
EACH AVERAGING TECHNIQUE YIELDS RELIABLE A POSTERIORIERROR CONTROL IN FEM ON UNSTRUCTURED GRIDS PART I:LOW ORDER CONFORMING, NONCONFORMING, AND MIXED FEMCARSTEN CARSTENSEN & S�OREN BARTELSAbstract. Averaging techniques are popular tools in adaptive �nite element methods forthe numerical treatment of second order partial di�erential equations since they provide e�-cient a posteriori error estimates by a simple postprocessing. In this paper, their reliablilityis shown for conforming, nonconforming, and mixed low order �nite element methods ina model situation, the Laplace equation with mixed boundary conditions. Emphasis is onpossibly unstructured grids, non-smoothness of exact solutions, and a wide class of averag-ing techniques. Theoretical and numerical evidence supports that the reliability is up to thesmoothness of given right-hand sides.1. IntroductionError control and e�cient mesh-design in �nite element simulations of computationalengineering and scienti�c computing �nite element simulations is frequently based on aposteriori error estimates. One of the more popular techniques is local or global averaging,e.g., in form of the ZZ-error indicator [ZZ]. E�ciency and reliability of this estimator wereknown only for very structured grids and for solutions of higher regularity and then we haveeven asymptotic exactness [V]. Numerical experiments in [Baetal] showed that averagingtechniques were quite more reliable on irregular meshes than expected. For homogeneousDirichlet conditions and conforming �nite element methods, the reliability and e�ciency ofthe ZZ-estimator is proven on unstructured, merely shape-regular grids [R2].This work is devoted to give theoretical and numerical support for the robust reliabilityof all averaging techniques, robust with respect to violated (local) symmetry of meshesand super-convergence and robust with respect to other boundary conditions or other �niteelement methods.For a more precise description of averaging techniques, let us discuss a discretisation of aconservation equation f + div p = 0(1.1)with a given right-hand side f 2 L2(
) and a known approximation ph 2 L2(
)d to the un-known exact ux p 2 H(div ; 
) in the bounded Lipschitz domain 
 � Rd. The test function�nite element space should include the continuous piecewise linears S1D(T ) (with homoge-neous Dirichlet boundary conditions) based on a regular triangulation T of 
. Suppose aDate: August 17, 1999.1991 Mathematics Subject Classi�cation. 65N30, 65R20, 73C50.Key words and phrases. a posteriori error estimates, residual based error estimate, adaptive algorithm,reliability, �nite element method, mixed �nite element method, nonconforming �nite element method.1



2 CARSTEN CARSTENSEN & S�OREN BARTELSGalerkin property for p � ph with S1D(T ), i.e.,Z
 ph � rvh dx = Z
 fvh dx for all vh 2 S1D(T ):(1.2)What can be said about the error kp� phkL2(
) when we regard p as an unknown and ph asa known variable?In averaging techniques, the error estimator is based on a smoother approximation, e.g.,in S1(T )d, the continuous T -piecewise linears, to the (components of the) discrete solutionph. For instance, �Z := minqh2S1(T )d kph � qhkL2(
)(1.3)may serve as a computable error estimator and the elementwise contributions as local errorindicators in an adaptive mesh-re�ning algorithm.The triangle inequality shows that �Z is e�cient up to higher order terms of the exactsolution p, indeed, �Z � kp � phkL2(
) + minqh2S1(T )d kp � qhkL2(
)(1.4)and the last term converges as O(h2) (provided p is smooth enough and h denotes themaximal mesh{size in T ) and so, generically, of higher order than the error kp� phkL2(
) =O(h) in the lowest order �nite element method.In practise, we may apply an averaging operator A : L2(
)d ! S1(T )d to ph and com-pute the upper bound kph � AphkL2(
) of �Z . Then, e�ciency depends strongly on theapproximation properties of A and deserved further investigations.In this paper, the focus is on the reliability of �Z , i.e., we investigate under which conditionsan estimate kp � phkL2(
) � c1 �Z + h.o.t. � c1 kph �AphkL2(
) + h.o.t.(1.5)holds, we study what the constant c1 > 0 depends on, what a�ects the higher-order contribu-tions "h.o.t.", how to modify the de�nition of �Z in presence of mixed boundary conditions,and how to modify the general setting presented for nonconforming and mixed lowest order�nite element methods.Recall from (1.5) that any averaging technique, described byA, then is reliable up to higherorder terms. We also prove equivalence to local modi�cations of �Z where the minimisationis over smaller domains, e.g., patches of nodes or edges.The outline of the paper is as follows. Preliminaries and notation is introduced in Section 2where we state and prove stability and �rst order estimates for a certain approximation oper-ator J : H1D(
)! S1D(T ) essentially designed to yield further local orthogonality propertiesas in [CV, C2]. Basic estimates are provided in Section 3 for a local and global averagingtechnique and their equivalence. The subsequent Sections 4{6 display the consequences toaveraging techniques in a posteriori error control for �rst order conforming, nonconformingand mixed �nite element schemes. Numerical evidence, reported in Section 7, supports thetheoretical results for adaptively re�ned and even perturbed meshes. Although asymptoticexactness is not claimed in this paper, our numerical experiments illustrate that �Z is a verygood approximate to kp� phkL2(
) even on perturbed grids.



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 3The proofs are given for a simple elliptic model example with mixed boundary conditionsfor conforming, nonconforming, and mixed �nite elements in two dimensions for notationalsimplicity. More interesting examples such as higher-order schemes, the application to theStokes problem or the Navier-Lam�e equations without incompressibility-locking will appearelsewhere [CB, CF2, CF3].2. Approximation in finite element spacesThe Lipschitz boundary � = @
 of the bounded domain 
 is split into a closed Dirichletpart �D with positive surface measure and a remaining, relatively open and possibly empty,Neumann part �N := � n �D. Suppose T be a regular triangulation of the domain 
 � Rd,d = 1; 2; 3, in the sense of Ciarlet [BS, Ci] (no hanging node, domain is matched exactly)with piecewise a�ne Lipschitz boundary � = @
 = �D �[�N , i.e., T consists of a �nitenumber of closed subsets of 
, that cover 
 = [T . Each element T 2 T is either an intervalT = conv fa; bg if d = 1, a triangle T = conv fa; b; cg or a parallelogram T = convfa; b; c; dg.The extremal points a; b; c are called vertices, the faces E � @T , e.g. E = conv fa; bg, arecalled edges. The set of all vertices and all edges appearing for some T in T are denoted asN and E. Two distinct and intersecting T1 and T2 share either an entire edge or a vertex.Each edge E 2 E on the boundary � belongs either to �D, written E 2 ED, or to �N , writtenE 2 EN . Therefore the set of edges is partitioned into E
 := fE 2 E : E 6� �g, ED, andEN . We stress that [E, the union of all egdes, denotes the skeleton of egdes in T , i.e., theset of all points x that belong to some boundary x 2 @T of some element T 2 T . Finally,K := N n �D denotes the set of free nodes.For T 2 T , let P kT := Pk(T ) if T is a triangle or P kT := Qk(T ) if T is a parallelogram.Here, Pk(K) resp. Qk(K) denotes the set of algebraic polynomials in d variables on K oftotal resp. partial degree � k. The space Lk(T ) of (possibly discontinuous) T {piecewisepolynomials of degree � k is the set of all U 2 L1(
) with U jT 2 P kT for all T in T . SetSk(T ) := Lk(T ) \ C(
) and S1D(T ) := fuh 2 S1(T ) : uj�D = 0g:Let ('zjz 2 N ) denote the nodal basis of S1(T ), i.e., 'z 2 S1(T ) satis�es 'z(x) = 0 ifx 2 N n fzg and 'z(z) = 1. Note that ('zjz 2 N ) is a partition of unity and the openpatches !z := fx 2 
 : 0 < 'z(x)g(2.1)form an open cover (!z : z 2 N ) of 
 with �nite overlap.In order to de�ne a weak interpolation operator J : H1D(
)! S1D(T ) we modify ('zjz 2K) to a partition of unity ( zjz 2 K). For each �xed node z 2 N n K, we choose a node�(z) 2 K and let �(z) := z if z 2 K. In this way, we de�ne a partition of N into card (K)classes I(z) := f~z 2 N : �(~z) = zg, z 2 K. For each z 2 K set z := X�2I(z)'�(2.2)and notice that ( zjz 2 K) is a partition of unity. It is required that
z := fx 2 
 : 0 <  z(x)g(2.3)is connected and that  z 6= 'z implies that �D \ @
z has a positive surface measure.



