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Abstract. This work presents an a posteriori error analysis for the finite element ap-
proximation of time-dependent Ginzburg-Landau type equations in two and three space
dimensions. The solution of an elliptic, self-adjoint eigenvalue problem as a post-
processing procedure in each time step of a finite element simulation leads to a fully
computable upper bound for the error. Theoretical results for the stability of degree one
vortices in Ginzburg-Landau equations and of generic interfaces in Allen-Cahn equa-
tions indicate that the error estimate only depends on the inverse of a small parameter in
a low order polynomial. The actual dependence of the error estimate upon this parame-
ter is explicitly determined by the computed eigenvalues and can therefore be monitored
within an approximation scheme. The error bound allows for the introduction of local
refinement indicators which may be used for adaptive mesh and time step size refinement
and coarsening. Numerical experiments underline the reliability of this approach.
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1. INTRODUCTION

Given a bounded Lipschitz domain Ω ⊆ R
n, n = 2, 3, a subset ΓD ⊆ ∂Ω which is either

empty or of positive surface measure, a positive integer m, a small number ε > 0, a parameter
T > 0, initial data uε

0 ∈ H1(Ω; Rm), and boundary data gε = uε
0|ΓD

∈ H1/2(ΓD; Rm), we aim to
approximate the problem:

(P)



























Find uε ∈ Z := H1(0, T ;Y ′) ∩ L2(0, T ;H1(Ω; Rm)) such that

for almost all t ∈ (0, T ) and all v ∈ Y there holds

〈uε
t ; v〉 + (∇uε;∇v) + ε−2(f(uε); v) = 0,

uε|ΓD
= gε,

uε(0) = uε
0.

Here, Y := {v ∈ H1(Ω; Rm) : v|ΓD
= 0}, f(a) = (|a|2−1)a for a ∈ R

m, (·; ·) stands for the scalar
product in L2(Ω; Rm), 〈·; ·〉 denotes the duality pairing of Y and Y ′, and uε

t is the time derivative
of uε. Throughout this work a · b denotes the scalar product of two vectors a, b ∈ R

m.
1
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Existence and uniqueness of a solution uε for (P) follow from standard techniques. Throughout
this work we abbreviate

u = uε, u0 = uε
0, and g = gε

but stress that the dependence of the error of numerical approximation schemes upon the parameter
ε is the main focus of this work.

The model problem (P) reduces to Allen-Cahn equations [1] for the description of melting pro-
cesses in binary alloys if m = 1 and ΓD = ∅ and to (simplified) Ginzburg-Landau equations [13]
as a mathematical model for certain superconducting materials if n = m = 2, ΓD = ∂Ω, and
|g(x)| ≈ 1. Since solutions for these problems develop interfaces of thickness ε or evolve vortices
with large gradients of order ε−1 in a small neighborhood, optimal approximation schemes require
locally refined meshes which resolve such topological effects. Adaptive finite element methods
based on a posteriori error estimates are known to allow for very efficient approximations when
features on small scales have to be resolved. It is the aim of this work to prove robust a posteriori
error estimates which lead to local refinement and coarsening indicators that allow for an automatic
mesh and time-step size refinement and coarsening.

Standard error estimates for the numerical approximation of (P) depend exponentially on ε−2

and are useless if ε is small. We establish an a posteriori error estimate which depends on ε−1 only
in a low order polynomial if no critical topological effects take place. Otherwise, the error estimate
localizes critical times at which such effects occur. In particular, let U(t) ∈ S be the output of an
approximation scheme and which serves as an approximation of u(t) for some t ∈ (0, T ). We then
approximate the self-adjoint, elliptic (after introduction of a constant shift) eigenvalue problem

−∆w + ε−2f ′(U(t))w = −λw in Ω

and the value λ determines the stability of the solution of (P) at time t and enters error estimates
exponentially. Theoretical results in [5, 6] for Allen-Cahn equations and in [17] for Ginzburg-
Landau equations indicate that λ is bounded ε-independently from above if the zero level set of u
is smooth and if zeros of u are of topological degree one, respectively.

Our analysis is inspired by recent work by Feng and Prohl [9, 10] on the a priori error analysis
for the approximation of Allen-Cahn and Cahn-Hilliard equations and by Kessler, Nochetto, and
Schmidt [14, 15] on the a posteriori error analysis for the approximation of Allen-Cahn equations.
Here, we do not restrict the analysis to initial conditions and parameters T > 0 that allow for an
ε-independent upper bound for λ but propose its approximation in each time step of a numerical
simulation and thereby avoid the use of any a priori information. Numerical experiments indicate
that this approach is reliable. We remark that our analysis is still valid if outer body forces or
inhomogeneous Neumann boundary conditions on ∂Ω \ ΓD are included in (P). Moreover, the
function f may be replaced by any function that satisfies the estimates of Lemma 3.1 below. For
related numerical aspects of Allen-Cahn and Ginzburg-Landau equations we refer the reader to [7,
8] and references therein.

The outline of this article is as follows. We present the main result in an abstract setting in
Section 2 employing a continuation argument from [14]. The abstract framework allows for a pos-
teriori error estimates that are method independent. Section 3 is devoted to the derivation of an
error equation that is needed in the proof of the main result. We then specify notation in finite
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element spaces in Section 4 and state estimates that control the influence of approximated bound-
ary data on the global approximation error. Error estimates for the approximation of eigenvalue
problems are discussed in Section 5 and their combination with explicit bounds for the residual
of a lowest order finite element approximation of u in Section 6 make the abstract result of Sec-
tion 2 practically applicable. The fully computable error estimate then motivates an adaptive mesh
and time step size coarsening and refining algorithm which is stated in Section 7. Numerical ex-
periments that show the necessity of approximating λ and thereby underline the relevance of the
theoretical results of this contribution are reported in Section 8.

2. DERIVATION OF THE MAIN RESULT

Given an approximation U ∈ Z ∩L∞(0, T ;L∞(Ω; Rm)) of the solution u of (P) such that U |ΓD

is time-independent, we define its residual RU ∈ L2(0, T ;Y ′) for almost all t ∈ (0, T ) and all
v ∈ Y by

(2.1) 〈Ut; v〉 + (∇U ;∇v) + ε−2(f(U); v) = −〈RU ; v〉.

We solve eigenvalue problems to obtain functions Λ and ηEV such that for a constant c1 > 0, for
almost all t ∈ (0, T ), and κ := max{0,Λ + c1ηEV} there holds

(2.2) −κ ≤ −Λ − c1ηEV ≤ inf
06=v∈Y

(∇v;∇v) + ε−2(f ′(U(t))v; v)

||v||2L2(Ω)

.

