h) ·∇(v−J v) dx ≤
∫

Ω

f(v−J v) dx+
∑

T∈T

∫

T

div (τh−λd,h)(v−J v) dx

+

∫

ΓN

(g − τh · nΓN
)(v − J v) dsx + ‖τh − λd,h‖‖∇(v −J v)‖.

The estimate (cf. [CB], Theorem 2.1)
∫

Ω
f(v − J v) dx ≤ C‖∇v‖ ‖h2

T∇f‖ and (4.6) yield
∫

Ω

(DW ∗∗(∇u) − λd,h) · ∇(v −J v) dx

≤ C
{

‖h2
T ∇f‖ +

(

∑

T∈T

h2
T‖div (τh−λd,h)‖2

L2(T )

)1/2
+‖h3/2

E ∂Eg/∂s‖L2(ΓN )+‖τh−λd,h‖
}

‖∇v‖.

Choosing w as in [BCD] and employing elementary results about nodal interpolation on ΓN

we infer

‖w‖W 1,2(Ω) + ‖g − τh · nΓN
‖L2(ΓN ) ≤ C

(

‖h3/2
E ∂2

EuD/∂s2‖L2(ΓD) + ‖h3/2
E ∂Eg/∂s‖L2(ΓN )

)

and using an elementwise inverse estimate of the form

hT‖div (τh − λd,h)‖L2(T ) ≤ C‖τh − λd,h‖L2(T ) for all T ∈ T
we verify the assertion as in the proof of the preceding theorem. �

Remarks 4.5. (i) Terms including derivatives of uD, g, or f are of higher order. Moreover,
Remarks 4.4 (ii) and (iii) are valid here as well.
(ii) Theorem 4.4 shows, up to higher order terms, reliability of the error estimate ‖λd,h−λ∗

d,h‖
for any choice of a smooth approximation λ∗

d,h ∈ S1
N (T , g) to λd,h.

(iii) A triangle inequality proves an inverse, efficiency, estimate of Theorem 4.4 which holds
up to higher order terms, provided σ is smooth but with different exponents,

min
τh∈S

1
N

(T ,g)
‖λd,h − τh‖ ≤ ‖σ − λd,h‖ + min

τh∈S
1
N

(T ,g)
‖σ − τh‖.

This efficiency estimate can be made rigorous but then without explicit constants.

5. Convergence of Other Quantities

In this section we present an estimate for DW ∗∗ − ∂W cx
d and results concerning the con-

vergence behavior of other quantities such as Young measure support and microstructure
region in a three well problem. Ideas behind the proofs are adapted from [CP, F].

5.1. Approximation of DW ∗∗.

Theorem 5.1. For W : R
2 → R, s 7→ minj=0,1,2 |s − sj|2 with s0 = (0, 0), s1 = (1, 0), and

s2 = (0, 1) and ω = (−m, m)2, m ≥ 1, there exists a triangulation τ of ω with maximal
mesh-size d = 1/k, k a positive integer, of ω such that

‖∂W cx
d − DW ∗∗‖L∞(ω;2Rn ) ≤ Cd ‖D2W ∗∗‖L∞(ω).
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Moreover, the mapping DW ∗∗ satisfies (4.2).

Proof. A careful analysis shows that W ∗∗ ∈ C1(Rn) satisfies (4.2) and is for F = (f1, f2) ∈ R
2

given by

W ∗∗(F ) =























0, F ∈ XI ,
W (F ), F ∈ XII ∪ XIII ∪ XIV ,
f 2

2 , F ∈ XV ,
f 2

1 , F ∈ XV I ,
1
2
(f1 + f2 − 1)2, F ∈ XV II .

X

X X

X

X

X

X

1

f 1

2f

1

I

VII

II

IV

d=1/kVI

V
III

0

Figure 1. W ∗∗ and triangulation of ω ⊆ R
2 to resolve the discontinuities of D2W ∗∗.

For d = 1/k, k a positive integer, choose τ as in Figure 1. Since W cx
d is affine on each

t ∈ τ we have ∂W cx
d (s) = conv {DW cx

d |t : t ∈ τ, s ∈ t}. Since DW ∗∗ is continuous and
τ -elementwise differentiable it therefore suffices to show for each t ∈ τ

‖DW cx
d − DW ∗∗‖L∞(t) ≤ d‖D2W ∗∗‖L∞(t).

