EACH AVERAGING TECHNIQUE YIELDS RELIABLE A POSTERIORI
ERROR CONTROL IN FEM ON UNSTRUCTURED GRIDS PART I:
LOW ORDER CONFORMING, NONCONFORMING, AND MIXED FEM

CARSTEN CARSTENSEN & SOREN BARTELS

ABSTRACT. Averaging techniques are popular tools in adaptive finite element methods for
the numerical treatment of second order partial differential equations since they provide effi-
cient a posteriori error estimates by a simple postprocessing. In this paper, their reliablility
i1s shown for conforming, nonconforming, and mixed low order finite element methods in
a model situation, the Laplace equation with mixed boundary conditions. Emphasis is on
possibly unstructured grids, non-smoothness of exact solutions, and a wide class of averag-
ing techniques. Theoretical and numerical evidence supports that the reliability is up to the
smoothness of given right-hand sides.

1. INTRODUCTION

Error control and efficient mesh-design in finite element simulations of computational
engineering and scientific computing finite element simulations is frequently based on a
posteriori error estimates. One of the more popular techniques is local or global averaging,
e.g., in form of the ZZ-error indicator [ZZ]. Efficiency and reliability of this estimator were
known only for very structured grids and for solutions of higher regularity and then we have
even asymptotic exactness [V]. Numerical experiments in [Baetal] showed that averaging
techniques were quite more reliable on irregular meshes than expected. For homogeneous
Dirichlet conditions and conforming finite element methods, the reliability and efficiency of
the ZZ-estimator is proven on unstructured, merely shape-regular grids [R2].

This work is devoted to give theoretical and numerical support for the robust reliability
of all averaging techniques, robust with respect to violated (local) symmetry of meshes
and super-convergence and robust with respect to other boundary conditions or other finite
element methods.

For a more precise description of averaging techniques, let us discuss a discretisation of a
conservation equation

(1.1) f+divp=0

with a given right-hand side f € L*(Q) and a known approximation p, € L*(Q)? to the un-
known exact flux p € H(div;Q) in the bounded Lipschitz domain © C R?. The test function
finite element space should include the continuous piecewise linears S5(7) (with homoge-
neous Dirichlet boundary conditions) based on a regular triangulation 7 of €. Suppose a
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Galerkin property for p — p, with S;,(7), i.e.,

(1.2) /ph -V, dr = / fop da for all v, € SH(T).
Q Q

What can be said about the error ||p — pil|z2(n) when we regard p as an unknown and pj as
a known variable?

In averaging techniques, the error estimator is based on a smoother approximation, e.g.,
in SY(T)?, the continuous T-piecewise linears, to the (components of the) discrete solution
pr. For instance,

(1.3) nzi= min lpn — anllz2 @)
may serve as a computable error estimator and the elementwise contributions as local error
indicators in an adaptive mesh-refining algorithm.

The triangle inequality shows that 7z is efficient up to higher order terms of the exact
solution p, indeed,

(1.4) nz < |lp — prllz) + oain 1P — anllz2 ()

and the last term converges as O(h?) (provided p is smooth enough and h denotes the
maximal mesh-size in 7') and so, generically, of higher order than the error |[p — px||z2(q) =
O(h) in the lowest order finite element method.

In practise, we may apply an averaging operator A : L*(Q)? — SY(T)? to p, and com-
pute the upper bound ||p, — Apsllr2(q) of nz. Then, efficiency depends strongly on the
approximation properties of 4 and deserved further investigations.

In this paper, the focus is on the reliability of 17, i.e., we investigate under which conditions
an estimate

(1.5) P = prllre@) < einz + hot. <ellpn — Apallree) + hoo.t.

holds, we study what the constant ¢; > 0 depends on, what affects the higher-order contribu-
tions "h.o.t.”, how to modify the definition of 7 in presence of mixed boundary conditions,
and how to modify the general setting presented for nonconforming and mixed lowest order
finite element methods.

Recall from (1.5) that anyaveraging technique, described by A, then is reliable up to higher
order terms. We also prove equivalence to local modifications of 1z where the minimisation
is over smaller domains, e.g., patches of nodes or edges.

The outline of the paper is as follows. Preliminaries and notation is introduced in Section 2
where we state and prove stability and first order estimates for a certain approximation oper-
ator J : H,(Q) — S5H(T) essentially designed to yield further local orthogonality properties
as in [CV, C2]. Basic estimates are provided in Section 3 for a local and global averaging
technique and their equivalence. The subsequent Sections 4-6 display the consequences to
averaging techniques in a posteriori error control for first order conforming, nonconforming
and mixed finite element schemes. Numerical evidence, reported in Section 7, supports the
theoretical results for adaptively refined and even perturbed meshes. Although asymptotic
exactness is not claimed in this paper, our numerical experiments illustrate that nz is a very
good approximate to ||p — pu|/12(q) even on perturbed grids.



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL IN FEM PART I 3

The proofs are given for a simple elliptic model example with mixed boundary conditions
for conforming, nonconforming, and mixed finite elements in two dimensions for notational
simplicity. More interesting examples such as higher-order schemes, the application to the
Stokes problem or the Navier-Lamé equations without incompressibility-locking will appear

elsewhere [CB, CF2, CF3].

2. APPROXIMATION IN FINITE ELEMENT SPACES

The Lipschitz boundary 7 = 92 of the bounded domain € is split into a closed Dirichlet
part 7 p with positive surface measure and a remaining, relatively open and possibly empty,
Neumann part ? 5 := 7 \ 7p. Suppose T be a regular triangulation of the domain  C R¢,
d = 1,2,3, in the sense of Ciarlet [BS, Ci] (no hanging node, domain is matched exactly)
with piecewise affine Lipschitz boundary 7 = 9Q = 7pWU?y, i.e., T consists of a finite
number of closed subsets of Q, that cover ! = UT. Each element T € T is either an interval
T = conv{a,b} if d =1, a triangle T' = conv {a, b, ¢} or a parallelogram T' = conv {a, b, ¢, d}.
The extremal points «, b, ¢ are called vertices, the faces £ C 9T, e.g. £ = conv {a,b}, are
called edges. The set of all vertices and all edges appearing for some T in 7 are denoted as
N and €. Two distinct and intersecting Ty and T, share either an entire edge or a vertex.
Each edge E € € on the boundary ? belongs either to ? p, written F € £p, or to 7y, written
E € &Ey. Therefore the set of edges is partitioned into Eq :={F € £€: E ¢ 7}, Ep, and
En. We stress that UE, the union of all egdes, denotes the skeleton of egdes in T, i.e., the
set of all points & that belong to some boundary « € 9T of some element T' € T. Finally,
K := N\ 7p denotes the set of free nodes.