One can then show (cf. Proposition 3.2) that for almost all t ∈ (0, T ) and e := u− U there holds

d

dt
||e||2L2(Ω) + ε2||∇e||2L2(Ω) ≤ ε−2||RU ||2Y ′ + c2(1 + κ)||e||2L2(Ω) + 2

d

dt
(e;w)

+ c3ε
−2

(

||U ||L∞(Ω) + ||w||L∞(Ω)

)

||e||3L3(Ω) + c4η
2
D,

(2.3)

where w ∈ H1(Ω; Rm) extends (the time-independent) e|ΓD
and ηD = 0 if e|ΓD

= 0. Integrating
this equation over (0, t) for any 0 ≤ t ≤ T , using a Sobolev inequality to estimate

(2.4) ||e||3L3(Ω) ≤ ||e||L2(Ω)||e||2L4(Ω) ≤ c5||e||L2(Ω)

(

||e||2L2(Ω) + ||∇e||2L2(Ω)

)

,

and setting κ := ess sups∈(0,T )κ(s) yields

1

2
||e(t)||2L2(Ω) + ε2

∫ t

0

||∇e||2L2(Ω) ds

≤ 2||e(0)||2L2(Ω) + ε−2

∫ t

0

||RU ||2Y ′ ds+ c2(1 + κ)

∫ t

0

||e||2L2(Ω) ds

+ c4

∫ t

0

η2
D ds+ 3

∫ t

0

||w||2L2(Ω) ds

+ c3c5ε
−2

(

||U ||L∞(0,T ;L∞(Ω)) + ||w||L∞(Ω)

)

× ess sups∈(0,t)||e||L2(Ω)

(

t ess sups∈(0,t)||e||2L2(Ω) +

∫ t

0

||∇e||2L2(Ω) ds
)

.

(2.5)

We choose η and a constant c6 > 0 such that

(2.6) 2||e(0)||2L2(Ω) + ε−2

∫ T

0

||RU ||2Y ′ ds+ c4

∫ T

0

η2
D ds + 3

∫ T

0

||w||2L2(Ω) ds ≤ c6η
2.
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Since the left-hand side of (2.5) depends continuously on t, we may conclude that the set

I :=
{

t ∈ [0, T ] : ess sups∈(0,t)

1

2
||e(s)||2L2(Ω) + ε2

∫ t

0

||∇e||2L2(Ω) ds ≤ 4c6η
2 exp

(

c2(1 + κ)T
)

}

is non-empty and we aim to prove that I = [0, T ]. Let t∗ := max I and suppose that t∗ < T . We
use the definition of I and (2.6) to derive from (2.5) that for all 0 ≤ t ≤ t∗ we have

1

2
||e(t)||2L2(Ω) + ε2

∫ t

0

||∇e||2L2(Ω) ds ≤ c6η
2 + c2(1 + κ)

∫ t

0

||e||2L2(Ω) ds

+ c3c5ε
−2

(

||U ||L∞(0,T ;L∞(Ω)) + ||w||L∞(Ω)

)

23
√

2c
3/2
6 η3C3

T,κ(2T + ε−2),

where C2
T,κ := exp

(

c2(1 + κ)T
)

. If

c3c5ε
−2

(

||U ||L∞(0,T ;L∞(Ω)) + ||w||L∞(Ω)

)

23
√

2c
3/2
6 η3C3

T,κ(2T + ε−2) ≤ c6η
2,

or equivalently

(2.7) ||U ||L∞(0,T ;L∞(Ω)) + ||w||L∞(Ω) = 0 or η ≤ ε4

(

||U ||L∞(0,T ;L∞(Ω)) + ||w||L∞(Ω)

)−1

8
√

2c3c5c
1/2
6 (2ε2T + 1)

C−3
T,κ,

then we have for all 0 ≤ t ≤ t∗ that

1

2
||e(t)||2L2(Ω) + ε2

∫ t

0

||∇e||2L2(Ω) ds ≤ 2c6η
2 + c2(1 + κ)

∫ t

0

||e||2L2(Ω) ds.

Gronwall’s inequality yields

ess sups∈(0,t∗)

1

2
||e(s)||2L2(Ω) + ε2

∫ t∗

0

||∇e||2L2(Ω) ds ≤ 2c6η
2 exp

(

c2(1 + κ)T
)

which by continuity of the left-hand side contradicts t∗ < T and therefore proves I = [0, T ]. The
argumentation leads to the following theorem.

Theorem 2.1. Suppose that (2.7) holds. Then there holds

ess sups∈(0,T )

1

2
||e(s)||2L2(Ω) + ε2

∫ T

0

||∇e||2L2(Ω) ds ≤ 4c6η
2 exp

(

c2(1 + κ)T
)

.

In order to make the proof of the theorem complete we only need to prove (2.3). In order to
make it applicable we need to define a strategy to compute Λ and ηEV in (2.2) and we need to
establish a computable estimator η in (2.6).

Remark. The error estimate of Theorem 2.1 is useful only if κ ≤ C for some ε-independent
constant C > 0. Supposing that ||u− U ||L∞((0,T );L∞(Ω)) ≤ C ′ε2 for some ε-independent constant
C ′ > 0 then a uniform bound for κ may be deduced from [5] if m = 1 and the zero level set of u is
smooth, and from [17] if n = m = 2 and the zeros of u are of topological degree one.

3. PROOF OF THE ERROR EQUATION (2.3)

We employ the following estimates which relate the first equation in (P) to its linearization.

Lemma 3.1. For all a, b, c ∈ R
m there holds

(f(a) − f(b)) · (a− b− c) ≥ f ′(b)(a− b− c) · (a− b− c)

+ f ′(b)c · (a− b− c) − (5|b| + |c|)|a− b|3 − |b||c|3,
f ′(b)(a− b− c) · (a− b− c) ≥ −|a− b− c|2,
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where f ′ : R
m → R

m×m denotes the total derivative of f .

Proof. For all d ∈ R
m there holds

f ′′(b)(d, d) = 4(b · d)d+ 2|d|2b and f ′′′(b)(d, d, d) = 6|d|2d
and a Taylor expansion of the cubic function f shows

f(a) − f(b) = f ′(b)(a− b) + 2(b · (a− b))(a− b) + |a− b|2b + |a− b|2(a− b).

We thus have

(f(a) − f(b)) · (a− b− c) = f ′(b)(a− b− c) · (a− b− c) + f ′(b)c · (a− b− c)

+ 2(b · (a− b))(a− b) · (a− b− c) + |a− b|2b · (a− b− c)

+ |a− b|2(a− b) · (a− b− c)

≥ f ′(b)(a− b− c) · (a− b− c) + f ′(b)c · (a− b− c)

− 3|b||a− b|2|a− b− c| − |a− b|3|c|.
We employ the triangle inequality and Young’s inequality to estimate

3|b||a− b|2|a− b− c| ≤ 3|b||a− b|3 + 3|b||a− b|2|c| ≤ 5|b||a− b|3 + |b||c|3.
The combination of the last two estimates proves the first assertion. For all d ∈ R

m we have

f ′(b)d · d = (|b|2 − 1)|d|2 + 2(b · d)2 ≥ −|d|2

and this proves the second assertion of the lemma. �

If ε ≤ 1 then the following proposition proves (2.3) with c2 = 8, c3 = 10, c4 = 2, and ηD = η̃D.

