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Abstract. We derive a fully computable, optimal a posteriori error estimate for the finite element
approximation of a total variation regularized model problem and devise an adaptive refinement
strategy. Numerical experiments reveal a significant improvement over related approximations on
uniformly refined triangulations.

1. Introduction

A simple model problem in the calculus of variations defined on the space of functions of bounded
variation seeks a function u : Ω→ R that minimizes the functional

E(u) =

∫
Ω
|Du|+ α

2
‖u− g‖2L2(Ω)

with a given function g ∈ L2(Ω), a parameter α > 0, and a bounded Lipschitz domain Ω ⊂ Rd,
d = 2, 3. The first term is the total variation of the distributional derivative Du. It coincides
with the semi-norm in W 1,1(Ω) if u belongs to this space and is finite if Du is a Radon measure
with bounded total variation, i.e., u ∈ BV (Ω). The minimization of the functional E has been
proposed in [ROF92] as a simple model in image processing, in which g is a given noisy image and
the minimizer u serves as a smoother reconstruction. The function u may have discontinuities,
e.g., if u is piecewise constant then

∫
Ω |Du| coincides with the perimeter of the discontinuity set.

Closely related energy functionals occur in the modeling of perfect plasticity [Suq78, BMR12]
and the description of material damage [Tho11]. The methods discussed in this paper transfer
to minimization problems that have the structure of the sum of the total variation norm plus a
uniformly convex lower order term. Such problems often occur in the implicit time-discretization
of gradient flows.

The finite element discretization of the minimization problem and the iterative solution of the
resulting finite dimensional problems are now well understood: if for every h > 0 the set Vh ⊂
BV (Ω) is a finite element space such that the spaces Vh∩W 1,1(Ω) define a dense family of subspaces
in W 1,1(Ω) then the restriction of E to Vh leads to a Γ-convergent approximation. This is true
if Vh contains piecewise affine, globally continuous finite element functions but not for the space
of piecewise constant functions on a nested sequence of triangulations, cf. [Bar12] for details. The
resulting discrete problems can be solved effectively with primal-dual methods recently developed
and analyzed in [CP11, Bar12].

For a discretization with piecewise affine functions on a triangulation with maximal mesh-size h > 0
it can be shown that if Ω ⊂ R2 is star-shaped and g ∈ L∞(Ω) then the exact and discrete minimizers

u and uh are related by ‖u−uh‖L2(Ω) ≤ ch1/4 so that a large number of degrees of freedom is required

to guarantee a small error with respect to the norm in L2(Ω). This may be suboptimal and the
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bound does not reflect the special structure of the exact solution which is often discontinuous but
piecewise smooth with a simple jump set. Therefore, the simultaneous accurate resolution of the
lower dimensional interface that seperates regions in which u is smooth and the approximation of
the piecewise smooth functions can benefit from a treatment with different scales. While this is
difficult to realize on the basis of a priori information, a posteriori error estimates that control the
approximation error in terms of computable quantities can realize this goal automatically.

An abstract approach to the a posteriori error control for minimization problems with functionals
J of the form

J(u) = F (u) +G(Λu)

for a bounded linear operator Λ : V → Q, and proper, convex, lower-semicontinuous functionals
F : V → R and G : Q → R for Banach spaces V and Q and R = R ∪ {+∞} has been developed
in [Rep00]. It employs the dual formulation that consists in the minimization of the functional

J∗(q) = F ∗(−Λ∗q) +G∗(q)

(or more precisely the maximization of q 7→ −J∗(q)) with the Fenchel conjugates F ∗ and G∗ of F
and G. Provided that F or G has some coercivity properties the result controls the approximation
error u− uh by the primal-dual gap with an arbitrary admissible function q, e.g., if F is quadratic
then

(1.1) 2γ‖u− uh‖2 ≤ F (uh) + F ∗(Λ∗q) +G(Λuh) +G∗(−q) = J(u) + J∗(q).

The estimate can only be efficient if the primal and dual formulation satisfy a strong duality
principle, i.e., the solutions u and p of the primal and dual problem satisfy J(u) = −J∗(p). We
will provide a refined, optimal version of the estimate (1.1). We remark that uh and q in (1.1)
are arbitrary admissible functions for the primal and dual problem, respectively. In particular, no
exact solution of the discretized primal problem is required.

Owing to the lack of reflexivity of the Banach space BV (Ω) the dual of the minimization problem
defined by the functional E : BV (Ω) → R is difficult to characterize. It has however been shown
in [HK04] that the problem itself is the Fenchel-dual of the minimization problem defined by the
functional

D(p) =
1

2α
‖div p+ αg‖2L2(Ω) −

α

2
‖g‖2L2(Ω) + IK1(0)(p)

on the space HN (div; Ω) = {q ∈ L2(Ω;Rd) : div q ∈ L2(Ω), q · ν = 0 on ∂Ω}, where ν is the outer
unit normal on ∂Ω, and with the indicator functional IK1(0) that vanishes for vector fields satisfying
|p| ≤ 1 in Ω. This important observation implies that strong duality holds and thus that the error
estimate (1.1) is sharp in the sense that the right-hand side vanishes if uh = u and q = p. Notice
that minimizers of D are non-unique in general.

The abstract error estimate (1.1) is closely related to recovery error estimators for elliptic problems.
In particular, for the Poisson problem it is known that a simple averaging of the discrete flux ∇uh
leads to reliable and efficient error control, i.e., up to higher order terms it is possible to show that,

‖∇(u− uh)‖L2(Ω) ≤ c‖∇uh −Ah∇uh‖L2(Ω)

with c = 1 in some situations and a converse estimate also applies, cf. [Bra07, CB02]. The esti-
mate (1.1) actually implies this upper bound with c = 1 if −divAh∇uh = f and thereby justifies
a certain locality property of the right-hand side in (1.1). The proofs of the estimates for the
Poisson problem in [Bra07, CB02] make essential use of the quadratic structure of the Dirichlet
functional and cannot be transferred to the problem of minimizing the non-smooth energy func-
tional E. Surprsingly, even for simple Helmholtz type problems that fit into the above framework
simple averaging does not lead to efficient error control on unstructured triangulations.
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To obtain a good bound on the approximation error, i.e., to find a good function q in (1.1), we will
consistently discretize the dual formulation and solve it iteratively. This poses several difficulties.
First, a subspace of HN (div; Ω) has to be chosen in which the constraint |ph| ≤ 1 can be imposed
efficiently. Second, the discretization of the dual problem has to be done in such a way that it can
be solved reliably with a computational effort comparable to the solution of the primal problem.
We will show that lowest order H1 conforming elements allow to establish both requirements.

