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Abstract. We devise an improved iterative scheme for the numerical solution

of total variation regularized minimization problems. The numerical method
realizes a primal-dual iteration with discrete metrics that allow for large step

sizes.

1. Introduction

Major progress has recently been made in the development of iterative schemes for
the approximate solution of infinite-dimensional, nonsmooth, convex optimization
problems, see [NN13, CP11]. By employing an equivalent formulation as a saddle-
point problem, the convergence of certain primal-dual methods has been rigorously
established. The schemes may be regarded as proximal point algorithms or sub-
differential flows of a Lagrange functional and the employed metrics determine the
speed of convergence to the stationary saddle-point. Since the numerical schemes
are semi-implicit discretizations of continuous evolution problems, the conditions on
discretization parameters that guarantee stability of the method crucially depend
on the chosen metric. We refer the reader to [Gül10, BC11] for a general overview
of related techniques in optimization and to [ROF92, CL97, CKP99, OBG+05] for
numerical methods and applications of total variation regularization.
We consider here a model problem that arises in image processing and qualitatively
also in the modeling of damage. It consists in the minimization of the functional

I(u) =

∫
Ω

|Du|+ α

2
‖u− g‖2L2(Ω)

in the set of functions u ∈ BV (Ω) ∩ L2(Ω). Here, Ω ⊂ Rd, d = 2, 3, is a bounded
Lipschitz domain, α > 0 is a given parameter, and g ∈ L2(Ω) is a given noisy image.
The first term on the right-hand side is the total variation of the distributional
derivative of u which coincides with the W 1,1(Ω) seminorm if u belongs to this
space, see [AFP00, ABM06]. The Fenchel conjugate of the L1(Ω) norm with respect
to the inner product in L2(Ω;Rd) is the indicator functional IK1(0) of the closed

unit ball in L∞(Ω;Rd). The saddle-point problem associated to the minimization
of I thus seeks a pair (u, p) ∈ L2(Ω)×HN (div; Ω) that is stationary for

L(u, p) = −IK1(0)(p)− (u,div p) +
α

2
‖u− g‖2,

where (·, ·) and ‖ · ‖ denote the inner product and the norm in L2(Ω), respectively
and HN (div; Ω) is the space of vector fields in L2(Ω;Rd) with square integrable
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distributional divergence and vanishing normal component on ∂Ω. The structure
of the functional L as the sum of an indicator functional and a linear-quadratic
functional makes primal-dual methods attractive. With arbitrary inner products
〈·, ·〉 and 〈〈·, ·〉〉 on subspaces of L2(Ω) and L2(Ω;Rd), respectively, the considered
numerical schemes are interpreted as discretizations of the formal evolution problem

〈u′, v〉 = −∂uL(u, p) = (v,div p)− α(u− g, v),

〈〈p′, q〉〉 ∈ ∂pL(u, p) = −∂IK1(0)(p)[q]− (u,div q),

where u′ and p′ denote generalized time-derivatives of u and p. The choice of the
inner products needs to be done in such a way that (i) the problems resulting from
a discretization in space and time can be solved efficiently, (ii) the discrete time-
derivatives are bounded in sufficiently strong norms that allows error terms to be
absorbed, and (iii) they do not limit relevant discontinuities of solutions.
In the choice of the metrics we exploit the observation that if the data function
satisfies g ∈ L∞(Ω) then owing to monotonicity properties of the total variation
and a truncation argument, see, e.g., [ABM06], the minimizer u ∈ BV (Ω) ∩ L2(Ω)
of the functional I satisfies u ∈ L∞(Ω). In an algebraic sense, the minimizer
thus belongs to the interpolation space H1/2(Ω), but this inclusion does not hold
analytically, as functions in BV (Ω) ∩ L∞(Ω) may be discontinuous. For P1 finite
element functions we prove a discrete variant of this inclusion. We then employ a
corresponding discrete version of the inner product in H1/2(Ω) which enables us to
improve the step size restriction for discretizations to τ = O(h1/2) as opposed to
the more restrictive condition τ = O(h) when the weaker inner product of L2(Ω)
is employed, see [CP11, Bar12]. The choice of the inner product of L2(Ω;Rd) for
the evolution of the dual variable p allows for a pointwise explicit solution of the
variational inequality defined by the second equation. A drawback of the modified
iteration is that a nontrivial but sparse linear system of equations has to be solved in
every step. For iterations based on a lumped version of the inner product of L2(Ω)
the steps are fully explicit provided that the term (α/2)‖u−g‖2 is discretized using
numerical quadrature.
The outline of this article is as follows. In Section 2 we introduce the required no-
tation and prove an auxiliary discrete interpolation estimate. The modified scheme
and its analysis are presented in Section 3. Numerical experiments that study the
influence of different inner products and choices of initial data on the performance
of the numerical scheme are presented in Section 4.