Proposition 3.2. Let w ∈ H1(Ω; Rm) satisfy w|ΓD
= e|ΓD

for almost all t ∈ (0, T ). For almost all
t ∈ (0, T ) there holds

d

dt
||e||2L2(Ω) + ε2||∇e||2L2(Ω) ≤ ε−2||RU ||2Y ′ + 2

(

ε2 + 2(1 − ε2)κ+ 3
)

||e||2L2(Ω) + 2
d

dt
(e;w)

+ 2ε−2(5||U ||L∞(Ω) + ||w||L∞(Ω))||e||3L3(Ω) + 2η̃D,

where

η̃D =
(

ε2 + 2(1 − ε2)κ+ 3 + (ε−4/2)||f ′(U)||2L∞(Ω)

)

||w||2L2(Ω)

+ ε−2||U ||L∞(Ω)||w||3L3(Ω) + 3ε−2
(

(1 − ε2)2 + 5/9
)

||∇w||2L2(Ω).

Proof. The governing equations in (P) for u and the definition of the residual RU in (2.1) lead to

〈et; v〉 + (∇e;∇v) + ε−2(f(u) − f(U); v) = 〈RU ; v〉
for all v ∈ Y . The choice v = e− w implies

1

2

d

dt
||e||2L2(Ω) + ||∇e||2L2(Ω) + ε−2(f(u) − f(U); e− w) = 〈RU ; e− w〉 + 〈et;w〉 + (∇e;∇w).

We employ the first estimate of Lemma 3.1 with a = u, b = U , and c = w to verify

−ε−2(f(u) − f(U); e− w) = −ε−2(f(u) − f(U); u− U − w)

≤ −ε−2(f ′(U)(e− w); e− w) − ε−2(f ′(U)w; e− w)

+ ε−2(5||U ||L∞(Ω) + ||w||L∞(Ω))||e||3L3(Ω) + ε−2||U ||L∞(Ω)||w||3L3(Ω).
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Given any θ ∈ [0, 1] we split the first term on the right-hand side into two contributions weighted
by θ and 1 − θ and use the second estimate of Lemma 3.1 to deduce

−θε−2(f ′(U)(e− w); e− w) ≤ θε−2||e− w||2L2(Ω)

while (2.2) yields

−(1 − θ)ε−2(f ′(U)(e− w); e− w) ≤ (1 − θ)||∇(e− w)||2L2(Ω) + (1 − θ)κ||e− w||2L2(Ω).

Hölder inequalities allow us to derive

−ε−2(f ′(U)w; e− w) ≤ ε−4

2
||f ′(U)||2L∞(Ω)||w||2L2(Ω) +

1

2
||e− w||2L2(Ω).

Young’s inequality with some positive α proves

〈RU ; e− w〉 ≤ ||RU ||Y ′ ||e− w||Y ≤ 1

4α
||RU ||2Y ′ + α||e− w||2L2(Ω) + α||∇(e− w)||2L2(Ω)

and

(∇e;∇w) ≤ α

2
||∇e||2L2(Ω) +

1

2α
||∇w||2L2(Ω)

The combination of the estimates results in

1

2

d

dt
||e||2L2(Ω) + ||∇e||2L2(Ω) ≤

1

4α
||RU ||2Y ′ +

(

α + θε−2 + (1 − θ)κ+ 1/2
)

||e− w||2L2(Ω)

+ (1 − θ + α)||∇(e− w)||2L2(Ω) + 〈et;w〉 + ε−2(5||U ||L∞(Ω) + ||w||L∞(Ω))||e||3L3(Ω)

+
1

2
ε−4||f ′(U)||2L∞(Ω)||w||2L2(Ω) + ε−2||U ||L∞(Ω)||w||3L3(Ω) +

α

2
||∇e||2L2(Ω) +

1

2α
||∇w||2L2(Ω).

We abbreviate δ := θ − α and set % := 2(1 − δ)/δ to deduce with the help of Young’s inequality

(1 − θ + α)||∇(e− w)||2L2(Ω) = (1 − δ)||∇(e− w)||2L2(Ω)

≤ (1 − δ)||∇e||2L2(Ω) +
1 − δ

%
||∇e||2L2(Ω) + %(1 − δ)||∇w||2L2(Ω) + (1 − δ)||∇w||2L2(Ω)

= (1 − δ/2)||∇e||2L2(Ω) + 2
(1 − δ)2

δ
||∇w||2L2(Ω) + (1 − δ)||∇w||2L2(Ω)

= (1 − θ/2 + α/2)||∇e||2L2(Ω) +
1

δ
(δ2 − 3δ + 2)||∇w||2L2(Ω).

This, the choices θ = 2ε2 and α = ε2/2, and the identity 〈et;w〉 = d
dt

(e;w) lead to

d

dt
||e||2L2(Ω) + ε2||∇e||2L2(Ω) ≤ ε−2||RU ||2Y ′ +

(

ε2 + 2(1 − ε2)κ+ 3
)

||e− w||2L2(Ω) + 2
d

dt
(e;w)

+ 2ε−2(5||U ||L∞(Ω) + ||w||L∞(Ω))||e||3L3(Ω) + ε−4||f ′(U)||2L∞(Ω)||w||2L2(Ω)

+ 2ε−2||U ||L∞(Ω)||w||3L3(Ω) + 3ε−2
(

(1 − ε2)2 + 5/9
)

||∇w||2L2(Ω)

which proves the proposition. �

4. FINITE ELEMENT SPACES AND BOUNDS FOR ηD IN (2.3)

4.1. Notation in finite element spaces. We suppose that Ω is polygonal or polyhedral if n = 2

or n = 3, respectively. Given a regular triangulation T of Ω into tetrahedra and quadrilaterals or
triangles and parallelograms if n = 2 or n = 3, respectively, we let S1(T )m denote the discrete
space of R

m valued, continuous functions which are T -elementwise affine or bilinear and we
set S1

D(T )m := S1(T )m ∩ Y . We specify a T -elementwise constant function hT ∈ L∞(Ω) by
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requiring hT |S = hS := diam(S) for all S ∈ T . The set F consists of all faces of elements (edges
of elements if n = 2) and we assume that ΓD is matched exactly by the union of all elements in
FD := {F ∈ F : F ⊆ ΓD}. The function hF ∈ L∞(∪F) is defined by hF |F := diam(F ) for all
F ∈ F .

For a function ψ ∈ C(ΓD; Rm) such that ψ|F ∈ H2(F ; Rm) for all F ∈ F we let D2
Fψ|F denote

the second weak derivative of ψ|F with respect to a proper coordinate system on F ∈ F .
The operator ∆T satisfies ∆T V |S = ∆(V |S) for all functions V ∈ S1(T )m and all S ∈ T .

Given a T -elementwise smooth function φ ∈ L∞(Ω; Rm×n) let

[φ · nF ]|F :=
(

φ|S2 − φ|S1

)

nF

if F ∈ F is such that F = S1 ∩ S2 for distinct S1, S2 ∈ T and nF ∈ R
n is the unit vector which is

perpendicular to F and which points from S1 into S2. For F ∈ F such that F ⊆ ∂Ω we set

[φ · nF ]|F :=

{

0 for F ⊆ ΓD,

−φn∂Ω for F ⊆ ∂Ω \ ΓD,

where n∂Ω denotes the outer unit normal to Ω on ∂Ω.
Given a function φ ∈ C(Ω; Rm) we let IT φ ∈ S1(T )m denote the nodal interpolant of φ on T .

