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Abstract. A semi-implicit, lowest order finite element scheme for the approximation of wave maps
into smooth or convex surfaces is devised and its stability is analyzed. Convergence is established for
the case of the unit sphere as a target manifold, which is unconditional in case of (2+1) Minkowski
space. Numerical experiments illustrate the theoretical results.

1. Introduction

Let Ω ⊂ Rm be a bounded Lipschitz domain, N ⊂ R` a compact, n-dimensional submanifold
without boundary, and T > 0. A mapping u : (0, T )×Ω→ N is called a wave map into N subject
to given initial data u0 and u1 such that u0 ∈ N and u1 ∈ Tu0N in Ω if u satisfies

(1.1) �u := ∂2
t u−∆u ⊥ TuN in (0, T )× Ω

and

(1.2) ∂nu(t, ·) = 0 on ∂Ω, u(0, ·) = u0, ∂tu(0, ·) = u1.

The initial boundary value problem (1.1)-(1.2) occurs as a simplified model problem in general
relativity and physics, e.g., the Einstein vacuum equations with cylindrical symmetry reduce to
a wave map system on (2+1) Minkowski space, cf. [AH02], and wave maps arise as nonlinear σ
models in particle physics, cf. [Car04]. Characteristic properties of (smooth) solutions are that they
are energy conserving in the sense that the identity

E[u(t), ∂tu(t)] :=
1
2

∫
Ω

∣∣∂tu∣∣2 dx+
1
2

∫
Ω

∣∣∇u∣∣2 dx = E[u0, u1]

is satisfied for all t ≥ 0 and that (1.1) is invariant with respect to dimensionless scaling. Various
properties of solutions to (1.1)-(1.2) such as long time existence for large initial data or occurrence
of finite-time blow-up for smooth initial data are still not entirely understood and a lot of research
has been carried out in recent years studying these questions. We refer the reader to the survey
article [Tat04], the monograph [SS98], and the recent results in [KST08] for related details.

The occurrence of singular solutions for (1.1)-(1.2) has first been studied numerically in [BCT01,
IL02] by employing reduced models and direct discretizations. While those numerical results provide
strong evidence for the possibility of finite-time blow-up, convergence of approximations to solutions
of (1.1)-(1.2) has not been investigated and numerical artifacts cannot be entirely ruled out. Weak
accumulation of finite element solutions obtained by projection and penalization methods and
their stability has been established in [BFP08] for the case that N = Sn. The schemes either
converge under restrictive conditions on the discretization parameters or require the solution of
nonlinear problems in each time step. A method based on approximate Lagrange multipliers for
the computation of wave maps into fixed and varying spheres but which also leads to nonlinear
problems in each time step has been studied respectively in [BLP07] and [BPS08]. This article
aims at devising a numerical method that leads to linear systems of equations in each time step, is
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unconditionally stable for a large class of target manifolds N , and is convergent to weak solutions
of (1.1)-(1.2) if N is the unit sphere under mild conditions on the discretization parameters.

Our proposed scheme is a projection method that linearizes the constraint U j+1(z) ∈ N about the
previous approximation U j(z) at the nodes z of the underlying triangulation Th and then computes
the update in the corresponding tangent space of N . This leads to a semi-implicit iteration that
is unconditionally stable if Th is weakly acute and N is convex. Otherwise, if N is nonconvex or
Th fails to be weakly acute, certain conditions on the time-step size and the mesh-size are required
to guarantee well-posedness and stability of the scheme. Weak accumulation of approximations
at weak solutions of (1.1)-(1.2) in case of the unit sphere as the target manifold is established
unconditionally if m ≤ 2 and under mild constraints otherwise. This discrepancy is due to the
lack of an appropriate multiplicative Sobolev inequality for m ≥ 3. In the development and the
analysis of our scheme we greatly benefit from results on the approximation of harmonic maps
in [Alo97, Bar05, BBFP07, BFP08] and in particular [Alo08, Bar08]. In future work we aim at
establishing convergence of our algorithm also for general, smooth target manifolds following the
ideas in [FMS98, MS98].

The rest of this paper is organized as follows. In Section 2 we introduce the notion of a weak
solution of (1.1)-(1.2), state the approximation scheme together with its main properties, and
recall some basic facts about lowest order finite element methods. Section 3 is devoted to the
stability and well-posedness of our proposed algorithm under various assumptions on N and the
underlying triangulation. For the case that N is the n-dimensional unit sphere we prove in Section 4
that approximations obtained with our scheme weakly accumulate at weak solutions of (1.1)-(1.2).
Numerical experiments supporting and illustrating our theoretical findings are reported in Section 5.

2. Preliminaries

In this section we introduce the notion of a weak solution of (1.1)-(1.2), define the approximation
scheme, summarize its most important properties, and recall basic facts of lowest order finite
element methods.

2.1. Weak solutions. We let (·, ·) denote the inner product in L2(Ω; R`1×`2) with corresponding
norm ‖ · ‖ and use standard notation for Sobolev and Bochner spaces. For T > 0 we define
ΩT := (0, T )× Ω and for functions u ∈ H1(Ω; R`) and v ∈ L2(Ω; R`) we set

E[u, v] :=
1
2
‖v‖2 +

1
2
‖∇u‖2.

Definition 2.1. Given T > 0, u0 ∈ H1(Ω; R`), and u1 ∈ L2(Ω; R`) such that u0 ∈ N and
u1 ∈ Tu0N almost everywhere in Ω we call a mapping u : ΩT → N a weak solution of (1.1)-(1.2) if

(1) u ∈ H1(0, T ;L2(Ω; R`)) ∩ L2(0, T ;H1(Ω; R`)),
(2) u(t, x) ∈ N for almost every (t, x) ∈ ΩT ,
(3) for all w ∈ C∞0 ([0, T );C∞(Ω; R`)) such that w(t, x) ∈ Tu(t,x)N for every (t, x) ∈ ΩT we

have

−
∫ T

0

(
∂tu, ∂tw

)
dt+

∫ T

0

(
∇u,∇w

)
dt =

(
u1, w(0)

)
,

(4) the initial data u0 is attained by u in the sense of traces,
(5) for almost every t ∈ (0, T ) we have

E[u(t, ·), ∂tu(t, ·)] ≤ E[u0, u1].

Remarks 2.1. (i) Global existence of weak solutions of (1.1)-(1.2), i.e., existence of weak solutions
for all T > 0, in case m = 2 and for parallelizable target manifolds N has been established in [MS96].
(ii) Weak solutions of (1.1)-(1.2) in the sense of Definition 2.1 attain the initial data u0 and u1
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continuously in H1(Ω; R`) and L2(Ω; R`), respectively, as t → 0, cf. [MS96, SS98]. For this it is
essential that u1(x) ∈ Tu0(x)N for almost every x ∈ Ω.

2.2. Approximation scheme and main results. For a regular triangulation Th of the polyhedral
domain Ω into simplices with vertices contained in Nh and whose maximal diameters are bounded
by h we define

Vh :=
{
vh ∈ C(Ω) : vh|K affine for all K ∈ Th

}
.