4 CARSTEN CARSTENSEN & S�OREN BARTELSFor g 2 L1(
) and z 2 K let gz 2 R begz := R
z g z dxR
z 'z dx(2.4)and then de�ne J g :=Xz2K gz'z 2 S1D(T ):(2.5)The local mesh-sizes are denoted by hT and hE where hT 2 L0(T ) denotes the element-size, hT jT := hT := diam(T ) for T 2 T , and the edge-size hE 2 L1([E) is de�ned onthe union or skeleton [E of all edges E in E by hE jE := hE := diam(E). The patch-sizehz := diam(
z) is de�ned for each node z 2 K separately.Theorem 2.1. There exist (hT ; hE)-independent constants c2; c3; c4; c5 > 0 such that for allg 2 H1D(
) and f 2 L2(
) there holdskrJ g �rgkL2(
) � c2krgkL2(
);(2.6) Z
 f(g � J g) dx � c3krgkL2(
)�Xz2K h2z minfz2Rkf � fzk2L2(
z)�1=2;(2.7) kh�1T (g � J g)kL2(
) � c4krgkL2(
);(2.8) kh�1=2E (g � J g)kL2(�N ) � c5krgkL2(
):(2.9)The constants c2; c3; c4; c5 only depend on 
, �D, �N and the shape of the elements andpatches (not on their sizes).Remark 2.1. The assertion of the theorem holds verbatim for three space dimensions whereT consists of tetrahedra or parallelepipeds with the same proof.Proof. In this proof and at similar occasions, . abbreviates an inequality � up to a constant(hT ; hE)-independent factor. Also, k � kp;K abbreviates k � kLp(K) and we neglect K if 
 ismeant, i.e., k � k2 := k � k2;
. Hence, e.g., (2.6) could be phrased as krJ g �rgk2 . krgk2.The key estimate for the stability and the approximation property of J will bekgz'z � g zk2;
z . hzkrgk2;
z (z 2 K):(2.10)For the proof of (2.10), let gz denote the integral mean of g on 
z. Then, using thede�nition (2.4) for the coe�cients gz, Cauchy's and Young's inequality, we infer, withc6 := k1k2;
z=k'1=2z k2;
z ,(2.11) k'1=2z (gz � gz)k22;
z = Z
z 'z(gz � g)(gz � gz) dx+ Z
z( z � 'z)g(gz � gz) dx� 14k'1=2z (gz � gz)k22;
z + kg � gzk22;
z + 14c26kgz � gzk22;
z + c26k( z � 'z)gk22;
z :Absorbing 14c26kgz � gzk22;
z � 14k'1=2z (gz � gz)k22;
z we deducek'1=2z (gz � gz)k22;
z . kg � gzk22;
z + k( z � 'z)gk22;
z :(2.12)A Poincar�e inequality yields kg � gzk2;
z . hzkrgk2;
z:



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 5Note that ( z � 'z)g is non-zero only if �D \ (@
z) has positive surface measure. Since gvanishes there, Friedrichs' inequality showskgk2;
z . hzkrgk2;
z:Therefore, (2.12) results in k'1=2z (gz � gz)k2;
z . hzkrgk2;
z:(2.13)To prove (2.10), we use the triangle inequality, (2.13), and again Cauchy's and Friedrichs'inequality to verify(2.14) kgz'z � g zk2;
z � k(gz � gz)'zk2;
z + k(g � gz)'zk2;
z+ k( z � 'z)gk2;
z . hzkrgk2;
z:To prove (2.7), we use that ( zjz 2 K) is a partition of unity and obtain with (2.10), (2.4)for any fz 2 R that(2.15) Z
 f(g �J g) dx =Xz2K Z
z f(g z � gz'z) dx =Xz2K Z
z(f � fz)(g z � gz'z) dx.Xz2K kf � fzk2;
zhzkrgk2;
z . �Xz2K h2zkf � fzk22;
z�1=2krgk2;
:In the last step we used that ('zjz 2 K) has a �nite overlap that depends on the shape ofthe elements only. The proof of (2.7) is thus �nished.Notice that hz . hT for all z 2 K and T 2 T with T � 
z. Letting f := h�2T (g�J g) andfz = 0, z 2 K, we deduce from (2.7) thatkh�1T (g � J g)k22 . krgk2�Xz2K kh�1T (g � J g)k22;
z�1=2(2.16) . krgk2kh�1T (g � J g)k2;which implies (2.8). To verify (2.6) we argue as above and start utilising Pz2K  z = 1 andPz2Kr z = 0. Repeating the triangle inequality several times we deducekrg �rJ gk22 .Xz2K kr( zg � 'zgz)k22:(2.17)Employing Friedrichs' and Poincar�e's inequality and utilising kr'�k1;
z . 1=hz , we infer(2.18) kr(g z � gz'z)k2;
z � k( z � 'z)rgk2;
z + kr('z(gz � gz))k2;
z+ kr('z(gz � g))k2;
z + kgr( z � 'z)k2;
z . krgk2;
z + kr('z(gz � gz))k2;
z :To estimate kr('z(gz � gz))k2;
z we utilise (2.10), Friedrichs' inequality and argue as aboveto �nd thathzkr('z(gz � gz))k2;
z . k'z(gz � gz)k2;
z� k'zgz �  zgk2;
z + k( z � 'z)gk2;
z + k'z(g � gz)k2;
z . hzkrgk2;
z:Employing this estimate in (2.18) and the resulting estimate in (2.17) we eventually verify(2.6).



