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SÖREN BARTELS

Abstract. The formation of folds and ridges in the elastic deformation
of thin elastic sheets is related to certain instabilities in mathematical
models derived from continuum mechanics. Their approximation is dif-
ficult due to nonuniqueness and localization effects which result from
nonlinearities and singular perturbations. Numerical methods for simu-
lating these effects have to be justified without unrealistic assumptions
on exact solutions. The paper proposes a convergent finite element dis-
cretization of a Föppl–von Kármán model and devises an efficient energy
decreasing iterative scheme.

1. Introduction

Föppl–von Kármán models have recently attracted attention among applied
mathematicians due to their capability of describing various nonlinear effects
in the elastic deformation of thin elastic objects. These effects are important
in the development of various applications including nanotechnologies, cf.,
e.g., [JC04]. The most common model describes the moderate deformation of
a plate ω ⊂ R2 with thickness γ > 0 via an in-plane displacement u : ω → R2

and a deflection w : ω → R that minimize the dimensionally reduced elastic
energy functional

E(u,w) =
γ2

2

∫
ω
|D2w|2 dx+

1

2

∫
ω
|ε̃(u) +∇w ⊗∇w|2 dx−

∫
ω
fw dx

in a set of admissible pairs contained in the product space H1(ω;R2) ×
H2(ω) incorporating appropriate boundary conditions. The functional E
involves a vertical dead body load f : ω → R, twice the symmetric gradient
ε̃(u) = Du + Du

⊥

, and the dyadic product a ⊗ b = ab

⊥

of the deflection
gradient. Norms and inner products of vectors or matrices are defined via
euclidean length and Frobenius norm, respectively. The model results from
a simplification of three-dimensional hyperelastic material descriptions and
we refer the reader to [Cia80, Cia97, FJM02, FJM06] for related details.
Thin elastic sheets display a rich variety of nonlinear effects depending,
e.g., on relations between geometry, thickness, applied forces, and boundary
conditions. Mathematically this results in a continuum of combinations of
bending and membrane phenomena. Important special cases can be identi-
fied via a particular scaling of the energy in terms of the thickness parameter
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γ, cf. [FJM06]. While pure membrane and bending models entirely eliminate
the parameter γ, the Föppl–von Kármán model considered here includes it
and thereby incorporates a length scale that determines the geometry of fold-
ing patterns and ridges, cf., e.g., [MO14, Ven04]. The occurrence of these
phenomena can be understood by comparing the elastic energy functional
to functionals arising in phase field models or mathematical descriptions
of crystalline phase transitions, cf. [KM94, DHR16]. The combination of a
higher order term weighted by a small factor with a nonconvex term specify-
ing certain prefered states leads to the formation of interfaces or branching
structures. Qualitatively, minimizers can in idealized situations be precisely
characterized via optimal energy scaling laws in terms of γ and other relevant
quantities, cf. [CM08, BK14, COT15]
Due to the nonconvex and singularly perturbed character of the elastic en-
ergy functional and the corresponding complicated structure of energy min-
imizing displacements it is difficult to numerically compute global minimiz-
ers. The author is unaware of articles discussing the discretization and itera-
tive solution of the Föppl–von Kármán model except for the article [CGK07]
in which convergence is investigated in an abstract framework. To detect
stationary configurations with low elastic energy we employ a discrete gradi-
ent flow for E with respect to the variables u and w, i.e., the coupled system
of nonlinear evolution equations(

∂tw, v
)
ver

= −∂wE(u,w)[v]

= −γ2
(
D2w,D2v

)
− 2
(
|∇w|2∇w + ε̃(u)∇w,∇v

)
+
(
f, v
)
,(

∂tu, z
)
hor

= −∂uE(u,w)[z]

= −
(
ε̃(u), ε̃(z)

)
−
(
∇w ⊗∇w, ε̃(z)

)
,

where ∂wE and ∂uE denote the Fréchet derivatives of E with respect to w
and u while (·, ·)ver and (·, ·)hor are inner products on H2(ω) and H1(ω;R2),
respectively. The L2 inner product is denoted by (·, ·) with corresponding
norm ‖ · ‖; we used that |a⊗a|2 = |a|4 and M : (a⊗ b) = (Ma) · b = (Mb) ·a
for every symmetric matrix M ∈ R2×2 and all a, b ∈ R2.
To discretize the evolution equations we choose a sequence of positive step
sizes (τk)k=1,2,... and replace time derivatives by the backward difference
quotients

dtu
k =

1

τk

(
uk − uk−1

)
, dtw

k =
1

τk

(
wk − wk−1

)
.

A fully implicit discretization of the right-hand sides would lead to a coupled
system of nonlinear equations which might be difficult to solve while a fully
explicit discretization leads to restrictive conditions to ensure stability. To
decouple the equations and obtain equations that can be solved efficiently
we exploit the special structure of the nonlinearity and make use of the
delay effect of the discrete product rule. This leads to the following iterative
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scheme: given (uk−1, wk−1) compute (uk, wk) such that(
dtw

k, v
)
ver

= −γ2
(
D2wk, D2v

)
− 2
(
|∇wk|2∇wk + ε̃(uk−1)∇wk−1/2,∇v

)
+
(
f, v
)
,(

dtu
k, z
)
hor

= −
(
ε̃(uk), ε̃(z)

)
−
(
∇wk ⊗∇wk, ε̃(z)

)
,

for all (v, z) satisfying homogeneous boundary conditions. The scheme in-

volves the average wk−1/2 defined for wk and wk−1 by

wk−1/2 =
1

2

(
wk + wk−1

)
.