The rest of this article is organized as follows. Notation and some auxiliary results are specified
and stated in Section 2. In Section 3 we give a refined version of Repin’s abstract a posteriori error
estimate for convex optimization problems. The predual problem for the minimization problem
defined by E and its discretization and iterative solution will be discussed in Section 4. Numeri-
cal experiments that illustrate the performance of the error estimate and the induced refinement
indicators will be presented in Section 5.

2. Preliminaries

We include in this section some elementary facts about finite element spaces and a result on the
approximation of the model problem.

2.1. Function spaces. We use standard notation for Lebesgue and Sobolev spaces and abbreviate
the inner product and the norm in L2(Ω) by (·, ·) and ‖ · ‖, respectively. The Banach space BV (Ω)
consists of all functions v ∈ L1(Ω) for which, with the space of compactly supported, continuously
differentiable vector fields C1

c (Ω;Rd),∫
Ω
|Dv| = sup

q∈C1
c (Ω;Rd), |q|≤1

−
∫

Ω
v div q dx <∞

and is equipped with the norm ‖v‖BV (Ω) = ‖v‖L1(Ω) +
∫

Ω |Dv|. We let HN (div; Ω) denote the space

of all q ∈ L2(Ω;Rd) for which div q ∈ L2(Ω) with norm ‖q‖HN (div;Ω) = (‖q‖2 + ‖ div q‖2)1/2.

2.2. Discrete time derivatives. Given a time-step size τ > 0 and a sequence of functions or real
numbers (vn)n∈N in an inner product space X we define dtv

n+1 = (vn+1 − vn)/τ and notice that
for every v ∈ X we have

dtv
n+1 · (vn+1 − v) =

dt
2
‖v − vn+1‖2 +

τ

2
‖dtvn+1‖2.

We also note that for sequences (an)n∈N and (bn)n∈N we have the summation by parts formula

τ
∑N

n=0

{
(dta

n+1) · bn+1 + an · (dtbn+1)
}

= aN+1 · bN+1 − a0 · b0.

2.3. Finite element spaces. For a sequence of regular triangulations (Th)h>0 of Ω into triangles
or tetrahedra with maximal diameters h = maxT∈Th diam(T ) we define the finite element spaces

L0(Th) = {qh ∈ L1(Ω) : qh|T is constant for each T ∈ Th},
S1(Th) = {vh ∈ C(Ω) : vh|T is affine for each T ∈ Th}.

With the set Nh of vertices of triangles or tetrahedra the nodal basis of S1(Th) is defined by the
functions (ϕz : z ∈ Nh) ⊂ S1(Th) which satisfy ϕz(y) = 0 for distinct y, z ∈ Nh and ϕz(z) = 1 for
all z ∈ Nh. An elementwise inverse estimate shows that there exists c > 0 such that ‖div qh‖ ≤
ch−1
min‖qh‖ with hmin = minT∈Th diam(T ) for all qh ∈ S1(Th)d. The nodal interpolant of a function

v ∈ C(Ω) is defined by Ihv =
∑

z∈Nh
v(z)ϕz. A discrete inner product that is equivalent to (·, ·)

on S1(Th)d is for qh, rh ∈ S1(Th)d defined by

(qh, rh)h =

∫
Ω
Ih[qh · rh] dx =

∑
z∈Nh

βzqh(z) · rh(z)
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with βz =
∫

Ω ϕz dx for all z ∈ Nh. We let ‖qh‖h = (qh, qh)
1/2
h denote the corresponding norm.

The L2-projection Ph : L2(Ω)→ S1(Th) is characterized by (Phv − v, wh) = 0 for all wh ∈ S1(Th).
We recall that the lowest order Raviart-Thomas finite element space RT 0(Th) consists of all qh ∈
H(div; Ω) with qh|T (x) = a + bx for a ∈ R2, b ∈ R, and all x ∈ T ∈ Th. We define RT 0

N (Th) =
RT 0(Th) ∩HN (div; Ω).

2.4. Duality and optimality. As above we consider lower semicontinuous, proper, convex func-
tionals F : V → R and G : Q → R for R = R ∪ {+∞} on Banach spaces V and Q with duals V ∗

and Q∗ and a bounded linear operator Λ : V → Q. We assume that Q is reflexive and recall that
the Fenchel conjugates F ∗ : V ∗ → R and G∗ : Q∗ → R are defined by

F ∗(w) = sup
v∈V
〈v, w〉 − F (v), G∗(q) = sup

r∈Q
〈r, q〉 −G(r).

With the adjoint operator Λ∗ : Q∗ → V ∗ that is defined by 〈Λ∗q, v〉 = 〈q,Λv〉 for q ∈ Q∗ and v ∈ V
and the identity G∗∗ = G we verify that, formally interchanging extrema, we have

inf
v∈V

F (v) +G(Λv) = inf
v∈V

sup
q∈Q∗

F (v) + 〈q,Λv〉 −G∗(q)

= sup
q∈Q∗

(
− sup
v∈V
〈−Λ∗q, v〉 − F (v)

)
−G∗(q) = sup

q∈Q∗
−F ∗(−Λ∗q)−G∗(q).

In general, we only have that the left-hand side is an upper bound for the right-hand side. Sufficient
conditions for equality can be found in [ET99, Roc97]. The latter maximization problem defines the
dual problem. The calculations show that u and p are optimal for the primal and dual formulation,
reseptively, if and only if

Λu ∈ ∂G∗(p), −Λ∗p ∈ ∂F (u)

with the subdifferentials ∂F (u) and ∂G∗(p) defined by

∂F (u) = {w ∈ V ∗ : 〈w, v − u〉 ≤ F (v)− F (u) for all v ∈ V },
∂G∗(p) = {q ∈ Q : 〈q, r − p〉 ≤ G∗(r)−G∗(p) for all r ∈ Q}.

We finally remark that the inclusions are equivalent to, cf., e.g., [Roc97, ET99],

p ∈ ∂G(Λu), u ∈ ∂F ∗(−Λ∗p).