6 CARSTEN CARSTENSEN & S�OREN BARTELSA trace inequality [BS, Cl, CF1] is required for the proof of (2.9). For E 2 EN and aneighbouring element T 2 T with E � @T \ �N we have, for all w 2 H1(T ),kwk2;E . h�1=2E kwk2;T + h1=2E krwk2;T :(2.19)We denote !E := T for E 2 EN [ ED and E � @T while for E 2 E
 we let !E := T1 [ T2 forE = T1 \ T2. Since hT . hE we deduce from (2.19) with w = g � J g by summing all edgesE on �N thatXE2EN h�1E kg � J gk22;E . XE2EN h�2T kg � J gk22;!E + XE2EN kr(g �J g)k22;!E . krgk22;
according to (2.6) and (2.8). The proof is �nished.3. Basic estimatesIn this section we �rst derive with the approximation operator J a global error estimatefor a posteriori error control by averaging processes in an abstract setting. We then show theequivalence of local and global averaging techniques. The estimates of this section are thenspeci�ed, and thereby proved to be substantial, in the subsequent sections to conforming,nonconforming, and mixed �nite element methods.Theorem 3.1. Suppose p; q 2 H(div ; 
) and ph 2 Lk(T )d with p � n; q � n 2 L2(�N ) andZ
(p� ph) � rwh dx = 0 for all wh 2 S1D(T ):(3.1)Then there holds(3.2) supw2H1D(
)krwkL2(
)=1Z
(p� ph) � rwdx � c2kph � qkL2(
)+ c3�Xz2K h2z minfz2Rkdiv (p � q)� fzk2L2(
z)�1=2 + c5kh1=2E (p� q) � nkL2(�N):Proof. According to (3.1), (2.6), Cauchy's inequality, and an integration by parts we have,for each w 2 H1D(
) with krwkL2(
) = 1, that(3.3) Z
(p � ph) � rwdx = Z
(p � ph) � r(w� Jw) dx= Z
(p� q) � r(w � Jw) dx + Z
(q � ph) � r(w � Jw) dx� Z�N (w � Jw) (p � q) � ndx� Z
(w �Jw) div (p� q) dx+ c2kph � qk2;
since w and Jw vanish on @
 n �N . Owing to (2.7) and (2.9) in Theorem 2.1, we conclude(3.2) from (3.3) and Cauchy's inequality.The second result justi�es local averaging. For each edge E 2 E
 let !E := int (T1 [ T2)and TE := fT1; T2g for the two distinct elements T1; T2 2 T with E = T1 \ T2 and for eachedge E 2 EN let !E := int (T ) and TE := fTg for the element T 2 T with E = T \ �N . Let



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 7Lk(EN ) denote the (possibly discontinuous) EN -piecewise polynomials of degree � k on �Nand let Sk(TE) := Lk(TE) \ C(!E).Theorem 3.2. There exists an (hT ; hE)-independent constant c7 > 0 which depends on theshape of the elements in T and on the polynomial degree k � 1, c8 = maxT2T card fE 2E
 [ EN : E � @Tg, such that, for all (ph; gh) 2 Lk�1(T )d � Lk(EN ), we have(3.4) c7 minqh2Sk(T )d�kph � qhk2L2(
) + kh1=2E (gh � qh � n)k2L2(�N )�� XE2E
[EN minqE2Sk(TE)d�kph � qEk2L2(!E) + hEkgh � qE � nk2L2(E\�N)�� c8 minqh2Sk(T )d�kph � qhk2L2(
) + kh1=2E (gh � qh � n)k2L2(�N)�:Proof. The upper estimate follows from qE := qhj!E 2 Sk(TE)d for all qh 2 Sk(T )d and arearrangement of the sums over edges and elements.To verify the lower estimate in (3.4) we consider a subspace ~Sk(T ) of Sk(T ),~Sk(T ) := fXz2N qz'z : qz 2 Sk�1(Tz)g � Sk(T );where Tz = fT 2 T : T � !zg denotes the restriction of the triangulation T to !z . Sincef(qh; qh � nj�N ) : qh 2 ~Sk(T )dg is a closed convex subset of L2(
)d � L2(�N ), the best{approximation problem minqh2 ~Sk(T )d�kph � qhk22 + kh1=2E (gh � qh � n)k22;�N�(3.5)de�nes an orthogonal relation, namely, for all qz 2 Sk�1(Tz)d,Z
(ph � ~qh) � qz'z dx+ Z�N hE(gh � ~qh � n) qz � n'z ds = 0;(3.6)where ~qh = Pz2N ~qz'z 2 ~Sk(T )d, ~qz 2 Sk�1(Tz)d, denotes the minimiser in (3.5). FromPz2N 'z = 1, (3.6), and Cauchy's inequality we deduce, for arbitrary qz 2 Sk�1(Tz)d,kph � ~qhk22 + kh1=2E (gh � ~qh � n)k22;�N=Xz2N�Z
(ph � ~qh)'z(ph � ~qz) dx + Z�N hE(gh � ~qh � n)'z(gh � ~qz � n)ds�=Xz2N�Z
(ph � ~qh)'z(ph � qz)dx+ Z�N hE(gh � ~qh � n)'z(gh � qz � n) ds��(kph � ~qhk2 + kh1=2E (gh � ~qh � n)k2;�N )� �Xz2N�k'1=2z (ph � qz)k22;!z + kh1=2E '1=2z (gh � qz � n)k22;�N��1=2:(3.7)