Given a time-step size τ > 0, the backward difference operator dt is for a sequence (aj)j≥0 and
j ≥ 0 defined through

dta
j+1 := τ−1

(
aj+1 − aj

)
.

For an integer JT such that JT τ ≥ T and an arbitrary parameter θ ∈ [0, 1], we propose the following
approximation scheme for solutions of (1.1). It is motivated by ideas in [Bar08] and [Alo08].

Algorithm (A). Let
(
U0, V 0

)
∈
[
V`
h

]2 such that U0(z) ∈ N and V 0(z) ∈ TU0(z)N for all z ∈ Nh.
For j = 0, 1, ..., JT − 1 let

(
U j+1, V j+1

)
∈
[
V`
h

]2 be defined as follows:
(1) Let V j+1 ∈ V`

h be such that V j+1(z) ∈ TUj(z)N for all z ∈ Nh and(
dtV

j+1,W
)

+
(
∇
[
U j + θτV j+1

]
,∇W

)
= 0

for all W ∈ V`
h satisfying W (z) ∈ TUj(z)N for all z ∈ Nh.

(2) Define U j+1 ∈ V`
h by setting

U j+1(z) = πN
(
U j(z) + τV j+1(z)

)
for all z ∈ Nh.

Here, πN : UδN (N) → N is the nearest-neighbor projection onto N defined in the tubular
neighborhood UδN (N) := {q ∈ R` : dist(q,N) ≤ δN} of N for some positive number δN that
depends on the curvature of N . Our main results are summarized in the following theorem and
we refer the reader to the subsequent sections for proofs, details, and more general assertions.
In particular, the definition of a weakly acute triangulation is found in Subsection 2.3 and the
parameter σN is introduced in Remark 2.2 (i) below. We say that N is convex if N = ∂C for an
open, convex set C ⊂ R`. Throughout this article, C denotes a generic, positive constant that does
not depend on h and τ .

Theorem 2.1. (i) If N is convex, Th weakly acute, and θ ≥ 1/2 then the iteration of Algorithm (A)
is well defined and for all 0 ≤ J ≤ JT − 1 we have

E
[
UJ+1, V J+1

]
+ τ

J∑
j=0

{τ
2

∥∥dtV j+1
∥∥2 +

(
θ − 1

2

)τ
2

∥∥∇V j+1
∥∥2
}
≤ E

[
U0, V 0

]
.

(ii) If N is C3, Th quasiuniform, and τ ≤ Chmax{1+m/2,2}σ−1
N then the iteration of Algorithm (A)

is well defined and for all 0 ≤ J ≤ JT − 1 we have

(
1− C ′τ

)
E
[
UJ+1, V J+1

]
+ τ

J∑
j=0

{τ
2

∥∥dtV j+1
∥∥2 +

τ

2

∥∥dt∇U j+1
∥∥2 + θτ

∥∥∇V j+1
∥∥2
}

≤ E
[
U0, V 0

]
exp

(
C ′′(τh−2 + τ3h−4−m)T

)
.

(iii) If m ≤ 3, N = Sn, and either θ > 1/2 and τ = o
(
h

max{0,m−2}
min

)
or θ = 1/2 and τ = o

(
h
m/2
min

)
or θ < 1/2 and τ = o

(
h2
min

)
then every weak accumulation point of the sequence

(
uh
)
h>0

⊂
L∞(0, T ;H1(Ω; R`)) that is obtained by piecewise constant interpolation of

(
U j
)
j=0,1,...,JT

in time
for each h > 0 is a weak solution of (1.1)-(1.2).
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Remarks 2.2. (i) Owing to the Lax-Milgram Lemma, Step (1) of Algorithm (A) is always well
defined. Step (2) is well defined if N is convex or τ

∣∣V j+1(z)
∣∣ ≤ σN , where σN is a number such

that dist(p + s,N) ≤ δN whenever p ∈ N and s ∈ TpN with |s| ≤ σN . It can be shown that σN is
positive if N is C2, cf., e.g. [Bar08]. If N = ∂C is convex then, since p+ s ∈ R` \ C the projection
πN (p+ s) is well defined for all p ∈ N and s ∈ TpN and we may set σN :=∞.
(ii) The domain Ω may be replaced by a smooth m-dimensional submanifold M ⊂ Rk. In this
case the triangulation Th defines an approximate submanifold Mh and the elementwise defined
tangential gradient ∇Mh

has to be employed. We refer the reader to [DDE05] for related definitions
and estimates.
(iii) The practical computation of the nearest-neighbor projection πN can be realized by solving for
given p ∈ R` the saddle-point formulation

inf
q∈R`

sup
λ∈R
|p− q|2 + λf(q),

where f : R` → R is an arbitrary function such that f−1(0) = N . Convergence of related iterative
methods has been investigated in [DD07] and [Bar08].
(iv) Although not unconditionally convergent, in practice it may be preferable to employ θ = 1/2 to
limit the effect of numerical dissipation.

2.3. Auxiliary results. We next collect a few elementary results about finite element spaces that
will be required in the analysis below. We refer the reader to [Cia02, BS02] for detailed information
and proofs. Letting

(
ϕz : z ∈ Nh

)
denote the nodal basis of Vh, the nodal interpolation operator

Ih : C(Ω)→ Vh is for v ∈ C(Ω) defined by

Ihv =
∑
z∈Nh

v(z)ϕz.

If m ≤ 3 then standard techniques imply that for v ∈ C(Ω) such that v|K ∈ H2(K) for all K ∈ Th
we have

(2.1)
∥∥v − Ihv∥∥+

∥∥∇[v − Ihv]∥∥ ≤ C∥∥h2
Th
D2
Th
v
∥∥,

where hTh
∈ L∞(Ω) satisfies hTh

|K = diam(K) for all K ∈ Th and D2
Th
v denotes the elementwise

evaluation of the Hessian of v. We will make repeated use of inverse estimates of the form

(2.2)
∥∥V ∥∥

Lq(Ω)
≤ Chm(1/q−1/p)

min

∥∥V ∥∥
Lp(Ω)

as well as

(2.3)
∥∥h−1
Th
∇V

∥∥
Lp(Ω)

≤ C
∥∥V ∥∥

Lp(Ω)

which hold for all V ∈ Vh, real numbers 1 ≤ p ≤ q ≤ ∞ (where 1/∞ := 0), and hmin :=
minK∈Th

diam(K). It is well known that for every 1 ≤ p <∞ the equivalence

(2.4) C−1
∥∥V ∥∥p

Lp(Ω)
≤
∑
z∈Nh

hmz
∣∣V (z)

∣∣p ≤ C∥∥V ∥∥p
Lp(Ω)

is satisfied for all V ∈ Vh. Here, we set hz := diam suppϕz for every z ∈ Nh. A triangulation Th is
called weakly acute if for all distinct z, y ∈ Nh we have(

∇ϕz,∇ϕy
)
≤ 0.