2.5. Minimization of E. A consistent discretization of the problem of minimizing E on BV (Ω)
seeks a minimizer in S1(Th). It can be shown that discrete minimizers converge with respect to
intermediate convergence in BV (Ω) to the minimizer of E as h→ 0. The representation

E(vh) = sup
qh∈L0(Th)d

∫
Ω
∇vh · qh dx+

α

2
‖vh − g‖2 − IK1(0)(qh),

for vh ∈ S1(Th) allows to formulate the minimization of E as a discrete saddle-point problem. This
observation motivates the following algorithm that approximates the minimizer uh of E restricted
to S1(Th) if τ ≤ chmin. We refer the reader to [Bar12] for details.

Algorithm (A). Let (u0
h, p

0
h) ∈ S1(Th) × L0(Th)d, set dtu

0
h = 0, and solve for n = 0, 1, ... with

ũn+1
h = unh + τdtu

n
h the equations

(−dtpn+1
h +∇ũn+1

h , qh − pn+1
h ) ≤ 0, (dtu

n+1
h , vh) + (pn+1

h ,∇vn+1
h ) = −α(un+1

h − g, vh)

subject to |pn+1
h | ≤ 1 in Ω for all (vh, qh) ∈ S1(Th)× L0(Th)d with |qh| ≤ 1 in Ω.
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Remarks 2.1. (i) The algorithm computes a piecewise constant approximation of a (in general
non-unique) solution of the dual problem, i.e., the iterates (pnh)n≥0 converge to some ph ∈ L0(Th)d

but in general this vector field does not belong to HN (div; Ω).
(ii) The equation and the variational inequality in the algorithm decouple and can be solved explicitly
up to the inversion of a (lumped) mass matrix. In particular, we have for the piecewise constant
vector field pn+1

h that

pn+1
h =

pnh + τ∇ũn+1
h

max{1, |pnh + τ∇ũn+1
h |}

.

3. A sharp version of Repin’s error estimate

For Banach spaces V and Q with duals V ∗ and Q∗, a bounded linear operator Λ : V → Q, and
convex, lower-semicontinuous, proper functionals F : V → R and G : Q → R we consider the
problem of finding u ∈ V with

J(u) = inf
v∈V

J(v), J(v) = F (v) +G(Λv).

The associated dual problem consists in finding p ∈ Q∗ with

−J∗(p) = sup
q∈Q∗

−J∗(q), J∗(q) = F ∗(−Λ∗q) +G∗(q)

We let ΦG and ΦF be non-negative functionals such that for all q1, q2 ∈ Q and v1, v2 ∈ V we have

G
(
(q1 + q2)/2

)
+ ΦG(q2 − q1) ≤

(
G(q1) +G(q2)

)
/2,

F
(
(v1 + v2)/2

)
+ ΦF (v2 − v1) ≤

(
F (v1) + F (v2)

)
/2.

By convexity we have that, e.g., ΦG = ΦF ≡ 0 satisfy the estimates. The primal and dual
optimization problems are related by a weak complementarity principle which states that

J(u) = inf
v∈V

J(v) ≥ sup
q∈Q∗

−J∗(q) = −J∗(p).

We say that strong duality applies if equality holds. Our final ingredient for the error estimate is
a characterization of the optimality of the solution of the primal problem. For all w ∈ ∂J(u) we
have with a non-negative functional ΨJ that

〈w, v − u〉+ ΨJ(v − u) ≤ J(v)− J(u)

and u is optimal if and only if 0 ∈ ∂J(u).

Theorem 3.1 ([Rep00]). For the solution u ∈ V of the primal problem and arbitrary v ∈ V and
q ∈ Q∗ we have

ΦG

(
Λ(u− v)

)
+ ΦF (u− v) + ΨJ

(
(u− v)/2

)
≤ (1/2)

[
J(v) + J∗(q)

]
.

Proof. The convexity estimates imply that

ΦG

(
Λ(u−v)

)
+ΦF

(
u−v

)
≤ (1/2)

[
F (v)+G(Λv)+F (u)+G(Λu)

]
−F

(
(v+u)/2

)
−G

(
Λ(v+u)/2

)
.

The optimality of u shows that we have

F (u) +G(Λu) + ΨJ

(
u− (u+ v)/2

)
≤ F

(
(u+ v)/2

)
+G

(
Λ(u+ v)/2

)
.

It follows that

ΦG

(
Λ(u− v)

)
+ ΦF

(
u− v

)
≤ (1/2)

[
F (v) +G(Λv)− F (u)−G(Λu)

]
−Ψ

(
(u− v)/2

)
.

The weak complementarity principle

F (u) +G(Λu) = J(u) ≥ −J∗(q) = −F ∗(Λ∗q)−G∗(−q)
yields the asserted estimate. �
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Remarks 3.1. (i) Notice that the only relation between the problems defined by the functionals J
and J∗ needed in the proof is the weak duality J(u) = infv∈V J(v) ≥ supq∈Q∗ −J∗(q), in particular,
−J∗(q) can be replaced by any quantity that is a lower bound for J(u).
(ii) If the primal and dual problem are related by a strong complementarity property then the
estimate of the theorem is sharp in the sense that the right-hand side vanishes if v = u and q solves
the dual problem.
(iii) The estimate differs from the one given in [Rep00] by the term ΨJ which is necessary to obtain
optimal constants, cf. Example 3.1 below.
(iv) Notice that the coercivity of a convex functional φ is often defined by, cf., e.g., [NSV00],

σ(w, v) = φ(v)− φ(w)− sup
q∈∂φ(w)

〈q, v − w〉.

The map σ is also known as the Brègman distance defined by φ, cf. [Brè67, MO08].
(v) Assume that ∂φ is single-valued. If

〈Dφ(u), v − u〉+ Φφ(v − u) ≤ φ(v)− φ(u)

then with 2Ψφ(w) = Φφ(w) + Φφ(−w) we have

φ
(
(v1 + v2)/2) + Ψφ(v2 − v1) ≤

(
φ(v1) + φ(v2)

)
/2.