4.2. Estimates for ηD. The construction of a function w ∈ H1(Ω; Rm) with w|ΓD
= e|ΓD

in [3]
allows to estimate ||w||L∞(Ω), ||∇w||L2(Ω), ||w||L2(Ω), and η̃D occurring in Proposition 3.2. We
thereby obtain a computable quantity (or an upper bound for) ηD in the main result of Section 2.

Lemma 4.1 ([3]). (i) Let T be a regular triangulation of Ω, assume g ∈ C(ΓD; Rm) with g|F ∈
H2(F ; Rm) for all F ∈ FD, and set G := IT u0|ΓD

. There exists w ∈ H1(Ω; Rm)∩C(Ω; Rm) such
that w|ΓD

= g −G, suppw ⊆ {S ∈ T : S ∩ ΓD 6= ∅}, and

||w||L∞(Ω) = ||g −G||L∞(ΓD) and ‖∇w‖L2(Ω) ≤ cD‖h3/2
F D2

Fg‖L2(ΓD),

where cD > 0 is an (hT , hF)-independent constant.
(ii) Under the assumptions in (i) and with w as in (i) there holds

||w||L2(Ω) ≤ c′D‖hF ||L∞(ΓD)‖h3/2
F D2

Fg‖L2(ΓD)

and

||w||L3(Ω) ≤ c′D‖hF ||1/3
L∞(ΓD)‖h

3/2
F D2

Fg‖L2(ΓD),

where c′D > 0 is an (hT , hF)-independent constant.

Proof. A proof for (i) can be found in [3]. In order to verify (ii) we use Poincaré inequalities (on
patches of elements) to estimate with an (hT , hF)-independent constant C > 0

||w||2L2(Ω) =
∑

S∈T , S∩ΓD 6=∅

||w||2L2(S) ≤ C
∑

S∈T , S∩ΓD 6=∅

h2
S||∇w||2L2(S) ≤ C‖hF ||2L∞(ΓD)||∇w||2L2(Ω).

A proof for the second estimate in (ii) then follows from (2.4) with e replaced by w. �
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5. ERROR CONTROL FOR THE COMPUTATION OF Λ IN (2.2)

This section discusses practical realizations of (2.2). For more details on the approximation of
eigenvalue problems we refer the reader to [2, 16]. Given t ∈ [0, T ] we set

(5.1) −λ(t) := inf
06=v∈Y

(∇v;∇v) + ε−2
(

f ′(U(t))v; v
)

||v||2L2(Ω)

.

We remark that a minimizing w in (5.1) exists and satisfies for all v ∈ Y

(5.2) (∇w;∇v) + ε−2
(

f ′(U(t))w; v
)

= −λ(t)(w; v).

Let Pλ(t) denote the L2 projection onto the subspace of all w ∈ Y that satisfy (5.2). The fol-
lowing lemma states an abstract version of (2.2) under the assumption that an approximation of a
minimizer in (5.2) is not L2-orthogonal to the exact eigenspace.

Lemma 5.1 ([16]). Let (W,Λ) ∈ Y × R satisfy (W ;Pλ(t)W ) 6= 0 and let rW,Λ ∈ Y ′ be such that

〈rW ;Λ; v〉 = −Λ(W ; v) − (∇W ;∇v) − ε−2
(

f ′(U(t))W ; v
)

for all v ∈ Y . Then there holds

−Λ − 〈rW,Λ;Pλ(t)W 〉
(W ;Pλ(t)W )

= −λ(t).

Proof. Abbreviate p := ε−2f ′(U(t)) and w := Pλ(t)W . There holds

(w;W )
(

λ(t)−Λ
)

= −(∇w;∇W )− (pw;W ) + (∇W ;∇w)+ (pW ;w) + 〈rW,Λ;w〉 = 〈rW,Λ;w〉
which proves the lemma. �

We derive computable upper bounds for the residual rW,Λ in Lemma 5.1 for the case that (W,Λ)

is obtained from the following lowest order finite element scheme.

(

EV
(t)
h

)

{

Let (W,Λ) ∈ S1
D(T )m × R satisfy ||W ||L2(Ω) = 1 and for all V ∈ S1

D(T )m

(∇W ;∇V ) + ε−2
(

f ′(U(t))W ;V
)

= Λ(W ;V ).

The nonlinear problem
(

EV
(t)
h

)

can be recast as: Find (x,Λ) ∈ R
` × R such that Ax = ΛBx

and x ·(Bx) = 1. Since we may introduce a constant shift, i.e., a term ε−2||f ′(U(t))||L∞(Ω)(W ;V )

in the left-hand side of the equation in
(

EV
(t)
h

)

, we may assume that A and B are positive definite.
A solution (x,Λ) can then be obtained from classical vector iterations.

Lemma 5.2 ([16]). Let (W,Λ) ∈ S1
D(T )m × R solve

(

EV
(t)
h

)

and assume that

(5.3) ||W − Pλ(t)W ||2L2(Ω) ≤ 1/2.

For k = 1, 2 set

η̃
(k)
EV := ||hk

T

(

∆TW − ε−2f ′(U(t))W + ΛW
)

||L2(Ω) + ||hk−1/2
F [∇W · nF ]||L2(∪F).

Let k ∈ {1, 2} and suppose that ||D2φ||L2(Ω) ≤ c2,0||∆φ||L2(Ω) for all φ ∈ H2(Ω; Rm) ∩ Y if
k = 2. There holds

〈rW,Λ;Pλ(t)W 〉
(W ;Pλ(t)W )

≤ cEV η̃
(k)
EV ×

{

(ε−2||f ′(U(t))||L∞(Ω) − Λ)1/2 for k = 1,

(2ε−2||f ′(U(t))||L∞(Ω) + cY ) for k = 2,

where cY := inf06=v∈Y
||∇v||

L2(Ω)

||v||
L2(Ω)

and cEV > 0 is an (ε, hT , hF)-independent constant.
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Proof. Abbreviate p := ε−2f ′(U(t)) and w := Pλ(t)W . Since 〈rW,Λ;V 〉 = 0 for all V ∈ S1
D(T )m

there holds

〈rW,Λ;w〉 = 〈rW,Λ;w − V 〉 = −Λ(W ;w − V ) − (∇W ;∇(w − V )) − (pW ;w − V ).

A T -elementwise integration by parts and Hölder inequalities show for k = 1 and k = 2,

〈rW,Λ;w〉 ≤
∑

S∈T

||hk
T (−∆TW + pW + ΛW )||L2(S)||h−k

T (w − V )||L2(S)

+
∑

F∈F

||hk−1/2
F [∇W · nF ]||L2(F )||h1/2−k

F (w − V )||L2(F ).

Let V be the Clément interpolant of w if k = 1 and its nodal interpolant if k = 2. Standard
estimates imply with an (ε, hT , hF)-independent constant C > 0

〈rW,Λ;w〉 ≤ C
(

||hk
T (∆TW − pW + ΛW )||L2(Ω) + ||hk−1/2

F [∇W · nF ]||L2(F)

)

||Dkw||L2(Ω).