The following basic observation is essential for unconditional stability of our algorithm and has first
been employed in the context of geometric partial differential equations in [Bar05].

4



Lemma 2.1. Let P : R` → R` be a Lipschitz continuous operator with Lipschitz constant |P |Lip.
Given any V ∈ V`

h let T hPV ∈ V`
h be defined through T hPV (z) = P

(
V (z)

)
for all z ∈ Nh. Then, we

have ∥∥∇T hPV ∥∥ ≤ |P |Lip∥∥∇V ∥∥.
Proof. Under the assumptions of the lemma we have for the finite element stiffness matrix K =
(kzy)z,y∈Nh

that kzy =
(
∇ϕz,∇ϕy

)
≤ 0 whenever z 6= y. Using that the sum of every row of K

vanishes and that K is symmetric we infer for every W ∈ V`
h that∥∥∇W∥∥2 =

∑
z,y∈Nh

kzyW (z) ·W (y) =
∑

z,y∈Nh

kzyW (z) ·
(
W (y)−W (z)

)
=

1
2

∑
z,y∈Nh

kzyW (z) ·
(
W (y)−W (z)

)
+

1
2

∑
z,y∈Nh

kzyW (y) ·
(
W (z)−W (y)

)
= −1

2

∑
z,y∈Nh

kzy
∣∣W (z)−W (y)

∣∣2.
On applying this identity twice we find that∥∥∇T hPV ∥∥2 = −1

2

∑
z,y∈Nh

kzy
∣∣P (V (z)

)
− P

(
V (y)

)∣∣2 ≤ |P |2Lip∥∥∇V ∥∥2
,

where we used that kzy ≤ 0 for z 6= y and all contributions to the sum with z = y vanish. �

Remark 2.1. If m = 2 then Th is weakly acute if and only if every sum of angles opposite to an
inner edge is bounded by π and every angle opposite to an edge on the boundary of Ω is bounded by
π/2. A sufficient condition for m = 3 is that every angle between two faces that belong to the same
element is bounded by π/2.

3. Stability of Algorithm (A)

This section discusses stability of the iteration of Algorithm (A) under various assumptions on
N , Th, θ, and τ .

3.1. Convex targets. If N = ∂C is convex then the projection πN coincides in the exterior of
C with the restriction of the orthogonal projection πC : R` → C to R` \ C. Since πC is Lipschitz
continuous with constant 1 we obtain unconditional convergence of Algorithm (A) in case that Th
is weakly acute and θ ≥ 1/2. Otherwise, if θ < 1/2 the iteration is stable if τ ≤ Ch2

min. The proof
of the following proposition partially follows recent work in [Alo08].

Proposition 3.1. Suppose that N is convex and Th weakly acute. If θ ≥ 1/2 then the iterates(
U j , V j

)
j=0,1,..,JT

of Algorithm (A) satisfy for every 0 ≤ J ≤ JT − 1,

E
[
UJ+1, V J+1

]
+ τ

J∑
j=0

{τ
2

∥∥dtV j+1
∥∥2 +

(
θ − 1

2

)τ
2

∥∥∇V j+1
∥∥2
}
≤ E

[
U0, V 0

]
.

If θ < 1/2 then for every 0 ≤ J ≤ JT − 1 we have

(
1− C ′τ2h−2

min

)
E
[
UJ+1, V J+1

]
+ τ

J∑
j=0

τ

2

∥∥dtV j+1
∥∥2 ≤ E

[
U0, V 0

]
exp

(
C ′′τh−2

minT
)
.

5



Proof. We choose W = V j+1 in the first step of Algorithm (A) and employ the identities (a−b)a =
(a2 − b2)/2 + (a− b)2/2 as well as (a+ θb)b = ((a+ b)2 − a2)/2 + (θ − 1/2)b2 to verify that

1
2
dt
∥∥V j+1

∥∥2 +
τ

2

∥∥dtV j+1
∥∥2 +

1
2τ
(∥∥∇[U j + τV j+1

]∥∥2 −
∥∥∇U j∥∥2)+

(
θ − 1

2

)
τ
∥∥∇V j+1

∥∥2 = 0.

Since p + s ∈ R` \ C for all p ∈ N and s ∈ TpN , U j+1(z) = πN
(
U j(z) + τV j+1(z)

)
for all z ∈ Nh,

and
∣∣πN |R`\C

∣∣
Lip
≤ 1, Lemma 3.1 implies that∥∥∇U j+1

∥∥ ≤ ∥∥∇[U j + τV j+1
]∥∥.

A combination of the last two estimates, multiplication by τ , and summation over j = 0, 1, ..., J
implies the first assertion. The second assertion follows upon employing the inverse estimate (2.3)
and using a discrete Gronwall inequality. �

3.2. General targets. Significantly weaker results are available for the case that N is not convex.
In particular, we are not able to benefit from a special structure of a triangulation or the semi-
implicit nature of Algorithm (A) for θ ≥ 1/2. We notice that the results of this subsection also
apply if N is convex but Th fails to be weakly acute.

Proposition 3.2. Suppose that N is C3 regular and assume that Th is quasiuniform, i.e., Ch ≤
hmin. If

τ ≤ Chmax{2,1+m/2}σ−1
N

then the iteration of Algorithm (A) is well defined and the iterates
(
U j , V j

)
j=0,1,..,JT

satisfy for
every 0 ≤ J ≤ JT − 1,

(
1− C ′τ

)
E
[
UJ+1, V J+1

]
+ τ

J∑
j=0

{τ
2

∥∥dtV j+1
∥∥2 +

τ

2

∥∥dt∇U j+1
∥∥2 + θτ

∥∥∇V j+1
∥∥2
}

≤ E
[
U0, V 0

]
exp

(
C ′′(τh−2 + τ3h−m+4)T

)
.

Remark 3.1. If N is convex then the assertion of the proposition holds true if τ ≤ Chmax{2,(m+4)/3}.

Proof. We adopt arguments of [BBFP07, BFP08, Bar08] and divide the proof into several steps.
Step 1: rough bound and well posedness. Suppose that the first J ′ ≥ 0 iterations of Algorithm (A)
are well defined and assume that

∥∥∇U j∥∥ ≤ C0 for all 0 ≤ j ≤ J ′. This holds, e.g., for J ′ = 0. Then,
upon choosing W = V j+1 in Step (1) of Algorithm (A) and employing the inverse estimate (2.3)
we find

1
2
dt
∥∥V j+1

∥∥2 +
τ

2

∥∥dtV j+1
∥∥2 + θτ

∥∥∇V j+1
∥∥2 = −

(
∇U j ,∇V j+1

)
≤ 1

2
h−2CC2

0 +
1
2

∥∥V j+1
∥∥2
.