Note that the equations defining wk and uk are decoupled in the sense that
the equation for wk does not involve uk. By testing the discrete evolution
system with (uk, wk) we see that the scheme is unconditionally stable and
energy decreasing. Moreover, it follows that the iteration converges to a sta-
tionary pair (u,w). Well posedness of the equations is a consequence of the
fact that they define optimality conditions for strongly convex minimization
problems under a mild condition on τk. In particular, the Newton iteration
is expected to have good convergence properties in the iterative solution of
the equation for wk, whereas the equation defining uk is a linear problem
with coercive and symmetric bilinear form. The unconditional stability of
the discrete gradient flow allows us to use arbitrary step sizes τk > 0 but too
large steps might lead to nonuniquness and divergence of the Newton itera-
tion. To obtain an efficient and stable scheme we use the following adaptive
strategy to adjust the step size:

• decrease τk until Newton scheme terminates within L iterations

• set τk+1 = min{2τk, 10r} for next gradient flow step

Here r is an appropriate positive integer to avoid numerical overflow. Since
the Newton scheme always converges under a mild condition on τk, the
algorithm converges to a stationary configuration. The use of variable step
sizes turns out to be particularly useful to avoid local minimizers.
The spatial discretization of the Föppl–von Kármán model is based on stan-
dard P1 finite elements for the in-plane displacement and Kirchhoff triangles
for the deflection. The latter element defines a nonconforming bending ele-
ment whose degrees of freedom are the deflections and their gradients at the
nodes of a triangulation which coincide with the vertices of triangles. This
element has recently been used in the closely related problem of comput-
ing bending isometries [Bar13, Bar15, BBN15]. The fact that the gradient
values are explicit degrees of freedom allows for a practical discretization of
nonlinear terms making appropriate use of numerical integration and direct
incorporation of a large class of boundary conditions. In particular, our
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discretization of the elastic energy is given by

Eh(uh, wh) =
γ

2

∫
ω
|∇∇hwh|2 dx

+
1

2

∫
ω
Îh
[
|ε̃(uh) +∇wh ⊗∇wh|2

]
dx−

∫
ω
Îh[fwh] dx.

Here ∇h is a discrte gradient operator whose image belongs to H1(ω;R2)

and Îh is the elementwise nodal interpolant related to a regular triangulation
which extends the standard nodal interpolant to elementwise continuous
functions. We show that the energies Eh converge to E in the sense of Γ-
convergence in H1(ω;R2) ×W 1,4(ω) with respect to the weak convergence
in H1(ω;R2) and strong convergence in W 1,4(ω). In fact we have that the
discrete Hessians∇∇hwh converge weakly in L2(ω;R2×2). The minimization
of Eh is done with a corresponding discretization of the discrete gradient
flow described above. The complete justification of our numerical method
thus leaves a gap in that Γ-convergence implies convergence of almost global
minimizers for Eh to global minimizers for E while the gradient flow can in
general only be expected to detect local minimizers. For a discussion of the
approximation of local minimizers and evolutions within the framework of
Γ-convergence we refer the reader to [Bra14].
We discuss the practical performance of our numerical method by consider-
ing various practically motivated settings including the indentation of elastic
cones and compression of thin elastic sheets. The results qualitatively con-
firm theoretical findings from [Bel15, BCM15, COT15]. Related experiments
using a shell model have recently been reported in [NR14].
The outline of the article is as follows. In Section 2 we introduce relevant
notation and define suitable finite element spaces. Section 3 is devoted
to the unconditional stability analysis of the discretized gradient flow. In
Section 4 we show that the spatial discretization converges in the sense of Γ-
convergence to the continuous Föppl–von Kármán model. Various numerical
experiments are reported in Section 5.

2. Preliminaries

II.A. Mathematical model. A rigorous justification of the Föppl–von
Kármán model starts from three-dimensional hyperelasticity and the energy
functional

E3d(y) =

∫
Ωγ

W (∇̂y) dx̂−
∫

Ωγ

f̂ · y dx̂,

where Ωγ = ω × (−γ/2, γ/2) is a flat plate of thickness γ > 0 and W :
R3×3 → R a stored energy function obeying physical requirements. Small

energies are related to deformation gradients ∇̂y that are close to rotations
and give rise to linearizing W about the identity matrix and considering the
quadratic form

Q3(F ) =
∂2W

∂F 2
(I)[F, F ]
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and a corresponding two-dimensional variant

Q2(G) = min
a∈R3

Q3(Ĝ+ a⊗ e3 + e3 ⊗ a)

with the canonical basis vector e3 ∈ R3 and the matrix Ĝ ∈ R3×3 obtained
by augmenting G ∈ R2×2 with a trivial row and column. For isotropic
materials one obtains

Q2(G) =
µ

2
|G+G

⊥

|2 +
2µλ

2µ+ λ
(trG)2

with the Lamé coefficients λ, µ. By an appropriate rescaling of y : Ωγ → R3

and f = f̂3 : Ωγ → R one obtains the Föppl–von Kármán functional

EFvK(u,w) =
1

24

∫
ω
Q2(D2w) dx+

1

8

∫
ω
Q2

(
ε̃(u)+∇w⊗∇w

)
dx−

∫
ω
fw dx.