For T € T, let P} := Py(T) if T is a triangle or P} := Qu(T) if T is a parallelogram.
Here, Pr(K) resp. Qi(K') denotes the set of algebraic polynomials in d variables on K of
total resp. partial degree < k. The space L£*(T) of (possibly discontinuous) 7 -piecewise
polynomials of degree < k is the set of all U € L>(2) with Ul|r € Py for all T in T. Set

SHT):=LYT)NnC(Q) and SH(T) = {ur € S(T) : ulr, = 0}.

Let (¢.|z € N) denote the nodal basis of SY(T), i.e., p, € SYT) satisfies ¢.(x) = 0 if
v € N\ {z} and ¢.(z) = 1. Note that (p.|z € N) is a partition of unity and the open
patches

(2.1) w,  ={r € Q:0<p.(x)}

form an open cover (w, : z € N') of  with finite overlap.

In order to define a weak interpolation operator J : HLH(Q) — SH(T) we modify (p.|z €
K) to a partition of unity (¢,|z € K). For each fixed node z € N\ K, we choose a node
((z) € K and let ((z) := z if 2 € K. In this way, we define a partition of N into card (K)
classes I(z):={2 € N : ((2) = 2}, 2 € K. For each z € K set

(2.2) Yo=Y e

Cel(z)
and notice that (¢.|z € K) is a partition of unity. It is required that
(2.3) QA ={zecQ:0<.(2)}

is connected and that ¢, # . implies that 7 p N 91, has a positive surface measure.



4 CARSTEN CARSTENSEN & SOREN BARTELS

For g € L'(Q) and z € K let g, € R be

Jo. gt dx
(2.4) g, =220
sz @, dx
and then define
(2.5) Jg:=Y g € Sp(T).
zeX

The local mesh-sizes are denoted by hr and he where hy € L°(T) denotes the element-
size, hr|r := hy := diam(T) for T € T, and the edge-size hg € L*(UE) is defined on
the union or skeleton UE of all edges F in € by he|g := hg := diam (F). The patch-size
h. := diam (§,) is defined for each node z € K separately.

Theorem 2.1. There exvist (hr, he)-independent constants cq, ¢s, ca,¢s > 0 such that for all
g € HLH(Q) and f € L*(Q) there holds

(2.6) VT g — VgHL2 < cQHVgHLm

(2.7) / flg=To)dr < eslValla (3 2 minlf = flla) ",
zEK

(2.8) 1h7 (g — Tl < el Vil

(2.9) k29— TDlewyy < cwgup

The constants cq,c3,cq4,¢5 only depend on 2, Tp, 7n and the shape of the elements and

patches (not on their sizes).

Remark 2.1. The assertion of the theorem holds verbatim for three space dimensions where
T consists of tetrahedra or parallelepipeds with the same proof.

Proof. In this proof and at similar occasions, < abbreviates an inequality < up to a constant

(h7, he)-independent factor. Also, || - ||,k abbreviates || - ||r»(x) and we neglect K if  is

meant, i.e., || - ||z := || - ||z,0- Hence, e.g., (2.6) could be phrased as [|[VJg — Vgl < ||V9]2-
The key estimate for the stability and the approximation property of J will be

(2.10) lg=02 = g¥ell20. S h[Vgl2a. (2 €K).

For the proof of (2.10), let g, denote the integral mean of g on ,. Then, using the
definition (2.4) for the coefficients ¢., Cauchy’s and Young’s inequality, we infer, with

co 1= | 1l2.0./ 1192|120,
(211) "991/2( gz)”%,ﬂz = / @z(gz - g)(gz - gz) dx + / (¢z - @z)g(gz - gz) dx
Q. z

j— = 1 a
{12 =Tl + 19~ Tl + gllae ~ Tl + 0 — o2l
6

Absorbing #5/lg. — 7.|3q. < t19:(g: — 7.)[Iq. we deduce

(2.12) e (9 =330, S 9= F.ll30. + (- — ¢:)allsa..
A Poincaré inequality yields

lg = F.ll20. S 2:l[Vall2g..
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Note that (¢, — ¢.)g is non-zero only if 7 p N (9€2.) has positive surface measure. Since g
vanishes there, Friedrichs’ inequality shows

9ll2.0. S - Vl20.-
Therefore, (2.12) results in

(2.13) 192 (g: = 3.) 20, S h:lVdll2q..

To prove (2.10), we use the triangle inequality, (2.13), and again Cauchy’s and Friedrichs’
inequality to verify

(2.14) |lgz2 — 9¥:||2.0. < (g: — 3.)¢-ll2.0. + (9 — 7. )¢-|2.0.
+ (42 — ¢2)gll2.0. S h-|Vdl2.0.-

To prove (2.7), we use that (¢,|z € K) is a partition of unity and obtain with (2.10), (2.4)
for any f. € R that

(2.15) /f Jgdx—Z/fg@/ﬂ gz%dx—Z/ (f = f) g — g-.) du

zeK zEK
1/2
SN = Ll kel Vollzg. S OC R = LlBo) 1Valae-
zeK zEK

In the last step we used that (¢.|z € K) has a finite overlap that depends on the shape of
the elements only. The proof of (2.7) is thus finished.

Notice that i, < hy forall z € K and T' € T with T' C .. Letting f := h7*(¢9— Jg) and
f: =0, z € K, we deduce from (2.7) that

(2.16) b7 (g =Tl < IVl k7 (9= T9)l30.)

zeX
S IVallllhz (g = T )2,

which implies (2.8). To verify (2.6) we argue as above and start utilising > ., ¢. = 1 and
Y .ex V. = 0. Repeating the triangle inequality several times we deduce

(2.17) IVg—VITglls S DIV (g — ¢-9:)I13.

zeX

1/2

Employing Friedrichs’ and Poincaré’s inequality and utilising ||V¢||lew,0, < 1/h., we infer

(2.18) [[V(g¥- = g=:)|la0. < (42 = ¢2)V4llz0. + IV(¢:(9: = F.))20.
+IVIe=(g. = 2. + 19V (- = :)llaa. S IVallza. + [[Ve:(9: = 7.)ll20.-

To estimate |V(¢.(g. —7.))||2.0. we utilise (2.10), Friedrichs’ inequality and argue as above
to find that

ho\V(@:(9: = 7.))ll2.0. S llv=(9: =720

< wzg: — Vg2, + (0 — w2)gll20. + [lv-(9 — 7. )|lz0. S P:|Vdll20.