An application of the discrete Gronwall lemma implies that for j = 0, 1, ..., J ′ we have

(3.1)
∥∥V j+1

∥∥ ≤ Ch−1

and hence, by application of the inverse estimate (2.2),∥∥V j+1
∥∥
L∞(Ω)

≤ Ch−m/2
∥∥V j+1

∥∥ ≤ Ch−1−m/2.

Thus, under the condition τ ≤ Cσ−1
N h1+m/2, cf. Remark 2.2 (i), we have

dist
(
U j(z) + τV j+1(z), N

)
≤ δN

for j = J ′ which implies that Step (2) of Algorithm (A) and hence UJ
′+1 is well defined.

Step 2: estimates for V j+1 − dtU j+1. For j = 0, 1, ..., J ′ we define Rj+1 := dtU
j+1 − V j+1. Using
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the definition of U j+1, noting that U j(z) = πN
(
U j(z)

)
, and employing a Taylor expansion of the

C2 regular mapping πN about U j(z), we have for every z ∈ Nh that∣∣Rj+1(z)
∣∣ = τ−1

∣∣πN(U j+1(z) + τV j+1(z)
)
− U j(z)− τV j+1(z)

∣∣
= τ−1

∣∣πN(U j+1(z) + τV j+1(z)
)
− πN

(
U j(z))− τV j+1(z)

∣∣
≤ Cτ

∣∣V j+1(z)
∣∣2,(3.2)

where we used that DπN (p)s = s for every p ∈ N and s ∈ TpN , i.e., DπN
(
U j(z)

)
V j+1(z) =

V j+1(z). The equivalence (2.4) implies

(3.3)
∥∥Rj+1

∥∥
Lp(Ω)

≤ Cτ
∥∥V j+1

∥∥2

L2p(Ω)

for all 1 ≤ p ≤ ∞.
Step 3: intermediate energy inequality. Upon choosing W = V j+1 = dtU

j+1 − Rj+1 in Step (1) of
Algorithm (A) we find

1
2
dt
∥∥V j+1

∥∥2 +
τ

2

∥∥dtV j+1
∥∥2 +

1
2
dt
∥∥∇U j+1

∥∥2 +
τ

2

∥∥dt∇U j+1
∥∥2

= −
(
∇
[
U j + τθV j+1

]
,∇V j+1

)
+
(
∇U j+1,∇dtU j+1

)
= −θτ

∥∥∇V j+1
∥∥2 + τ

∥∥dt∇U j+1
∥∥2 +

(
∇U j ,∇Rj+1

)
.

Inverse estimates, the definition of Rj+1, the bound
∥∥U j∥∥

L∞(Ω)
≤ C, and (3.3) show

1
2
dt
∥∥V j+1

∥∥2 +
τ

2

∥∥dtV j+1
∥∥2 +

1
2
dt
∥∥∇U j+1

∥∥2 +
τ

2

∥∥dt∇U j+1
∥∥2 + θτ

∥∥∇V j+1
∥∥2

≤ Cτh−2
∥∥dtU j+1

∥∥2 + Ch−2
∥∥U j∥∥

L∞(Ω)

∥∥Rj+1
∥∥
L1(Ω)

≤ Cτh−2
∥∥V j+1

∥∥2 + Cτh−2
∥∥Rj+1

∥∥2

≤ Cτh−2
∥∥V j+1

∥∥2 + Cτ3h−2
∥∥V j+1

∥∥4

L4(Ω)
.

We use (2.2) to verify∥∥V j+1
∥∥4

L4(Ω)
≤
∥∥V j+1

∥∥2

L∞(Ω)

∥∥V j+1
∥∥2 ≤ Ch−m

∥∥V j+1
∥∥4

and to deduce that

1
2
dt
∥∥V j+1

∥∥2 +
τ

2

∥∥dtV j+1
∥∥2 +

1
2
dt
∥∥∇U j+1

∥∥2 +
τ

2

∥∥dt∇U j+1
∥∥2 + θτ

∥∥∇V j+1
∥∥2

≤ Cτh−2
∥∥V j+1

∥∥2 + Cτ3h−2−m∥∥V j+1
∥∥4

is satisfied for all 0 ≤ j ≤ J ′. Multiplication by τ , summation over j = 0, 1, ..., J with 0 ≤ J ≤ J ′,
and the estimate

∥∥V j+1
∥∥2 ≤ Ch−2, cf. (3.1), imply

(
1−Cτ2h−2−Cτ4h−4−m)E[UJ+1, V J+1

]
+τ

J∑
j=0

{τ
2

∥∥dtV j+1
∥∥2 +

τ

2

∥∥dt∇U j+1
∥∥2 +θτ

∥∥∇V j+1
∥∥2
}

≤ E
[
U0, V 0

]
+ C

(
τh−2 + τ3h−4−m)τ J−1∑

j=0

∥∥V j+1
∥∥2
.

Step 4: energy inequality up to J ′+1. An application of the discrete Gronwall lemma shows that the
assertion of the proposition holds up to J ≤ J ′. From that estimate we find that

∥∥∇UJ ′+1
∥∥ ≤ C0 if,
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e.g., C0 = 4E
[
U0, V 0

]
and τ and h are such that 1−C ′τ ≥ 1/2 and exp

(
C ′′(τh−2 +τ3h−4−m)

)
≤ 2.

This permits us to continue the inductive argumentation started in Step 1. �

4. Weak accumulation at wave maps into the unit sphere

For the symmetric situation N = Sn =
{
q ∈ Rn+1 : |q| = 1

}
we show that iterates provided by

Algorithm (A) weakly accumulate at weak solutions of (1.1) in the sense of Definition 2.1. Through-
out this section we assume that Th is weakly acute so that we are in the situation of Proposition 3.1.
For a convergence analysis on general triangulations but under more restrictive conditions on the
time-step size τ we refer the reader to [BFP08]. We note that throughout this section we have
` = n+ 1.

Piecewise affine and constant interpolations of the sequences
(
U j
)
j=0,1,...,JT

and
(
V j
)
j=0,1,...,JT

are for t ∈ [0, T ] such that t ∈ [tj , tj+1) for some j = 0, 1, ..., JT − 1 and tj := jτ defined by

Û(t) := U j + (t− tj)dtU j+1, V̂ (t) := V j + (t− tj)dtV j+1,

and
V +(t) := V j+1, U−(t) := U j , U+(t) := U j+1.

To verify that ∂tÛ and V + have the same accumulation points we need the following bound which
is also valid if N 6= Sn.

Definition 4.1. For θ ∈ [0, 1] and hmin > 0 let Υθ(hmin) be defined through

Υθ(hmin) :=


1 for m ≤ 2 and θ > 1/2,
h
−m/2
min for m ≥ 1 and θ = 1/2,
h2−m
min for m ≥ 3 or θ < 1/2.

Lemma 4.1. Suppose that τ ≤ Ch−2
min if θ < 1/2 and τ ≤ Chm/2min if θ = 1/2. Then we have∫ T

0

∥∥∂tÛ − V +
∥∥2 dt ≤ CCθτΥθ(hmin)E

[
U0, V 0

]2
,

where Cθ = (θ − 1/2)−2 if θ > 1/2 and Cθ = 1 otherwise.