We refer the reader to [FJM06] for details but note that the reduced model
can heuristically be obtained from the ansatz

y(x, x3) =

[
x+ γ2u(x)− γ2x3∇w(x)

x3 + w(x)

]
.

To capture a larger class of effects we consider the corresponding functional

E(u,w) =
γ2

2

∫
ω
|D2w|2 dx+

1

2

∫
ω

∣∣ε̃(u) +∇w ⊗∇w
∣∣2 dx−

∫
ω
fw dx

which is a rescaled version of EFvK for an isotropic material. The functional
is defined on a set of admissible pairs, i.e., for

(u,w) ∈ A = A0 + (uD, wD) ⊂ H1(ω;R2)×H2(ω).

We assume that A is an affine subspace corresponding to a linear subspace
A0 for which we have the Korn–Poincaré inequality

(1) ‖ũ‖H1(ω) + ‖w̃‖H2(ω) ≤ cP
(
‖ε̃(ũ)‖+ ‖D2w̃‖

)
for all (ũ, w̃) ∈ A0. This is satisfied if, e.g., ũ = 0 and w = 0 and ∇w = 0 on
a subset γD ⊂ ∂ω of positive surface measure or if ũ = 0 and w̃ = 0 on ∂ω.
We also assume that the boundary conditions are such that the we have the
Sobolev inequality with seminorms

(2) ‖∇w̃‖L4(ω) ≤ cS‖D2w̃‖
for all w̃ ∈ A0.

II.B. Discrete time derivatives. For a sequence of possibly nonuniform
step sizes (τk)k=1,...,K and a sequence (ak)k=0,...,K we set

dta
k =

1

τk
(ak − ak−1).

Note that binomial formulas imply the relations

2dta
k · ak = dt|ak|2 + τk|dtak|2,

2dta
k · ak−1/2 = dt|ak|2.
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We also recall the discrete product rule

dt(a
kbk) = (dta

k)bk + ak−1(dtb
k)

valid for sequences (ak)k=0,...,K and (bk)k=0,...,K .

II.C. P1 finite element spaces. For a regular triangulation Th of the
polygonal domain ω ⊂ R2 into closed triangles T ∈ Th of diameter hT =
diam(T ) with hT ≤ ch we let

S1(Th) = {vh ∈ C(ω) : vh|T affine for all T ∈ Th}

denote the standard P1 finite element space. The nodal basis functions
(ϕz)z∈Nh ⊂ S1(Th) associated with the set of nodes Nh satisfy ϕz(y) = δzy
for all z, y ∈ Nh. We also use the space of discontinous P1 functions defined
via

Ŝ1(Th) = {vh ∈ L∞(ω) : vh|T affine for all T ∈ Th}.

The elementwise nodal interpolant Îhv ∈ Ŝ1(Th) of a function v ∈ L∞(ω)
with v|T ∈ C(T ) for all T ∈ Th defines a linear operator via

Îhv =
∑
T∈Th

∑
z∈Nh∩T

v|T (z)ϕz|T .

Here ϕz|T ∈ L∞(ω) is the discontinuous function that coincides with ϕz on

T and is zero in ω \T . If v ∈ C(ω) then Îhv ∈ S1(Th) is the standard nodal
interpolant of v. The L2 inner product is approximated via

(v, w)h =

∫
ω
Îh[v · w] dx =

∑
T∈Th

∑
z∈Nh∩T

βTz v|T (z) · w|T (z)

for elementwise continuous functions or vector fields v, w ∈ L∞(ω;R`), where

βTz =

∫
T
ϕz dx

for all T ∈ Th and z ∈ Nh ∩ T . We define the space of continuous P1 vector
fields on ω via

Vh = S1(Th)2.

II.D. Kirchhoff elements. For an integer r ≥ 0 we let Pr(T ) be the set of
polynomials of total degree at most r on T ∈ Th and, if z1, z2, z3 ∈ Nh ∩ T
are the vertices of T and xT = (z1 + z2 + z3)/3,

P3,red(T ) =
{
p ∈ P3(T ) : p(xT ) =

1

3

3∑
j=1

[
p(zj) +∇p(zj) · (xT − zj)

]}
,

where the constraint excludes the subspace of functions satisfying p(zj) = 0
and ∇p(zj) = 0 for j = 1, 2, 3 so that these quantities define the remaining
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nine degrees of freedom. We then set

Wh =
{
wh ∈ C(ω) : wh|T ∈ P3,red(T ) for all T ∈ Th
and ∇wh is continuous in Nh

}
,

Zh =
{
θh ∈ C(ω;R2) : θh|T ∈ P2(T )2

}
.

Recall that the degrees of freedom in P2(T ) are the function values at the
vertices and at the midpoint of edges of T , cf. Figure 1. We define a discrete
gradient operator

∇h : Wh → Zh

for wh ∈Wh by the conditions that for ψh = ∇hwh ∈ Zh we have

ψh(z) = ∇wh(z)

for all z ∈ Nh and

ψh(zE) =
1

2

[(
∇wh(z1) +∇wh(z2)

)
· nE

]
nE +

[
∇wh(zE) · tE

]
tE

for every edge E ⊂ ∂T with endpoints z1, z2 ∈ Nh ∩ E, midpoint zE , and
with nE , tE ∈ R2 denoting two orthogonal unit vectors such that nE is
perpendicular to E. In particular, the quadratic function ∇hwh has a linear
normal component along the edges of T . The mapping ∇h and the finite
element spaces are schematically sketched in Figure 1 and can naturally be
extended to functions in H3(Ω) ⊂ C1(Ω), i.e., given w ∈ H3(ω) we define
ψh = ∇hw ∈ Zh by the six conditions above.