Employing this estimate in (2.18) and the resulting estimate in (2.17) we eventually verify
(2.6).
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A trace inequality [BS, Cl, CF1] is required for the proof of (2.9). For £ € &y and a
quality [BS, Cl, quires p

neighbouring element 7' € T with £ C 9T N7 5 we have, for all w € H'(T),

(2.19) lwllzz S bz + b Vewlla

We denote wg :=T for £ € Ey UEp and E C 9T while for F € Eq we let wg := T, UT; for
E =T, NT,. Since hy < hp we deduce from (2.19) with w = g — J ¢ by summing all edges
FE on 7 n that

Yobstlla—Tallie S D hitlg =Tl + Y IVg =T, S IValla
according to (2.6) and (2.8). The proof is finished. O

3. BASIC ESTIMATES

In this section we first derive with the approximation operator J a global error estimate
for a posteriori error control by averaging processes in an abstract setting. We then show the
equivalence of local and global averaging techniques. The estimates of this section are then
specified, and thereby proved to be substantial, in the subsequent sections to conforming,
nonconforming, and mixed finite element methods.

Theorem 3.1. Suppose p,q € H(div;Q) and p, € LX(T)* with p-n,q-n € L*(? ) and

(3.1) /(p —pp) - Vwpde =0 for all wy, € SH(T).
Q

Then there holds

(3.2) sup /(p —pn) - Vwdz < callpr — 4|20
werrh(@) Jo
||Vw||L2(Q):1

. . 1/2
+ CS(Z h? ?ﬂéﬁ [div(p —q) — sz%?(QZQ + C5Hhé/2 (p—a) nllzer -
zeX

Proof. According to (3.1), (2.6), Cauchy’s inequality, and an integration by parts we have,
for each w € HE(Q) with | Vw||2(q) = 1, that

(3.3) /Q(p—ph)-de:Jc:/(p—ph)-V(w—jw)d:L‘

Q

:/Q(p—CJ)-V(w—Jw)dw+/(q—ph)-V(w—Jw)dw

Q
S/ (w—Jw)(p—Q)-ndw—/(w—Jw)diV(p—Q)dx+02th—CJHm
Cx Q

since w and Jw vanish on 902\ 7 . Owing to (2.7) and (2.9) in Theorem 2.1, we conclude
(3.2) from (3.3) and Cauchy’s inequality. O

The second result justifies local averaging. For each edge £ € &g let wg := int (T U Ty)
and T := {11,1,} for the two distinct elements 11,7, € T with £ =Ty N1y and for each

edge I € Ey let wg :=int (1) and T := {1’} for the element 7' € T with £ =T N7 . Let
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LF(Ex) denote the (possibly discontinuous) Ey-piecewise polynomials of degree < k on ?x
and let S¥(Tg) := L¥(Te) N C(wE).

Theorem 3.2. There exists an (hr, he)-independent constant ¢z > 0 which depends on the
shape of the elements in T and on the polynomial degree k > 1, cg = maxgpey card{F €
EqUEN 1 B C AT}, such that, for all (py,,qn) € LEHT)® x L¥(EN), we have

34 e min (Il + 100~ 0l

< min < — 2 + h — -n|? >
_Eeszﬂ;JquEesk(TE)d [ QEHL2(WE) ellgn — qw HL2(EnrN)

: N 1/2 o 2
<es min (Il =l + 10 (00— an ey )

Proof. The upper estimate follows from ¢ = q4|., € S*(Tg)? for all ¢, € S*(T)? and a
rearrangement of the sums over edges and elements. )
To verify the lower estimate in (3.4) we consider a subspace S*(T) of S¥(T),

’ T) = {Z 49z 4= € Sk_l(’TZ)} < Sk(T)v
zeN

where T, = {T € T : T C ©.} denotes the restriction of the triangulation 7 to w,. Since
{(gn,aqn - nlry) @ € SH(T)?} is a closed convex subset of L*(Q)? x L?(?y), the best—
approximation problem

(3.5) min(Jlpn = aulld + 16 (o = - 0) 3, )
g €SK(T)4

d
’

defines an orthogonal relation, namely, for all ¢, € S¥=1(T,)

(3.6) /(ph — qn) " G- da + / he(gn — @n - n) q. - np. ds =0,
Q Iy

where ¢, = Y oy @02 € ST, G. € S (T.), denotes the minimiser in (3.5). From
EzeN . =1, (3.6), and Cauchy’s inequality we deduce, for arbitrary ¢, € Sk_l(TZ)d,

~ 1/2 ~
= @nll2 + 110 (g — dn - )12 r,

_Z</ Ph = %(ph—qz)der/

zeN Uy

(3.7) = Z(/ Pr— Gn)e:(prn — ¢:)dz + / he(gn — Gn - n)e-(gn — q- - n) dS)
Iy
<(llpn — aullo + 110 *(gn — @ - )|y

1/2
(X (1720n = @ B + 102, = .- w1, ))

zeN

he(gn — Gn - n)e-(gn — G - n)d‘9>
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For each z € A, we consider the semi-norms on a finite dimensional subspace of L*(w.)? x

L*((Qw.) N7 N)

gl = _min (1t 0n = a2l + 1222 (00 = a2 ) o).
1/2
z = 1 — 2 h — . 2 >> .
([l (Ezegqﬁ(%d(r\ph el + B9t = @2 -3y
F1= )

Then, (3.7) and Sk(T) C SK(T) yield

(3.8) oin (e =l + 15 (00— 0wl ) S D e g0l
ne zeN
We claim ||| - |[|-1 < ||l - |||z2- For a proof, suppose |||(pn,gn)|ll-2 = 0. Then, for each E

which is an inner edge of w,, we have p, = gg on the open set wg for some ¢ € Sk(TE)d.
Since p, € L¥1(T)4, we find that py|,, € S*1(Tr). The set of all such wg is a cover of w,
and there is a sequence Ei, ..., I, of such inner edges such that wg, Nwg,,, # 0, so that we

deduce pyl,. € S*71(T.). Moreover, g, = p;, - n on each edge £ C 7y with z € E; while for
edges F' C 0w, N7y with z ¢ F we have ¢.|g = 0. Altogether, we deduce |||(pn, gn)|[|:1 =0
A compactness and scaling argument then shows our claim

(3.9) I e Sz on £57HT2) < LY {E € €2 E C 0w.}).

~

Utilizing (3.9) in (3.8) we conclude
(310) min (e = allz + 1 (o0 = @ m)lze,) S 3 e )1
zeN

N Z w22 Y- min (Ips = asll3., + hellon — ag -2l rap). O
zeN Fee €S TR)

Remark 3.1. The assertions of Theorem 3.1 and 3.2 hold verbatim for three space dimensions
where T consists of tetrahedra or parallelepipeds with the same proofs.