Letting W ∗∗
d = PτW

∗∗ denote the nodal interpolant of W ∗∗ we have by standard interpolation
results

‖DW cx
d − DW ∗∗‖L∞(t) ≤ ‖DW cx

d − DW ∗∗
d ‖L∞(t) + ‖DW ∗∗

d − DW ∗∗‖L∞(t)

≤ ‖DW cx
d − DW ∗∗

d ‖L∞(t) + Cd ‖D2W ∗∗‖L∞(t).
(5.1)

For each k ∈ τ we define an affine function ak : R
2 → R such that, for all x ∈ R

2, there holds

(5.2) W cx
d (x) = sup

k∈τ
ak(x)

and W cx
d |k = ak. If k ⊆ XI ∪ XII ∪ XIII ∪ XIV ∪ XV ∪ XV I we define ak such that

ak(z) = W ∗∗(z) for all z ∈ k ∩ Nτ . If k ⊆ XV II and there exists y = (y1, y2) ∈ k with
y1 + y2 ∈ 1 + 2d[j, j + 1), j ≥ 0 then we define

ak(x) = W (1 + jd,jd) + (x1 − 1 − jd, x2 − jd) · (1, 1)

× W (1 + (j + 1)d, (j + 1)d) − W (1 + jd, jd)

2d
.

Then, supk∈τ ak is convex as it is the supreme of countably many affine functions. A proof for
(5.2) then follows as above for the convexification of W . Note that W cx

d is mesh dependent.
We now prove the remaining estimates. For k ⊂ XI ∪ XII ∪ ... ∪ XV I we have DW cx

d |k =
DW ∗∗

d |k so that the asserted estimate follows from (5.1). For k ⊆ XV II such that k ⊆ Aj =
{(x1, x2) ∈ R

2 : x1 − x2 ∈ [−1, 1], x1 + x2 ∈ 1 + 2d[j, j + 1)}, j ≥ 0 there holds W cx
d = W ∗∗

on ∂Aj and W cx
d is affine on Aj. Therefore, W cx

d interpolates W ∗∗ along each line segment
in Aj parallel to (1, 1). The estimate

‖DW cx
d − DW ∗∗

d ‖L∞(t) ≤ ‖DW cx
d − DW ∗∗‖L∞(t) + ‖DW ∗∗ − DW ∗∗

d ‖L∞(t)

≤ Cd ‖D2W ∗∗‖L∞(t)
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follows from the fact that the line segments have a length d. �

5.2. Convergence of Young Measure Support.

Definition 5.1. For A, B ⊆R
n let dist (A, B) := inf(a,b)∈A×B |a−b|. We write Lim supρ→ρ0

Aρ⊆
A (i.e., A is the upper Kuratowski limit of Aρ, cf. [Ku]) if

∀ε > 0 ∃δ > 0 ∀ρ, |ρ − ρ0| ≤ δ ∀x ∈ Aρ, dist (x, A) ≤ ε.

Theorem 5.2. Let W be as in Theorem 5.1, u ∈ A a solution for (P ∗∗), and (uj)j>0 an
infimizing sequence for (P ). Let (ud,h, νd,h) ∈ Bd,h and λd,h ∈ L0(T )n satisfy the conditions
of Lemma 3.1. Assume that a subsequence of (uj)j>0 converges weakly to u and generates

the Young measure ν. Then, there exists a mapping S : R
2 → 2R

2

such that

dist (S(λd,h(x)), supp νx) → 0

if x ∈ Ω and λd,h(x) → σ(x). If for all T ∈ R
2 there holds

Lim supd→0{F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )}
⊆ {F ∈ R

2 : T = DW ∗∗(F )},
(5.3)

then we also have, if x ∈ Ω and λd,h(x) → σ(x),

Lim supλd,h(x)→σ(x)conv supp νd,h,x ⊆ conv S(σ(x)).

Remark 5.1. If W cx
d is continuously differentiable then

{F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )} = {F ∈ R
2 : T = DW cx

d (F )}.
Proof. Define µ : R

2 → PM(R2) by

F 7→































(1 − f1 − f2)δ(0,0) + f1δ(1,0) + f2δ(0,1) for F ∈ XI

δF for F ∈ XII ∪ XIII ∪ XIV ,
(1 − f1)δ(0,f2) + f1δ(1,f2) for F ∈ XV ,
(1 − f2)δ(f1,0) + f2δ(f1,1) for F ∈ XV I ,
1
2
(f1 − f2 + 1)δ 1

2
(f1+f2+1,f1+f2−1)

+1
2
(1 − f1 + f2)δ 1

2
(f1+f2−1,f1+f2+1) for F ∈ XV II ,

Since W ∗∗ is affine on conv supp νx,
∫

R2 s dνx = ∇u(x), and supp νx ⊆ {E ∈ R
2 : W (E) =

W ∗∗(E)} for almost all x ∈ Ω [CP, F], one can show νx = µ(∇u(x)) for almost all x ∈ Ω.