8 CARSTEN CARSTENSEN & S�OREN BARTELSFor each z 2 N , we consider the semi-norms on a �nite dimensional subspace of L2(!z)d �L2((@!z) \ �N )jk(ph; gh)kjz;1 := minqz2Sk�1(Tz)d�k'1=2z (ph � qz)k2;!z + k'1=2z h1=2E (gh � qz � n)k2;�N �;jk(ph; gh)kjz;2 := �XE2Ez2E minqE2Sk(TE)d�kph � qEk22;!E + hEkgh � qE � nk22;�N\E��1=2:Then, (3.7) and ~Sk(T ) � Sk(T ) yieldminqh2Sk(T )d�kph � qhk22 + kh1=2E (gh � qh � n)k22;�N ) .Xz2N jk(ph; gh)kj2z;1:(3.8)We claim jk � kjz;1 . jk � kjz;2. For a proof, suppose jk(ph; gh)kjz;2 = 0. Then, for each Ewhich is an inner edge of !z , we have ph = qE on the open set !E for some qE 2 Sk(TE)d.Since ph 2 Lk�1(T )d, we �nd that phj!E 2 Sk�1(TE). The set of all such !E is a cover of !zand there is a sequence E1; :::; Em of such inner edges such that !Ej \ !Ej+1 6= ;, so that wededuce phj!z 2 Sk�1(Tz). Moreover, gh = ph � n on each edge E � �N with z 2 E; while foredges E � @!z \�N with z 62 E we have 'zjE = 0. Altogether, we deduce jk(ph; gh)kjz;1 = 0.A compactness and scaling argument then shows our claimjk � kjz;1 . jk � kjz;2 on Lk�1(Tz)d � Lk(fE 2 E : E � @!zg):(3.9)Utilizing (3.9) in (3.8) we conclude(3.10) minqh2Sk(T )d�kph � qhk22 + kh1=2E (gh � qh � n)k22;�N ) .Xz2N jk(ph; gh)kj2z;1.Xz2N jk(ph; gh)kj2z;2 .XE2E minqE2Sk(TE)d�kph � qEk22;!E + hEkgh � qE � nk22;�N\E�:Remark 3.1. The assertions of Theorem 3.1 and 3.2 hold verbatim for three space dimensionswhere T consists of tetrahedra or parallelepipeds with the same proofs.4. Applications to conforming finite element schemesGiven right-hand sides f 2 L2(
), g 2 L2(�N ), and uD 2 H1(�D), let u 2 H1(
) denotethe unique weak solution to ��u = f in 
;(4.1) u = uD on �D;(4.2) @u=@n = g on �N :(4.3)Suppose a �nite element scheme, based on a regular triangulation T , provided a discreteux ph := ruh to the exact ux p := ru 2 H(div ; 
) such that uh 2 S1(T ), uh(z) = uD(z)for all z 2 N \ �D andZ
ruh � rwh dx = Z
 fwh dx+ Z�N gwh ds for all wh 2 S1D(T ):(4.4)



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 9Theorem 4.1. There exists an (hT ; hE)-independent constant c9 > 0 (that depends on kand the shape of the elements and patches) such that(4.5) kr(u� uh)kL2(
) � minqh2Sk(T )d�c9kruh � qhkL2(
) + 2c5kh1=2E (g � qh � n)kL2(�N )�+ infvj�D=uD kr(uh � v)kL2(
) + 2c3�Xz2K h2z minfz2Rkf � fzk2L2(
z)�1=2:In the in�mum, "vj�D = uD" stands for all v 2 H1(
) with v = uD on �D.Proof. Abbreviate e := u�uh and let qh 2 Sk(T )d. Assume that v 2 H1(
) satis�es v = uDon �D and kr(uh � v)k2 � krek2. Recall p = ru and ph = ruh. Then (4.1)-(4.4) imply(3.1). Hence, we may choose q = qh and w = u� v in Theorem 3.1 to obtain with Cauchy'sinequality for the second term that(4.6) krek22 = Z
re � rwdx+ Z
re � r(v � uh) dx� krwk2 �c2kph � qhk2 + c5kh1=2E (g � qh � n)k2;�N+ c3�Xz2K h2z minfz2Rkf + div qh � fzk22;
z�1=2�+ kr(uh � v)k2 krek2:Since krwk2 � krek2 + kr(uh � v)k2 � 2krek2, we can divide (4.6) by krek2 to verify(4.7) krek2 � 2c2kph � qhk2 + 2c5kh1=2E (g � qh � n)k2;�N + kr(uh � v)k2+ 2c3�Xz2K h2z minfz2Rkf + div qh � fzk22;
z�1=2:Let div T denote the T -piecewise action of the div -operator. The triangle inequality in thelast summand in (4.7) and hz . hT for z 2 T \N and T 2 T and a summation over elementsshow(4.8) Xz2K h2z minfz2Rkf + div qh � fzk22;
z . khT div T (ph � qh)k22+Xz2K h2z minfz2Rkf + div T ph � fzk22;
z :Note that div T ph = �T uh = 0 for our choices of uh 2 S1(T ). A T -elementwise inverseestimate shows khT div T (ph � qh)k2 . kph � qhk2 (with a constant that depends on theshape of the �nite elements only). Utilising this in (4.7)-(4.8) we deduce (4.5).The subsequent lemma shows that infvj�D=uD kr(uh � v)kL2(
) is a higher order term.Lemma 4.1. Suppose that uh(z) = uD(z) for all z 2 N \ �D. Then there exists an hE-independent constant c10 > 0 (that depends on the shapes of the elements only) such thatinfvj�D=uD kr(uh � v)kL2(
) � c10kh1=2E @(uh � uD)=@skL2(�D):(4.9)



10 CARSTEN CARSTENSEN & S�OREN BARTELSIf uD 2 H2(ED) := fv 2 L2(�D) : 8E 2 ED; vjE 2 H2(E)g, we haveinfvj�D=uD kr(uh � v)kL2(
) � c10kh3=2E @2EuD=@s2kL2(�D):(4.10)Proof. Let E 2 ED belong to some T 2 T and denote  := �D \ @T . We determinew 2 H1(T ) by extending the boundary values wj = uh�uD and wj@Tn = 0. Note that w iscontinuous on @T since uh interpolates uD = v at each node on �D. An harmonic extensionof wj@T to w 2 H1(T ) yieldskrwk2;T . kwkH1=2(@T ) . kwk1=22;@Tk@w=@sk1=22;@T ;(4.11)where we applied an interpolation estimate. A one-dimensional integration argument showskwk2;@T � hT k@w=@sk2;@T . Consequently,krwk2;T . h1=2T k@w=@sk2;@T = h1=2T k@(uh � uD)=@sk2;:(4.12)A scaling argument guarantees that the constant in (4.12) is hT -independent. De�ning v byuh�w on elements on �D and by zero on other elements then shows the lemma. The secondestimate follows from kwk2;@T � h2T k@2w=@s2k2;@T .Lemma 4.2. Suppose g 2 H1(EN ) and, for each node z 2 N \ �N where the outer unitnormal n on �N is continuous (hence constant in a neighbourhood of z as �N is a polygon),let g be continuous. Then, the setS1N(T ; g) := fqh 2 S1(T )d : 8E 2 EN 8z 2 E \N ; qh(z) � nE = g(z)g(4.13)is non-void and, for each qh 2 S1N (T ; g),kh1=2E (g � qh � n)kL2(�N ) � kh3=2E @Eg=@skL2(�N ):(4.14)Proof. Elementary estimates on each edge on �N verify (4.14); the proof of S1N(T ; g) 6= ;follows from an explicit construction in Example 4.1.Example 4.1. We de�ne an operator A : L2(
)2 ! S1N (T ; g) byAp :=Xz2N pz'z;(4.15)where pz := �R!z p dx := 1j!zj R!z p dx 2 R2 for z 2 N n �N while we incorporate Ap(z) � nE =g(z) for z 2 N \ �N . In case z = E1 \ E2 for two distinct edges E1; E2 2 EN with distinctouter unit normals nE1 , nE2 on E1, E2 at a corner z we choose pz 2 R2 to be the uniquesolution of the 2 � 2 linear systemnE1 � pz = gjE1(z) and nE2 � pz = gjE2(z):(4.16a)In the remaining cases z 2 E1 \ �D for E1 2 EN or z = E1 \ E2 with two parallel edgesE1; E2 2 EN with the unit tangent vector tE1 let pz 2 R2 solvenE1 � pz = gjE1(z) and tE1 � pz = �Z!z tE1 � p dx:(4.16b)