4. APPLICATIONS TO CONFORMING FINITE ELEMENT SCHEMES

Given right-hand sides f € L*(Q), g € L*(?n), and up € H'(?p), let w € H'(Q) denote

the unique weak solution to

(4.1) —Au = f in Q,
(4.2) u = up on ?p,
(4.3) du/on = g on 7y

Suppose a finite element scheme, based on a regular triangulation 7, provided a discrete
flux p, := Vuy, to the exact flux p := Vu € H(div;Q) such that u, € SYT), up(z) = up(z)
forall z€ NN ?7p and

(4.4) / Yuy, - Vwy, dr = / fwy, dx —|—/ gwy, ds for all wy, € SH(T).
Q Q Iy
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Theorem 4.1. There exvists an (ht,he)-independent constant ¢g > 0 (that depends on k
and the shape of the elements and patches) such that

(15) V0=l € min (el Vur = arllsg@) + 2651 0 = 00 m)lloges)

il [V = )l + 26 (3 R min [ FllFga)

U|FD_u zeX
In the infimum, "vlr, = up” stands for allv € H'(Q) with v=wup on 7p

Proof. Abbreviate e 1= u—uy, and let g, € S*(T)?. Assume that v € () satisfies v = up
on 7p and ||[V(up — v)||z < ||Vella. Recall p = Vu and p, = Vuy. Then (4.1)-(4.4) imply
(3.1). Hence, we may choose ¢ = g, and w = v — v in Theorem 3.1 to obtain with Cauchy’s
inequality for the second term that

(4.6) HV@H%Z/Ve-de:z;—l—/Ve-V(v—uh)dx
Q Q

< 19wls (callpn — aills + esll ¥ (g~ - )y

+ea(YR2min|f +divas = £l3a) ") + 11V (wn = o)l Vel

zeK
Since ||Vw|l2 < |[Vellz + ||V (up — v)|l2 < 2||Vel|2, we can divide (4.6) by ||Ve||z to verify

(4.7) Vel < 2eallpn — anll2 + 2¢501h (g = qn - n)lloiry + 1V (un = v)]|2
—|—203 Zh mme—I—dlvqh I H2Q )1/2.
zeX

Let div 7 denote the T-piecewise action of the div-operator. The triangle inequality in the
last summand in (4.7) and h, < hy for z € TNAN and T € T and a summation over elements
show

th mme +divgy — fll30. S a7 divr(pn — a)ll3

zeX

-|-Zh mme—I—leTph—f 2.0

zeX

Note that divrp, = A7u, = 0 for our choices of u, € S (7). A T-elementwise inverse
estimate shows ||hrdivr(pn — qn)ll2 < |lpr — qull2 (with a constant that depends on the
shape of the finite elements only). Utilising this in (4.7)-(4.8) we deduce (4.5). O

The subsequent lemma shows that inf,. —., |V (un, — v)||z2(q) is a higher order term.

Lemma 4.1. Suppose that up(z) = up(z) for all z € NN 7Tp. Then there exists an he-
independent constant ¢ > 0 (that depends on the shapes of the elements only) such that

(4.9) inf  ||V(u, — v)HLz < cllo a(uh — uD)/&SHLz (T'p)-

Y|P p =Up
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Ifup € H*(Ep) :={v e L*(Tp):VE € Ep, v|g € H*(E)}, we have
(410) inf HV(U}L — U)HL2(Q) S Clloi/z gUD/aSzHL2(FD).

vlr ,=up
Proof. Let E € &p belong to some T € T and denote v := 7p N JT. We determine
w € HY(T) by extending the boundary values w|, = u, —up and w|ar\y = 0. Note that w is
continuous on J7 since wu; interpolates up = v at each node on 7 p. An harmonic extension
of wlar to w € H'(T) yields

1/2 1/2
(4.11) IVl S Nwllmeer S lwllyalldw/os)y 5y

where we applied an interpolation estimate. A one-dimensional integration argument shows
||wl|2.00 < hr ||0w/0s]|2,0r. Consequently,

(4.12) [V wllor < by 10w/ 8|20 = hi P |0(us, — up)/Ds]|2-

A scaling argument guarantees that the constant in (4.12) is hr-independent. Defining v by
u, —w on elements on 7 p and by zero on other elements then shows the lemma. The second
estimate follows from ||w||2 07 < k% [|0*w/0s*||2.01- O

Lemma 4.2. Suppose g € H'(Ex) and, for each node = € N N7y where the outer unit
normal n on 7 n is continuous (hence constant in a neighbourhood of z as 7 n is a polygon),
let g be continuous. Then, the set

(4.13) SV(T,q):={q, e ST :VEE€ENV2 € ENN, q(2) - ng = g(2)}

is non-void and, for each q, € SN(T,¢),

(4.14) 1he*(g = an - )l < 10 0eq /05 12(r)-

Proof. Elementary estimates on each edge on 7 x verify (4.14); the proof of Sx(7,g) #
follows from an explicit construction in Example 4.1. O

Example 4.1. We define an operator A : L*(Q)? — S\ (T, g) by
(4.15) Ap:= p.e.,
zeN
where p, := J%Zpdx = @ fwzpdl' € R? for z € N\ 7y while we incorporate Ap(z) - ng =

g(z) for z € NN 7y. In case z = F, N B, for two distinct edges Fy, By € Ex with distinct
outer unit normals ng,, ng, on Fy, Fy at a corner z we choose p, € R? to be the unique
solution of the 2 x 2 linear system

(4.16a) np, cp. = 9gle(2) and ng, - p. =gl (7).
In the remaining cases z € Ky N7 p for By € Ey or z = Fy N Ey with two parallel edges
Ey, By € Exy with the unit tangent vector ¢z, let p. € R? solve

(4.16b) ng, - p. =9glg(z) and tg -p. = ][ tg, - pdz.
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The following corollary is (1.5) with a constant ¢; = ¢9 as in Theorem 4.1 and with
specified higher order terms from Lemma 4.1 and 4.2 and a Poincaré inequality.

Corollary 4.1. Under the conditions of Theorem 4.1, Lemma 4.1, and Lemma 4.2 we have
for f € HY Q) that

417 Viu—u 200y < € min Vuy, — 2
(4.17) |IV( e < 9%6%(7&)!\ = anllrz @)

+en (11 92un 5% eqw ) + 10 Deg 95l oy + 113V fllzeqay ).