Notice that W ∈ Y so that −λ(t) ≤ −Λ. Since ||w||L2(Ω) ≤ ||W ||L2(Ω) = 1 we have

(5.4) ||Dw||2L2(Ω) = ||∇w||2L2(Ω) = −λ(t)(w;w) − (pw;w) ≤ −Λ + ||p||L∞(Ω).

If k = 2 then we have

(5.5) ||D2w||L2(Ω) ≤ c2,0||∆w||L2(Ω) ≤ c2,0||(λ+ p)w||L2(Ω) ≤ c2,0

(

|λ| + ||p||L∞(Ω)

)

.

We estimate |λ| in the right-hand side by noting that

−||p||L∞(Ω) ≤ −λ(t) ≤ cY + ||p||L∞(Ω).

Since ||W − w||2L2(Ω) ≤ 1/2 and ||W ||2L2(Ω) = 1 we have

2(w;W ) = ||w||2L2(Ω) + ||W ||2L2(Ω) − ||w −W ||2L2(Ω) ≥ 1/2,

and the combination of the estimates with Lemma 5.1 concludes the proof of the lemma. �

Remark. If n = 2, Ω is convex, and ΓD = ∂Ω then there exists a constant c2,0 > 0 such that
||D2φ||L2(Ω) ≤ c2,0||∆φ||L2(Ω) for all φ ∈ H2(Ω; Rm) ∩ Y , cf. [12].

The following proposition shows that if U is piecewise affine in [0, T ] then it suffices to approx-
imate λ at a finite number of times.

Proposition 5.3. Let 0 ≤ tj < t < tj+1 ≤ T be such that t = tj + θ(tj+1 − tj) for some θ ∈ (0, 1)

and assume that U(t) = (1 − θ)U(tj) + θU(tj+1). We then have

−(1 − θ)λ(tj) − θλ(tj+1) −
5

4
ε−2||U(tj) − U(tj+1)||2L∞(Ω) ≤ −λ(t).

Proof. For all v ∈ Y there holds

(1 − θ)
(

(∇v;∇v) + (f ′(U(tj))v; v)
)

+ θ
(

(∇v;∇v) + (f ′(U(tj+1))v; v)
)

= (∇v;∇v) +
(

f ′(U(t))v; v
)

+
(

[(1 − θ)f ′(U(tj)) + θf ′(U(tj+1)) − f ′(U(t))]v; v
)

≤ (∇v;∇v) +
(

f ′(U(t))v; v
)

+ ||(1 − θ)f ′(U(tj)) + θf ′(U(tj+1)) − f ′(U(t))||L∞(Ω)(v; v)

so that

(1 − θ)(−λ(tj)) + θ(−λ(tj+1)) ≤ −λ(t) + ||(1− θ)f ′(U(tj)) + θf ′(U(tj+1)) − f ′(U(t))||L∞(Ω).
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Therefore, it suffices to verify that

||(1 − θ)f ′(U(tj)) + θf ′(U(tj+1)) − f ′(U(t))||L∞(Ω) ≤
5

4
||U(tj) − U(tj+1)||2L∞(Ω).

Taylor expansions of the quadratic function f ′ show for a, b ∈ R
m

f ′((1 − θ)a + θb) = (1 − θ)f ′(a + θ(b− a)) + θf ′(b− (1 − θ)(b− a))

= (1 − θ)f ′(a) + θf ′(b) + (1 − θ)θ(f ′′(a) − f ′′(b))(b− a)/2

+ (1 − θ)θ
(

θf ′′′(a)(b− a, b− a) + (1 − θ)f ′′′(b)(b− a, b− a)
)

/6.

This, explicit formula for f ′′ and f ′′′, and the estimate θ(1 − θ) ≤ 1/4 imply the assertion. �

Given any W ∈ S1
D(T )m with ||W ||L2(Ω) = 1 there holds ||W − Pλ(t)W ||2L2(Ω) ≤ 2. Therefore,

the assumption (5.3) does not seem to be restrictive. Since it is however not clear how to verify
it in practice we include an explicit a priori error estimate for the difference λ(t) − Λ in case that
the Laplace operator is H2 regular in Ω. We let cIT be the smallest constant such that for all
φ ∈ H2(Ω; Rm) ∩ Y there holds

||φ− IT φ||L2(Ω) + h||∇(φ− IT φ)||L2(Ω) ≤ cIT h
2||D2φ||L2(Ω),

where h := ||hT ||L∞(Ω).

Lemma 5.4. Suppose that there exists a constant c2,0 > 0 such that ||D2φ||L2(Ω) ≤ c2,0||∆φ||L2(Ω)

for all v ∈ Y ∩H2(Ω; Rm). Let (W,Λ) ∈ S1
0 (T )m × R solve

(

EV
(t)
h

)

and assume that

cIT c2,0(cY + 2ε−2||f ′(U(t))||L∞(Ω)) h
2 ≤ 1/2.

Then there holds

0 ≤ λ(t) − Λ ≤ c9
(

cY + 2ε−2||f ′(U(t))||L∞(Ω)

)3/2
h,

where the constant c9 > 0 only depends on cIT and c2,0.

Proof. Throughout this proof C denotes a generic (ε, h)-independent constant. Let w ∈ Y sat-
isfy (5.2) and ||w||L2(Ω) = 1. We abbreviate λ := λ(t) and p := ε−2f ′(U(t)) and define
q := p + ||p||L∞(Ω)Im where Im is the identity matrix in R

m×m. Then q ∈ L∞(Ω; Rm×m) is
positive definite and symmetric almost everywhere in Ω. Since W is minimal for

V 7→ (∇V ;∇V ) + (pV ;V )

among all V ∈ S1
D(T )m with ||V ||L2(Ω) = 1 there holds for all such V

0 ≤ λ− Λ ≤ −||∇w||2L2(Ω) − ||p1/2w||2L2(Ω) + ||∇V ||2L2(Ω) + ||p1/2V ||2L2(Ω)

= −||∇w||2L2(Ω) − ||q1/2w||2L2(Ω) + ||∇V ||2L2(Ω) + ||q1/2V ||2L2(Ω)

≤ 2
(

∇V ;∇(V − w)
)

+ 2(qV ;V − w)

≤ 2
(

||∇V ||2L2(Ω) + ||q1/2V ||2L2(Ω)

)1/2(||∇(V − w)||2L2(Ω) + ||q1/2(V − w)||2L2(Ω)

)1/2
.