Proof. As in (3.2)-(3.3) we find∥∥∂tÛ(t, ·)− V +(t, ·)
∥∥2 ≤ Cτ2

∥∥V +(t, ·)
∥∥4

L4(Ω)
.

If θ > 1/2 and m ≤ 2 we employ the multiplicative Sobolev inequality∥∥V +(t, ·)
∥∥4

L4(Ω)
≤ C

∥∥V +(t, ·)‖2H1(Ω)

∥∥V +(t, ·)
∥∥2
,

cf. [LU68, Str00], to verify the assertion of the lemma with the bounds of Proposition 3.1. If θ > 1/2
and m ≥ 3 we let p∗ := 2m/(m− 2) denote the Sobolev conjugate exponent of 2 and use r = p∗/2
in Hölder’s inequality to estimate∥∥V +(t, ·)

∥∥4

L4(Ω)
≤
∥∥V +(t, ·)

∥∥2

L2r(Ω)

∥∥V +(t, ·)
∥∥2

L2r′ (Ω)
=
∥∥V +(t, ·)

∥∥2

Lp∗ (Ω)

∥∥V +(t, ·)
∥∥2

Lm(Ω)

where we used 2r′ = 2r/(r − 1) = 2p∗/(p∗ − 2) = m. The Sobolev inequality ‖V +(t, ·)‖Lp∗ (Ω) ≤
C‖V +(t, ·)‖H1(Ω), the inverse estimate (2.2) with q = m and p = 2, and the bounds of Proposi-
tion 3.1 then imply the assertion. In all remaining cases θ ≤ 1/2 we use the inverse estimate (2.2)
to verify ∥∥V +(t, ·)

∥∥4

L4(Ω)
≤
∥∥V +(t, ·)

∥∥2

L∞(Ω)

∥∥V +(t, ·)
∥∥2 ≤ Ch−mmin

∥∥V +(t, ·)
∥∥4
,

employ the estimates of Proposition 3.1, and incorporate the assumed bounds τ ≤ Ch2
min or

τ ≤ Chm/2min if respectively θ < 1/2 or θ = 1/2 to verify the assertion. �
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Lemma 4.2. Assume that Th is weakly acute and τ ≤ Ch2
min if θ < 1/2 and τ ≤ Ch

m/2
min if

θ = 1/2. If τΥθ(hmin)→ 0 as h→ 0 then every weak accumulation point u ∈ L∞(0, T ;H1(Ω; R`))
of the bounded sequence

(
U+
)
h>0
∈ L∞(0, T ;H1(Ω; R`)) satisfies u ∈ H1(0, T ;L2(Ω; R`)) and, after

extraction of an appropriate subsequence, as h→ 0,

V + ⇀∗ ∂tu in L∞(0, T ;L2(Ω; R`)),

∂tÛ ⇀ ∂tu in L2(ΩT ; R`),

U+, Û ⇀∗ u in L∞(0, T ;H1(Ω; R`)),

U+, U−, Û → u in L2(ΩT ; R`).

Moreover, we have |u(t, x)| = 1 for almost every (t, x) ∈ ΩT .

Proof. Proposition 3.1 implies that there exists u ∈ L∞(0, T ;H1(Ω; R`)) such that U+ ⇀∗ u in
L∞(0, T ;H1(Ω; R`)) for an appropriate subsequence as h → 0. Owing to boundedness of ∂tÛ in
L2(ΩT ) guaranteed by Proposition 4.1 and after extraction of another subsequence, we also have
U−, Û ⇀∗ u in L∞(0, T ;H1(Ω; R`)) as h → 0. Proposition 3.1 also ensures the existence of some
v ∈ L∞(0, T ;H1(Ω; R`)) such that V + ⇀∗ v as h → 0 and owing to Lemma 4.1 we have ∂tÛ ⇀ v
in L2(ΩT ; R`) as h→ 0. An integration by parts in time then proves that v = ∂tu. Thus, we have
Û ⇀ u in H1(ΩT ; R`) and hence Û → u in L2(ΩT ; R`). Boundedness of ∂tÛ in L2(ΩT ; R`) then
implies that also U− → u in L2(ΩT ; R`). Since for all t ∈ (0, T ) we have Ih

∣∣U−(t, ·)
∣∣2 ≡ 1 we verify

with (2.1), (2.3), and
∣∣U−(t, x)

∣∣ ≤ 1 for all x ∈ Ω that∥∥|U−(t, ·)|2 − 1
∥∥ ≤ C∥∥h2

Th
D2
Th
|U−(t, ·)|2

∥∥ ≤ Ch∥∥hTh
∇U−(t, ·)

∥∥
L∞(Ω)

∥∥∇U−(t, ·)
∥∥

≤ Ch
∥∥U−(t, ·)

∥∥
L∞(Ω)

∥∥∇U−(t, ·)
∥∥ ≤ Ch∥∥∇U−(t, ·)

∥∥.
Together with the pointwise convergence U− → u almost everywhere in ΩT this proves |u| = 1
almost everywhere in ΩT . �

Proposition 4.1. Assume that m ≤ 3, Th is weakly acute and τ ≤ Ch2
min if θ < 1/2 and τ ≤ Chm/2min

if θ = 1/2. Suppose that U0 → u0 and V 0 → u1 in L2(Ω; R`) as h → 0. If τΥθ(hmin) → 0 as
h→ 0 then every weak accumulation point u ∈ H1(ΩT ) of the sequence

(
U+
)
h>0

as in Lemma 4.2
satisfies

−
∫ T

0

(
∂tu, ∂t

[
φu
])

dt+
∫ T

0

(
∇u,∇

[
φu
])

dt =
(
u1, φ(0)u0

)
for all φ ∈ C∞0 ([0, T );C∞(Ω; so(n+ 1))), where so(n+ 1) denotes the space of all skew-symmetric
matrices in R(n+1)×(n+1).

Proof. In terms of V̂ , V +, and U− we may recast the equation in the first step of Algorithm (A) as

(4.1)
∫ T

0

(
∂tV̂ , w

)
+
(
∇U−,∇w

)
+ θτ

(
∇V +,∇w

)
dt = 0

for every w ∈ L2(0, T ; V`
h) such that w(t, z) ·U−(t, z) = 0 for almost every t ∈ [0, T ] and all z ∈ Nh.