2. Preliminaries

2.1. Finite element discretization. Given a regular triangulation Th of the poly-
hedral Lipschitz domain Ω ⊂ Rd into triangles or tetrahedra with vertices Nh we
define the spaces of continuous, elementwise affine and discontinuous, elementwise
constant finite element functions by

S1(Th) = {vh ∈ C(Ω) : vh|T affine for all T ∈ Th},

L0(Th)d = {rh ∈ L1(Ω;Rd) : rh|T constant for all T ∈ Th},

respectively. We let Ih : C(Ω)→ S1(Th) denote the nodal interpolation operator on
Th which is also applied to bounded, piecewise continuous functions in the numerical
experiments. We refer the reader to [BS08] for details on finite element spaces.
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With these spaces a nonconforming discretization of the saddle-point formulation
is defined by the following lemma.

Lemma 2.1 (Existence of approximations). There exists a pair (uh, ph) ∈ S1(Th)×
L0(Th)d that is stationary for

Lh(uh, ph) = −IK1(0)(ph) + (∇uh, ph) +
α

2
‖uh − g‖2,

where IK1(0)(ph) = 0 if |ph| ≤ 1 almost everywhere in Ω and IK1(0)(ph) = +∞
otherwise. The pair (uh, ph) ∈ S1(Th)×L0(Th)d satisfies |ph| ≤ 1 almost everywhere
in Ω and

(2.1) (∇uh, qh − ph) ≤ 0, (ph,∇vh) + α(uh − g, vh) = 0

for all (vh, qh) ∈ S1(Th)× L0(Th)d with |qh| ≤ 1 almost everywhere in Ω.

Proof. The result is an immediate consequence of standard assertions for saddle-
point problems, see, e.g., [ET99, Chap. VI] or [BC11, Chap. 15]. �

Remark 2.1. Convergence uh → u in L2(Ω) as h → 0 is a consequence of the
strong convexity of I, see [Bar12].

2.2. Discrete maximum principle. Although we make no explicit use of it, we
prove a discrete maximum principle under a structural assumption on the triangu-
lation Th and for the case that reduced integration (or mass lumping) is used for
the fidelity term, i.e., the norm ‖ · ‖` induced by the scalar product

(φ, ψ)` =
∑
T∈Th

|T |
d+ 1

∑
z∈Nh∩T

φ(z)ψ(z)

for elementwise continuous functions φ, ψ ∈ L∞(Ω).

Lemma 2.2 (Discrete maximum principle). Assume that g ∈ L∞(Ω) is element-
wise continuous, Th is acute, i.e., that kzy = (∇ϕz,∇ϕy) ≤ 0 for all distinct nodes
z, y ∈ Nh with associated nodal basis functions ϕz, ϕy ∈ S1(Th). If uh ∈ S1(Th) is
a minimizer for

Ih(uh) =

∫
Ω

|∇uh|dx+
α

2
‖uh − g‖2` ,

then we have that ‖uh‖L∞(Ω) ≤ ‖g‖L∞(Ω).