Let W̃ := IT w. The estimate (cf. (5.5))

||D2w||L2(Ω) ≤ c2,0||∆w||L2(Ω) ≤ c2,0(cY + 2||p||L∞(Ω)) =: c2,0γ

and the assumption on h imply
∣

∣1 − ||W̃ ||L2(Ω)

∣

∣ =
∣

∣||w||L2(Ω) − ||W̃ ||L2(Ω)

∣

∣ ≤ ||w − W̃ ||L2(Ω) ≤ cIT c2,0γh
2 ≤ 1/2
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and hence ||W̃ ||L2(Ω) ≥ 1/2. Set V := W̃/||W̃ ||L2(Ω). Employing the estimate (cf. (5.4))

||∇w||L2(Ω) ≤ γ1/2

and using that by assumption on h there holds γ1/2h+ γh2 ≤ C, we deduce that

||∇(V − w)||L2(Ω) ≤
∣

∣1 − ||W̃ ||L2(Ω)

∣

∣

||W̃ ||L2(Ω)

||∇W̃ ||L2(Ω) + ||∇(W̃ − w)||L2(Ω)

≤ 2cIT c2,0γh
2||∇W̃ ||L2(Ω) + ||∇(W̃ − w)||L2(Ω)

≤ 2cIT c2,0γh
2||∇w||L2(Ω) + (1 + 2cIT c2,0γh

2)||∇(W̃ − w)||L2(Ω)

≤ 2cIT c2,0γ
3/2h2 + (1 + 2cIT c2,0γh

2)cIT c2,0γh ≤ Cγh.

and

||∇V ||L2(Ω) ≤ ||∇(V − w)||L2(Ω) + ||∇w||L2(Ω) ≤ Cγh+ γ1/2 ≤ Cγ1/2.

Similarly, there holds

||q1/2(V − w)||L2(Ω) ≤
∣

∣1 − ||W̃ ||L2(Ω)

∣

∣

||W̃ ||L2(Ω)

||q1/2W̃ ||L2(Ω) + ||q1/2(W̃ − w)||L2(Ω)

≤ cIT c2,0γh
2||q1/2||L∞(Ω) + ||q1/2||L∞(Ω)cIT c2,0γh

2

≤ Cγh2||q1/2||L∞(Ω)

and

||q1/2V ||L2(Ω) ≤ ||q1/2(V −w)||L2(Ω) + ||q1/2w||L2(Ω) ≤ ||q1/2||L∞(Ω)

(

Cγh2 +1) ≤ C||q1/2||L∞(Ω).

A combination of the estimates with ||q1/2||2L∞(Ω) ≤ Cγ results in

0 ≤ λ− Λ ≤ Chγ1/2(||q1/2||2L∞(Ω) + γ) ≤ Chγ3/2

which proves the lemma. �

6. APPROXIMATION OF (P) AND ESTIMATION OF ||RU ||Y ′ IN (2.6)

In this section we derive a computable upper bound for the residual RU for a semi-implicit finite
difference in time and finite element in space discretization of (P) with a linearized treatment of
the nonlinear term. We follow the argumentation of [14].

(Pτ,h)











































Given 0 = t0 < t1 < ... < tN = T , regular triangulations T0, T1, ..., TN of Ω,

U0 ∈ S1(T0)
m, set τj := tj − tj−1 for j = 1, 2, ..., N . For j = 1, 2, ..., N and

for all V ∈ S1
D(Tj)

m let Uj ∈ S1(Tj)
m satisfy

τ−1
j (Uj − ITj

Uj−1;V ) + (∇Uj;∇V )

+ε−2
(

f(ITj
Uj−1) + f ′(ITj

Uj−1)(Uj − ITj
Uj−1);V

)

= 0,

Uj|ΓD
= U0|ΓD

.

Given 1 ≤ j ≤ N and some Uj−1 ∈ S1(Tj−1)
m, existence of a unique solution Uj ∈ S1(Tj)

m

of the first equation in (Pτ,h) is guaranteed if τj ≤ ε2||f ′(ITj
Uj−1)||−1

L∞(Ω). A function U ∈
Z ∩ L∞(0, T ;L∞(Ω; Rm)) is defined through a sequence (Uj : j = 0, 1, ..., N) ⊆ H1(Ω; Rm) by
setting, for s ∈ [tj−1, tj] for 1 ≤ j ≤ N and θ ∈ [0, 1] such that s = tj−1 + θ(tj − tj−1),

(6.1) U(s) := U(tj−1) + θ
(

U(tj) − U(tj−1)
)

.
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For an approximation of u resulting from the solution of (Pτ,h) and a subsequent linear interpo-
lation in time, the residual RU can be estimated by fully computable quantities. The combination
of the next lemma with the estimates for ηD and ||w||L2(Ω) in Lemma 4.1 leads to a computable η
in (2.6).

Lemma 6.1. Let U ∈ Z ∩ L∞(0, T ;L∞(Ω; Rm)) be defined through a solution (Uj : j =

0, 1, ..., N) of (Pτ,h) and (6.1). There holds
∫ T

0

||RU ||2Y ′ ds ≤
N

∑

j=1

τj
(

cCl η
(j)
h + η

(j)
t + η(j)

c + η
(j)
`

)2
,

where for j = 1, 2, ..., N ,

η
(j)
h :=

∥

∥hTj

(

(

τ−1
j + ε−2f ′(ITj

Uj−1)
)

(Uj − ITj
Uj−1) − ∆Tj

Uj + ε−2f(ITj
Uj−1)

)

∥

∥

L2(Ω)

+ ||h1/2
Fj

[∇Uj · nFj
]||L2(∪Fj ),

η
(j)
t := ||∇(Uj−1 − Uj)||L2(Ω) + ε−2

(

||f ′(Uj)||L∞(Ω)||Uj−1 − Uj||L2(Ω)

+
1

2
||f ′′(Uj)||L∞(Ω)||Uj−1 − Uj||2L4(Ω) +

1

6
||f ′′′(Uj)||L∞(Ω)||Uj−1 − Uj||3L6(Ω)

)

,

η(j)
c := τ−1

j ||ITj
Uj−1 − Uj−1||L2(Ω),

η
(j)
` := ε−2

(1

2
||f ′′(ITj

Uj−1)||L∞(Ω)||Uj − ITj
Uj−1||2L4(Ω)

+
1

6
||f ′′′(ITj

Uj−1)||L∞(Ω)||Uj − ITj
Uj−1||3L6(Ω)

)

,

and cCl > 0 is an (ε, hTj
, hFj

)-independent constant.

Proof. For almost all s ∈ (tj−1, tj) and all v ∈ Y there holds

〈RU(s); v〉 = τ−1
j (Uj − Uj−1; v) + (∇U(s);∇v) + ε−2(f(U); v)

= τ−1
j

(

Uj − ITj
Uj−1; v

)

+ (∇Uj;∇v)
+ ε−2(f(ITj

Uj−1); v) + ε−2
(

f ′(ITj
Uj−1))(Uj − ITj

Uj−1); v
)

+
(

∇(U(s) − Uj);∇v
)

+ ε−2
(

f(U(s)) − f(Uj); v
)

+ τ−1
j (ITj

Uj−1 − Uj−1; v)

+ ε−2
(

f(Uj) − f(ITj
Uj−1) − f ′(ITj

Uj−1)(Uj − ITj
Uj−1); v).

Let 〈rh; v〉 be defined by the first four terms, 〈rt; v〉 by the fifth and sixth term, 〈rc; v〉 by the seventh
term, and 〈r`; v〉 by the last two terms on the right-hand side of the equation. The first equation
in (Pτ,h) allows to insert the Clément interpolant V ∈ S1

D(T )m of v in 〈rh; v〉. An elementwise
integration by parts and standard estimates for v − V yield

〈rh; v〉 = 〈rh; v − V 〉 ≤ cCl η
(j)
h ||∇v||L2(Ω).