ZhWh

∇h

Figure 1. Schematic description of the discrete gradient
operator ∇h : Wh → Vh and degrees of freedom of the poly-
nomial spaces P3,red and [P2]2.

Lemma II.1 (Properties of ∇h, [Bra07, BBN15]). (i) There exist c1, c2 > 0
such that for all wh ∈Wh and T ∈ Th we have for ` = 0, 1 that

c−1
1 ‖∇

`+1wh‖L2(T ) ≤ ‖∇`∇hwh‖L2(T ) ≤ c1‖∇`+1wh‖L2(T ),

and for 2 ≤ p ≤ ∞

‖∇hwh −∇wh‖Lp(T ) ≤ c2hT ‖D2wh‖Lp(T ).

(ii) There exists c3 > 0 such that for all w ∈ H3(Ω) and T ∈ Th we have

‖∇hw −∇w‖L2(T ) + hT ‖∇∇hw −D2w‖L2(T ) ≤ c3h
2
T ‖w‖H3(T ).
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(iii) The mapping wh 7→ ‖∇∇hwh‖ defines a norm on the sets

W simple
0,h =

{
wh ∈Wh : wh(z) = 0, ∇wh(z) = 0 for all z ∈ Nh ∩ γD

}
,

W supp
0,h =

{
wh ∈Wh : wh(z) = 0 for all z ∈ Nh ∩ ∂ω

}
.

Proof. The estimates follow from linearity of the mapping wh 7→ ∇hwh, in-
jectivity of ∇wh 7→ ∇hwh, the Bramble-Hilbert lemma, and transformation
arguments, cf. [Bra07, BBN15] for details. �

3. Energy decreasing iteration

III.A. Energy decay. We analyze in this section the discrete gradient flow
assuming for simplicity that f = 0.

Algorithm III.1 (Decoupled gradient flow). Choose (u0, w0) ∈ A, an ini-
tial step size τ1 > 0, and a stopping criterion εstop > 0, and set k = 1.

(1) Compute (uk, wk) ∈ A such that(
dtw

k, v
)
ver

= −γ2
(
D2wk, D2v

)
− 2
(
|∇wk|2∇wk + ε̃(uk−1)∇wk−1/2,∇v

)
,(

dtu
k, z
)
hor

= −
(
ε̃(uk), ε̃(z)

)
−
(
∇wk ⊗∇wk, ε̃(z)

)
,

for all (z, v) ∈ A0.
(2) Stop if ‖dtwk‖ver + ‖dtuk‖hor ≤ εstop min{1, τk}; define τk+1 > 0, in-
crease k → k + 1, and continue with (1) otherwise.

The iteration is well-posed, unconditionally stable, and energy decreasing.

Proposition III.2. Algorithm III.1 admits iterates (uk, wk)k=0,1,... ⊂ A
which satisfy

E(uK , wK) +

K∑
k=1

τk
(
‖dtwk‖2ver + ‖dtuk‖2hor

)
≤ E(u0, w0).

In particular, (dtu
k, dtw

k) → 0 and every cluster point of the sequence
(uk, wk)k=0,1,... is a stationary point for E. The iterates are unique if we
have ‖D2 · ‖ ≤ ceq‖ · ‖ver and

τk ≤
1

2c0ceqc2
S

for k = 1, 2, . . . with a constant c0 depending on γ, cS, wD, and E(u0, w0).

Proof. Note that given wk the equation specifying uk defines a linear prob-
lem which by Lax–Milgram lemma admits a unique solution. The equation
defining wk is the optimality condition for the minimization problem:

Minimize w 7→ 1

2τk
‖w − wk−1‖2ver +

γ2

2
‖D2w‖2 +

1

2

∫
ω
|∇w|4 dx

+
1

2

∫
Ω
ε̃(uk−1) :

(
∇[w + wk−1]⊗∇[w + wk−1]

)
dx.

(3)
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Lower semicontinuity and coercivity on H2(ω) imply the existence of a min-
imizer wk. We test the first equation of the iterative scheme with v = dtw

k

and the second one with z = dtu
k. The discrete product rule and the bino-

mial formulas from Subsection II.B imply that we have

2
(
ε̃(uk−1)∇wk−1/2,∇dtwk

)
+
(
∇wk⊗∇wk, ε̃(dtuk)

)
= dt

(
ε̃(uk),∇wk⊗∇wk

)
.

Incorporating convexity of |∇w|4, we find after summation of the discrete
evolution equations that

‖dtwk‖2ver +
γ2

2

(
dt‖D2wk‖2 + τ‖D2dtw

k‖2
)

+ ‖dtuk‖2hor +
1

2

(
dt‖ε̃(uk)‖2 + τ‖ε̃(dtuk)‖2

)
= −2

(
ε̃(uk−1)∇wk−1/2,∇dtwk

)
−
(
∇wk ⊗∇wk, ε̃(dtuk)

)
− 2
(
|∇wk|2∇wk,∇dtwk

)
≤ −dt

(
ε̃(uk),∇wk ⊗∇wk

)
− dt

2

∫
ω
|∇wk|4 dx.