Given a mapping φ ∈ C∞0
(
[0, T );C∞(Ω; so(n + 1))

)
we choose w(t, ·) = Ih

[
φ(t, ·)U−(t, ·)

]
. In the

following three steps we identify respectively the limits of the three terms on the left-hand side
of (4.1) to verify the assertion of the proposition.
First term. Using integration by parts in time, φ(T ) ≡ 0, Û(0) = U0, and ∂tÛ ·

(
φ∂tÛ

)
= 0, we
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rewrite the first term on the left-hand side of (4.1) as

∫ T

0

(
∂tV̂ , Ih

[
φU−

])
dt =

∫ T

0

(
∂tV̂ , Ih

[
φÛ
])

dt+
∫ T

0

(
∂tV̂ , Ih

[
φ
{
U− − Û

}])
dt

= −
∫ T

0

(
V̂ , ∂tIh

[
φÛ
])

dt+
(
V̂ (0), Ih

[
φ(0)Û(0)

])
+
∫ T

0

(
∂tV̂ , Ih

[
φ
{
U− − Û

}])
dt

= −
∫ T

0

(
V̂ , ∂t

[
φÛ
])

dt−
∫ T

0

(
V̂ , ∂tIh

[
φÛ
]
− ∂t

[
φÛ
])

dt+
(
V 0, φ(0)U0

)
+
(
V 0, Ih

[
φ(0)U0

]
− φ(0)U0

)
+
∫ T

0

(
∂tV̂ , Ih

[
φ
{
U− − Û

}])
dt

= −
∫ T

0

(
∂tÛ , (∂tφ)Û

)
dt−

∫ T

0

(
V̂ − ∂tÛ , ∂t

[
φÛ
])

dt−
∫ T

0

(
V̂ , ∂tIh

[
φÛ
]
− ∂t

[
φÛ
])

dt

+
(
V 0, φ(0)U0

)
+
(
V 0, Ih

[
φ(0)U0

]
− φ(0)U0

)
+
∫ T

0

(
∂tV̂ , Ih

[
φ
{
U− − Û

}])
dt.

(4.2)

For the first and fourth term on the right-hand side of (4.2) we have, owing to ∂tÛ ⇀ ∂tu in
L2(ΩT ; R`), Û → u in L2(ΩT ; R`) in L2(ΩT ; R`), V 0 → u1 and U0 → u0 in L2(Ω; R`) that, as
h→ 0,

−
∫ T

0

(
∂tÛ , (∂tφ)Û

)
dt+

(
V 0, φ(0)U0

)
→ −

∫ T

0

(
∂tu, (∂tφ)u

)
dt+

(
u1, φ(0)u0

)
= −

∫ T

0

(
∂tu, ∂t

[
φu
])

dt+
(
u1, φ(0)u0

)
,

(4.3)

where we used ∂tu ·
(
φ∂tu

)
= 0 almost everywhere in ΩT . For the second term on the right-hand

side of (4.2) we use V̂ = V + + (t− tj+1)∂tV̂ to verify that

∣∣∣ ∫ T

0

(
V̂ − ∂tÛ , ∂t

[
φÛ
])

dt
∣∣∣ =

∣∣∣ ∫ T

0

(
V + − ∂tÛ , ∂t

[
φÛ
])

dt+
∫ T

0

(
V̂ − V +, ∂t

[
φÛ
])

dt
∣∣∣

≤
{(∫ T

0

∥∥V + − ∂tÛ
∥∥2 dt

)1/2
+ τ1/2

(
τ

∫ T

0

∥∥∂tV̂ ∥∥2 dt
)1/2}

×
(∫ T

0

(∥∥∂tφ∥∥∥∥Û∥∥L∞(Ω)
+
∥∥φ∥∥

L∞(Ω)

∥∥∂tÛ∥∥)2 dt
)1/2

.

(4.4)

The nodal interpolation estimate (2.1) allows us to control the fifth term on the right-hand side
of (4.2) by

∣∣(V 0, Ih
[
φ(0)U0

]
− φ(0)U0

)∣∣ ≤ C∥∥V 0
∥∥∥∥h2

Th
D2
Th

[
φ(0)U0

]∥∥
≤ Ch2

∥∥V 0
∥∥(∥∥D2φ(0)

∥∥∥∥U0
∥∥
L∞(Ω)

+
∥∥∇φ(0)

∥∥
L∞(Ω)

∥∥∇U0
∥∥),(4.5)

where we used that U0 is elementwise affine. Similarly, but incorporating also the inverse esti-
mate (2.3) to bound

∥∥hTh
∇∂tÛ

∥∥ ≤ C
∥∥∂tÛ∥∥, we control the third term on the right-hand side
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of (4.2), i.e.,∣∣∣ ∫ T

0

(
V̂ , ∂tIh

[
φÛ
]
− ∂t

[
φÛ
])

dt
∣∣∣ ≤ C ∫ T

0

∥∥V̂ ∥∥(∥∥h2
Th
D2
Th

[
(∂tφ)Û

]∥∥+
∥∥h2
Th
D2
Th

[
φ(∂tÛ)

]∥∥)
≤ C

∫ T

0

∥∥V̂ ∥∥(h2
∥∥D2∂tφ

∥∥∥∥Û∥∥
L∞(Ω)

+ h2
∥∥∇∂tφ∥∥L∞(Ω)

∥∥∇Û∥∥) dt

+ C

∫ T

0

∥∥V̂ ∥∥(h2
∥∥D2φ

∥∥
L∞(Ω)

∥∥∂tÛ∥∥+ h
∥∥∇φ∥∥

L∞(Ω)

∥∥∂tÛ∥∥) dt.

(4.6)

We use Û(t, ·)−U−(t, ·) = (t− tj)∂tÛ(t, ·) for t ∈ [tj , tj+1) and j = 0, 1, ..., JT − 1 to verify that for
the last term on the right-hand side of (4.2) we have∣∣∣ ∫ T

0

(
∂tV̂ , Ih

[
φ
{
U− − Û

}])
dt
∣∣∣ ≤ τ ∫ T

0

∥∥∂tV̂ ∥∥∥∥∂tÛ∥∥∥∥φ∥∥L∞(Ω)
dt

≤ τ1/2
(
τ

∫ T

0

∥∥∂tV̂ ∥∥2 dt
)1/2(∫ T

0

∥∥∂tÛ∥∥2 dt
)1/2∥∥φ∥∥

L∞(ΩT )
.

(4.7)

Here, we also employed that ‖vh‖2 ≤
∫

Ω Ih[v2
h] dx ≤ C‖vh‖2 for all vh ∈ Vh. On combining (4.2)-

(4.7) and using Proposition 3.1 as well as Lemmas 4.1 and 4.2 we verify that, as h→ 0,

(4.8)
∫ T

0

(
∂tV̂ , Ih

[
φU−

])
dt→ −

∫ T

0

(
∂tu, ∂t

[
φu
])

dt+
(
u1, φ(0)u0

)
.

Second term. The treatment of the second term of (4.1) is similar to the analysis carried out above.
Using that ∂iU− ·

(
φ∂iU

−) = 0, i = 1, 2, ...,m, we notice that∫ T

0

(
∇U−,∇Ih

[
φU−

])
dt

=
m∑
i=1

∫ T

0

(
∂iU

−, (∂iφ)U−
)

dt+
∫ T

0

(
∇U−,∇

{
Ih
[
φU−

]
−
[
φU−

]})
dt.