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 11The following corollary is (1.5) with a constant c1 = c9 as in Theorem 4.1 and withspeci�ed higher order terms from Lemma 4.1 and 4.2 and a Poincar�e inequality.Corollary 4.1. Under the conditions of Theorem 4.1, Lemma 4.1, and Lemma 4.2 we havefor f 2 H1(
) that(4.17) kr(u� uh)kL2(
) � c9 minqh2S1N (T ;g) kruh � qhkL2(
)+ c11�kh3=2E @2EuD=@s2kL2(�D) + kh3=2E @Eg=@skL2(�N ) + kh2T rfkL2(
)�:The (hT ; hE)-independent constant c11 > 0 depends on the shape of the elements and patchesonly.Remark 4.1. Let us emphasise that the derivatives along � are required only E-piecewiselywhile f needs to be patch-wise (not only elementwise) in H1 and so f 2 H1(
). Fora non-smooth right-hand side f , kh2T rfkL2(
) may be replaced by a patch-wise L2{best-approximation error in the approximation through constants of f (cf. (2.7)).The global averaging process might be too expensive or its approximation may be ine�-cient and hence a local averaging process of interest. Recall that !E is the (interior of the)union of all elements in T that share the edge E 2 E.Corollary 4.2. Under the conditions of Theorem 4.1, Lemma 4.1, and Lemma 4.2 we havefor f 2 H1(
) thatkr(u� uh)kL2(
) � c12�XE2E minqE2S1(TE)d�kruh � qEk2L2(!E) + hEkgh � qE � nk2L2(E\�N)��1=2+c11�kh3=2E @2EuD=@s2kL2(�D) + kh3=2E @Eg=@skL2(�N ) + kh2T rfkL2(
)�:(4.18)The (hT ; hE)-independent constant c12 = maxfc9; 2c5g=c7 depends on the shape of the ele-ments and patches only.Proof. Theorem 4.1, Lemma 4.1, an approximation gh of g as in Lemma 4.2 and a Poincar�einequality show(4.19) kr(u� uh)k2 . minqh2S1(T )d(kruh � qhk2 + kh1=2E (gh � qh � n)k2;�N ) + kh3=2E @Eg=@sk2;�N+ kh3=2E @2EuD=@s2k2;�D + kh2Trfk2:This and the �rst inequality of Theorem 3.2 imply the assertion.Remark 4.2. The results of this section hold also in three dimensions where T consists oftetrahedra or parallelepipeds. The proofs of some details as Lemma 4.1 or Lemma 4.2 requiremuch more technical preparations and so are omitted in this overview.Remark 4.3. It is shown in [CV, C2] that the edge{contributions (jump di�erences in thenormal uxes components across edges) dominate in standard residual a posteriori errorestimates [BaR, B, BS, CF1, EEHJ, V]. Arguing as in [R1, R2, DMR] one can hence derivealternative proofs of (4.18) and then of (4.17).



12 CARSTEN CARSTENSEN & S�OREN BARTELSRemark 4.4. In an L1-estimate of [HSWW] it is suggested to average over a domain of sizeO(h log(1=h)) instead of merely patches or the entire domain to obtain asymptotic exactresults. 5. Applications to nonconforming finite element schemesIn the Laplace problem with mixed boundary conditions (4.1)-(4.3) we suppose that thediscrete ux ph := rT uh 2 L0(T )d, where rT denotes the T -piecewise application of thegradient, satis�esZ
rT uh � rwh dx = Z
 fwh dx+ Z�N gwh ds for all wh 2 S1D(T ):(5.1)The usual conformity conditions read for all E 2 E
 [ ED,ZE[uh] ds = 0;(5.2)where [uh]jE denotes the jump of uh across E 2 E
 and denotes uD � uh on �D. Thoseconditions are satis�ed by construction for Crouzeix-Raviart �nite elements of lowest order.Remark 5.1. It is stressed that S1D(T ) is a conforming test function space which is includedin the nonconforming �nite element spaces for triangles or tetrahedra. For parallelograms,(5.1) means that the polynomial degrees are at least of second order to include the conformingterm x1 x2. This technical detail could actually be dropped since the contribution from anenhanced �nite element space leads to a higher order term [KS]. We restrict our analysis totriangles or tetrahedra for simplicity.Theorem 5.1. Suppose that �N is connected and that �D belongs to only one connectivitycomponent of @
. Then, there exists an (hT ; hE)-independent constant c13 > 0 (that dependson k � 1 and the shape of the elements and patches) such that(5.3) krT (u� uh)kL2(
) � minqh2Sk(T )d�c13krT uh � qhkL2(
) + c5kh1=2E (g � qh � n)kL2(�N)+ c5kh1=2E (qh � t� @uD=@s)kL2(�D)�+ c3�Xz2K h2z minfz2Rkf � fzk2L2(
z)�1=2:Here, t 2 L0(ED)d denotes the unit tangent vector on �D.Remark 5.2. The following lemma is based on the Helmholtz decomposition of a vector{�eld.The decomposition is available in three dimensions as well (cf., e.g., [GR]) but the notationis more involved so we restrict the discussion to the two-dimensional setting for brevity.Lemma 5.1. For all p � ph 2 L2(
)2, there exist �; � 2 H1(
) that satisfy boundary con-ditions �j�D = 0 and �j�N is constant such thatp � ph = r�+ Curl� and kp � phk2L2(
) = kr�k2L2(
) + kr�k2L2(
):(5.4)Proof. The lemma follows from the Helmholtz decomposition where � 2 H1D(
) solves �� =div (p� ph) and �� = curl (p � ph) with proper boundary conditions, cf., e.g., [GR].