For S : R
2 → 2R

2

defined by

(t1, t2) 7→







































{(0, 0), (1, 0), (0, 1)} for (t1, t2) = (0, 0),
{(t1 + 2, t2)/2} for t1 > 0 and t2 < t1,
{(t1, t2)/2} for t1 < 0 and t2 < 0,
{(t1, t2 + 2)/2} for t2 > 0 and t1 < t2,
{(0, t2)/2, (2, t2)/2} for t1 = 0,
{(t1, 0)/2, (t1, 2)/2} for t2 = 0,
{(t1, t2 + 2)/2, (t1 + 2, t2)/2} for t1 = t2 and t1 > 0,

the explicit representation of W ∗∗ shows

supp µ(F ) = S(DW ∗∗(F )),
14



so that supp νx = S(σ(x)) for a.e. x ∈ Ω. Hence

(5.4) conv S(T ) = {E ∈ R
2 : T = DW ∗∗(E)}.

Moreover, for each Σ ∈ R
2 the mapping dist (S(·), Σ) : R

2 → R is continuous and therefore

dist (S(λd,h(x)), supp νx) = dist (S(λd,h(x)), S(σ(x))) → 0

if x ∈ Ω and λd,h(x) → σ(x). Because of (5.3), (5.4) and since Lim supρ→ρ0
Bρ ⊆ A if

Lim supρ→ρ0
Aρ ⊆ A and Bρ ⊆ Aρ for all ρ, we only have to show that for T = λd,h(x)

conv supp νd,h,x ⊆ {F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )}
in order to prove the second assertion. The set

M1 := {G ∈ R
2 : ∃S ∈ ∂W cx

d (∇ud,h), S ∈ ∂W cx
d (G)}

contains each subset A ⊆ R
2 with

W cx
d affine on A and ∇ud,h(x) ∈ A.

Since W cx
d is affine conv supp νd,h,x and ∇ud,h(x) ∈ conv supp νd,h,x we have conv supp νd,h,x ⊆

M1. The inclusion λd,h(x) ∈ ∂W cx
d (∇ud,h(x)) and the choice G = ∇ud,h(x) yield

M1 ⊆ {F ∈ R
2 : ∃G, S ∈ R

2, {S, T} ⊆ ∂W cx
d (G), S ∈ ∂W cx

d (F )}
which concludes the proof. �

5.3. Convergence of the Microstructure Region.

Definition 5.2. Let M denote the closure of M := {F ∈ R
n : W (F ) 6= W ∗∗(F )}. For a

solution u ∈ A for the convexified problem (P ∗∗) and a solution (ud,h, νd,h) ∈ Bd,h for (EPd,h)
the microstructure region Ωms ⊆ Ω and the discrete microstructure region Ωms,h ⊆ Ω are
defined by

Ωms := {x ∈ Ω : ∇u(x) ∈ M} and Ωms,h := {x ∈ Ω : ∇ud,h(x) ∈ M},
respectively.

The following theorem shows that Ωms is uniquely defined and that an appropriate ap-
proximation Ω̃m,h of Ωms,h converges to Ωms.

Theorem 5.3. Let W be as in Theorem 5.1 and let u solve (P ∗∗). There exists a Lipschitz-
continuous mapping ξ : R

2 → R such that, for almost all x ∈ Ω, we have

x ∈ Ωms ⇐⇒ ξ(σ(x)) = 0.

If v ∈ A is another solution for (P ∗∗) then ξ(DW ∗∗(∇u)) = ξ(DW ∗∗(∇v)) a.e. in Ω. For a
solution (ud,h, νd,h) ∈ Bd,h for (EPd,h) with multiplier λd,h ∈ L0(T )2 let

Ω̃m,h := {x ∈ Ω : ξ(λd,h(x)) = 0}.
We then have

(5.5) ‖ξ(σ) − ξ(λd,h)‖ ≤ C‖σ − λd,h‖
and

x ∈ Ω̃m,h =⇒ dist (∇ud,h(x), M) ≤ C ′‖∂W cx
d − DW ∗∗‖L∞(ω;2R2 ).
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Conversely, there holds

x ∈ Ωms,h =⇒ |ξ(λd,h(x))| ≤ ‖∂W cx
d − DW ∗∗‖L∞(ω;2R2 ).