(4.9)

Since ∇U− ⇀ ∇u in L2(ΩT ; Rm×`) and U− → u in L2(ΩT ; R`) we verify that for the first term on
the right-hand side of (4.9) we have, as h→ 0,

(4.10)
m∑
i=1

∫ T

0

(
∂iU

−, (∂iφ)U−
)

dt→
m∑
i=1

∫ T

0

(
∂iu, (∂iφ)u

)
dt.

The second term on the right-hand side of (4.9) is estimated as∣∣∣ ∫ T

0

(
∇U−,∇

{
Ih
[
φU−

]
−
[
φU−

]})
dt
∣∣∣ ≤ Ch∫ T

0

∥∥∇U−∥∥∥∥D2
Th

[
φU−

]∥∥dt

≤ h
∫ T

0

∥∥∇U−∥∥(∥∥D2φ
∥∥∥∥U−∥∥

L∞(Ω)
+
∥∥∇φ∥∥

L∞(Ω)

∥∥∇U−∥∥) dt.
(4.11)

A combination of (4.9)-(4.11) shows that, as h→ 0, we have

(4.12)
∫ T

0

(
∇U−,∇Ih

[
φU−

])
dt→

∫ T

0

(
∇u,∇

[
φu
])

dt,
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where we used ∂iu ·
(
φ∂iu

)
= 0, i = 1, 2, ...,m, almost everywhere in ΩT .

Third term. To control the third term on the left-hand side of (4.1) we employ∥∥∇Ih[φU−]∥∥ ≤ ∥∥∇[φU−]∥∥+
∥∥∇{Ih[φU−]− [φU−]}∥∥

≤
∥∥∇[φU−]∥∥+ Ch

∥∥D2
Th

[
φU−

]∥∥
≤
∥∥∇φ∥∥∥∥U−∥∥

L∞(Ω)
+
∥∥φ∥∥

L∞(Ω)

∥∥∇U−∥∥+ Ch
∥∥D2φ

∥∥∥∥U−∥∥
L∞(Ω)

+ Ch
∥∥∇φ∥∥

L∞(Ω)

∥∥∇U−∥∥
to verify with

∥∥U−∥∥
L∞(Ω)

≤ 1 that∣∣∣θτ ∫ T

0

(
∇V +,∇Ih

[
φU−

])
dt
∣∣∣ ≤ Cθτ1/2

(
τ

∫ T

0

∥∥∇V +
∥∥2 dt

)1/2

×
(∫ T

0

(∥∥∇φ∥∥+
∥∥φ∥∥

L∞(Ω)

∥∥∇U−∥∥+ Ch
∥∥D2φ

∥∥+ Ch
∥∥∇φ∥∥

L∞(Ω)

∥∥∇U−∥∥)2 dt
)(4.13)

The right-hand side tends to 0 as h → 0 if θ > 1/2. Otherwise, we employ the inverse estimate∥∥∇V +
∥∥ ≤ Ch−1

min

∥∥V +
∥∥, cf. (2.3), to conclude that the right-hand side of (4.13) tends to 0 as h→ 0

if θ ≤ 1/2. �

The previous results enable us to establish the convergence result claimed in part (iii) of Theo-
rem 2.1.

Proposition 4.2. Assume that Th is weakly acute and τ = o
(
h2
min

)
if θ < 1/2. Suppose that

U0 → u0 and V 0 → u1 in L2(Ω; R`) as h → 0. If τΥθ(hmin) → 0 as h → 0 then every weak
accumulation point u ∈ H1(ΩT ) of the sequence

(
U+
)
h>0

as in Lemma 4.2 is a weak solution
of (1.1)-(1.2).

Proof. Items (1) and (2) of Definition 2.1 have been verified in Lemma 4.2. The energy inequality
of item (5) is a direct consequence of Proposition 3.1 and weak lower semicontinuity of norms.
Since every w ∈ C∞0 ([0, T );C∞(Ω; Rn+1)) with w(t, x) ∈ Tu(t,x)S

n, i.e., w(t, x) · u(t, x) = 0, almost
everywhere in ΩT can be written as w = φu with φ ∈ H1(0, T ;H1(Ω; so(n + 1))) given by φ =
u ∧ w :=

(
uiwj − ujwi

)
i,j=1,2,...,n+1

and since the identity of Proposition 4.1 holds in fact for all
φ ∈ H1(0, T ;H1(Ω; so(n+1))) with φ(T ) = 0 we verify item (3) of Definition 2.1. Weak continuity of
the trace operator v 7→ v(0) as a mapping from H1(ΩT ; R`) into L2(Ω; R`) and U0 → u0 in L2(Ω; R`)
as h→ 0 prove that u(0) = u0 in the sense of traces and thus yield item (4) of Definition 2.1. �

5. Numerical Experiments

To test the practical performance of Algorithm (A) we employ initial data which were first used
in [BKP08] to experimentally study the existence of singular solutions for Landau-Lifshitz-Gilbert
equations.

Example 5.1. Set N := S2, Ω := (−1/2, 1/2)2, T := 1, and

u0(x) :=


(
2ax1, 2ax2, a

2 − |x|2
)

a2 + |x|2
for |x| ≤ 1/2,

(0, 0,−1) for |x| ≥ 1/2,
u1(x) := 0

for x = (x1, x2) ∈ Ω, r := |x|, and a := (1− 2r)4.

Throughout this section, we use triangulations T` of (−1/2, 1/2)2 which are obtained by ` uniform
red refinements of the triangulation T0 = {K1,K2} which consists of the two triangles

K1 = conv
{

(−1/2,−1/2), (1/2,−1/2), (1/2, 1/2)
}
,

K2 = conv
{

(−1/2,−1/2), (1/2, 1/2), (1/2,−1/2)
}
.
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In the following we refer to the maximal diameter of elements in T` through h = h` = 2−`, i.e., we
omit the factor

√
2. The time-step size is always chosen as τ = h`/4.

The iterative scheme was implemented in Matlab and all systems of linear equations were solved
with Matlab’s backslash operator. The CPU-time for 1024 time steps of Algorithm (A) on the
triangulation T8 with 131,072 triangles was less than 4 hours on an Intel Dual-Core Xeon E7220
(2.93GHz) processor with 8MB cache.
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Figure 1. Discrete energy E
[
U j , V j

]
for approximations obtained with Algo-

rithm (A) on triangulation T7 with τ = h7/4 and parameters θ = 0, 1/2, 1.

5.1. Instability of the scheme for θ = 0. We ran Algorithm (A) with θ = 0, 1/2, 1 on trian-
gulation T7. Figure 1 displays the discrete energy E

[
U j , V j

]
as a function of tj , j = 0, 1, ..., JT .

We observe that for the semi-implicit schemes defined through θ = 1/2 and θ = 1 the energy is
monotonically decreasing as predicted by Proposition 3.1. For θ = 0 the condition that guarantees
stability of the iteration, i.e., τ ≤ h2, is not satisfied and we see in Figure 1 that the energy is not
monotonically decreasing indicating an unstable behavior of the iteration in the explicit case.