The (ht,hg)-independent constant ¢1; > 0 depends on the shape of the elements and patches
only. ]

Remark 4.1. Let us emphasise that the derivatives along 7 are required only &-piecewisely
while f needs to be patch-wise (not only elementwise) in H' and so f € H'(Q). For
a non-smooth right-hand side f, ||h% V f|[12(q) may be replaced by a patch-wise L*~best-
approximation error in the approximation through constants of f (cf. (2.7)).

The global averaging process might be too expensive or its approximation may be ineffi-
cient and hence a local averaging process of interest. Recall that wg is the (interior of the)
union of all elements in 7 that share the edge F € £.

Corollary 4.2. Under the conditions of Theorem 4.1, Lemma 4.1, and Lemma 4.2 we have
for f € HY Q) that

) 1/2
V(=) < ez (30 min (19un = ellfacany + hillon = as - nllEsqoory))

Sl
Ece 9p €S (Tr

(1.18) ten (192 02 05? |aqr ) + 10X Beg /05l 2wy + 13V i@y

The (ht,he)-independent constant ¢12 = max{co,2¢5}/cr depends on the shape of the ele-
ments and patches only.

Proof. Theorem 4.1, Lemma 4.1, an approximation g, of ¢ as in Lemma 4.2 and a Poincaré
inequality show

(4.19) [[V(u=wun)ll2 S gg}%d(!\vw — @ill + 10 (g0 = an - 1) larn) + 15 *Deg /sl
qn

(11 0zun /0 |l2r, + W5V ]2
This and the first inequality of Theorem 3.2 imply the assertion. U

Remark 4.2. The results of this section hold also in three dimensions where 7 consists of
tetrahedra or parallelepipeds. The proofs of some details as Lemma 4.1 or Lemma 4.2 require
much more technical preparations and so are omitted in this overview.

Remark 4.3. 1t is shown in [CV, C2] that the edge—contributions (jump differences in the
normal fluxes components across edges) dominate in standard residual a posteriori error
estimates [BaR, B, BS, CF1, EEHJ, V]. Arguing as in [R1, R2, DMR] one can hence derive
alternative proofs of (4.18) and then of (4.17).
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Remark 4.4. In an L™-estimate of [HSWW] it is suggested to average over a domain of size
O(hlog(1/h)) instead of merely patches or the entire domain to obtain asymptotic exact
results.

5. APPLICATIONS TO NONCONFORMING FINITE ELEMENT SCHEMES

In the Laplace problem with mixed boundary conditions (4.1)-(4.3) we suppose that the
discrete flux pj, 1= Vyu, € LO(T)?, where V denotes the T-piecewise application of the
gradient, satisfies

(5.1) /Vfuh-thdx:/fwhdl'—l-/ gwy, ds for all wy, € SH(T).
Q Q Iy

The usual conformity conditions read for all I € £q U Ep,

(5.2) /E[uh] ds =0,

where [up]|p denotes the jump of u, across £ € &, and denotes up — uy, on 7 p. Those
conditions are satisfied by construction for Crouzeix-Raviart finite elements of lowest order.

Remark 5.1. Tt is stressed that S, (7T ) is a conforming test function space which is included
in the nonconforming finite element spaces for triangles or tetrahedra. For parallelograms,
(5.1) means that the polynomial degrees are at least of second order to include the conforming
term a1 9. This technical detail could actually be dropped since the contribution from an
enhanced finite element space leads to a higher order term [KS]. We restrict our analysis to
triangles or tetrahedra for simplicity.

Theorem 5.1. Suppose that 7 5 is connected and that 7 p belongs to only one connectivity
component of 0Q. Then, there exists an (hr, he)-independent constant ¢i3 > 0 (that depends
on k> 1 and the shape of the elements and patches) such that

(5.3) IVr(u—w)lz@ < min (sl Vrun — aillze@ + esllhe (g = g - )2y
g €SH(T)?

. 1/2
+ C5Hhé/2(Qh = auD/as)Hp(pD)) + @,(Z h? min || f — fZH%2(Qz)> /2
zeX f=E€R

z€

Here, t € L°(Ep)? denotes the unit tangent vector on 7 p.

Remark 5.2. The following lemma is based on the Helmholtz decomposition of a vector—field.
The decomposition is available in three dimensions as well (cf., e.g., [GR]) but the notation
is more involved so we restrict the discussion to the two-dimensional setting for brevity.

Lemma 5.1. For all p — p, € L*(Q)?, there exist o, 3 € H'(Q) that satisfy boundary con-
ditions a|r, =0 and B|r, is constant such that

(5.4) p—pr=Va+Culg and |p- ph”?’ﬁ(ﬁ) = ’\Va’\%2(9) + HvﬁH%%Q)-

Proof. The lemma follows from the Helmholtz decomposition where o € H},(Q) solves Aa =
div (p — pn) and AB = curl (p — pp,) with proper boundary conditions, cf., e.g., [GR]. O
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Proof of Theorem 5.1. For p = Vu and p, = Vyu, Lemma 5.1 yields

(5.5) o=l = [ (=) Fade+ [ (p=py) - Curl 3.

Since 7y is connected we may and will assume without loss of generality that 7 =0 on 7 y.
According to (4.1)-(4.3) and (5.1) we infer (3.1) and hence may choose ¢ = ¢, € S*(T)? and,
in case o £ 0, w = a/||a|20 in Theorem 3.1 to obtain

(5.6) /(p —pi) - Vadr < |[Val, <C2HPh — aull2 + sl ke (g — g - n)llary
Q
) ) 1/2
Fes(Qo i min I+ divan— Ll ).

The estimate of the last term in (5.5) will follow from Theorem 3.1 as well once we established
an analogy to (3.1), namely

(5.7) /(p —pp) - Curl wy,de =0 for all wy, € Sy(T),
Q

where Sx/(7) = {vy, € SY(T) : v, = 0on ?7x}. It is essential to notice that dwy,/ds is
constant and [uy] has vanishing integral on any edge. An elementwise integration by parts
on the left-hand side of (5.7) yields volume terms (u — wy,)div 7Curl w;, = 0 and edge terms
[(u — up)Owy/0s] = [up]Owy/ds whose integral vanishes on any F (the case £ € &g is
indicated and the assertion is true for £ € Ep as well; w;, = 0 on 7 5 shows it for £ € Ey).
In this way we establish (5.7).