Proof. The explicit representation of W ∗∗ in the proof of Theorem 5.1 shows, for almost all
x ∈ Ω, with (s1, s2) = σ(x) and F = ∇u(x)

x ∈ Ωms ⇐⇒ F ∈ XI ∪ XV ∪ XV I ∪ XV II

⇐⇒ (s1 = 0 ∧ s2 ≤ 0) ∨ (s2 = 0 ∧ s1 ≤ 0) ∨ (s1 = s2 ∧ s1 ≥ 0).
(5.6)

The mapping ξ : R
2 → R≥0 defined by

(s1, s2) 7→ min{|s1| − min{−s2, 0}, |s2| − min{−s1, 0}, |s1 − s2| − min{s1, 0}}
is Lipschitz continuous with bounded Lipschitz-constant C > 0 and satisfies because of (5.6)
the equivalence

ξ(σ(x)) = 0 ⇐⇒ x ∈ Ωms

for almost all x ∈ Ω. Since the quantity σ := DW ∗∗(∇u) is independent of the choice of a
solution (cf. Remark 4.1) we have uniqueness of Ωms. The Lipschitz continuity of ξ implies
the estimate (5.5). Let x ∈ Ω be such that ξ(λd,h(x)) = 0. The Lipschitz continuity of ξ and
the inclusion λd,h(x) ∈ ∂W cx

d (∇ud,h(x)) show

ξ(DW ∗∗(∇ud,h(x))) = |ξ(DW ∗∗(∇ud,h(x))) − ξ(λd,h(x))|
≤ C|DW ∗∗(∇ud,h(x)) − λd,h(x)| ≤ C‖DW ∗∗ − ∂W cx

d ‖L∞(ω;2R2 ).

To prove the asserted estimate for dist (∇ud,h(x), M) it now suffices to prove

dist (F, M) ≤ cξ(DW ∗∗(F ))

for a constant c > 0 and all F ∈ R
2. The assertion is obvious if F ∈ XI ∪ XV ∪ XV I ∪

XV II . We prove the case F ∈ XII , the remaining cases F ∈ XIII , XIV follow analogously.
Let F = (f1, f2) ∈ XII . Then f1 − 1 ≥ 0 and f1 − 1 ≥ f2. A short calculation shows
dist (F, M) = min{f1 − 1, (f1 − f2 − 1)/

√
2}. Since DW ∗∗(F ) = 2(f1 − 1, f2) we have

ξ(DW ∗∗(F )) = 2 min{f1 − 1 − min{−f2, 0}, |f2| + f1 − 1, f1 − f2 − 1}. If f2 ≤ 0 then this
term can be simplified to ξ(DW ∗∗(F )) = min{f1 − 1, f1 − f2 − 1} and the assertion follows.
If f2 ≥ 0 we have

ξ(DW ∗∗(F )) = min{f1 − 1 + f2, f1 − f2 − 1} = f1 − f2 − 1 ≥ (f1 − f2 − 1)/
√

2

= min{f1 − 1, (f1 − f2 − 1)/
√

2} = dist (F, M).

To prove the inverse implication let x ∈ Ωms,h, i.e., ∇ud,h(x) ∈ XI ∪XV ∪XV I ∪XV II . Since
λd,h(x) ∈ ∂W cx

d (∇ud,h(x)) and since ∂W cx
d (∇ud,h) = conv {DW cx

d |t : t ∈ τ,∇ud,h(x) ∈ t},
there exist t1, ..., tn+1 ∈ τ and ̺i ∈ [0, 1],

∑n+1
i=1 ̺i = 1 such that λd,h(x) =

∑n+1
i=1 ̺iDW cx

d |ti .
The identities

λd,h(x) =
n+1
∑

i=1

̺iDW cx
d |ti =

n+1
∑

i=1

̺i(DW cx
d |ti − DW ∗∗(∇ud,h)) + DW ∗∗(∇ud,h)
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and ξ(DW ∗∗(∇ud,h)) = 0 combined with the Lipschitz continuity of ξ show

|ξ(λd,h(x))| = |ξ
(

n+1
∑

i=1

̺i(DW cx
d |ti − DW ∗∗(∇ud,h)) + DW ∗∗(∇ud,h)

)