Example 3.1. For the Poisson problem −∆u = f in Ω, u|∂Ω = 0, we have V = H1
0 (Ω), Y =

L2(Ω;Rd), Λ = ∇, G(Λv) = (1/2)
∫

Ω |∇v|
2 dx, and F (v) = −

∫
Ω fv dx. Since F ∗(w) = I{−f}(w),

G∗(q) = (1/2)
∫

Ω |q|
2 dx, Λ∗ = −div : L2(Ω;Rd)→ H1

0 (Ω)∗, we find that the right-hand side η2(v, q)
of the estimate of Theorem 3.1 is given by

η2(v, q) = (1/2)
[
−
∫

Ω
fv dx+ I{−f}(div q) + (1/2)

∫
Ω
|∇v|2 dx+ (1/2)

∫
Ω
|q|2 dx

]
= (1/2)

[ ∫
Ω

(div q)v dx+ (1/2)‖∇v‖2 + (1/2)‖q‖2
]

= (1/4)‖∇v − q‖2

provided that −div q = f . We also have that

(1/2)
(
(q1 + q2)/2

)2 − (1/4)(q2
1 + q2

2) = (1/8)(q2
1 + 2q1q2 + q2

2 − 2q2
1 − 2q2

2) = −(1/8)(q1 − q2)2

so that ΦG(q) = (1/8)‖q‖2 and

(1/2)q2
1 − (1/2)q2

2 − q1(q1 − q2) = −(1/2)q2
1 − (1/2)q2

2 + q1q2 = −(1/2)(q1 − q2)2,

i.e., ΨJ

(
(v − u)/2

)
= (1/8)‖∇(v − u)‖2. With ΦF ≡ 0 Theorem 3.1 implies the estimate

‖∇(u− v)‖ ≤ inf
− div q=f

‖∇v − q‖

and equality occurs for q = ∇u.

Example 3.2. For the Helmholtz type problem defined by the minimization of

J(v) =
1

2

∫
Ω
|∇v|2 dx+

α

2
‖v − g‖2

for v ∈ V = H1(Ω) and with ∇ : H1(Ω) → HN (div; Ω)∗ given by 〈∇v, q〉 = (v,−div q) for
v ∈ H1(Ω) and q ∈ Q = HN (div; Ω)∗ the dual problem is for q ∈ HN (div; Ω) defined by

J∗(q) =
1

2

∫
Ω
|q|2 dx+

1

2α
‖div q + αg‖2 − α

2
‖g‖2.
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We may choose ΦF (v) = (α/8)‖v‖2, ΦG(q) = (1/8)‖q‖2, and ΨJ(v) = (1/2)‖∇v‖2 + (α/2)‖v‖2.
Theorem 3.1 leads to the error estimate

‖∇(u− v)‖2 + α‖u− v‖2 ≤ α‖v − g‖2 +
1

α
‖ div q + αg‖2 − α‖g‖2 +

∫
Ω
|∇v|2 dx+

∫
Ω
|q|2 dx

= ‖∇v − q‖2 − 2(v,div q) +
1

α
‖ div q + αg‖2 + α‖v − g‖2 − α‖g‖2

= ‖∇v − q‖2 +
1

α
‖ div q − α(v − g)‖2.

Here equality occurs for q = ∇u since −∆u+α(u− g) = 0. One may also regard the minimization
of J∗(q) as the primal problem in which Λ = div : HN (div; Ω)→ L2(Ω) and then identify J as the
corresponding dual.

4. Approximation of the Fenchel predual

The identification of the dual problem defined by the problem of minimizing E(v) among v ∈ BV (Ω)
is difficult since BV (Ω) is not reflexive and its dual is difficult to characterize. It turns out that
the predual can be described very efficiently, i.e., a minimization problem whose dual consists in
the minimization of E on BV (Ω). We recall in this section the result on Fenchel duality of [HK04]
and discuss the discretization and iterative solution of the predual formulation.

4.1. Fenchel predual. For q ∈ HN (div; Ω) let

D(q) =
1

2α
‖div q + αg‖2 − α

2
‖g‖2 + IK1(0)(q),

where IK1(0)(q) = 0 if |q| ≤ 1 almost everywhere in Ω and IK1(0)(q) = ∞ otherwise. The essential
link between the functionals E and D is an equivalent characterization of the total variation norm
of v ∈ BV (Ω), i.e., we have∫

Ω
|Dv| = sup

q∈HN (div;Ω)
−
∫

Ω
v div q dx− IK1(0)(q).

It has been verified in [HK04] that E is the dual functional related to D and that Fenchel duality
theory in the sense of [ET99] applies, i.e., that strong duality holds. This allows us to deduce the
following result.

Theorem 4.1. Let u ∈ BV (Ω) ∩ L2(Ω) be minimal for E. Then for every uh ∈ BV (Ω) ∩ L2(Ω)
and q ∈ HN (div; Ω) we have

α

2
‖u− uh‖2 =

∫
Ω
|Duh|+

α

2
‖uh − g‖2 +

1

2α
‖div q + αg‖2 − α

2
‖g‖2 + IK1(0)(q).

Proof. Owing to the results of [HK04] we have E(u) ≥ −D(q) for every q ∈ HN (div; Ω). The
theorem is therefore a consequence of Theorem 3.1 upon noting that we may choose ΦF (v) =
(α/8)‖v‖2, ΦG = 0, and ΨJ = (α/2)‖v‖2. �

The remainder of this section is devoted to the computation of a discrete element q ∈ HN (div; Ω)
that leads to a finite and nearly optimal upper error bound.
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4.2. Discretization of D. For a regular triangulation Th of Ω we set

S1
N (Th)d = {qh ∈ S1(Th)d : qh · ν = 0 on ∂Ω}

and note that S1
N (Th)d ⊂ HN (div; Ω). We have that a vector field qh ∈ S1

N (Th)d satisfies |qh| ≤ 1
in Ω if and only if |qh(z)| ≤ 1 for all z ∈ Nh. We then consider the minimization problem defined
by the functional

Dh(qh) =
1

2α
‖Ph(div qh + αg)‖2 − α

2
‖Phg‖2 + IK1(0)(qh),

with the L2 projection Ph : L2(Ω)→ S1(Th). We formally extend Dh to vector fields in HN (div; Ω)
by setting Dh(q) =∞ if q ∈ HN (div; Ω) \ S1

N (Th)d.