A summation over k = 1, 2, . . . ,K proves the asserted estimate which then
implies that γ2‖D2wk‖2 ≤ E0 = E(u0, w0) for k = 0, 1, . . . ,K. Together
with the Sobolev inequality (2) we obtain the estimate

‖ε̃(uk)‖ ≤ ‖ε̃(uk) +∇wk ⊗∇wk‖+ ‖∇wk‖2L4(ω)

≤ E1/2
0 + 2‖∇wD‖2L4(ω) + 2‖∇(wk − wD)‖2L4(ω)

≤ E1/2
0 + 2‖∇wD‖2L4(ω) + 2c2

S‖D2(wk − wD)‖2,

i.e., ‖ε̃(uk)‖ ≤ c0, k = 0, 1, . . . ,K. This estimate leads to

1

2

∫
ω
ε̃(uk−1) : ∇w ⊗∇w dx ≥ −1

2
‖ε̃(uk−1)‖‖∇w‖2L4(ω)

≥ −‖ε̃(uk−1)‖‖∇(w − wk−1)‖2L4(ω) − ‖ε̃(u
k−1)‖‖∇wk−1‖2L4(ω)

≥ −c0c
2
S‖D2(w − wk−1)‖2 − ‖ε̃(uk−1)‖‖∇wk−1‖2L4(ω).

This implies strong convexity of the minimization problem (3) and thus
uniqueness of the minimizer wk provided that τk ≤ 1/(2c0ceqc

2
S). �

III.B. Newton iteration. The first step of Algorithm III.1 defines a non-
linear system of equations, i.e., we seek wk ∈W such that F (wk)[v] = 0 for

all v ∈W , where with ŵ = wk−1 and Ẑ = ε̃(uk−1)/2 and τ = τk we have

F (w)[v] = (D2[w − ŵ], D2v) + γ2τ(D2w,D2v)

+ 2τ
([
|∇w|2 + Ẑ

]
∇w + Ẑ∇ŵ,∇v

)
,



10 SÖREN BARTELS

We assumed for simplicity that the scalar product related to the seminorm
is given by ‖ · ‖ver = ‖D2 · ‖. The Fréchet derivative of F is given by

F ′(w)[v, y] = (1 + γ2τ)(D2y,D2v)

+ 2τ
([

2∇w ⊗∇w + |∇w|2 + Ẑ
]
∇y,∇v).

Proposition III.2 implies that the equation F (w)[v] = 0 admits a unique
solution w ∈W if τ ≤ c′. Since

F ′(w)[v, v] ≥(1 + γ2τ)‖D2v‖2

− 2τ
∥∥2∇w ⊗∇w + |∇w|2I2 + Ẑ‖‖∇v‖2L4(ω)

it follows that the bilinear form F ′(w) is uniformly coercive if τ ≤ c′′. Hence,
noting appropriate continuity properties of F and F ′ we have that the New-
ton iteration for the solution of F (w)[v] = 0 converges quadratically provided
that τ ≤ c′′′ for a some constant c′′′ > 0.

4. Discretization and Γ-convergence

We define a discretization of E via

Eh(uh, wh) =
γ2

2

∫
ω
|∇∇hwh|2 dx+

1

2

∫
ω
Îh|ε̃(uh) +∇wh ⊗∇wh|2 dx

for (uh, wh) ∈ Vh×Wh, where we omit for simplicity the forcing term defined
by f . The functionals Eh approximate E in the sense of Γ-convergence for
a sequence of triangulations (Th)h>0 with h→ 0.

Theorem IV.1 (Γ-convergence). (i) Assume that (uh, wh)h>0 is a sequence
with (uh, wh) ∈ Vh ×Wh and

(4) Eh(uh, wh) + ‖wh‖W 1,4(ω) + ‖uh‖H1(ω;R2) ≤ c

for all h > 0. For every weak accumulation point (u,w) ∈ H1(ω;R2) ×
W 1,4(ω) we have w ∈ H2(ω), wh′ → w strongly in W 1,4(ω) for a subsequence
(wh′)h′>0, and

E(u,w) ≤ lim inf
h→0

Eh(uh, wh).

(ii) For every (u,w) ∈ H1(ω;R2)×H2(ω) there exists a sequence (uh, wh)h>0

such that (uh, wh) ∈ Vh ×Wh for all h > 0,

(uh, wh)→ (u,w) in H1(ω;R2)×W 1,4(ω)

as h→ 0, and

lim
h→0

Eh(uh, wh) = E(u,w).

Proof. We first control the influence of numerical integration in Eh. We
abbreviate ψh = ε̃(uh) + ∇wh ⊗ ∇wh and note that by elementwise nodal
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interpolation and inverse estimates we have that∣∣∣ ∫
ω
Îh|ψh|2 dx−

∫
ω
|ψh|2 dx

∣∣∣ ≤ c ∑
T∈Th

hT
∥∥D|ψh|2∥∥L1(T )

≤ 2ch1/2
∥∥ε̃(uh) +∇wh ⊗∇wh

∥∥( ∑
T∈Th

hT ‖∇wh‖2L∞(T )‖D
2wh‖2L2(T )

)1/2
.