Proof. We let uh ∈ S1(Th) be the minimizer of Ih and define ũh ∈ S1(Th) via the
truncated nodal values

ũh(z) =

{
uh(z) if |uh(z)| ≤ ‖g‖L∞(Ω),

sign
(
uh(z)

)
‖g‖L∞(Ω) if |uh(z)| > ‖g‖L∞(Ω),

for all z ∈ Nh. Note that we have ũh(z) = G
(
uh(z)

)
for all z ∈ Nh with a

Lipschitz continuous operator G : R → R satisfying ‖G′‖L∞(R) ≤ 1. We have that

‖ũh‖L∞(Ω) ≤ ‖g‖L∞(Ω) and
∣∣ũh(z)− g|T (z)

∣∣ ≤ ∣∣uh(z)− g|T (z)
∣∣ for all T ∈ Th and

z ∈ Nh ∩ T . For every vh ∈ S1(Th) and T ∈ Th we note, using kzy = kyz and∑
y∈Nh∩T kzy = 0, that

|T |
∣∣∇vh|T ∣∣2 = −1

2

∑
z,y∈Nh∩T

kzy|vh(z)− vh(y)|2.
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With the Lipschitz continuity of G this implies that
∣∣∇ũh|T ∣∣ ≤ ∣∣∇uh|T ∣∣ for every

T ∈ Th. We thus have that Ih(ũh) ≤ Ih(uh). Since uh is assumed to be minimial
we deduce that uh = ũh, and hence ‖uh‖L∞(Ω) ≤ ‖g‖L∞(Ω). �

Remarks 2.1. (i) The condition kzy ≤ 0 is satisfied if all angles between adjacent
edges or faces of triangles or tetrahedra in Th are bounded by π/2.
(ii) In general, a discrete maximum principle ‖uh‖L∞(Ω) ≤ c‖g‖L∞(Ω) cannot be
expected to hold with c = 1.

2.3. Discrete interpolation. The following lemma is a discrete version of the fact

that functions in BV (Ω)∩L∞(Ω) belong to the Besov space B
1/2,2
∞ (Ω) which nearly

coincides with the broken Sobolev space H1/2(Ω), see, e.g., [Tar07, Chapter 38] for
details. It implies that if (uh)h>0 is a bounded sequence of finite element functions
associated to a shape regular family of regular triangulations in W 1,1(Ω)∩L∞(Ω),
then the weighted norm

‖h1/2
T ∇uh‖

remains bounded as h → 0, i.e., that ‖∇uh‖ ≤ ch
−1/2
min . Here, hT ∈ L∞(Ω) is the

elementwise constant mesh-size function defined by hT |T = hT = diam(T ) for all
T ∈ Th and we denote hmin = minhT and h = hmax = maxhT .

Lemma 2.3 (Interpolation inequality). There exists c > 0 such that for all vh ∈
S1(Th) we have

‖h1/2
T ∇vh‖

2 ≤ c‖∇vh‖L1(Ω)‖vh‖L∞(Ω).

Proof. For T ∈ Th an integration by parts on T shows

hT

∫
T

|∇vh|2 dx = −hT
∫
∂T

vh(∇vh · νT ) ds ≤ ‖vh‖L∞(Ω)hT ‖∇vh‖L1(∂T ).

Noting hT |∂T | ≤ c|T | and summing over all T ∈ Th implies the assertion. �

For s ∈ [0, 1] and uh, vh ∈ S1(Th) we define the inner product

(uh, vh)h,s =

∫
Ω

uhvh dx+

∫
Ω

h
(1−s)/s
T ∇uh · ∇vh dx

and let ‖uh‖h,s denote the corresponding norm on S1(Th). We use the convention

that h
(1−s)/s
T = 0 for s = 0. It then follows that (·, ·)h,s coincides with the inner

product in L2(Ω) if s = 0 and with the inner product in H1(Ω) if s = 1.

Lemma 2.4 (Inverse estimate). There exists c > 0 such that for all vh ∈ S1(Th)
we have

‖∇vh‖ ≤ ch−min{1,(1−s)/(2s)}
min ‖vh‖h,s.

Proof. For s > 0 we have by definition of ‖ · ‖h,s that

‖∇vh‖ ≤ h−(1−s)/(2s)
min ‖h(1−s)/(2s)

T ∇vh‖ ≤ h−(1−s)/(2s)
min ‖vh‖h,s

for all vh ∈ S1(Th) while for s ≥ 0 the inverse estimate ‖∇vh‖ ≤ ch−1
min‖vh‖,

see [BS08], implies

‖∇vh‖ ≤ ch−1
min‖vh‖h,s.

