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Abstract. We devise a projection-free iterative scheme for the approx-
imation of harmonic maps that provides a second-order accuracy of the
constraint violation and is unconditionally energy stable. A correspond-
ing error estimate is valid under a mild but necessary discrete regularity
condition. The method is based on the application of a BDF2 scheme
and the considered problem serves as a model for partial differential
equations with holonomic constraint. The performance of the method is
illustrated via the computation of stationary harmonic maps and bend-
ing isometries.

1. Introduction

A widely used approach to discretizing partial differential equations that
involve a nonlinear pointwise constraint follows [3] and is based on semi-
implicit discretizations of gradient flows or evolution problems with a lin-
earized treatment of the constraint. A corresponding projection step to
guarantee an exact satisfaction of the constraint in appropriate quadrature
points can only be used in special situations, e.g., if the problem is of sec-
ond order and the finite element discretizations under consideration provide
certain monotonicity properties; cf. [9]. However, even if the projection is
stable, it may increase the residual of an approximation. It was observed
in [8] that the projection step can be omitted in many situations and that
the resulting constraint violation is controlled (linearly) by the step size in-
dependently of the number of iterations. We refer the reader to [7, Ch. 7]
for an overview of these results. If a high accuracy in the approximation
of the constraint is desired, then this limits the efficiency of the numerical
method. It is the goal of this article to devise a variant of the projection-free
scheme resulting from combining [3] and [8] that provides second order ac-
curacy in the constraint violation under discrete regularity conditions but is
guaranteed to satisfy a first order accuracy property unconditionally. Har-
monic maps serve as a model problem for partial differential equations with
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holonomic constraint, the application of our results to other problems is
illustrated by the computation of bending isometries.

To illustrate the main ideas we consider the numerical approximation of
harmonic maps into spheres that are stationary configurations of the Dirich-
let energy among unit-length vector fields for given boundary conditions,
i.e.,

−∆u = λu, |u|2 = 1 in Ω, u = uD on ΓD, ∂nu = 0 on ∂Ω \ ΓD,

in a bounded Lipschitz domain Ω ⊂ Rd with boundary part ΓD ⊂ ∂Ω of
positive surface measure and a given function uD ∈ C(ΓD;R`). The function
λ is the Lagrange multiplier related to the unit-length constraint and is given
by λ = |∇u|2. A weak formulation determines a solution u ∈ H1(Ω;R`) with
u = uD on ΓD and |u|2 = 1 in Ω, via the equation

(1) (∇u,∇v) = 0

for all v ∈ H1
D(Ω;R`) with v · u = 0 in Ω, i.e., u is stationary with respect

to tangential perturbations on the unit sphere along u. In view of irregular-
ity results for general harmonic maps, cf. [19], it is important to compute
harmonic maps with low Dirichlet energy.

The iterative scheme devised in [3, 8] realizes a semi-implicit time dis-
cretization of the gradient flow problem

(∂tu, v)? + (∇u,∇v) = 0

for all v ∈ H1
D(Ω;R`) subject to initial and boundary conditions u(0, ·) = u0

with |u0|2 = 1 and u|ΓD
= uD, v|ΓD

= 0, and the constraints

∂tu · u = 0, v · u = 0.

Particularly, with the backward difference quotient operator dtu
n = (un −

un−1)/τ , it computes for given u0 the sequence (un)n=1,2,... via the sequence
of problems

(dtu
n, v)? + (∇un,∇v) = 0

subject to homogeneous boundary conditions for dtu
n and v on ΓD, and the

linearized unit length condition

dtu
n · un−1 = 0, v · un−1 = 0.

Note that here dtu
n is seen as the unknown variable which then defines un

via un = un−1 + τdtu
n. The iteration is unconditionally well posed and

energy decreasing, i.e., choosing v = dtu
n yields that

‖dtun‖2? +
1

2
dt‖∇un‖2 +

τ

2
‖∇dtun‖2 = 0.

This implies the summability of the discrete time derivatives ‖dtun‖2? and
hence the weak convergence of subsequences to solutions of (1). A bound
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for the constraint violation thus follows from the orthogonality condition
and |u0|2 = 1, i.e., we have

|un|2 − 1 = |un−1|2 − 1 + τ2|dtun|2 = · · · = τ2
n∑
j=1

|dtuj |2.

Taking the L1 norm of this identity, the sum on the right-hand side is
bounded by τ(c?/2)‖∇u0‖2 provided that the induced norm ‖ · ‖? controls

the L2 norm up to a factor c
1/2
? .