Theorem 4.2. For a sequence of triangulations (Th)h>0 with maximal mesh-size h→ 0 the func-
tionals Dh converge in the sense of Γ-convergence to the functional D with respect to strong con-
vergence in HN (div; Ω), i.e., (i) for every sequence (qh)h>0 ⊂ HN (div; Ω) with qh ∈ S1

N (Th)d for
all h > 0 and limh→0 qh = q in HN (div; Ω) we have

D(q) ≤ lim inf
h→0

Dh(qh)

and conversely, (ii) for every q ∈ HN (div; Ω) there exists a sequence (qh)h>0 ⊂ HN (div; Ω) with
qh ∈ S1

N (Th)d for every h > 0 and limh→0 qh = q such that

D(q) = lim
h→0

Dh(qh).

Proof. To show the first statement let (qh)h>0 and q be as in the theorem. By lower semicontinuity
of D it suffices to show that

‖Ph(div qh + αg)‖ → ‖div qh + αg‖
as h→ 0. Letting ψ = div q + αg and ψh = div qh + αg and noting that Ph is a bounded operator
on L2(Ω) with operator norm ‖Ph‖ = 1 we have

‖Phψh − ψ‖ ≤ ‖(1− Ph)(ψh − ψ)‖+ ‖ψ − ψh‖+ ‖ψ − ψh‖
≤ 3‖ψ − ψh‖+ ‖ψ − Phψ‖ → 0

as h → 0 by density of S1(Th) in L2(Ω) and properties of the projection. To prove the second
statement we may assume by density of compactly supported smooth vector fields in HN (div; Ω)
that q ∈ C1

c (Ω;Rd) ∩ H2(Ω;Rd) and employ the nodal interpolant qh = Ihq ∈ S1
N (Th)d for every

h > 0. The convergence then follows from standard results on nodal interpolation. �

Remarks 4.1. (i) For vector fields in the lowest order Raviart-Thomas finite element space
RTN (Th) ⊂ HN (div; Ω) the condition |qh| ≤ 1 is difficult to formulate in terms of the natural
degrees of freedom, i.e., the normal components on edges or faces.
(ii) The reason for the inconsistent discretization of D, i.e., for incorporating the projection oper-
ator Ph is that this allows for a reliable iterative solution of the discrete problems.

4.3. Discrete duality. The following lemma shows that the discretization of the predual may be
regarded as the discrete (pre-)dual of a discretization of the functional E.

Lemma 4.1. Let ∇̃h,N : S1(Th)→ S1
N (Th)d be for vh ∈ S1(Th) defined by

(∇̃h,Nvh, qh)h = −(vh, Ph div qh)

for all qh ∈ S1
N (Th)d. Then the Fenchel dual of the minimzation of Dh is defined through the

functional

Eh(uh) =

∫
Ω
Ih|∇̃h,Nuh|dx+

α

2
‖uh − Phg‖2

8



Proof. We identify the spaces S1(Th) and S1
N (Th)d with their duals via the L2 inner product (·, ·)

and the discrete L2 inner product (·, ·)h, respectively, so that in particular −Ph div = ∇̃∗h,N = Λ∗h.

For Fh(vh) = (α/2)‖vh − Phg‖2 we have F ∗h (wh) = (1/(2α))‖wh + αPhg‖2 − (α/2)‖Phg‖2. The
functional Gh(qh) =

∫
Ω Ih|qh| dx can be written in the form

Gh(rh) =
∑
z∈Nh

βz|rh(z)| = sup
qh∈S1N (Th)d: |qh|≤1

βzrh(z) · qh(z) = sup
qh∈S1N (Th)d

(rh, qh)h − IK1(0)(qh),

i.e., G∗h = IK1(0). Since the discrete spaces are reflexive the statement follows from the fact that
G∗∗h = Gh, F ∗∗h = Fh, and Λ∗∗h = Λh. �

Remark 4.1. It can be shown that the discrete functionals Eh are Γ-convergent to the functional
E with respect to intermediate convergence in BV (Ω). Numerical experiments reported below show
however that minimizers of Eh develop oscillations at discontinuities.

To characterize solutions of the discrete formulations more precisely, we define the discrete subdif-
ferential ∂hIK1(0)(ph) at ph ∈ S1

N (Th)d with |ph| ≤ 1 in Ω as the set of all elements ξh ∈ S1
N (Th)d

with

(ξh, qh − ph)h ≤ 0

for all qh ∈ S1
N (Th)d with |qh| ≤ 1 in Ω.

Lemma 4.2. Minimizers uh ∈ S1(Th) and ph ∈ S1
N (Th)d of the discrete functionals Eh and Dh,

respectively, are saddle points of the functional

Sh(vh, qh) =
α

2
‖vh − Phg‖2 − (vh, Ph div qh)− IK1(0)(qh),

in particular, they are solutions if and only if

α(uh − Phg)− Ph div ph = 0, ∇̃h,Nuh ∈ ∂hIK1(0)(ph).

Proof. The first statement follows from noting that we have, as in the proof of Lemma 4.1,

sup
qh∈S1N (Th)d

−(vh, div qh)− IK1(0)(qh) = sup
qh∈S1N (Th)d

(∇̃h,Nvh, qh)h − IK1(0)(qh) =

∫
Ω
Ih|∇̃h,Nvh|dx

and

inf
vh∈S1(Th)

α

2
‖vh − Phg‖2 − (vh, Ph div qh) =

1

α
‖Ph(div qh + αg)‖2 − α

2
‖Phg‖2.

The optimal qh and vh satisfy the equations stated in the lemma. �

4.4. Iterative solution. We approximately solve the saddle-point formulation of Lemma 4.2 by
a simultaneous gradient flow for uh and ph in descent and ascent directions, respectively, i.e., we
consider temporal discretizations of the system of ordinary differential equations and inclusions

∂tuh = −α(uh − Phg) + Ph div qh, −∂tph + ∇̃h,Nuh ∈ ∂hIK1(0)(ph).

The following algorithm defines a time-stepping scheme and states the equations and inclusions in
variational form.

Algorithm (A′). Let τ > 0 and (u0
h, p

0
h) ∈ S1(Th) × S1

N (Th)d with |p0
h(z)| ≤ 1 for all z ∈ Nh, set

dtu
0
h = 0, and solve for n = 0, 1, ... with ũn+1

h = unh + τdtu
n
h the equations

(−dtpn+1
h + ∇̃h,N ũn+1

h , qh − pn+1
h )h ≤ 0, (dtu

n+1
h , vh)− (div pn+1

h , vn+1
h ) = −α(un+1

h − Phg, vh)

subject to |pn+1
h (z)| ≤ 1 for all z ∈ Nh and for all (vh, qh) ∈ S1(Th)× S1

N (Th)d with |qh(z)| ≤ 1 for
all z ∈ Nh.