The combination of the estimates proves the asserted inequality. �
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2.4. Difference quotients. For a step-size τ > 0 we let dt denote the backward
difference quotient defined by dta

n = (an − an−1)/τ for a sequence (an)n=0,...,N .
We note that we have

(2.2) (an, dta
n) =

dt
2
‖an‖2 +

τ

2
‖dtan‖2

for n = 1, 2, ..., N . For sequences (an)n=0,...,N and (bn)n=0,...,N we have Leibniz’
summation by parts formula

(2.3) τ

N∑
n=1

(dta
n)bn = τ

N∑
n=1

an−1(dtb
n) + aNbN − a0b0

which follows from a summation of the discrete product rule dt(a
nbn) = (dta

n)bn +
an−1(dtb

n).

3. Modified primal-dual method

The following algorithm is a modified version of the algorithms used in [CP11,
Bar12]. It has the interpretation of a discretization of the formal evolution problem

(u′, v)s = (div p, v)− α(u− g, v),

(−p′, q − p) ≤ (u,div(q − p)) + IK1(0)(q)− IK1(0)(p)

with initial conditions u(0) = u0 and p(0) = p0. For u′ = 0 and p′ = 0, the
equations coincide with the optimality conditions (2.1).

Algorithm 1 (Primal-dual iteration). Given τ > 0 and (u0
h, p

0
h) ∈ S1(Th)×L0(Th)d

set dtu
0
h = 0 ∈ S1(Th) and n = 1 and iterate the following steps:

(1) Set ũnh = un−1
h + τdtu

n
h.

(2) Compute pnh ∈ L0(Th)d such that

(−dtpnh +∇ũnh, qh − pnh) + IK1(0)(p
n
h) ≤ IK1(0)(qh)

for all qh ∈ L0(Th)d.
(3) Compute unh ∈ S1(Th) such that

(dtu
n
h, vh)h,s + (pnh,∇vh) = −α(unh − g, vh)

for all vh ∈ S1(Th).
(4) Stop if

sup
vh∈S1(Th)

(dtu
n
h, vh)h,s
‖vh‖

+ ‖dtpnh‖ ≤ εstop.

Remarks 3.1. (i) The equation in Step (2) is equivalent to seeking pnh ∈ L0(Th)d

with |pnh| ≤ 1 almost everywhere in Ω and

(−dtpnh +∇ũnh, qh − pnh) ≤ 0

for all qh ∈ L0(Th)d with |qh| ≤ 1 almost everywhere in Ω. This inequality charac-
terizes the unique minimizer pnh ∈ L0(Th)d of the mapping

ph 7→
1

2τ
‖ph − pn−1

h ‖2 + IK1(0)(ph)− (ph,∇ũnh).

Owing to the choice of the inner product of L2(Ω;Rd) for the evolution of the dual
variable we have

pnh =
pn−1
h + τ∇ũnh

max{1, |pn−1
h + τ∇ũnh|}
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which can be evaluated elementwise.
(ii) The stopping criterion controls the residual of the equation of the primal variable
u with respect to the norm in L2(Ω). A stopping criterion of the form ‖dtunh‖ ≤ εstop

corresponds to measuring the residual of the optimality conditions in a norm which
is dual to ‖ · ‖h,s and the output u∗h of the algorithm would critically depend on the
parameter s.

Proposition 3.1 (Convergence). Let (uh, ph) ∈ S1(Th)×L0(Th)d be a solution of
the discrete saddle-point problem defined through Lh in Lemma 2.1. Provided that
τΘh ≤ 1/2 for

Θh = sup
vh∈S1(Th)

‖∇vh‖
‖vh‖h,s

≤ ch−min{1,(1−s)/(2s)}
min

we have for the iterates (unh)n=0,...,N and (pnh)n=0,...,N of Algorithm 1 that

τ

N∑
n=1

(
α‖unh − uh‖2 +

τ

4
‖dtunh‖2h,s +

τ

4
‖dtpnh‖2

)
≤ 1

2

(
‖uh − u0

h‖2h,s + ‖ph − p0
h‖2
)
.