The iterative scheme can also be seen as a backward Euler method for
the L2 flow of harmonic maps if the flow metric is the L2 inner product. For
such evolution problems the discretization based on higher order time step-
ping methods has recently been investigated in [1]; cf. also [10] for a nodal
treatment of the unit-length constraint. Provided that a sufficiently regular
solution exists, quasi-optimal error estimates have been derived which im-
ply bounds on the constraint violation. We study here the violation of the
constraint in the absence of a smooth and unique solution. The use of the
H1 seminorm ‖·‖? = ‖∇·‖ defines an H1 gradient flow which leads to faster
convergence if one is interested in stationary configurations.

The generalization of the semi-implicit backward Euler method for the
harmonic map heat flow devised in [1] computes for given u0, . . . , uk−1 the
sequence (un)n=k,k+1,... via the scheme

(u̇n, v)? + (∇un,∇v) = 0

subject to homogeneous boundary conditions on ΓD and the linearized con-
straint

u̇n · ûn = 0, v · ûn = 0.

Here u̇n is a higher order approximation of the time derivative and ûn a
suitable explicit extrapolation. Adopting concepts from the construction of
backward differentiation formula (BDF) methods as analyzed in, e.g., [17,
2], approximations with second order consistency properties are given by

u̇n =
1

2τ

(
3un − 4un−1 + un−2

)
,

or equivalently 2u̇n = 3dtu
n − dtun−1, and

ûn = un−1 + τdtu
n−1 = 2un−1 − un−2.

In particular, we have that un =
(
4un−1 − un−2 + 2τ u̇n

)
/3.

The iteration is initialized with one step of the linearized backward Euler
method and then repeated until the discrete time-derivatives are sufficiently
small or some final time T > 0 is reached. Note that we always regard u̇n

as the unknown variable in the time steps which is then used to specify the
new iterate un. The function u̇n satisfies homogeneous boundary conditions
on ΓD if un−2, un−1, un equal uD on ΓD.
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Algorithm 1.1. Choose u0 ∈ H1(Ω;R`) with u0|ΓD
= uD and |u0|2 = 1.

(0) Compute dtu
1 ∈ H1

D(Ω;R`) such that dtu
1 · u0 = 0 and

(dtu
1, v)? + (∇[u0 + τdtu

1],∇v) = 0

for all v ∈ H1
D(Ω;R`) with v · u0 = 0; set u1 = u0 + τdtu

1 and n = 2.

(1) Set ûn = 2un−1 − un−2 and compute u̇n ∈ H1
D(Ω;R`) with u̇n · ûn = 0

and

(u̇n, v)? +
1

3
(∇[4un−1 − un−2 + 2τ u̇n],∇v) = 0

for all v ∈ H1
D(Ω;R`) with v · ûn = 0; set un = (4un−1 − un−2 + 2τ u̇n)/3.

(2) Stop if ‖u̇n‖? + ‖dtun‖ ≤ εstop or nτ ≥ T .
(3) Increase n→ n+ 1 and continue with (1).

Note that the stopping criterion in Step (2) of the algorithm controls the
residuals in the partial differential equation and in the orthogonality rela-
tion. Since the subset of functions v ∈ H1

D(Ω;R`) satisfying v · ûn = 0 in Ω
is closed, the Lax–Milgram lemma implies that the iteration is uncondition-
ally well defined and terminates within a finite number of iterations. More
precisely, we have that

‖∇UN‖2G + τ
N∑
n=2

‖u̇n‖2? ≤ ‖∇U1‖2G,

where Un = (un, un−1) and ‖ · ‖G denotes a BDF-adapted variant of the L2

norm. We have ‖∇U1‖G ≤ c
1/2
G ‖∇u0‖ so that u̇n → 0 as n → ∞. For the

constraint violation we have that∥∥∥3

2
|uN |2 − 1

2
|uN−1|2 − 1

∥∥∥
L1

=
3

2
τ2
(
‖dtu1‖2 + τ2

N∑
n=2

‖d2
tu
n‖2
)
.

The right-hand side is always of order O(τ). If a discrete regularity property

applies, i.e., if dtu
1 ∈ L2(Ω) and τ1/2d2

tu
n ∈ L2(0, T ;L2(Ω)) uniformly as

τ → 0, then the right-hand side is of order O(τ2). The constraint violation
identity follows from the important relations

u̇n · un = dt|Un|2G +
τ3

4
|d2
tu
n|2,

|Un|2G =
τ2

2
|dtun|2 +

1

2
|un|2 +

τ

4
dt|un|2.