5.2. Effect of numerical dissipation. The good stability properties of Algorithm (A) for θ ≥ 1
are accompanied by strong damping of the iteration and large numerical dissipation. In Figure 2 we
plotted for the triangulations T6, T7, and T8 the relative dissipation defined through the quantity

E
[
U j , V j

]
− E

[
U0, V 0

]
E
[
U0, V 0

]
in dependence of the discrete time-steps tj , j = 0, 1, ..., JT . The graphs show that in the time
interval (0, 3/10) the relative dissipation decays linearly as h → 0 which is in correct agreement
with the estimate of Proposition 3.1. At later times, the relative dissipation does not decay as
the mesh- and time-step size become smaller and this is assumed to be related to the occurrence
of a singularity indicated by large, maximal spatial gradients, i.e., energy dissipation is not just a
numerical artifact when topological changes take place.
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Figure 2. Relative dissipation of the approximations obtained with Algorithm (A)
for θ = 1 on triangulations T6, T7, T8 and with τ = h`/4.
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Figure 3. W 1,∞ semi-norm as a function of t ∈ (0, 1) for various approximations
obtained with θ = 1.
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Figure 4. Energy and W 1,∞ semi-norm for an approximation obtained with T5

and θ = 1. The discrete evolution was reversed at t = 1 by employing the initial
data UJT and −V JT .
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Figure 5. Error maxj=0,1,...,JT

∥∥U j − Ihu(tj , ·)
∥∥ in dependence of the maximal

mesh-size h of distorted triangulations T̃` for different relations of τ and h and
θ = 1, 1/2.
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5.3. Finite-time blow-up of weak solutions. The loss of energy reported in the previous sub-
section occurs together with changes of the topological properties of the numerical approximations.
Figure 3 shows that at the time when the energy drops by approximately 2π, the numerical solution
attains the maximal W 1,∞(Ω) semi-norm among functions in V3

h whose nodal values belong to S2,
i.e.,

max
wh∈V3

`
∀z∈Nh, |wh(z)|=1

∥∥∇wh∥∥L∞(Ω)
= 2
√

2h−1
` ,

where V` is the lowest order finite element space defined through the triangulation T`. Figures 6
and 7 illustrate the behavior of the solution when finite-time blow-up occurs. For ` = 5 we
plotted the scaled discrete vector field and a zoom to the origin for various time steps. We observe
that at tj ≈ 0.375 the unit length vector U(tj , 0) points into the opposite direction than the
surrounding vectors. Within a short time interval, the numerical approximation at the origin
changes its direction and this is accompanied by a drop of the maximal W 1,∞ semi-norm to an
h-independent value. Although this series of experiments indicates existence of singular solutions
for (1.1)-(1.2), it cannot be ruled out that this discrete finite-time blow-up may break down for very
fine mesh-sizes and Neumann boundary conditions as in the case of the Landau-Lifshitz-Gilbert
equations, cf. [BKP08]

5.4. Irreversibility of the discrete evolution. Owing to the semi-implicit, non-symmetric dis-
cretization, the discrete evolution defined by Algorithm (A) is in general not reversible. To illustrate
this effect we ran the algorithm with ` = 5 and θ = 1 and used the final output UJT and V JT

of Algorithm (A) to restart the algorithm with the discrete initial vector fields U0 = UJT and
V 0 = −V JT . Figure 4 displays the energy and the W 1,∞ semi-norms for the forward evolution with
t running from 0 to 1 and the backward evolution for t decreasing from 1 to 0.

5.5. Experimental convergence rates. To experimentally study the rate of convergence that
we can get for smooth solutions we introduce a source term f ∈ C(0, T ;L2(Ω; R`)) in (1.1), i.e., we
approximate the problem of finding a map u : ΩT → N satisfying

(5.1) −
∫ T

0

(
∂tu, ∂tw

)
dt+

∫ T

0

(
∇u,∇w

)
dt =

(
u1, w(0)

)
+
∫ T

0

(
f, w

)
dt

for all w ∈ C∞0 ([0, T );C∞(Ω; R`)) such that w(t, x) ∈ Tu(t,x)N for every (t, x) ∈ ΩT . Setting
tj+θ := (j + θ)τ , the appropriate modification of Step (1) in Algorithm (A) then reads: Find
V j+1 ∈ V`

h such that V j+1(z) ∈ TUj(z)N for all z ∈ Nh and(
dtV

j+1,W
)

+
(
∇
[
U j + θτV j+1

]
,∇W

)
=
(
f(tj+θ),W

)
for all W ∈ V`

h satisfying W (z) ∈ TUj(z)N for all z ∈ Nh. The second step of Algorithm (A)
remains unchanged. We choose Ω := (0, 1)2, T := 1, and N := S1 and identify R2 with C in the
following. The function u : ΩT → S1 is for (t, x) ∈ ΩT defined through

u(t, x) := eiφ(t,x)

where φ : ΩT → R satisfies

φ(t, (x1, x2)) = π/3 + sin(2πt) cos(2πx1) cos(2πx2).

To obtain u as an exact solution of (5.1) we employ

(5.2) f := ∂2
t u−∆u.
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Figure 6. Approximations U(t) on T5 for t = 0.0, 0.1875, 0.375, 0.5625, 0.75,
0.9375 (vectors are scaled by a constant factor).

Figure 7. Approximations U(t) on T5 in a neighborhood of the origin for t =
0.0, 0.1875, 0.375, 0.5625, 0.75, 0.9375 (vectors are scaled by a constant factor).
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For triangulations T̃`, ` = 2, 3, ..., 7, which are obtained by perturbing the inner nodes of the
triangulations T` by random vectors of lengths at most h`/4, we employed the modification of
Algorithm (A) with the pairs

(τ, θ) =
(h`

4
, 1
)
,
(
h2
` , 1
)
,
(h`

4
,
1
2

)
,
(
h2
` ,

1
2

)
to obtain approximations of the expected unique solution u of (5.1) with f from (5.2). For each
numerical approximation we computed the error

‖eh‖L∞(L2) := max
j=0,1,...,JT

∥∥U j − Ihu(tj , ·)
∥∥.

The distorted triangulations avoid additional error reductions due to a possible superconvergence
property of highly symmetric triangulations. For the four choices of pairs (τ, θ) as above, Figure 5
displays the error ‖eh‖L∞(L2) as a function of the maximal mesh-size h`. Nearly linear convergence
of the error can be observed if τ = h`/4 and the choice θ = 1/2 significantly reduces the error but
does not lead to a higher rate of convergence. If τ = h2

` then the error converges quadratically with
respect to h and the lines in Figure 5 almost coincide for θ = 1 and θ = 1/2.
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[BKP08] Sören Bartels, Joy Ko, and Andreas Prohl. Numerical analysis of an explicit approximation scheme for
the Landau-Lifshitz-Gilbert equation. Math. Comp., 77(262):773–788, 2008.
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