To employ Theorem 3.1, we interchange components, writing in this proof Q(a,az) :=
(—as, ay) for vectors, and we interchange the role of the boundaries and adopt Theorem 2.1
and (3.1) where ?D = 7y acts as the Dirichlet boundary and ?N = 7 p acts as the Neumann
boundary. Writing p = Qp and py = Qps, (5.7) reads [,(p — pn) - Vwpdr = 0 for all
wy, € SH(T) = SL(T) and this is (3.1). Reading Theorem 3.1 in the present notation we
obtain

(5.8) /(p —pp) - Curl Bdx < ||V <C2th — all2 + es|| ke (Dun)ds — qu - )|ars
Q

+ ey (Z h2||curl (g — ph)”%,&))m)

zeX

with curl 7(gn, — pn) := div 7Q(gn — pr). In the second last term, t = Qn denotes the unit
tangent vector and in the last term we used that curl 7p = 0 = curl 7pp.

The remaining arguments are similar to those in the proof of Theorem 4.1 and hence
omitted. O

In contrast to the conforming situation, Theorem 5.1 demands averaging functions to
satisfy some conditions on the Dirichlet boundary.

Lemma 5.2. Suppose up € H*(Ep) and, for each node = € N N7 p where the outer unit
normal n on 7 is continuous let Qup/ds be continuous. Then, the set

(5.9) SH(T,up) :={qn € SHT)': VE € EpV2z € ENN, qu(2) -ty = up/ds(2)}
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is non—void and, for each q, € Sp,(T,up),

(5.10) b (qn - te = Oup0s)ll2wp) < I 0kun /05|12 ,)-

Proof. Similar to (4.10) in Lemma 4.1 or 4.2. O

FExample 5.1. Assume the conditions of Lemma 4.2 and Lemma 5.2 on the data ¢ and up.
We define an operator A : L*(2)* — Sy (T,9) N SH(T,up) by (4.15) and p. := J%)Zpdx
for z € N\ 7. In case z € (M N 7x)\ 7p we preceed as in (4.16a) resp. (4.16b). In case
z€(NN7p) \?_N we consider the analogous 2 x 2 systems

(5.11a) tg, - p. = Ouplg,/0s(z) and tg, - p. = Qup|g,/0s(2)

(cf. (4.16a) and notation from Example 4.1), resp., as an analog to (4.16b),

(5.11b) tg, - p. = Ouplp,/0s(z) and ng, -p, = ][ ng, - pde.

For 2 € 7p N?xy C N we require a compatibility condition if ng, = tg,, namely g(z) =
Oup/0s(z).

Then, we define p, € R* as in (5.11b) when F, C 7 p (the case Fy C 7 p is analogous). For
ng, # *tg, we need no further compatibility of the data and solve the 2 x 2 linear system

(5.12) tg, - p. = Ouplg,/0s(z) and ng,(z)-p. = g(2).
(Here £y C 7 p; the case Ey C 7 p is analogous.) O

The modification of (1.5) in the nonconforming setting is a direct consequence of Theorem
5.1, Lemma 5.2 and Example 5.1. Note that Corollary 4.1 is a special case apart from the
different treatment of the Dirichlet boundary conditions.

Corollary 5.1. Under the conditions of Theorem 5.1, Lemma 4.2, and Lemma 5.2 we have
for f € HY Q) that

5.13 \V — 2 < 1 \V — 2
(5.13) |[Vr(u—upn)lL (Q)_013qh€$}v(7f§1)1r1f}%(77u13)!\ 7(un — an)ll 2

+ eua (W2 02up 052 2 py + 102 *0eq /03l 12 0wy + 1RV fllr2y). O

The analog to Corollary 4.2 concludes this section on lowest order Raviart—Crouzeix finite
elements.

Corollary 5.2. Under the conditions of Theorem 5.1, Lemma 4.2, and Lemma 5.2 there
exists a constant ¢y > 0 such that we have for f € H'(Q)

5.14) ||Vor(u — unl| g2y < < ' Vorun — gz
(5.14) [[Vr(u —upllr2q) < s Eengefgl(gE)d(!\ TUn — 4Bl 12(0p)

1/2
+ hillgn = - 1llEsery) + hellas -t = lxmnr,)) )
+ e (|hg02up 05| r2(r py + |12 0eq/ 08| r2ry) + 13V Fllz2(@y)-

Here, ulp;, denotes an approximation of Jup/ds as in Lemma 5.2, i.c., ul ), = qn-te on Tp
Jor some q, € SH(T ,up). O
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Remark 5.3. The results of this section can be generalised to three space dimensions as all
the required tools such as a Helmholtz decomposition are available then as well. Details on
the three-dimensional case are omitted for notational simplicity.

Remark 5.4. Arguing as in [CV, C2] one can prove that edge contributions (jumps in the
fluxes across edges) dominate the residual based error estimates from [DDPV, C2, KSJ.
Arguing in the spirit of [R1, R2, DMR] one can hence derive alternative proofs of (5.14) and
then of (5.13).

6. APPLICATIONS TO MIXED FINITE ELEMENT SCHEMES

In the Laplace problem with mixed boundary conditions (4.1)-(4.3) we suppose that the
discrete flux p, € H(div,Q) N L¥(T)?* and the displacement approximation u; € LF(T)
satisfy, for all ¢, € Curl S*(7) with ¢, -n=0o0n 7y, and for all T € T and E € Ey that

(6-1) fg(ph “qn + up div C]h)dl‘ = pr up qp, - nds,
(6.2) Jo(f + divpy)dz =0,
(6.3) Ju(g—pn-n)ds = 0.

Remark 6.1. Standard mixed finite element methods of any order such as Raviart-Thomas
(RT), Brezzi-Douglas-Marini (BDM), or Brezzi-Douglas-Fortin-Marini (BDFM) elements (cf.
[BF] for details) provide (6.1)-(6.3) [C1].

Theorem 6.1. Suppose that 7 5 is connected and that 7 p belongs to only one connectivity
component of 9Q and let f € H'(T), i.e. flr € HYT) for all T € T. Then, there exists an
(hr, he)-independent constant ci6 > 0 (that depends on k > 1 and the shape of the elements
and patches) such that

(6.4) lp = prllzz@) <  min <02HPh — gulla@ + esllhg? (Dun/ds — g - 1)l
9n€SH(T)?
) 1/2
+ (Y k2 minlewl g, = £-F20,)7)
zeK

+ 16| AEV(f + divpa)|ag + cisl[hE (g — pr - 1) |2y

Proof. Lemma 5.1 provides (5.5) and we may and will assume without loss of generality that

B =0on?y. An integration by parts and (6.2)-(6.3) show for the T-piecewise integral mean
ar € LO%T) of a € HLH(Q)

(6.5) /Q(p—ph)-VOédwZA(f+divph)adw+/ (9—pn-n)ade

Iy

:/Q(f—l—divph)(oz—ozf)dx—l—/ (9 —pn-n)(a—ar)de.