− ξ(DW ∗∗(∇ud,h))|

≤ C|
n+1
∑

i=1

̺i(DW cx
d |ti − DW ∗∗(∇ud,h))| ≤ C‖W ∗∗ − ∂W cx

d ‖L∞(ω;2R2 ). �

6. Combination of A Multilevel Scheme and Adaptive Mesh Refinement

6.1. Active Set Strategy Due to Carstensen & Roub́ıček. The identity

max
s∈ω

Hλd,h
(x, s) =

∫

Rn

Hλd,h
(x, s) νd,h,x(ds)

in Lemma 3.1 for a solution (ud,h, νd,h) ∈ Bd,h for (EPd,h) with multiplier λd,h ∈ L0(T )n

states that for almost each x ∈ Ω the probability measure νd,h,x is supported in those atoms
z ∈ Nτ for which Hλd,h

(x, ·) attains its maximum. Typically, these are only a few atoms.
If the support of the Young measure νd,h,

Supp(νd,h) := {(x, z) ∈ Ω ×Nτ : z ∈ supp (νd,h,x)},
where supp (νd,h,x) ⊆ R

n is the support of the Radon measure νd,h,x, was known a priori, we
could set A := Supp(νd,h) and seek (ud,h, νd,h) as a solution of the following lower-dimensional
problem (EPd,h,A).

(EPd,h,A)

{

Seek (ud,h, νd,h) ∈ Bd,h such that Supp(νd,h) ⊆ A
and I(ud,h, νd,h) = inf(vh,µd,h)∈Bd,h

I(vh, µd,h).

Proposition 5.4 in [CR] gives a necessary condition on A which ensures that (EPd,h,A)
is a correct reduction of (EPd,h). Conversely, Lemma 3.2 states a sufficient criterion for a
solution of (EPd,h,A) to solve (EPd,h).

Given an approximation h̃ of Hλd,h
we define a set of active atoms, called the active set,

by

(6.1) A = {(x, z) ∈ Ω ×Nτ : h̃(x, z) ≥ max
s∈ω

h̃(x, s) − ε(x)},

where ε ∈ L0(T ), ε > 0 almost everywhere in Ω, is a given tolerance. If ε is large enough
then any solution for (EPd,h,A) with A as in (6.1) is a solution for (EPd,h).

Lemma 6.1. Let (ud,h, νd,h) be a solution for (EPd,h) with corresponding multiplier λd,h and

Hλd,h
(x, s) = λd,h(x) · s − PτW (s). Moreover, let h̃ : Ω × R

n → R and ε ∈ L0(T ), ε > 0
almost everywhere in Ω be such that, for each T ∈ T ,

‖Hλd,h
− h̃‖L∞(T×ST ) ≤ ε|T ,

with ST ⊆ R
n such that, for almost all x ∈ T , we have

{s ∈ ω : Hλd,h
(x, s) = max

s̃∈ω
Hλd,h

(x, s̃)} ∪ {s ∈ ω : h̃(x, s) = max
s̃∈ω

h̃(x, s̃)} ⊆ ST .

If A is defined by (6.1) then any solution for (EPd,h,A) is a solution for (EPd,h). �

Proof. The proof follows the arguments of [CR]. �
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The idea to guess the support of a Young measure solution in a multilevel scheme together
with Lemma 6.1 motivates the following algorithm in which a sequence of refining triangu-
lations, elementwise constant tolerances, and an initial guess h̃0 for Hλd,h

, e.g., h̃0 = 0, are
given. Figure 2 includes a schematic flow chart of the algorithm.

Algorithm (Aactive set). Let τ1, τ2, ..., τJ be triangulations of ω, ε1, ε2, ..., εJ > 0 be elemen-

twise constant, and h̃0 ∈ L1(Ω; C(Rn)).

(1) Set ε := ε1, h̃ := h̃0, τ := τ1, and j := 1.
(2) Compute A from (6.1).
(3) Compute a solution (ud,h, νd,h) ∈ Bd,h,A for (EPd,h,A) and the multiplier λd,h ∈ L0(T )n.
(4) If the conditions of Lemma 3.2 are satisfied then go to (6) otherwise proceed with (5).
(5) Increase m if necessary. Enlarge ε by ε|T := 2ε|T if for some xT ∈ T

max
z∈Nτ

Hλd,h
(xT , z) >

∫

Rn

Hλd,h
(xT , s) νh,xT

(ds),

and set ε|T := ε|T otherwise. Go to (2).
(6) If j < J proceed with (7) otherwise terminate.

(7) Set j := j + 1, h̃(x, s) := λd,h(x) · s − PτW (s), ε := εj and go to (2).

Remarks 6.1. (i) The approximation h̃0 may initially be chosen as h̃0 = 0 and then all atoms

are activated in (6.1) or h̃0 is defined through the solution on a coarser triangulation T ′.
(ii) Since the tolerance ε is increased successively the optimality conditions of Lemma 6.1
are satisfied after a finite number of iterations.