With the inverse estimate ‖∇wh‖L∞(T ) ≤ ch
−1/2
T ‖∇wh‖L4(T ) we observe

that the right-hand side tends to zero as h→ 0 provided that (4) holds.
(i) If (uh, wh)h>0 is a sequence of finite element functions satisfying (4) then
we have ‖∇∇hwh‖ ≤ c and hence for some Y ∈ H1(ω;R2) and w ∈W 1,4(ω)
after passage to subsequences that

∇hwh ⇀ Y in H1(ω;R2),

wh ⇀ w in W 1,4(ω),

∇hwh −∇wh → 0 in L4(ω;R2),

where we also used that by Lemma II.1 and an inverse estimate we have

‖∇hwh −∇wh‖L4(ω) ≤ ch1/2‖∇∇hwh‖L2(ω).

By uniqueness of weak limits we have that ∇w = Y and in particular that
w ∈ H2(ω). Note that ∇hwh → Y = ∇w in L4(ω;R2) and hence also
∇wh → ∇w in L4(ω;R2). To deduce the asserted bound for E(u,w) we note
that due to the above control of numerical integratino we may equivalently
consider the functionals

Ẽh(uh, wh) =
γ2

2

∫
ω
|∇∇hwh|2 dx

+
1

2

∫
ω
|ε̃(uh)|2 dx+

∫
ω
ε̃(uh) : ∇wh ⊗∇wh dx+

1

2

∫
ω
|∇wh|4 dx

instead of Eh. Weak lower semicontinuity of the convex terms and strong
convergence of ∇wh in L4(ω;R2) then lead to the estimate.
(ii) By density of smooth functions and continuity properties of E we may
assume that (u,w) ∈ H2(ω;R2) ×H3(ω). We then let uh = Ihu ∈ Vh and

wh = I3,red
h w ∈ Wh be the interpolants in the respective spaces. Interpola-

tion estimates imply the asserted statement. �

Compactness, i.e., boundedness of the iterates in appropriate norms follows
from appropriate boundary conditions as specified above for A0. We assume
that strongly convergent approximations of the boundary data (uD, wD) are
given.

Proposition IV.2 (Compactness). Let (uh, wh) be a sequence with (uh, wh) ∈
Vh ×Wh such that

uh = uD,h + u′h, wh = wD,h + w′h
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with functions uD,h, u
′
h ∈ Vh and wD,h, w

′
h ∈Wh such that

uD,h → uD in H1(ω;R2), wD,h → wD in W 1,4(ω)

as h→ 0 and
u′h|γD = 0, w′h|γD = 0, ∇w′h|γD = 0

or
u′h|∂ω = 0, w′h|∂ω = 0

for all h > 0. Then, if Eh(uh, wh) ≤ c for all h > 0 we have that

‖uh‖H1(ω;R2) + ‖wh‖W 1,4(ω) ≤ c.

Proof. Boundedness of the discrete energies implies that ∇hwh is bounded
in H1(ω;R2) and since ‖∇∇h · ‖ defines a norm on functions in Wh satis-
fying the indicated homogeneous boundary conditions, we have that wh is
bounded in W 1,4(ω;R2). The same is true for ∇wh. This implies that ε̃(uh)
is bounded in L2(ω;R2×2) and the boundary conditions together with Korn’s
inequality (1) yield that we have boundedness of (uh)h>0 in H1(ω;R2). �

5. Numerical experiments

We apply in this section the numerical methods developed in the previous
sections to different specifications of the nonlinearly elastic problem. We
consider the discretized energy

Eh(uh, wh) =
γ2

2

∫
ω
|∇∇hwh|2 dx+

1

2

∫
ω
Îh|ε̃(uh) +∇wh ⊗∇wh|2 dx

−
∫
ω
Îh[fwh] dx−

∫
ω
Îh[g · uh] dx

in which we included an artificial horizontal forcing term defined by a vector
field g. The stability analysis from Section 3 for the discrete gradient flow in
the case of the continuous energy functional carries over to the discretized
functional and we apply it to detect stationary configurations of low energy
for Eh. We let

A0,h = V0,h ×W0,h

be a linear space incorporating homogeneous boundary conditions specified
in the examples below and set

Ah = (uD,h, wD,h) +A0,h

for approximations uD,h ∈ Vh and wD,h ∈ Wh of the exact boundary data
functions. We abbreviate the discrete Hessian matrix for wh ∈Wh by

D2
hwh = ∇∇hwh.

The discrete gradient flow is defined using the inner products

(wh, vh)ver =
(
D2
h·, D2

hvh
)
, (uh, zh)hor =

(
ε̃(uh), ε̃(zh)

)
for wh, vh ∈ Wh and uh, zh ∈ Vh, respectively. With this, the fully discrete
iterative scheme reads as follows.
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Algorithm V.1 (Discrete decoupled gradient flow). Choose (u0
h, w

0
h) ∈ Ah,

a prescribed maximal number of Newton iterations L > 0, stopping toler-
ances εstop, εNewton > 0, and an initial step size τ1 > 0, set k = 1.
(1a) Repeatedly decrease τk until the Newton scheme terminates within L
steps and tolerance εNewton to determine wkh ∈ wD,h +W0,h such that(

D2
hdtw

k
h, D

2
hvh
)

= −γ2
(
D2
hw

k
h, D

2
hvh
)

− 2
(
|∇wkh|2∇wkh + ε̃(uk−1

h )∇wk−1/2
h ,∇vh

)
h

+
(
f, wh

)
h
.

for all vh ∈Wh.
(1b) Compute ukh ∈ uD,h + V0,h such that(

dtε̃(u
k
h), ε̃(zh)

)
= −

(
ε̃(ukh), ε̃(zh)

)
−
(
∇wkh ⊗∇wkh, ε̃(zh)

)
h

+
(
g, zh

)
h

for all zh ∈ V0,h.