Iy

The second last term is estimated with an elementwise Poincaré inequality while the last
term in (6.5) involves a trace theorem [BS, CF1, Cl], namely

—1/2 1/2
(6.6) lalles < B Nallars + R IV allor,
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for a = a — a7 € HY(Tg) on the triangle Ty € T and the edge F € Ey, £ C 9Tg. With a

second application of Poincaré’s inequality, (6.6), and Cauchy’s inequality show

/ (p—pu) - Vade < |[hr(f 4+ divp) ||z [[Valls + 177 (g — pr - n)llaryllie (@ = ar)|lary
Q

(6.7) < 0l (AT (F + divp) a4+ 1520 = -y ).

The second contribution on the right-hand side of (5.5) is analysed with Theorem 3.1,
where, as in the proof of Theorem 5.1, we interchange components and the role of the
boundary conditions. As already employed in [C1, C2], curlw, € H(div,Q) for all wy, €
SN(T). Moreover, curlwy, -n = dwy/ds = 0 on 7 . Hence, (6.1) and an integration by parts
for p yield (5.7) because of (4.2). Arguing as in the proof of Theorem 5.1, we deduce for
arbitrary ¢, € S*(T)? that

(6.8) /(p —pp) - Curl Bdx < ||V <C2th — aulla + es||hE* (Dup/ds — g - Dlary
Q

. 1/2
+ C3<Z h? min leurl 7q, — f2]13.0.) / >

zeX

The remaining details are analogous to the proof of Theorem 5.1 and hence omitted. O

The precise version of (1.5) for lowest order mixed finite element methods is summarised
as follows.

Corollary 6.1. Suppose that the discrete flux py satisfies curl rp, = 0, divyp, € L%(T)
and py -n € L°(Ex). Then,

(6.9) |lp— thL?(Q) < qhesril(lgw) crrllpn — QhHL2(Q)

+ s (10 *03un 05 2wy + 10 Deg /03 2wy + 15V 7 f|l2(w))-
Proof. Combine Theorem 6.1, Lemma 4.1 and 5.2 and use an inverse estimate to prove
Y Bl ranl3a. = Y hZlleurl r(gn — pi)ll3e. S D law — prllsa. S llaw = pallee O
z€K zeX zeX

Remark 6.2. The assumptions in Corollary 6.1 are satisfied for lowest order Raviart-Thomas
and Brezzi-Douglas-Fortin-Marini finite elements.

FExample 6.1. Assume the conditions of Lemma 5.2 on the data up. We define an operator
A L*(Q)?* = SH(T,up) by (4.15) and p, := J%Zpdx forze N\ 7p. Incase z€e N N?7p

we consider 2 x 2 systems

(6.10a) tg, - p. = Ouplg,/0s(z) and tg, - p. = Qup|g,/0s(2)

(cf. (4.16a) and notation from Example 4.1), resp., as an analog to (4.16b),

(6.10b) tg, - p. = Ouplg,/0s(z) and ng, -p. :f ng, - pde. O

A local version follows from Theorem 3.2 and concludes this section on mixed finite element
methods.
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Corollary 6.2. Under the conditions of Theorem 6.1 and Corollary 6.1 we have

_ < . _ 2 h ! _ t 2 1/2
[P PhHL?(Q)_019(E€€qE€fgl(gE)2!\Ph Q)72 (0p) + Rl — az - iar,))

+ ars(|hg202up ) 0s* || rar py + |12 0eg 08|\ 12y + |B3V 7 fllr2(y). O

Remark 6.3. The results of this section could be generalised to three space dimensions.
Details are omitted for brevity.

Remark 6.4. For related residual based a posteriori error estimates we refer to [A, BV, Cl1,

02, HW].

7. NUMERICAL EXPERIMENTS

The theoretical results of this paper are supported by numerical experiments. In this
section, we report on two examples of the problem (4.1)-(4.3) on uniform, adapted, and
perturbed meshes for conforming, nonconforming, and mixed finite element methods.

Example 7.1. Let f := 0 on the L-shaped domain Q := (—1,1)*\ [0,1] x [-1,0], up := 0
on the Dirichlet boundary 7 p := {0} x [—1,0]U[0,1] x {0}, and on the Neumann boundary
?N = 6(2 \ ?D,

glr, @) ==2/3r""*(—sin(¢/3), cos(¢/3)) - n

using polar coordinates (r, ). The exact solution u(r, @) := r?/3sin(2¢/3) of (4.1)-(4.3) has
a typical corner singularity at the origin. In this example, the right-hand sides are smooth,
but the solution is not. The coarsest triangulation 7y consists of three squares halved by
diagonals parallel to the vector (1,1), cf. Fig. 1.

Fxample 7.2. Let f := —Au for the function u(z,y) := x(1 — 2)y(1 — y) arctan(60(r — 1)),
r? = (z — 1.25)% + (y + 0.25)? on the unit square Q := (0,1)? and set up := 0 on the entire
boundary ?p := 992 (75 = ()). The solution u to (4.1)-(4.3) is H?-regular but f (although
theoretically smooth) has huge gradients on the circle with radius 1 around (1.25,—0.25).
The coarsest triangulation 7Ty consists of four squares halved by diagonals parallel to the

vector (1,1), cf. Fig. 3.

The following adaptive algorithm generates all the sequences of meshes 7o, 71, 72, ... in this
paper which are uniform for ® = 0 or adapted for ® = 1/2 in (7.2). Since the resulting
meshes might show local symmetries, we considered meshes that are either unperturbed
(relative to 7o) for ¥ = 0 and randomly perturbed for ¥ = 1 in step (e). The implementation
was performed in Matlab in the spirit of [ACF] with a direct solution of linear systems of
equations. For details on the red-blue-green-refinements we refer to [V].

Algorithm (AY). (a) Start with a coarse mesh To, k = 0.
(b) Compute the discrete solution p; on the actual mesh 7.
(c) Compute error indicators

(7.1) nzr = |lpn — Aprllz2 (1)

for all T € T and plot energy error ey := ||p — pu||z2() and its estimator 03y := > crny
versus the degree of freedom N of the triangulation 7.
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(d) Mark the element T for red-refinement provided

7.2 > 0O max i

(7.2) nzr 2 O maxizr

(e) Mark further elements (red—blue—green-refinement) to avoid hanging nodes. Generate a
new triangulation T4, using edge—midpoints if ¥ = 0 and points on the edges at a random
distance at most 0.3 hgr from the edge-midpoints if ¥ = 1. Perturbe the nodes z € N4,
of the mesh 7N7§_|_1 at random with values taken uniformly from a ball around z of radius
¥ 27%/15. Correct boundary nodes by orthogonal projection onto that boundary piece they

are expected such that Q,7 p,7n are matched by the resulting mesh 741 exactly. Update
k and go to (b).