Proof. We denote δnu = uh − unh and δnp = ph − pnh. The formula (2.2) and the
identities dtδ

n
u = −dtunh and dtδ

n
p = −dtpnh show

Υ(n) =
dt
2

(
‖δnu‖2h,s + ‖δnp ‖2

)
+
τ

2

(
‖dtδnu‖2h,s + ‖dtδnp ‖2

)
+ α‖δnu‖2

= (dtδ
n
u , δ

n
u)h,s + (dtδ

n
p , δ

n
p ) + α‖δnu‖2 = −(dtu

n
h, δ

n
u)h,s − (dtp

n
h, δ

n
p ) + α‖δnu‖2.

Using the equations for dtu
n
h and dtp

n
h of Algorithm 1 leads to

Υ(n) ≤ α(unh − g, δnu) + (pnh,∇δnu)− (δnp ,∇ũnh) + α‖δnu‖2.

We note α‖δnu‖2 = α(uh, δ
n
u)− α(unh, δ

n
u) and deduce that

Υ(n) ≤ α(uh − g, δnu) + (pnh,∇δnu)− (δnp ,∇ũnh).

The identity in (2.1) and a rearrangement yield

Υ(n) ≤ −(ph,∇δnu) + (pnh,∇δnu)− (δnp ,∇ũnh)

= (δnp ,∇(unh − ũnh))− (δnp ,∇uh).

Since |pnh| ≤ 1 almost everywhere in Ω we deduce from the variational inequality

in (2.1) that (∇uh, δnp ) ≥ 0 and by incorporating the identity unh− ũnh = unh−u
n−1
h −

τdtu
n−1
h = τ2d2

tu
n
h we find

Υ(n) ≤ (δnp ,∇(unh − ũnh)) ≤ τ2(δnp ,∇d2
tu

n
h).

We sum this estimate over n = 1, 2, ..., N and multiply by τ to verify

1

2

(
‖δNu ‖2h,s + ‖δNp ‖2

)
+ τ

N∑
n=1

τ

2

(
‖dtδnu‖2h,s + ‖dtδnp ‖2

)
+ ατ

N∑
n=1

‖δnu‖2

≤ 1

2

(
‖δ0

u‖2h,s + ‖δ0
p‖2
)

+ τ3
N∑

n=1

(δnp ,∇d2
tu

n
h).

With Leibniz’ formula (2.3), the identity dtu
n−1
h = −dtδn−1

u , and dtu
0
h = 0 we find

τ3
N∑

n=1

(δnp ,∇d2
tu

n
h) = τ3

N∑
n=1

(dtδ
n
p ,∇dtδn−1

u ) + τ2(δNp ,∇dtuNh ).
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Two applications of Young’s inequality imply

τ3
N∑

n=1

(δnp ,∇d2
tu

n
h) ≤ τ2

( N∑
n=1

τ2‖∇dtδn−1
u ‖2 +

1

4
‖dtδnp ‖2

)
+

1

4
‖δNp ‖2 + τ4‖∇dtδNu ‖2.

The assumption on τ , i.e., τ‖∇vh‖ ≤ τΘh‖vh‖h,s ≤ (1/2)‖vh‖h,s for all vh ∈ S1(Th)
allows us to absorb all of the terms on the right-hand side and to deduce

τ

N∑
n=1

(
α‖δnu‖2 +

τ

2
(1− 2τ2Θ2

h)‖dtδnu‖2h,s +
τ

4
‖dtδnp ‖2

)
≤ 1

2

(
‖δ0

u‖2h,s + ‖δ0
p‖2
)

which, noting 1 − 2τ2Θ2
h ≥ 1/2, proves the asserted bound on the iterates. The

estimate for Θh is a direct consequence of Lemma 2.4. �

Remark 3.1. If the sequence (uh − u0
h)h>0 is bounded uniformly in L∞(Ω) ∩

W 1,1(Ω) then according to Lemma 2.3 the right-hand side of the estimate of Propo-
sition 3.1 is bounded h-independently if 0 ≤ s ≤ 1/2. The largest step-size τ is thus
possible for s = 1/2. No restriction on the step size is needed for s = 1 but in this

case the right-hand side of the estimate will typically grow like h
−1/2
min .