9



Remark 4.2. Notice that pn+1
h is the unique minimizer of

qh 7→
1

2τ
‖qh − ph‖2h − (qh, ∇̃h,N ũn+1

h )h + IK1(0)(qh)

and is for every z ∈ Nh given by

pn+1
h (z) =

pnh(z) + τ∇̃h,N ũn+1
h (z)

max{1, |pnh(z) + τ∇̃h,N ũn+1
h (z)|}

.

The iterates of Algorithm (A′) converge to a stationary point, e.g., if τ ≤ chmin. We denote

‖∇̃h,N‖ = sup06=vh∈S1(Th) ‖∇̃h,Nvh‖h/‖vh‖ and owing to an inverse estimate on S1
N (Th) we have

‖∇̃h,N‖ ≤ ch−1
min.

Proposition 4.1. Let uh ∈ S1(Th) be the unique minimizer for Eh in S1(Th). If θ = τ2‖∇̃h,N‖2 < 1
then the iterates of Algorithm (A′) satisfy for every N ≥ 1

τ

N∑
n=0

(
(1− θ)τ

2

(
‖dtun+1

h ‖2 + ‖dtpn+1
h ‖2h

)
+ α‖uh − un+1

h ‖2
)
≤ C.

In particular, we have that unh → uh and pnh → p̃h for a minimizer p̃h ∈ S1
N (Th)d of Dh as n→∞.

Proof. Let ph ∈ S1
N (Th)d be as in Lemma 4.2. Upon choosing vh = uh − un+1

h and qh = ph in

Algorithm (A′) and qh = pn+1
h in the variational inclusion of Lemma 4.2 and using

(un+1
h − Phg, uh − un+1

h ) + ‖uh − un+1
h ‖2 = (uh − Phg, uh − un+1

h )

we find that

dt
2

(
‖uh − un+1

h ‖2 + ‖ph − pn+1
h ‖2h

)
+
τ

2

(
‖dtun+1

h ‖2 + ‖dtpn+1
h ‖2h

)
+ α‖uh − un+1

h ‖2

= −(dtu
n+1
h , uh − un+1

h )− (dtp
n+1
h , ph − pn+1

h )h + α‖uh − un+1
h ‖2

≤ (pn+1
h , ∇̃h,N (uh − un+1

h ))h + α(un+1
h − Phg, uh − un+1

h )− (ph − pn+1
h , ∇̃h,N ũn+1

h )h + α‖uh − un+1
h ‖2

= (pn+1
h , ∇̃h,N (uh − un+1

h ))− (ph − pn+1
h , ∇̃h,N ũn+1

h )h + α(uh − Phg, uh − un+1
h )

= (pn+1
h , ∇̃h,N (uh − un+1

h ))h − (ph − pn+1
h , ∇̃h,N ũn+1

h )h − (ph, ∇̃h,N (uh − un+1
h ))h

= (ph − pn+1
h , ∇̃h,N (un+1

h − ũn+1
h ))h + (pn+1

h − ph, ∇̃h,Nuh)h

≤ (ph − pn+1
h , ∇̃h,N (un+1

h − ũn+1
h ))h = τ2(ph − pn+1

h , ∇̃h,Nd2
tu
n+1
h )h,

where we used un+1
h − ũn+1

h = τ2d2
tu
n+1
h . Multiplication by τ , summation over n = 0, ..., N , discrete

integration by parts, Young’s inequality, and dtu
0
h = 0 show that for the right-hand side we have

τ3
N∑
n=0

(ph − pn+1
h , ∇̃h,Nd2

tu
n+1
h )h = τ3

N∑
n=0

(dtp
n+1
h , ∇̃h,Ndtunh)h + τ2(ph − pnh, ∇̃h,Ndtunh)h

∣∣N+1

n=0

≤ τ2

2

( N∑
n=0

τ2‖∇̃h,Ndtunh‖2 + ‖dtpn+1
h ‖2h

)
+

1

2
‖ph − pN+1

h ‖2h +
τ4

2
‖∇̃h,NdtuN+1

h ‖2.

A combination of the estimates proves the asserted bound. The bound implies that unh → uh and

pnh → p̃h for some p̃h ∈ S1
N (Th)d as n → ∞. Since dtu

n+1
h → 0 and dtp

n+1
h → 0 we have that the

pair (uh, p̃h) is a saddle point as in Lemma 4.2. �
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5. Numerical experiments

We discuss in this section the practical performance of the proposed error estimate. To illustrate
some of its features in a well understood setting, we first report our experience in the case of elliptic
model problems. The theory is then applied to the non-smooth functional E from Section 4 defined
on BV (Ω).

5.1. Elliptic problems. We consider two elliptic problems defined on H1(Ω) that reveal some
fundamental properties of the error estimate provided by Theorem 3.1.

Example 5.1. For Ω = (−1, 1)2 \ ([0, 1)× (−1, 0]) and f ≡ 1 consider

J(v) =
1

2

∫
Ω
|∇v|2 dx−

∫
Ω
fv dx

for v ∈ V = H1
0 (Ω). For the unique minimizer u ∈ H1

0 (Ω) and a Galerkin approximation uh ∈
S1

0 (Th) we have according to Example 3.1

‖∇(u− uh)‖ ≤ ‖∇uh − qh‖

for every qh ∈ H(div; Ω) with −div qh = f in Ω. The employed initial triangulation was obtained
from two uniform refinements of a coarse triangulation of Ω consisting of 6 triangles with diameters√

2 that are halved squares along the diagonal (1, 1).

Our first choice of qh ∈ H(div; Ω) is obtained by an averaging of the gradient of the approximate
solution uh, i.e., we employ qh = Ah(∇uh) ∈ S1(Th)2 defined by qh =

∑
z∈Nh

qzϕz with

qz =
1

|ωz|

∫
ωz

∇uh dx

for every z ∈ Nh and ωz = suppϕz. In general, the vector field qh does not satisfy −div qh = f .
The second choice results from the solution of a discretization of the dual problem with the lowest
order Raviart-Thomas finite element space, i.e., we compute (ph, uh) ∈ RT 0(Th)× L0(Th) with

(ph, qh) + (div qh, uh) = 0,

(div ph, vh) = − (f, vh)

for all (qh, vh) ∈ RT 0(Th)× L0(Th). The corresponding error estimators are given by

ηA = ‖∇uh −Ah(∇uh)‖, ηDP = ‖∇uh − ph‖.