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 13Proof of Theorem 5.1. For p = ru and ph = rT uh Lemma 5.1 yieldskp� phk22 = Z
(p � ph) � r� dx+ Z
(p� ph) � Curl� dx:(5.5)Since �N is connected we may and will assume without loss of generality that � = 0 on �N .According to (4.1)-(4.3) and (5.1) we infer (3.1) and hence may choose q = qh 2 Sk(T )d and,in case � 6� 0, w = �=k�k2;
 in Theorem 3.1 to obtain(5.6) Z
(p � ph) � r� dx � kr�k2 �c2kph � qhk2 + c5kh1=2E (g � qh � n)k2;�N+ c3�Xz2K h2z minfz2Rkf + div qh � fzk22;
z�1=2�:The estimate of the last term in (5.5) will follow from Theorem 3.1 as well once we establishedan analogy to (3.1), namelyZ
(p � ph) � Curl wh dx = 0 for all wh 2 S1N(T );(5.7)where S1N (T ) := fvh 2 S1(T ) : vh = 0 on �Ng. It is essential to notice that @wh=@s isconstant and [uh] has vanishing integral on any edge. An elementwise integration by partson the left-hand side of (5.7) yields volume terms (u� uh)div T Curl wh = 0 and edge terms[(u � uh)@wh=@s] = [uh]@wh=@s whose integral vanishes on any E (the case E 2 E
 isindicated and the assertion is true for E 2 ED as well; wh = 0 on �N shows it for E 2 EN).In this way we establish (5.7).To employ Theorem 3.1, we interchange components, writing in this proof Q(a1; a2) :=(�a2; a1) for vectors, and we interchange the role of the boundaries and adopt Theorem 2.1and (3.1) where ~�D = �N acts as the Dirichlet boundary and ~�N = �D acts as the Neumannboundary. Writing ~p = Qp and ~ph = Qph, (5.7) reads R
(~p � ~ph) � rwh dx = 0 for allwh 2 ~S1D(T ) = S1N(T ) and this is (3.1). Reading Theorem 3.1 in the present notation weobtain(5.8) Z
(p � ph) �Curl � dx � kr�k2�c2kph � qhk2 + c5kh1=2E (@uD=@s� qh � t)k2;�D+ c3�Xz2K h2zkcurl T (qh � ph)k22;
z�1=2�with curl T (qh � ph) := div TQ(qh � ph). In the second last term, t = Qn denotes the unittangent vector and in the last term we used that curl T p = 0 = curl T ph.The remaining arguments are similar to those in the proof of Theorem 4.1 and henceomitted.In contrast to the conforming situation, Theorem 5.1 demands averaging functions tosatisfy some conditions on the Dirichlet boundary.Lemma 5.2. Suppose uD 2 H2(ED) and, for each node z 2 N \ �D where the outer unitnormal n on � is continuous let @uD=@s be continuous. Then, the setS1D(T ; uD) := fqh 2 S1(T )d : 8E 2 ED 8z 2 E \N ; qh(z) � tE = @uD=@s(z)g(5.9)



14 CARSTEN CARSTENSEN & S�OREN BARTELSis non{void and, for each qh 2 S1D(T ; uD),kh1=2E (qh � tE � @uD=@s)kL2(�D) � kh3=2E @2EuD=@s2kL2(�D):(5.10)Proof. Similar to (4.10) in Lemma 4.1 or 4.2.Example 5.1. Assume the conditions of Lemma 4.2 and Lemma 5.2 on the data g and uD.We de�ne an operator A : L2(
)2 ! S1N (T ; g) \ S1D(T ; uD) by (4.15) and pz := �R!z p dxfor z 2 N n �. In case z 2 (N \ �N) n �D we preceed as in (4.16a) resp. (4.16b). In casez 2 (N \ �D) n �N we consider the analogous 2 � 2 systemstE1 � pz = @uDjE1=@s(z) and tE2 � pz = @uDjE2=@s(z)(5.11a)(cf. (4.16a) and notation from Example 4.1), resp., as an analog to (4.16b),tE1 � pz = @uDjE1=@s(z) and nE1 � pz = �Z!z nE1 � p dx:(5.11b)For z 2 �D \ �N � N we require a compatibility condition if nE1 = tE2, namely g(z) =@uD=@s(z).Then, we de�ne pz 2 R2 as in (5.11b) when E1 � �D (the case E2 � �D is analogous). FornE1 6= �tE2 we need no further compatibility of the data and solve the 2 � 2 linear systemtE1 � pz = @uDjE1=@s(z) and nE2(z) � pz = g(z):(5.12)(Here E1 � �D; the case E2 � �D is analogous.)The modi�cation of (1.5) in the nonconforming setting is a direct consequence of Theorem5.1, Lemma 5.2 and Example 5.1. Note that Corollary 4.1 is a special case apart from thedi�erent treatment of the Dirichlet boundary conditions.Corollary 5.1. Under the conditions of Theorem 5.1, Lemma 4.2, and Lemma 5.2 we havefor f 2 H1(
) that(5.13) krT (u� uh)kL2(
) � c13 minqh2S1N(T ;g)\S1D(T ;uD) krT (uh � qh)kL2(
)+ c14�kh3=2E @2EuD=@s2kL2(�D) + kh3=2E @Eg=@skL2(�N) + kh2TrfkL2(
)�:The analog to Corollary 4.2 concludes this section on lowest order Raviart{Crouzeix �niteelements.Corollary 5.2. Under the conditions of Theorem 5.1, Lemma 4.2, and Lemma 5.2 thereexists a constant c15 > 0 such that we have for f 2 H1(
)(5.14) krT (u� uhkL2(
) � c15�XE2E minqE2S1(TE)d�krT uh � qEk2L2(!E)+ hEkgh � qE � nk2L2(E\�N) + hEkqE � t� u0D;hk2L2(E\�D)��1=2+ c14�kh3=2E @2EuD=@s2kL2(�D) + kh3=2E @Eg=@skL2(�N ) + kh2TrfkL2(
)�:Here, u0D;h denotes an approximation of @uD=@s as in Lemma 5.2, i.e., u0D;h = qh � tE on �Dfor some qh 2 S1D(T ; uD).



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 15Remark 5.3. The results of this section can be generalised to three space dimensions as allthe required tools such as a Helmholtz decomposition are available then as well. Details onthe three{dimensional case are omitted for notational simplicity.Remark 5.4. Arguing as in [CV, C2] one can prove that edge contributions (jumps in theuxes across edges) dominate the residual based error estimates from [DDPV, C2, KS].Arguing in the spirit of [R1, R2, DMR] one can hence derive alternative proofs of (5.14) andthen of (5.13). 6. Applications to mixed finite element schemesIn the Laplace problem with mixed boundary conditions (4.1)-(4.3) we suppose that thediscrete ux ph 2 H(div ;
) \ Lk(T )2 and the displacement approximation uh 2 Lk(T )satisfy, for all qh 2 CurlS1(T ) with qh � n = 0 on �N , and for all T 2 T and E 2 EN thatR
(ph � qh + uh div qh)dx = R�D uD qh � nds;(6.1) RT (f + div ph)dx = 0;(6.2) RE(g � ph � n)ds = 0:(6.3)Remark 6.1. Standard mixed �nite element methods of any order such as Raviart-Thomas(RT), Brezzi-Douglas-Marini (BDM), or Brezzi-Douglas-Fortin-Marini (BDFM) elements (cf.[BF] for details) provide (6.1)-(6.3) [C1].Theorem 6.1. Suppose that �N is connected and that �D belongs to only one connectivitycomponent of @
 and let f 2 H1(T ), i.e. f jT 2 H1(T ) for all T 2 T . Then, there exists an(hT ; hE)-independent constant c16 > 0 (that depends on k � 1 and the shape of the elementsand patches) such that(6.4) kp� phkL2(
) � minqh2Sk(T )2�c2kph � qhkL2(
) + c5kh1=2E (@uD=@s� qh � t)kL2(�D)+ c3�Xz2K h2z minfz2Rkcurl T qh � fzk2L2(
z)�1=2�+ c16kh2TrT (f + div ph)k2;
 + c16kh1=2E (g � ph � n)k2;�N :Proof. Lemma 5.1 provides (5.5) and we may and will assume without loss of generality that� = 0 on �N . An integration by parts and (6.2)-(6.3) show for the T -piecewise integral mean�T 2 L0(T ) of � 2 H1D(
)(6.5) Z
(p � ph) � r� dx = Z
(f + div ph)�dx + Z�N (g � ph � n)� dx= Z
(f + divph) (� � �T ) dx+ Z�N (g � ph � n) (� � �T ) dx:The second last term is estimated with an elementwise Poincar�e inequality while the lastterm in (6.5) involves a trace theorem [BS, CF1, Cl], namelykak2;E . h�1=2E kak2;TE + h1=2E krak2;TE(6.6)