4. Numerical experiments

We tested Algorithm 1 with different choices of s ∈ [0, 1]. For the practical imple-
mentation of the stopping criterion we employed the operatorAs : S1(Th)→ S1(Th)
defined by

(Asvh, wh) = (vh, wh)h,s

for all wh ∈ S1(Th). The stopping criterion is then equivalent to ‖Asdtu
n
h‖ ≤ εstop.

If M and S are the mass and stiffness matrix related to the nodal basis of the finite
element space S1(Th) then we have for the coefficient vector dtÛ

n
h of dtu

n
h that

ÂsdtÛ
n
h = M−1(M + h(1−s)/sS)dtÛ

n
h

in the case of a uniform triangulation. Mass lumping can be employed to avoid
an additional inversion of the mass matrix in every iteration. In the numerical
experiments we used the following specification of the model problem.

Example 4.1. Let d = 2, Ω = (−1, 1)2, α = 10, and g = χB1/2(0) + ξh, where ξh
is a mesh-dependent noise function.

Table 1 displays the numbers of iterations needed to satisfy the stopping criterion
with εstop = 10−2 for s = 0, 1/2, 1, uniform triangulations consisting of halved

squares with mesh-size h =
√

22−` for ` = 3, ..., 6, and the following choices for u0
h,

i.e.,

(A) the smooth function u0
h = 0,

(B) the rough function u0
h = Ihg,

(C) the unique function u0
h = Qhg ∈ S1(Th) satisfying

(∇u0
h,∇vh) + α(u0

h − Ihg, vh) = 0

for all vh ∈ S1(Th).
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u0
h 0 Ihg Qhg

s 0 1/2 1 0 1/2 1 0 1/2 1

` = 3 298 279 725 298 289 788 299 274 695
` = 4 603 645 2533 602 698 2763 603 601 2307
` = 5 1575 1065 5903 1572 1238 6811 1569 1074 5604
` = 6 4249 1394 9986 4225 1778 12524 4099 1559 9754

Table 1. Iteration numbers of Algorithm 1 for εstop = 10−2,
different metrics (·, ·)h,s specified by the parameter s, uniform tri-

angulations with mesh-size h =
√

22−`, ` = 3, 4, ..., 6, step-size
τ = h1−s/10, and initialized with different functions u0

h specified
by (A), (B), and (C).

We always used p0
h = 0. The discrete noise function ξh ∈ S1(Th) was generated

by defining its nodal values through normally distributed random numbers with
vanishing mean and unit variance. The inner products (g, vh) for vh ∈ S1(Th) were
approximated by (Ihg, vh). The step-size was chosen according to

τ =


h/10 for s = 0,

h1/2/10 for s = 1/2,

1/10 for s = 1,

i.e., τ = h1−s/10. For nearly all choices of initial data and refinement levels we
obtain smaller iteration numbers for the choice s = 1/2 than for s = 0 and s = 1.
This confirms the expected properties of the modified iteration. In the case s = 1/2
the rough initial function u0

h = Ihg of case (B) leads to larger iteration numbers
than the functions defined in (A) and (C) which is in agreement with Remark 3.1.
The iteration numbers grow superlinearly for s = 0, sublinearly for s = 1/2, and
approximately linearly for s = 1 in the experiment. The overall conclusion from the
experiments is that the choices s = 1/2 and u0

h = 0 lead to the smallest iteration
numbers.

Remark 4.1. If the fidelity term (α/2)‖u− g‖2 is discretized using mass lumping
and if the corresponding inner product (·, ·)` is used instead of (·, ·)h,s in Step (3)
of Algorithm 1, then only a linear system of equations with diagonal matrix has
to be solved in every step. Compared to the use of the inner product (·, ·)h,s, the
reduced numerical effort in the iterations may then compensate the larger number
of required steps. On the other hand, only standard finite element matrices are
involved in the linear system of equations which can be efficiently inverted.
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