6.2. Adaptive Mesh Refinement. Theorems 4.3 and 4.4 allow the introduction of local
refinement indicators which may be used for automatic mesh refinement. Let (ud,h, νd,h) be
a solution for (EPd,h) with corresponding multiplier λd,h.

Theorem 4.3 motivates the elementwise contributions, for T ∈ T ,

ηR(T )2 := h2
T‖f + div λd,h + 2α(u0 − ud,h)‖2

L2(T ) +
∑

E∈EΩ∪EN
E⊆∂T

hE‖[λd,h · nE]‖2
L2(E).

In regard to Theorem 4.4 we employ the operator Ā : L2(Ω)n → S1
N (T ; g) of [CB], which is

for ΓN = ∅ and p ∈ L2(Ω)n given by

Āp =
∑

z∈N

pzϕz, for pz =

∫

ϕz>0

p dx/

∫

ϕz>0

1 dx,

to define, for T ∈ T ,

ηZ(T ) := ‖λd,h − Āλd,h‖L2(T ).

With these definitions we have

‖σ − λd,h‖2 ≤ C
(

∑

T∈T

η(T )2
)1/2

+ h.o.t.
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where η(T ) = ηZ(T ) or η(T ) = ηR(T ) and the terms h.o.t. depend on the mesh-size of the
triangulation τ which are of higher order provided d ≪ hT and on smoothness of given
right-hand sides. We set

ηR :=
(

∑

T∈T

ηR(T )2
)1/4

and ηZ,R :=
(

∑

T∈T

ηZ(T )2
)1/4

.

Remark 4.5 (iii) states

ηZ,E :=
(

∑

T∈T

ηZ(T )2
)1/2 ≤ ‖σ − λd,h‖ + h.o.t.
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CONSIDERING THE ACTIVE GRID POINTS

SOLVE THE DISCRETE PROBLEM

AND TAKE THE ORIGINAL TOLERANCE

LEVEL

DISCRETIZATION

FINAL

REFINE THE DISCRETIZATION OF 
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Eη
η
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Ω

ω

CHOOSE INITIAL TRIANGULATION OF 
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END

GREAT VALUE OF HAMILTONIAN

ACTIVATION
ACTIVATE THE GRID POINTS WITH

GRID POINTS

PRINCIPLE SATISFIED AT ALL

IS THE MAX.

Figure 2. Schematic flow chart for the combination of the Active Set Strat-
egy (as in [CR], inside the dashed box) with adaptive mesh refinement.

The following algorithm generates the triangulations in the numerical examples of the sub-
sequent section. The parameter Θ allows to use the algorithm for uniform mesh refinement
which corresponds to Θ = 0 and adaptive mesh refinement where Θ = 1/2. For details on
adaptive mesh refinement we refer to [V]. A schematical flow chart for the combination of
the Active Set Strategy with the Adaptive Mesh Refinement Algorithm is shown in Figure 2.

Algorithm (Aadaptive
Θ ). (1) Start with a coarse triangulation T1 of Ω and set ω := (−m, m)n,

ℓ = 1, and λ̃ℓ = 0.
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(2) Compute a discrete solution (uℓ, νℓ, λℓ) with Algorithm (Aactive set) and starting values

h̃0(x, s) := λ̃ℓ(x) · s − PτW (s), J = 2, dj = 2j−1/k, k = ⌊4m 2−Jcard (NTℓ
)3/2n⌋ (⌊s⌋ is the

largest integer ≤ s), εj := 2−ℓ−j 10−4 for j = 1, ..., J (ε1 := ∞ if ℓ = 1 to activate all atoms),
and a triangulation τj of ω with maximal mesh-size dj.
(3) For each T ∈ Tℓ compute refinement indicators ηZ(T ) and ηR(T ).
(4) Mark the element T for red-refinement if

ηR(T ) ≥ Θ maxT ′∈Tℓ
ηR(T ′).

(5) Mark further elements (red-blue-green-refinement) to avoid hanging nodes. Terminate

if the stopping criterion is satisfied, generate a new triangulation Tℓ+1, define λ̃ℓ+1 := λℓ,
increment ℓ, and go to (b) otherwise.

Remarks 6.2. (i) We chose k such that d ∝ h3/2 so that ‖DW ∗∗ − ∂W cx
d ‖L∞(Ω;2Rn ) is of the

same order as the presumed higher order terms involving g and uD in Theorems 4.3 and 4.4.
(ii) Since λℓ → DW ∗∗(∇u) in L2(Ω) for a solution u ∈ A for (P ∗∗), λℓ is a Cauchy sequence,
and therefore λℓ is a good approximation for λℓ+1 if ℓ is large enough.