16 CARSTEN CARSTENSEN & S�OREN BARTELSfor a = � � �T 2 H1(TE) on the triangle TE 2 T and the edge E 2 EN , E � @TE. With asecond application of Poincar�e's inequality, (6.6), and Cauchy's inequality showZ
(p� ph) � r�dx . khT (f + div ph)k2 kr�k2 + kh1=2E (g � ph � n)k2;�Nkh�1=2E (�� �T )k2;�N. kr�k2�kh2TrT (f + div ph)k2 + kh1=2E (g � ph � n)k2;�N�:(6.7)The second contribution on the right-hand side of (5.5) is analysed with Theorem 3.1,where, as in the proof of Theorem 5.1, we interchange components and the role of theboundary conditions. As already employed in [C1, C2], curlwh 2 H(div ;
) for all wh 2S1N (T ). Moreover, curlwh �n = @wh=@s = 0 on �N . Hence, (6.1) and an integration by partsfor p yield (5.7) because of (4.2). Arguing as in the proof of Theorem 5.1, we deduce forarbitrary qh 2 Sk(T )2 that(6.8) Z
(p � ph) �Curl � dx � kr�k2�c2kph � qhk2 + c5kh1=2E (@uD=@s� qh � t)k2;�D+ c3�Xz2K h2z minfz2Rkcurl T qh � fzk22;
z�1=2�:The remaining details are analogous to the proof of Theorem 5.1 and hence omitted.The precise version of (1.5) for lowest order mixed �nite element methods is summarisedas follows.Corollary 6.1. Suppose that the discrete ux ph satis�es curl T ph = 0, div T ph 2 L0(T )and ph � n 2 L0(EN). Then,(6.9) kp� phkL2(
) � minqh2S1D(T ;uD) c17kph � qhkL2(
)+ c18�kh3=2E @2EuD=@s2kL2(�D) + kh3=2E @Eg=@skL2(�N ) + kh2TrT fkL2(
)�:Proof. Combine Theorem 6.1, Lemma 4.1 and 5.2 and use an inverse estimate to proveXz2K h2zkcurl T qhk22;
z =Xz2K h2zkcurl T (qh � ph)k22;
z .Xz2K kqh � phk22;
z . kqh � phk2:Remark 6.2. The assumptions in Corollary 6.1 are satis�ed for lowest order Raviart-Thomasand Brezzi-Douglas-Fortin-Marini �nite elements.Example 6.1. Assume the conditions of Lemma 5.2 on the data uD. We de�ne an operatorA : L2(
)2 ! S1D(T ; uD) by (4.15) and pz := �R!z p dx for z 2 N n �D. In case z 2 N \ �Dwe consider 2� 2 systemstE1 � pz = @uDjE1=@s(z) and tE2 � pz = @uDjE2=@s(z)(6.10a)(cf. (4.16a) and notation from Example 4.1), resp., as an analog to (4.16b),tE1 � pz = @uDjE1=@s(z) and nE1 � pz = �Z!z nE1 � p dx:(6.10b)A local version follows from Theorem 3.2 and concludes this section on mixed �nite elementmethods.



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 17Corollary 6.2. Under the conditions of Theorem 6.1 and Corollary 6.1 we havekp� phkL2(
) � c19�XE2E minqE2S1(TE)2 kph � qEk2L2(!E) + hEku0D;h � qE � tk2L2(�D)�1=2+ c18�kh3=2E @2EuD=@s2kL2(�D) + kh3=2E @Eg=@skL2(�N) + kh2TrT fkL2(
)�:Remark 6.3. The results of this section could be generalised to three space dimensions.Details are omitted for brevity.Remark 6.4. For related residual based a posteriori error estimates we refer to [A, BV, C1,C2, HW]. 7. Numerical ExperimentsThe theoretical results of this paper are supported by numerical experiments. In thissection, we report on two examples of the problem (4.1)-(4.3) on uniform, adapted, andperturbed meshes for conforming, nonconforming, and mixed �nite element methods.Example 7.1. Let f := 0 on the L{shaped domain 
 := (�1; 1)2 n [0; 1] � [�1; 0], uD := 0on the Dirichlet boundary �D := f0g� [�1; 0][ [0; 1]�f0g, and on the Neumann boundary�N := @
 n �D, g(r; ') := 2=3 r�1=3(� sin('=3); cos('=3)) � nusing polar coordinates (r; '). The exact solution u(r; ') := r2=3 sin(2'=3) of (4.1)-(4.3) hasa typical corner singularity at the origin. In this example, the right-hand sides are smooth,but the solution is not. The coarsest triangulation T0 consists of three squares halved bydiagonals parallel to the vector (1; 1), cf. Fig. 1.Example 7.2. Let f := ��u for the function u(x; y) := x(1� x)y(1� y) arctan(60(r � 1)),r2 := (x� 1:25)2 + (y + 0:25)2 on the unit square 
 := (0; 1)2 and set uD := 0 on the entireboundary �D := @
 (�N = ;). The solution u to (4.1)-(4.3) is H2-regular but f (althoughtheoretically smooth) has huge gradients on the circle with radius 1 around (1:25;�0:25).The coarsest triangulation T0 consists of four squares halved by diagonals parallel to thevector (1; 1), cf. Fig. 3.The following adaptive algorithm generates all the sequences of meshes T0;T1;T2; ::: in thispaper which are uniform for � = 0 or adapted for � = 1=2 in (7.2). Since the resultingmeshes might show local symmetries, we considered meshes that are either unperturbed(relative to T0) for # = 0 and randomly perturbed for # = 1 in step (e). The implementationwas performed in Matlab in the spirit of [ACF] with a direct solution of linear systems ofequations. For details on the red-blue-green-re�nements we refer to [V].Algorithm (A#�). (a) Start with a coarse mesh T0, k = 0.(b) Compute the discrete solution ph on the actual mesh Tk.(c) Compute error indicators �Z;T := kph �AphkL2(T )(7.1)for all T 2 Tk and plot energy error eN := kp � phkL2(
) and its estimator �2N :=PT2T �2Z;Tversus the degree of freedom N of the triangulation Tk.