We associate to ηDP the elementwise refinement indicator specified by ηDP (T ) = ‖∇uh − ph‖L2(T )

for T ∈ Th. Notice that ηDP is a reliable error estimator owing to the results of Section 3 and the
fact that f is elementwise constant. The reliability of ηA does not follow from the arguments above
but can be proved up to a generic constant with different arguments, cf. [CB02].
Figure 1 shows the error estimators and the error for sequences of uniformly and adaptively refined
triangulations. The adaptively refined meshes were obtained through a red-green-blue refinement
strategy and a set of marked elements given byM = {T ∈ Th : ηDP (T ) ≥ (1/2) maxT ′∈Th ηDP (T ′)}.
The error δ = ‖∇(u− uh)‖ = (‖∇u‖2−‖∇uh‖2)1/2 was computed with an approximation of ‖∇u‖
obtained by an extrapolation of corresponding values for finite element approximations on a se-
quence of uniform triangulations. We see that the estimator ηA provides an accurate approximation
of the error δ but is not a reliable upper bound. This is satisfied for the estimator ηDP which leads
to some overestimation but defines a guaranteed upper bound for the error. The adaptive strategy
improves the suboptimal experimental convergence rate δ ∼ N−1/3 of uniform mesh-refinement
to the quasi-optimal rate δ ∼ N−1/2, where N = #Nh is the number of nodes that define the
approximation uh on a triangulation Th.

11
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Figure 1. Error δ = ‖∇(u−uh)‖ and error estimators ηA and ηDP versus degrees
of freedom N for a Poisson problem on an L-shaped domain defined in Example 5.1
for uniformly and adaptively refined triangulations. All quantities decay with the
same ratesN−1/3 andN−1/2 for uniform and adaptive mesh-refinement, respectively.
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Figure 2. Error δ and error estimators ηA and ηDP versus degrees of freedom N
for a Helmholtz type problem on a square defined in Example 5.2 for uniformly, per-
turbed uniformly, and adaptively refined triangulations. The reliable estimator ηDP
decays at the same optimal rate as the error on all sequences of triangulations while
the reliable estimator ηA is efficient only on uniformly refined, highly symmetric
triangulations.
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Example 5.2. For Ω = (−1, 1)2 and g(x1, x2) = (1 + π2/α) cos(πx1) consider

J(v) =
1

2

∫
Ω
|∇v|2 dx+

α

2

∫
Ω
|v − g|2 dx

for v ∈ V = H1(Ω). For the unique minimizer u(x1, x2) = cos(πx1) and a Galerkin approximation
uh ∈ S1(Th) we have according to Example 3.2

‖∇(u− uh)‖2 + α‖u− uh‖2 ≤ ‖∇uh − qh‖2 + (1/α)‖ div qh − α(uh − g)‖2

for every qh ∈ HN (div; Ω). We start with a triangulation that is obtained from two uniform refine-
ments of a coarse triangulation of Ω consisting of 2 triangles with diameters 2

√
2 that are halved

squares along the diagonal (1, 1).

Again, we consider estimators obtained by simple averaging and by a numerical solution of the
dual problem. To satisfy the condition qh · ν = 0 on ∂Ω, we modify the coefficients in the definition
of Ah(∇uh) above by projecting qz onto the orthogonal complement of the space spanned by the
normals at a boundary node z, i.e.,

q̃z = ΠN⊥z
qz,

where Nz = span{νE : E ∈ E ∩ ∂Ω, z ∈ E} is the span of all normals of boundary edges E of the
triangulation that have the node z as an endpoint. We then set

Ãh(∇uh) =
∑
z∈Nh

q̃zϕz ∈ S1
N (Th)2 ⊂ HN (div; Ω).

In contrast to Example 5.1 the vector field qh = Ãh(∇uh) leads to a finite guranteed upper bound
for the error. Our employed numerical solution of the discretized dual problem is the unique pair
(ph, uh) ∈ RT 0

N (Th)× L0(Th) with

(ph, qh) + (div qh, uh) = 0,

(div ph, vh)−α(uh, vh) = − α(gh, vh)

for all (qh, vh) ∈ RT 0
N (Th) × L0(Th). For the Helmholtz problem defined in Example 5.2 we have

that both estimators

η2
A = ‖∇uh − Ãh(∇uh)‖2 + (1/α)‖ div Ãh(∇uh)− α(uh − Phg)‖2,

η2
DP = ‖∇uh − ph‖2 + (1/α)‖ div ph − α(uh − Phg)‖2

are according to Example 3.2 reliable upper bounds for the error

δ2 = ‖∇(u− uh)‖2 + α‖u− uh‖2

if g = Phg. Data oscillation terms that are related to an approximation error g 6= Phg are neglected
in the following.
The numerical results shown in Figure 2 confirm that the estimators ηA and ηDP serve as guaranteed
upper bounds for the error. In case of uniformly refined triangulations they converge with the same
optimal rate as the error δ. The error estimator ηDP obtained through the solution of the discrete
dual problem is also efficient on adaptively refined and perturbed uniform triangulations where inner
nodes z are randomly perturbed by a vector ξz with |ξz| ≤ h/10, i.e., it decays at the same rate as
the error δ, and is nearly insensitive to mesh perturbations. This is not the case for the estimator ηA
which remains almost constant for adaptively and perturbed uniformly refined triangulations with
more than 200 nodes. A more careful investigation of the contributions to the estimators show that

the failure of ηA on non-symmetric triangulations is due to the term ‖ div Ãh(∇uh)− α(uh − gh)‖.
13



Remark 5.1. We also tried an estimator defined through averaging in the Raviart-Thomas space
RT 0(Th) defined through

ARTh (∇uh) =
∑
E∈E

{
∇uh

}
E
· νEψE ,

where {∇uh}E is the average of ∇uh on an edge E, νE a fixed unit normal for every E ∈ E, and
ψE the basis of RT 0(Th) satisfying ψE · νE′ = δEE′ for all E,E′ ∈ E. The corresponding error
estimator led to similar results as the estimator ηA. In particular, the failure of estimation by
averaging cannot be attributed solely to the limited approximation properties of the H1 conforming
space S1(Th)d in H(div; Ω).