(2) Stop if ‖dtD2
hw

k
h‖+ ‖dtε̃(ukh)‖ ≤ εstop min{1, τk}; define

τk+1 = min
{

2τk, 10r
}
,

increase k → k + 1, and continue with (1) otherwise.

Unless otherwise stated we use the stopping criterion εstop = h/10; we termi-
nate the Newton iteration once the correction ch ∈ W 0

h satisfies ‖D2
hch‖ ≤

εNewton = 10−5 and choose L = 5 as the maximal number of iterations.
This leads to a neglible error contribution for the employed mesh sizes in
the range h ∈ [10−4, 10−2]. The maximal step size was set to τmax = 105,
i.e., r = 5. The total CPU time of Algorithm V.1 in the experiments re-
ported below was on the order of a few minutes for h ∼ 10−2 and hours for
h ∼ 10−4 for our straightforward Matlab implementation run on a standard
desktop.

V.A. Experimental convergence rate. To determine an experimental
convergence rate for our numerical method we consider a square plate that
is clamped on one side. To identify a reference solution, we consider an
additional, artificial forcing field g in the equation for u, i.e., we prescribe
functions (u,w) and compute (f, g) such that

γ2∆2w − 2 div
([
|∇w|2 + ε̃(u)

]
∇w
)

= f,

−2 div
(
ε̃(u) +∇w ⊗∇w

)
= g,

where the factor 2 in the second equation results from the fact that ε̃ is
twice the symmetric gradient. The precise specifications are stated in the
following example.

Example V.2. Let γ = 1, ω = (0, 1)× (−1/2, 1/2) with clamped boundary
conditions on ∂ω defined by traces of the functions

u(x, y) =
1

4

[
0
−xy

]
, w(x, y) =

1

2
x2 sin y.
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We have

g(x, y) = −1

2

[
−1 + 8x sin2 y + 2x3(cos2 y − sin2 y)

(6x2 − 2x4) cos y sin y

]
and

f(x, y) =
γ2

2
[−4 + x2] sin y − 1

4

(
− 4xy cos y + 2[−x+ x3] sin y

)
− 1

4

(
4[6x2 − x4] sin3 y + [10x4 + 8x4 − 3x6] sin y cos2 y

)
.

For a sequence of uniformly refined triangulations T` obtained from a tri-
angulation of ω into two triangles by carrying out ` red refinements, we
ran Algorithm V.1 to compute a nearly stationary configuration (u`, w`) of
the energy functional Eh specified in Example V.2. The discrete gradient
flow was initialized with small perturbations of the interpolants of the exact
solutions. For ` = 3, 4, . . . , 7 we computed the approximation errors

δ`u = ‖ε̃(I`u− u`)‖, δ`w = ‖D2
h(I3,red

` w − w`)‖

and displayed these numbers for different mesh sizes ĥ` = h`/
√

2 in Ta-
ble 1. The numbers reveal a nearly linear experimental convergence rate
which coincides with the expected quasioptimal rate of convergence. The
approximations (u5, w5) are displayed in Figure 2.

ĥ` 2−3 2−4 2−5 2−6 2−7

δ`w 0.027 255 0.014 168 0.007 205 0.003 629 0.001 820
δ`u 0.006 592 0.003 758 0.001 871 0.000 944 0.000 478

Table 1. Approximation errors in Example V.2 for differ-
ent mesh sizes. A nearly linear experimental order of conver-
gence is observed.

V.B. Compression along a clamped side. We consider a plate that is
attached on one side to an elastic substrate which is compressed in the direc-
tion parallel to the side, cf. Figure 3. We model this scenario by compressive
clamped boundary conditions specified in the following example.

Example V.3. Let ω = (0, 1) × (−1/2, 1/2) and γD = {0} × [−1/2, 1/2]
and set f = g = 0 and

uD(x) =

[
0

−x2/10

]
, wD(x) = 0

for x = (x1, x2) ∈ ω.
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Figure 2. Numerical solution (u5, w5) in Example V.2.
The in-plane deformation u5 is shown in the left and the
deflection w5 in the right plot.

Figure 3. Illustration of the physical situation modeled in Example V.3.