18 CARSTEN CARSTENSEN & S�OREN BARTELS(d) Mark the element T for red-re�nement provided�Z;T � � maxT 02Tk �Z;T 0:(7.2)(e) Mark further elements (red{blue{green-re�nement) to avoid hanging nodes. Generate anew triangulation ~Tk+1 using edge{midpoints if # = 0 and points on the edges at a randomdistance at most 0:3hE from the edge{midpoints if # = 1. Perturbe the nodes z 2 Nk+1of the mesh ~Tk+1 at random with values taken uniformly from a ball around z of radius# 2�k=15. Correct boundary nodes by orthogonal projection onto that boundary piece theyare expected such that 
;�D;�N are matched by the resulting mesh Tk+1 exactly. Updatek and go to (b).7.1. Results for conforming �nite element methods. In the conforming �nite elementscheme, we use operator A from Example 4.1 in (7.1) of Algorithm (A#�) and report onresults obtained for (�; #) = (0; 0) (uniform), (1=2; 0) (adaptive), and (1=2; 1) (adaptive,perturbed).
Figure 1. Adaptively re�ned meshes T0 (left upper) to T8 (right lower) (left)and perturbed triangulation T16 with 1157 free nodes (right) in Example 7.1for the conforming �nite element schemeSome obtained meshes for Example 7.1 are shown in Fig. 1 and illustrate a high automaticmesh-re�nement of the adapted meshes towards the origin, which is expected to improve theconvergence rate of 2=3 possibly to the optimal value 1. The result of the perturbation instep (e) of Algorithm (A11=2) is seen in the right half of Fig. 1. We believe that the meshesgenerated by Algorithm (A11=2) have less local symmetry than that by (A01=2). Accordingto local extrapolation, symmetry could cause superconvergence phenomena. To check thepractical convergence behaviour, we plotted in Fig. 2 for each mesh Tk an entry (N; eN) and(N; �N ). A log-scaling on both axes allows a slope �� of a straight line in the plot, thatconnects two subsequent entries for a series of meshes T0;T1;T2; ::: generated by Algorithm(A#�), to be interpreted as an experimental convergence rate 2� (owing to N / h�2 intwo dimensions). We observe experimental convergence rates 2=3 resp. 1 for uniform resp.adapted meshes (generated by Algorithm (A#�) for � = 0 resp. � = 1=2). Furthermore,
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Figure 3. Adaptively re�ned meshes T0 (left upper) to T8 (right lower) (left)and perturbed triangulation T12 with 1909 free nodes (right) for the conforming�nite element scheme in Example 7.2even for coarse meshes, �N appears to be a very good approximation to eN ; correspondingentries almost coincide for (�; #) = (1=2; 0). If these meshes are perturbed, cf. Fig. 1,the quotient �N=eN is almost a constant very close to 1. Numerical checks with di�erent
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Figure 4. Error and error estimator for uniform, adaptive, and perturbedadaptive mesh{re�nement in the conforming �nite element scheme in Example7.2numerical quadrature rules (used to evaluate eN) convinced us that in general, �N behavesnot asymptotically exact in practise but is very accurate.In Example 7.2 we obtained meshes and experimental convergence rates displayed in Fig. 3and 4. Although u belongs to H2(
) and we expect linear convergence, u has huge secondorder derivatives along a circular arc where f is steep. We observe high re�nements in theadapted meshes towards this arc. In this example the preasymptotic range is very large,an experimental convergence rate 1 can be observed only for N � 300 for all re�nementstrategies. In this regime the estimator �Z appears as a good approximate for eN and theentries (N; eN) and (N; �N ) almost conincide for (�; #) = (0; 0); (1=2; 0). This is not the casefor (�; #) = (1=2; 1) but the quotient �N=eN � 0:9 is still close to 1.7.2. Results for nonconforming �nite element methods. The operator A from Exam-ple 5.1 serves in (7.1) to de�ne �Z;T for �rst order Crouzeix-Raviart �nite elements (cf., e.g.,[BS, Ci]) in Algorithm (A#�). The generated meshes look similar to those shown in Fig. 1resp. Fig. 3 and therefore are not displayed in this paper. The experimental convergencerates for Example 7.1 resp. 7.2 are illustrated in Fig. 5 resp. Fig. 6. The overall pictureappears similarly to the above discussions and we draw the same conclusions. For uniformmeshes, the quotient �N=eN is nearly constant 1:2 but signi�cantly larger than 1:1 in Fig. 2.7.3. Results for mixed �nite elementmethods. For the Raviart{Thomas �nite elementmethod (cf. [B, BF, BS]) we use the operator A from Example 6.1 to de�ne �Z;T . Theadapted meshes look similar to those shown in Fig. 1 and Fig. 3 and therefore are notdisplayed in this paper. Fig. 7 and Fig. 8 display the error and the estimator for the mixed
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Figure 5. Error and error estimator for uniform, adaptive, and perturbedadaptive mesh{re�nement in the nonconforming �nite element scheme in Ex-ample 7.1
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Figure 6. Error and error estimator for uniform, adaptive, and perturbedadaptive mesh{re�nement in the nonconforming �nite element scheme in Ex-ample 7.2�nite element scheme in Examples 7.1 and 7.2 obtained from Algorithm (A#�) and (�; #) =(0; 0); (1=2; 0); (1=2; 1). We obtain the same experimental convergence rates as in the previousmethods.
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   (adaptive, perturbed)Figure 8. Error and error estimator for uniform, adaptive, and perturbedadaptive mesh{re�nement in the mixed �nite element scheme in Example 7.27.4. Remarks. (i) Our overall experience with Algorithm (A#�) and other (e.g. residual{based) adaptive algorithms supports that all such adaptive algorithms yield a considerableconvergence improvement.(ii) Although asymptotic exactness of �N is not observed, the reliability-constant c1 in (1.5)and the e�ciency constant are experimentally very close to 1 since �N is a very good ap-proximation to eN for very �ne meshes (i.e. when h.o.t. is neglegible, say, for N � 100).(iii) Note that the e�ciency constant is not known to be one as �N (based on the averaging
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):(7.3)For conforming linear triangular �nite elements, the e�ciency of �N with an averaging op-erator follows from [R1, R2].(iv) Instead of the averaging operator A, we tested the error estimator �Z � �N from (7.3)and found that sometimes the performance is poorer than that of �N : In Fig. 4, for instance,the results of �Z are much smaller than those of �N � eN . The averaging technique suggestedin [HSWW], average over a domain of size O(h log(1=h)), is expected to give values between�N and eN .(v) The error estimation in Example 7.1 is very accurate even for very coarse meshes. Hencethe higher order terms do not seem to be important here although u is nonsmooth. Thisagrees with our theoretical prediction in Equation (1.5) since f and uD are zero and g ispiecewise analytic. For a generic corner singularity of u, we expectminqh2S1N (T ;g) kp� qhkL2(
) � minqh2L0(T ) kp � qhkL2(
) � kp � phkL2(
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