Hölder inequalities, a Taylor expansion of f about Uj, and linearity of U in s lead to

〈rt; v〉 ≤ ||∇(U(s) − Uj)||L2(Ω)||∇v||L2(Ω) + ε−2
(

||f ′(Uj)||L∞(Ω)||U(s) − Uj||L2(Ω)

+
1

2
||f ′′(Uj)||L∞(Ω)||U(s) − Uj||2L4(Ω) +

1

6
||f ′′′(Uj)||L∞(Ω)||U(s) − Uj||3L6(Ω)

)

||v||L2(Ω)

≤ η
(j)
t ||v||Y .
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Hölder’s inequality proves

〈rc; v〉 ≤ τ−1
j ||ITj

Uj−1 − Uj−1||L2(Ω)||v||L2(Ω) = η(j)
c ||v||L2(Ω).

A Taylor expansion of f about ITj
Uj−1 gives

〈r`; v〉 ≤ ε−2
(1

2
||f ′′(ITj

Uj−1)||L∞(Ω)||Uj − ITj
Uj−1||2L4(Ω)

+
1

6
||f ′′′(ITj

Uj−1)||L∞(Ω)||Uj − ITj
Uj−1||3L6(Ω)

)

||v||L2(Ω) = η
(j)
` ||v||L2(Ω).

The combination of the estimates proves the lemma. �

Remarks. (i) The quantities η(j)
h , η(j)

t , η(j)
c , and η(j)

` , j = 1, 2, ..., N , represent space discretization,
time discretization, coarsening, and linearization residuals, respectively.
(ii) A sharper version of Theorem 2.1 can be deduced from the observation in [14] that

〈RU(s); v〉 ≤ cCl η
(j)
h ||∇v||L2(Ω) +

(

η
(j)
t + η(j)

c + η
(j)
`

)

||v||L2(Ω)

where s ∈ [tj−1, tj] and v ∈ Y . This estimate avoids an additional factor ε−2 for η(j)
t , η(j)

c , and

η
(j)
` .

(iii) A presumably smaller coarsening estimator η̃(j)
c = τ−1

j ||hTj
(Uj−1 − ΠTj

Uj−1)||L2(Ω), where

ΠTj
denotes the L2 projection onto S1(Tj)

m subject to certain boundary conditions, than η(j)
c can

be obtained if ITj
is replaced by ΠTj

in (Pτ,h).

7. ADAPTIVE ALGORITHM

The error estimate of Theorem 2.1 and the local character of the computable quantities ηD and
η allows for the definition of local refinement and coarsening indicators in space and time. The
following algorithm follows ideas in [18] and aims to simultaneously solve (Pτ,h) and automati-
cally generate optimal time step sizes τ1, τ2, ..., τN and triangulations T0, T1, ..., TN if Θh = 1 and
Θt = 1. For Θh = 0 or Θt = 0 the algorithm employs the same triangulation Tj = T0 for all
j = 1, 2, ..., N or the same time-step step size τj = τ1 for all j = 1, 2, ..., N , respectively. Given
S ∈ Tj we set

η
(j)
h (S)2 :=

∥

∥hTj

(

(

τ−1
j + ε−2f ′(ITj

Uj−1)
)

(Uj − ITj
Uj−1) − ∆Tj

Uj + ε−2f(ITj
Uj−1)

)

∥

∥

2

L2(S)

+ ||h1/2
Fj

[∇Uj · nFj
]||2L2(∂S).

Adaptive Algorithm (AΘh,Θt). Input: A regular triangulation T0 of Ω, an initial time step size
τ1 > 0, and a termination criterion δ > 0.

(a) Set t0 := 0, U0 := IT0u0, and j := 1.
(b) Set Tj := Tj−1 and if Θt = 1 coarsen Tj so that η(j)

c ≤ δ and Tj|ΓD
= Tj−1|ΓD

.
(c) Set tj := min{tj−1 + τj, T} and compute Uj ∈ S1(Tj)

m such that Uj|ΓD
= U0|ΓD

and

τ−1
j (Uj − ITj

Uj−1;V ) + (∇Uj;∇V )

+ ε−2
(

f(ITj
Uj−1) + f ′(ITj

Uj−1)(Uj − ITj
Uj−1);V

)

= 0

for all V ∈ S1
D(Tj)

m.
(c) If η(j)

t > δ and Θt = 1 set τj := 1
2
τj and go to (b).
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(d) If η(j)
h > ε2δ and Θh = 1 then refine each S ∈ Tj for which η(j)

h (S) ≥ 1
2
maxS′∈Tj

η
(j)
h (S ′)

to obtain a refined regular triangulation Tj and go to (c).
(e) Stop if tj = T .
(f) Choose a regular triangulation T̂ of Ω.

(i) Compute (W,Λ(j)) ∈ S1
D(T̂ )m × R such that ||W ||L2(Ω) = 1 and

(∇W ;∇V ) + ε−2
(

f ′(U(tj))W ;V
)

= Λ(j)(W ;V )

for all V ∈ S1
D(T̂ )m.

(ii) If Θt = 1, Θh = 1 and ηEV ≥ 1 refineT̂ and go to (i).
(g) Set j := j + 1, τj := 2τj−1, and go to (b).

If T0 and U0 are such that ||e(0)||L2(Ω) ≤ δ and ||w||L2(Ω) + ηD ≤ δ, if the algorithm terminates,
and if δ ≤ Cε4 then Theorem 2.1 implies

ess sups∈(0,T )

1

2
||e(s)||L2(Ω) + ε

∫ T

0

||∇e||L2(Ω) ds ≤ Cδ

provided that
(

Λ(j)
)

is uniformly bounded from above.

8. NUMERICAL EXPERIMENTS

In this section we discuss the practical applicability of the error estimate of Theorem 2.1 by
specifying (P) through the following three examples.

Example 1 (Allen-Cahn equations). Given ε > 0 set n := 2, m := 1, Ω := (−2, 2)2, ΓD := ∅,
T := 1, and for x ∈ Ω let

u0(x) := − tanh
(

(|x| − 1)/ε
)

.

Example 2 (Ginzburg-Landau equations I). Given ε > 0 set n = m := 2, Ω:= (−1, 1)2, ΓD := ∂Ω,
T := 5/2, and uD := ũD|∂Ω for ũD(x) := x/|x|. Set a := (1, 1)/4 and for x ∈ Ω let

u0(x) := θ
(

dist(x, ∂Ω)
)

ũD(x) +
(

1 − θ
(

dist(x, ∂Ω)
)) x− a

(

|x− a|2 + ε2
)1/2

,

where θ(s) = 1 − 48s2 + 128s3 for s ≤ 1/4 and θ(s) = 0 for s ≥ 1/4.

Example 3 (Ginzburg-Landau equations II). Given ε > 0 set n = m := 2, Ω := (−1, 1)2, ΓD :=

∂Ω, and T := 1. We identify R
2 with the complex plane, define for x ∈ Ω

u0(x) :=
x2

|x|2 + ε2
,

and set uD := u0|∂Ω.