7. Numerical Experiments

In this section we present numerical results for two specifications of (P ). The first example
has been investigated in [CR] and is modified here to obtain quadratic growth conditions.
The second example is a two-dimensional problem that reveals limitations of our approach
to solve (P ) but thereby underlines the necessity of the design of efficient algorithms for the
solution for (EPd,h).

The implementation of the algorithms was performed in Matlab as described in [CR] for
the part concerning the Active Set Strategy. We solved the linear optimization problems
with the interior point linear program solver HOPDM [G].

Example 7.1 (One-dimensional two-well problem.). Let n = 1, Ω = (0, 1), ΓD = {0, 1},
α = 0, ΓN = ∅, and W (s) = min{(s − 1)2, (s + 1)2}. The right-hand sides are defined by

f(x) =

{

0 for x ≤ xb,
γ(x − xb)/2 for x ≥ xb,

and

uD(0) = 3x5
b/128 + x3

b/3 and uD(1) = γ(1 − xb)
3/24 + 1 − xb,

where γ = 100 and xb = π/6. A solution for (P ∗∗) is then given by

u(x) =

{

−3(x − xb)
5/128 − (x − xb)

3/3 for x ≤ xb,
γ(x − xb)

3/24 + x − xb for x ≥ xb

and allows to compute the unique quantity σ := DW ∗∗(u′). The microstructure region is
(0, xb) in which σ = 0 and u′ lies between the wells −1 and 1, i.e., u′(x) ∈ (−1, 1) for
x ∈ (0, xb). A Young measure corresponding to u is given by

νx =

{

1−u′(x)
2

δ−1 + 1+u′(x)
2

δ+1 for x ≤ xb

δu′(x) for x > xb.

For Algorithm (Aadaptive
Θ ) we used m = 4 and T1 = {[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1]}.
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Note that the weighted jumps hE‖[λd,h · nE ]‖2
L2(E) of λd,h across edges E ∈ EΩ are in the

one-dimensional situation given by

max{hT1
, hT2

}(λd,h|T1
− λd,h|T2

)2

for z ∈ K, T1, T2 ∈ T such that z = T1 ∩ T2.
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Figure 3. Error and error estimators in Example 7.1 for uniform and adap-
tive mesh refinement.

We ran Algorithm (Aadaptive
0 ) and (Aadaptive

1/2 ) in Example 7.1. The obtained error estimators

ηR, ηZ,R, and ηZ,E and the exact error ‖σ − λd,h‖ for each triangulation are plotted against
the degrees of freedom in T in Figure 3 with a logarithmic scaling used for both axes. Both,
uniform and adaptive, refinement strategies yield the same experimental convergence rates
but the adaptive scheme yields a comparable error reduction at similar numbers of degrees
of freedom. The error estimators ηR and ηZ,R converge much slower than the error itself
while the efficient error estimator ηZ,E approximates the error very well and converges with
the same order.

triangulation 1 2 3 4 5 6 7 8 9

# elements 4 8 16 32 64 128 256 512 1,024
# atoms 179 433 1,122 3,034 8,385 23,443 65,921 185,908 525,057
# active atoms 8.5 12.0 7.9 10.7 9.6 17.4 46.3 64.5 127.1

Table 1. Possible and active atoms per element on uniform meshes.

In Tables 1 and 2 we displayed for uniform and adapted meshes, respectively, the number
of possible atoms per element and the average number of active atoms per element selected
by (Aactive set). We observe that the numbers of atoms is significantly reduced by the active
set strategy. Moreover, the average number of active atoms seems to be bounded or maybe
grows very slowly on the adapted meshes while on the uniform meshes the number of active
atoms grows linearly.
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triangulation 6 7 8 9 10 11 12 13

# elements 45 81 120 187 321 492 741 1,280
# atoms 4,992 11,881 21,297 41,244 92,450 175,143 323,390 733,574
# active atoms 6.6 7.4 11.6 38.9 31.2 29.6 27.4 30.7

Table 2. Possible and active atoms per element on adapted meshes.

Example 7.2 (Two-dimensional, scalar three-well problem). Let n = 2, Ω = (0, 1)2, W as
in Theorem 5.1, α = 0, ΓD = ∂Ω, and, for (x, y) ∈ Ω, uD(x, y) = v(x) + v(y), where, for
t ∈ [0, 1],

v(t) =

{

(t − 1/4)3/6 + (t − 1/4)/8 for t ≤ 1/4,
−(t − 1/4)5/40 − (t − 1/4)3/8 for t ≥ 1/4.