7.1. Results for conforming finite element methods. In the conforming finite element
scheme, we use operator A from Example 4.1 in (7.1) of Algorithm (AY) and report on
results obtained for (0©,d) = (0,0) (uniform), (1/2,0) (adaptive), and (1/2,1) (adaptive,
perturbed).

FIGURE 1. Adaptively refined meshes 7y (left upper) to 7s (right lower) (left)
and perturbed triangulation Ty with 1157 free nodes (right) in Example 7.1
for the conforming finite element scheme

Some obtained meshes for Example 7.1 are shown in Fig. 1 and illustrate a high automatic
mesh-refinement of the adapted meshes towards the origin, which is expected to improve the
convergence rate of 2/3 possibly to the optimal value 1. The result of the perturbation in
step (e) of Algorithm (Ai/z) is seen in the right half of Fig. 1. We believe that the meshes

generated by Algorithm (Ai/z) have less local symmetry than that by (A?/z). According
to local extrapolation, symmetry could cause superconvergence phenomena. To check the
practical convergence behaviour, we plotted in Fig. 2 for each mesh Ty an entry (N, ey) and
(N,nn). A log-scaling on both axes allows a slope —a of a straight line in the plot, that
connects two subsequent entries for a series of meshes 7Ty, 71, Tz, ... generated by Algorithm
(A), to be interpreted as an experimental convergence rate 2a (owing to N o h~2 in
two dimensions). We observe experimental convergence rates 2/3 resp. 1 for uniform resp.

adapted meshes (generated by Algorithm (AY) for © = 0 resp. © = 1/2). Furthermore,
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FIGURE 2. Error and error estimator for uniform, adaptive, and perturbed
adaptive mesh-refinement in the conforming finite element scheme in Example

7.1

FIGURE 3. Adaptively refined meshes 7y (left upper) to 7s (right lower) (left)
and perturbed triangulation 715 with 1909 free nodes (right) for the conforming
finite element scheme in Example 7.2

even for coarse meshes, ny appears to be a very good approximation to ey; corresponding
entries almost coincide for (©,9) = (1/2,0). If these meshes are perturbed, cf. Fig. 1,
the quotient ny /ey is almost a constant very close to 1. Numerical checks with different
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FIGURE 4. Error and error estimator for uniform, adaptive, and perturbed
adaptive mesh-refinement in the conforming finite element scheme in Example

7.2

numerical quadrature rules (used to evaluate ey) convinced us that in general, ny behaves
not asymptotically exact in practise but is very accurate.

In Example 7.2 we obtained meshes and experimental convergence rates displayed in Fig. 3
and 4. Although u belongs to H*(2) and we expect linear convergence, u has huge second
order derivatives along a circular arc where f is steep. We observe high refinements in the
adapted meshes towards this arc. In this example the preasymptotic range is very large,
an experimental convergence rate 1 can be observed only for N > 300 for all refinement
strategies. In this regime the estimator nz appears as a good approximate for ey and the
entries (N, en) and (N, ny) almost conincide for (0,9) = (0,0),(1/2,0). This is not the case
for (©,9) = (1/2,1) but the quotient ny/en & 0.9 is still close to 1.

7.2. Results for nonconforming finite element methods. The operator A from Exam-
ple 5.1 serves in (7.1) to define nz ¢ for first order Crouzeix-Raviart finite elements (cf., e.g.,
[BS, Ci]) in Algorithm (AY). The generated meshes look similar to those shown in Fig. 1
resp. Fig. 3 and therefore are not displayed in this paper. The experimental convergence
rates for Example 7.1 resp. 7.2 are illustrated in Fig. 5 resp. Fig. 6. The overall picture
appears similarly to the above discussions and we draw the same conclusions. For uniform
meshes, the quotient ny /ey is nearly constant 1.2 but significantly larger than 1.1 in Fig. 2.

7.3. Results for mixed finite element methods. For the Raviart-Thomas finite element
method (cf. [B, BF, BS]) we use the operator A from Example 6.1 to define nzp. The
adapted meshes look similar to those shown in Fig. 1 and Fig. 3 and therefore are not
displayed in this paper. Fig. 7 and Fig. 8 display the error and the estimator for the mixed
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Error and error estimator for uniform, adaptive, and perturbed
adaptive mesh-refinement in the nonconforming finite element scheme in Ex-
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(0,0),(1/2,0),(1/2,1). We obtain the same experimental convergence rates as in the previous

methods.
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adaptive mesh-refinement in the mixed finite element scheme in Example 7.1
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FIGURE 8. FError and error estimator for uniform, adaptive, and perturbed

adaptive mesh-refinement in the mixed finite element scheme in Example 7.2

7.4. Remarks. (i) Our overall experience with Algorithm (AY) and other (e.g. residual-
based) adaptive algorithms supports that all such adaptive algorithms yield a considerable
convergence improvement.

(ii) Although asymptotic exactness of ny is not observed, the reliability-constant ¢; in (1.5)
and the efficiency constant are experimentally very close to 1 since ny is a very good ap-
proximation to ey for very fine meshes (i.e. when h.o.t. is neglegible, say, for N > 100).
(iii) Note that the efficiency constant is not known to be one as ny (based on the averaging
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operator A) is different from

(7.3) Nz = i 1Pr — anllzz(@)-
For conforming linear triangular finite elements, the efficiency of ny with an averaging op-
erator follows from [R1, R2].
(iv) Instead of the averaging operator A, we tested the error estimator ny < ny from (7.3)
and found that sometimes the performance is poorer than that of ny: In Fig. 4, for instance,
the results of 7 are much smaller than those of ny &~ en. The averaging technique suggested
in [HSWW], average over a domain of size O(hlog(1/h)), is expected to give values between
nn and ey.
(v) The error estimation in Example 7.1 is very accurate even for very coarse meshes. Hence
the higher order terms do not seem to be important here although w is nonsmooth. This
agrees with our theoretical prediction in Equation (1.5) since f and up are zero and g is
piecewise analytic. For a generic corner singularity of u, we expect

omin 1P = aullr2 () < min 1P = aullz2) < llp = pullr2()
and so the h.o.t. in Equation (1.4) are not expected to be dominant even for coarse meshes.
(vi) For coarse meshes in Example 7.2, higher order terms may cause the overall observation
that ny is much smaller than ey. Assuming ¢; &~ 1 (which is seen for fine meshes, whence
for neglegible h.o.t.) non-smooth data (V f is large) indicate that ey < ¢;nny + h.o.t cannot
be improved to ey < ¢1nn.
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