Algorithm (AΘh,Θt) was implemented in Matlab with a direct solution of linear systems of
equations and an assemblation of stiffness matrices in C. The adaptive refinement strategy was
realized by standard bisection approaches and the mesh coarsening was achieved as follows: given
a (locally refined) triangulation Tf , U ∈ S1(Tf), δ > 0, and a coarse triangulation Tc, locally refine
Tc until ||IT U − U ||L2(Ω) ≤ δ. This approach may be suboptimal but worked reliably in practice.
In all the experiments reported below, the overall CPU time (on a node of a Compaq SC-Cluster
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with four Alpha-EV68 processors (1 GHz, 8 MB Cache/CPU) and 32 GB RAM) of Algorithm
(AΘh,Θt) was at most one week.

8.1. Validity and failure of a uniform upper bound for Λ in (2.2). The following numerical
experiments reveal practical limitations of the error estimate of Theorem 2.1 in the sense that Λ

may not be uniformly bounded from above ε-independently if critical topological effects occur.
We ran Algorithm (A0,0) in Example 1 for ε = 1/4, 1/8, 1/16, initial uniform triangulations T0

of Ω = (−2, 2)2 with maximal meshsizes h = 1/8, 1/16, 1/32, respectively, and with τ1 := ε4.
Figure 1 shows the numerical solution U(t) for ε = 1/8 and t = 0.0488, 0.2930, 0.3906, 0.4639.
We observe that the phases U ≈ 1 and U ≈ −1 are separated by a sharp interface, that the region
in which U ≈ 1 becomes smaller and that the interface finally collapses for t ≈ 0.48. Figure 2
displays for ε = 1/4, 1/8, 1/16 the eigenvalues Λj computed in step (f) of Algorithm (AΘh,Θt)

with T̂ = T0 as functions of t ∈ [0, 1]. The eigenvalues are uniformly bounded for t ≤ 0.3 and
grow proportionally to ε−2 for t ∈ (0.3, 0.5). For t ≥ 0.5 we see that Λj is bounded from above
by 0, corresponding to the stable solution u ≡ −1. Theorem 2.1 may therefore be employed
for t ≤ 0.3 provided that η ≤ Cε4. In the region t ∈ (0.3, 0.5) we would have to ensure that
η ≤ C/ exp(C ′ε−2), which can only be expected to hold if h and τ1 are unrealistically small, i.e.,
satisfy h, τ1 ≤ C/ exp(C ′ε−2).

We chose ε = 1/4, 1/8, 1/16, uniform triangulations T0 of Ω = (−1, 1)2 with maximal mesh-
sizes h = 1/8, 1/16, 1/32, respectively, and τ1 = ε4 in order to approximate (P) specified through
Example 2 with Algorithm (A0,0). We see in Figure 5 that the vortex, initially located at (1/2, 1/2),
moves to the origin and the solution reaches a stable state. For all choices of ε we plotted the
eigenvalues Λj as functions of t ∈ [0, 2.5] in Figure 4. As in the previous experiment, the same
triangulation T̂ = T0 was used to compute Λj in each time step. In this example the eigenvalues
are uniformly bounded from above by 3. This is in good agreement with theoretical results in [17]
which state that degree-one vortices in Ginzburg-Landau equations are stable. Therefore, in this
example Theorem 2.1 can be used in practice to control the discretization error.

A theoretical result in [4] states that higher degree vortices in Ginzburg-Landau equations
are unstable. This is numerically confirmed by simulations for Example 3 where the function
u0 has a degree-2 vortex at the origin. The snapshots of the numerical solutions generated
by Algorithm (A0,0) for ε = 1/8, h = 1/16, and τ1 = ε4, and displayed in Figure 5 for
t = 0, 0.1953, 0.3906, 0.5859 show that the degree-2 vortex immediately splits into two degree
one vortices which repulse each other and reach a steady state for t ≥ 1. The computed eigenval-
ues Λj calculated in step (f) of Algorithm (A0,0) in Example 3 with ε = 1/4, 1/8, 1/16, uniform
triangulations with maximal mesh-sizes h = 1/8, 1/16, 1/32, respectively, and τ1 = ε4, are shown
in Figure 6. We observe that the eigenvalues satisfy Λ(t) ≈ ε−2 for t ≤ 0.3 and are uniformly
bounded from above when the two degree-one vortices are well-separated for t ≥ 0.3.

8.2. Performance of the automatic mesh refinement and coarsening strategy. Figure 7 dis-
plays the triangulations Tj for j = 0, 800, 1600 automatically generated by Algorithm (A1,0) with
an initial uniform triangulation T0 with maximal mesh-size h = 1/16 and a (uniform) time-step
size τ1 = ε4 in Example 1 with ε = 1/8. The algorithm efficiently resolves the interface of the
numerical solution and employs a coarse mesh in the remaining part of Ω. Moreover, the refined
region moves together with the interface towards the origin.
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FIGURE 1. Numerical solution U(tj) for j = 200, 1200, 1600, 1900 in Example 1
with ε = 1/8. The zero level set of U is a circle which becomes smaller and
vanishes for t ≈ 0.48.
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FIGURE 2. Computed eigenvalue Λ in Example 1. As the interface collapses Λ
grows proportionally to ε−2.
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FIGURE 3. Numerical solutionU(tj) for j = 200, 1000, 3000, 10000 in Example 2
with ε = 1/8. The vortex is initially located at (1/2, 1/2) and moves to the origin.
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FIGURE 4. Computed eigenvalue Λ in Example 2. A uniform upper bound holds.
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FIGURE 5. Numerical solution U(tj) for j = 200, 500, 800, 2000 in Example 3
with ε = 1/8. The initial degree-2 vortex splits into two degree-1 vortices.
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FIGURE 6. Computed eigenvalue Λ in Example 3. We observe a significant de-
pendence on ε for t ≤ 0.3 while a uniform upper bound for Λ holds once the two
degree-1 vortices are well-separated.
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FIGURE 7. Adaptively refined and coarsened triangulations Tj for j =
0, 800, 1600 in Example 1 with ε = 1/8. An automatic refinement towards the
zero level set of U and a coarsening in the remaining part of the domain are observ-
able.
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FIGURE 8. Numerical solution and adaptively refined and coarsened triangula-
tions Tj for j = 0, 1000, 2000, 4000 in Example 2 with ε = 1/8. Each arrow
corresponds to a vertex in the triangulation.
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The automatically refined and coarsened triangulations Tj together with the numerical solution
U(tj) for j = 0, 1000, 2000, 4000 as outputs of Algorithm (A1,0) in Example 2 with ε = 1/8,
an initial uniform triangulation with maximal mesh-size h = 1/32, and a uniform time step size
τ1 = ε4 are displayed in Figure 8. The coarsened triangulation T0 shows a higher resolution in
a boundary layer which stems from a practically non-smooth u0. In all displayed solutions we
observe a smaller local mesh-size around the moving vortex.

For numerical evidence of improved experimental convergence rates obtained by a related auto-
matic mesh refining strategy we refer the reader to [14].
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