We ran Algorithm V.1 in Example V.3 on uniform triangulations T` with

mesh sizes ĥ` = h`/
√

2 = 2−`, ` = 5, 6, 7, 8, resulting from ` uniform refine-
ments of a reference triangulation T0. We initialized the iteration with the
interpolants in the respective finite element spaces of the functions

ũD(x) = uD(x), w̃D(x) =
1

2
x2

1(1− x1)2 sin(4πx2)

which introduce out-of-plane oscillations in the initial deformation.
Figure 4 visualizes the numerical solution on the triangulation T6 for the
thickness parameter γ = 5.0 · 10−3. We observe a folding structure along
the compressed side of the plate. To understand the geometric proper-
ties of these structures we computed the solutions on the triangulations
T5, T6, T7, T8 with the same fixed parameter γ = 5.0 · 10−3 and displayed
top views of the deformations shaded by the corresponding bending energy
densities |D2

hwh| in Figure 5. We observe that the frequency of the folding
structure increases with decreasing mesh size but does not differ significantly
for triangulations T7 and T8 reflecting the fact that the related length scale is
determined by the paramter γ which is not sufficiently resolved on triangu-
lations T5 and T6. The dependence of the length scale becomes apparent in
Figure 6 where we displayed the numerical solutions in Example V.3 for the
fixed triangulation T7 and the thickness parameters γ = 1/10, 1/40, 1/160,
and 1/640.
In the left plot of Figure 7 we compared the decay of the discrete elastic
energy for our proposed adaptive step size strategy to the same iteration
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Figure 4. Numerical deformation on triangulation T6

shaded by bending energy density in Example V.3 for γ =
5.0 · 10−3.

with fixed step size τ = 1. We observe that the adaptive strategy decreases
the energy to a value Eh(ukh, w

k
h) ≈ 0.6 · 10−3 within about 50 iterations of

Algorithm V.1 while for uniform step sizes the iteration appears to get stuck
at the energy level Eh(ukh, w

k
h) ≈ 4.0 · 10−3. The adaptively generated step

sizes are shown in the right plot of Figure 7. The initial step size τ1 = 1 is
gradually increased until it reaches the maximal step size τmax = 105 after
approximately 25 iterations when a nearly stationary configuration is found.

V.C. Indentation of an elastic cone. To describe the moderate elastic
deformation of an initially nonflat elastic sheet, we include a term that
models a prescribed stress in the flat reference configuration, i.e., we consider
the modified Föppl–von Kármán functional

Ê(u,w) =
γ2

2

∫
ω
|D2w|2 dx+

1

2

∫
ω
|ε̃(u) +∇w ⊗∇w + X̂|2 dx.

To model the shape of a rescaled right circular cone C ⊂ R3 with flat base
B1/2(0) ⊂ R2 × {0} and apex (0, 0, 1) we set ω = B1(0) and

X̂ =
x⊥ ⊗ x⊥

|x|2
, x⊥ = (−x2, x1).

The cone C is parametrized by the deformation x 7→ (x+û(x), ŵ(x)) defined
by the in-plane-displacement and deflection

û(x) = −1

2
x, ŵ(x) = 1− |x|.

In particular for these functions the strain expression in Ê vanishes, i.e., we
have

ε̃(û) +∇ŵ ⊗∇ŵ = −X̂.
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Figure 5. Numerical deformation and bending energy den-
sity in Example V.3 for fixed γ = 5.0·10−3 and triangulations

with mesh sizes ĥ` = 2−`, ` = 5, 6, 7, 8.

Figure 6. Numerical deformation and bending energy den-
sity in Example V.3 for γ = 1/10, 1/40, 1/160, and 1/640 on
the fixed triangulation T7.
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Figure 7. Energy decay for uniform and variable step sizes
(left) and adaptively generated step sizes (right) in Exam-
ple V.3 for γ = 1/640 and mesh size h7 ∼ 2−7.

An energy minimizing configuration subject to appropriate boundary con-
ditions would thus be a smoothed version of the cone depending on γ. Prac-
tically the cone can be imagined as being obtained from gluing together the
noncircular sides of a half-disk of radius one. The following example models
an indentation of the cone at its tip.

Example V.4. For ω = B1(0) and 0 ≤ δ ≤ 2 define f = g = 0 and

uD(x) = −1

2
x, wD(x) = min

{
1− |x|, |x|+ (1− δ)

}
and consider the clamped boundary condition on ∂ω

u|∂ω = uD|∂ω, w|∂ω = wD|∂ω, ∇w|∂ω = ∇wD|∂ω
together with the indentation condition at the center x0 = 0

w(0) = wD(0) = 1− δ.

For γ = 1.0 ·10−3 and an approximate triangulation T5 of the unit disk with
h5 ∼ 2−5 we displayed in Figure 8 the numerical deformations corresponding
to the indentation strengths δ = 0.4, 0.6, 0.8, 1. The numerical solutions
appear to be rotationally symmetric but as shown analytically in [COT15]
a break of symmetry occurs for certain indentation strengths. To visualize
this instability we computed the numerical solution for δ = 0.8 on the finer
triangulation T8 with h8 ∼ 2−8 and displayed in Figure 9 a magnification of
the free boundary of the numerical solution along which a fold occurs. The
observed instability is accompanied by nonuniquness of solutions and the
selection mechanism acting here is defined by the chosen initial configuration
and the geometric properties of the underlying triangulation.

Acknowledgments. The author is grateful to P. Dondl and H. Olbermann
for stimulating discussions.
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Figure 8. Numerical deformations for γ = 1.0 · 10−3 on
a fixed triangulation T5 in Example V.4 with indentation
strengths δ = 0.4, 0.6, 0.8, 1.0.

Figure 9. Magnification of the numerical deformation for
γ = 1.0 · 10−3 and δ = 0.8 on the triangulation T8 in Exam-
ple V.4; a mesh dependent break of symmetry occurs.
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