5.2. Total variation regularization. The experiments for elliptic problems show that simple
averaging may not lead to efficient error control. Therefore, we solve the dual problem of the
non-smooth model problem as discussed in Section 4 to define a reliable error estimator.

Example 5.3. Set Ω = (−1, 1)2, α = 100, g(x) = χB∞
1/2

(x), where B∞1/2 = {(x1, x2) ∈ R2 :

max{|x1|, |x2|} ≤ 1/2}, and consider the minimization problem defined through the functional

E(v) =

∫
Ω
|Dv|+ α

2
‖v − g‖2

for v ∈ BV (Ω)∩L2(Ω). For the minimal u ∈ BV (Ω)∩L2(Ω), arbitrary qh ∈ HN (div; Ω) with |qh| ≤
1 in Ω, and an arbitrary appoximation uh ∈W 1,1(Ω) ∩ L2(Ω) we have according to Theorem 4.1

α

2
‖u− uh‖2 ≤

∫
Ω
|∇uh| dx+

α

2

∫
Ω
|uh − g|2 dx+

1

2α

∫
Ω
| div qh + αg|2 dx− α

2

∫
Ω
|g|2 dx.

The initial triangulation was obtained from two uniform refinements of a coarse triangulation with 2
triangles that are halved squares with diameter

√
22.

An approximation ph ∈ S1
N (Th)d of a solution of the dual problem that satisfies |ph(z)| ≤ 1 for

all nodes z ∈ Nh and hence |ph| ≤ 1 in Ω is computed with Algorithm (A′). For this and the
approximate solution of the discretized primal problem with Algorithm (A) we always used the
step-size τ = hmin/10 with the minimial mesh-size hmin of a triangulation Th. The approximations
uh and ph define the error estimator

η2
DP =

∫
Ω
|∇uh|dx+

α

2

∫
Ω
|uh − g|2 dx+

1

2α

∫
Ω
|div ph + αg|2 dx− α

2

∫
Ω
|g|2 dx.

To the reliable estimator ηDP we associate the elementwise defined refinement indicators

ηDP (T ) =
∣∣∣ ∫

T
|∇uh| dx+

α

2

∫
T
|uh − g|2 dx+

1

2α

∫
T
| div ph + αg|2 dx− α

2

∫
T
|g|2 dx

∣∣∣1/2
that steer the adaptive algorithm.
Figure 3 shows the behaviour of the estimator ηDP for a sequence of uniformly and adaptively
refined triangulations. On the uniform triangulations we observe that

ηDP ∼ h1/4

which coincides with the theoretically predicted convergence rate. The adaptive strategy leads to
a smaller error estimator and an improved experimental rate of convergence ηDP ∼ h1/2 which is
the optimal rate for the approximation of a function u ∈ BV (Ω)∩L∞(Ω) on a sequence of uniform
triangulations. The refinement strategy refines the grid in a neighbourhood of the discontinuity
set of the data where a discontinuity of the exact solution is expected. This is illustrated in the
sequence of adaptively generated triangulations shown in Figure 4.

The refinement indicators (ηDP (T ) : T ∈ Th) can also be used for de-refinement of a triangulation,
i.e., for mesh coarsening. This is of particular importance when a fine initial grid is required
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Figure 3. Error estimator ηDP versus degrees of freedom N for the total variation
minimization problem defined in Example 5.3. The estimator decays at a rate N−1/8

for uniform refinement. The numbers are reduced on adaptively refined meshes with
comparable numbers of degrees of freedom and the rate is improved to ηDP ∼ N−1/4.

0 1

Figure 4. Adaptively generated grids and numerical solutions uh in Example 5.3.
The adaptive strategy steered by the refinement indicators ηDP (T ) automatically
refines a neighbourhood of the discontinuity set of the data function g which is
expected to coincide with the singuarity set of the exact solution u.
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Figure 5. Adaptively refined and coarsened grids and numerical solutions uh in
Example 5.4. The mesh is significantly coarsened away from the circular disconti-
nuity set and refined therein.

0

1

Figure 6. Numerical solution obtained through adaptive refinement and coars-
ening based on the indicators (ηDP (T ) : T ∈ Th) in Example 5.4. The algorithm
automatically coarsens the triangulation away from the discontinuity set and refines
the mesh in a neighbourhood of it leading to an efficient approximation scheme.
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to resolve given data g. To illustrate this we consider the following experiment in which the
discontinuity set of g is circular and not exactly resolved on the employed triangulations.

Example 5.4. Let Ω = (−1, 1)2, α = 100, and g(x) = χB2
1/2

(x) for B2
1/2 = {x ∈ R2 : (x2

1 +x2
2)1/2 ≤

1/2}. The initial triangulation was obtained from 13 global bisection steps of a coarse triangulation
with 2 triangles and whose refinement edges are chosen as longest edges.

Our adaptive mesh-refinement and coarsening strategy consisted in marking elements in a triangu-
lation Th for coarsening if ηDP (T ) ≤ (1/2) maxT ′∈Th ηDP (T ′). Subsequently, the mesh was refined
according the rule η̃DP (T ) ≥ (1/2) maxT ′∈Th η̃DP (T ′) using the elementwise function η̃DP obtained
from a restriction of ηDP onto the coarsened mesh. The mesh coarsening was based on the algorithm
proposed and analyzed in [BS12].
The sequence of meshes shown in Figures 5 and 6 show that adaptive mesh coarsening can sub-
stantially improve the efficiency of the image regularization and it can be regarded as an adaptive
image compression technique. Since we use an approximation gh ∈ L0(Th) of g on the initial mesh
and prolongate and restrict this function to coarser and finer meshes we cannot expect convergence
to a circular interface. The role of data oscillation and numerical integration is not investigated in
this article. Figure 7 reveals the limited applicability of Algorithm (A′) to compute solutions of
the primal problem. Artificial oscillations occur at the discontinuity set and a discrete maximum
principle is violated.

0

1

Figure 7. Numerical approximation u′h obtained with Algorithm (A′) in Exam-
ple 5.4. In contrast to the numerical solution computed with Algorithm (A) oscilla-
tions occur at the discontinuity set. The purpose of Algorithm (A′) is to compute a
conforming solution of the dual problem.
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[Brè67] Lev M. Brègman, A relaxation method of finding a common point of convex sets and its application to the

solution of problems in convex programming, Z̆. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 620–631.
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