Setting f := −div DW ∗∗(∇uD), i.e., for (x, y) ∈ (0, 1)2,

f(x, y) =















0 for x ≤ 1/4 and y ≤ 1/4,
−2 v′′(y) for x ≤ 1/4 and 1/4 ≤ y,
−2 v′′(x) for 1/4 ≤ x and y ≤ 1/4,

−2 (v′′(x) + v′′(y)) for 1/4 ≤ x and 1/4 ≤ y,

we have that u = uD is the weak limit of an infimizing sequence for (P ). If ux and uy

abbreviate ∂u/∂x and ∂u/∂y, respectively, then for

ν(x,y) :=























(1 − ux(x, y) − uy(x, y))δ(0,0)

+ux(x, y)δ(1,0) + uy(x, y)δ(0,1) for x ≤ 1/4 and y ≤ 1/4,
(1 − ux(x, y))δ(0,uy(x,y)) + ux(x, y)δ(1,uy(x,y)) for x ≤ 1/4 and 1/4 ≤ y,
(1 − uy(x, y))δ(ux(x,y),0) + uy(x, y)δ(ux(x,y),1) for 1/4 ≤ x and y ≤ 1/4,
δ∇u(x,y) for 1/4 ≤ x and 1/4 ≤ y,

the pair (u, ν) is a solution for (EP ). The coarsest triangulation T1 consists of 32 triangles
which are halved squares and we set m = 1.5.

Our numerical results in Example 7.2 are not as satisfying as those for Example 7.1. The
Lagrange multiplier provided by the linear program solver did not satisfy the optimality
conditions even when m was large and all atoms were activated. We suspect that this is
caused by the huge complexity of the problem. Other solvers for the linear programming
problem did not find a solution when the problem became large. This indicates that effi-
cient methods for the solution of (EPd,h) are very important. We found however, that the
quantity DW ∗∗(∇ud,h) satisfied the maximum principle and the equilibrium equation up to
an absolute error of about 0.05 in Example 7.2 so that we used this quantity to activate
atoms in Algorithm (Aactive set) and to calculate error indicators ηR, ηZ,R, and ηZ,E in order

to refine the mesh and to estimate the error in Algorithm (Aadaptive
1/2 ).

Figure 4 shows the adaptively generated mesh T6 and the support of the discrete Young
measure solution and the corresponding volume fractions restricted to three different ele-
ments. The three meshes show every tenth atom in τ and circles indicate that an atom is
active. Numbers next to circles are volume fractions provided they are larger than 0.01. We
observe that the discrete Young measure approximates the Young measure solution ν from

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

o
0.1

o
0.17

o
0.73

oooooooo

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

o
0.083

o
0.081

o
0.08

o
0.015

o
0.015

o
0.015

o
0.081

o
0.081

o
0.079

o
0.015

o
0.015

o
0.015

o
0.015

o
0.08

o
0.078

o
0.077

o
0.015

o
0.015

o
0.014

ooo

o
0.014

o
0.014

o
0.013

o
0.014

o
0.014

o
0.013

o
0.014

o
0.014

o
0.013

o
0.013

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

o
0.3

o
0.29

o
0.29

o
0.043

o
0.042

o
0.042

ooo

oooo

ooo

o

oooo

oo

−0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07 −0.06 −0.05
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

o
0.1

o
0.17

o
0.73

o

o

o

o

o

o

o

o

Figure 4. Adaptively generated mesh and Young measure restricted to
three different elements in Example 7.2.

Example 7.2 very well. Moreover, the adaptive algorithm refines the mesh in those regions
where the stress is large. Since the error estimators and the active set strategy show the
same behavior as in the previous example we omit the corresponding plots and tables here.

dof 9 35 70 162 255 492

CPU-time [s] 11.7 269.0 830.7 5,792.7 9,797.4 24,317.5

Table 3. CPU-times for (EPd,h) on adaptively refined meshes in Example 7.2.

Table 3 displays the CPU-time needed to solve (EPd,h) in Example 7.2 on a sequence of
adaptively refined triangulations against the number of degrees of freedom in Tk, k = 1, ..., 6.
The numerical solutions were obtained on a SUN Enterprise with 14 processors and 14 GB
RAM and the numbers suggest that the CPU-time depends linearly on the number of degrees
of freedom.
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