The constraint violation identity implies an estimate for the iterates via an
inductive argument. Namely, we deduce that

max
N=1,...,N ′

∥∥|uN |2 − 1
∥∥
L1 ≤ cqτ q.

This estimate holds unconditionally with q = 1. If the terms inside the
brackets on the right-hand side of the constraint violation identity remain
bounded we may choose q = 2. We remark that certain related estimates
hold for combinations of un and un−1 under additional discrete regularity
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conditions. All of our results are stated for a semi-discrete method but hold
verbatim if a spatial discretization with a nodal treatment of the (linearized)
constraint is considered.

The article is organized as follows. We specify our notation and collect
some auxiliary results in Section 2. In Section 3 we derive our main results.
The application to the computation of harmonic maps and bending isome-
tries is reported in Section 4. We remark that other approaches based on
higher order time stepping methods for partial differential equations such as
the Landau–Lifshitz–Gilbert equation typically employ a suitable projection
step or make use of constraint-preserving reformulations; cf. [12, 4, 5, 14,
16, 18].

2. Auxiliary results

We use standard notation for differential operators and Lebesgue and
Sobolev spaces, i.e., H1

D(Ω;R`) denotes the space of vector fields u : Ω→ R`
in L2(Ω;R`) whose weak gradients are square integrable and whose traces
vanish on ΓD ⊂ ∂Ω. We let | · | denote the Euclidean length of a vector or
the Frobenius norm of a matrix and ‖ ·‖ the L2 norm of a function or vector
field.

2.1. Discrete time derivatives. We always let τ > 0 denote a time-step
size which gives rise to the backward difference operator

dtu
n =

1

τ
(un − un−1)

for n = 1, 2, . . . , N and a sequence (un) in a Hilbert space. We also make
use of a second discrete time derivative, defined for n ≥ 2 by

d2
tu
n =

1

τ2
(un − 2un−1 + un−2).

A binomial formula shows that we have

(dtu
n, un) =

dt
2
‖un‖2 +

τ

2
‖dtun‖2.

Approximations of time derivatives with higher accuracy can be obtained by
a Lagrange interpolation of k+1 successive members of a sequence (un) cor-
responding to time levels (tn) and a subsequent evaluation of the derivative
of the interpolation polynomial at tn. This leads to backward differentiation
formulas and if three successive values un, un−1, un−2 are used, i.e., k = 2,
provides the discrete time derivative

u̇n =
1

2τ

(
3un − 4un−1 + un−2

)
.

The discrete time derivatives dtu
n and u̇n define equivalent `2 seminorms in

the sense of the following lemma.



6 G. AKRIVIS, S. BARTELS, AND C. PALUS

Lemma 2.1 (Norm equivalence). For every sequence (un) and N ≥ 1 we
have for the seminorms

|(un)|τ,1 =
(
τ

N∑
n=2

‖u̇n‖2 + τ‖dtu1‖2
)1/2

, |(un)|τ,2 =
(
τ

N∑
n=1

‖dtun‖2
)1/2

,

that c−1
12 |(un)|τ,1 ≤ |(un)|τ,2 ≤ c12|(un)|τ,1 with c12 ≥ 1.

Proof. The relation 2u̇n = 3dtu
n − dtu

n−1 immediately leads to the first
estimate. It also implies the second estimate since

‖dtun‖2 ≤
(2

3
‖u̇n‖+

1

3
‖dtun−1‖

)2
≤ 8

9
‖u̇n‖2 +

2

9
‖dtun−1‖2.

Summing over n = 2, 3, . . . , N and absorbing the second sum on the right-
hand side except for ‖dtu1‖2 implies the estimate. �

We also state an inverse estimate for discrete seminorms.

Lemma 2.2 (Inverse estimate). For every sequence (un) and N ≥ 1 we
have (

τ
N∑
n=2

‖d2
tu
n‖2
)1/2

≤ τ−1cinv

(
τ

N∑
n=2

‖u̇n‖2 + τ‖dtu1‖2
)1/2

.

Proof. Noting that 2(u̇n − dtun) = τd2
tu
n yields that

τ‖d2
tu
n‖ ≤ 2

(
‖u̇n‖+ ‖dtun‖

)
.

Taking squares, summing over n = 2, 3, . . . , N , and incorporating Lemma 2.1
proves the estimate. �

2.2. BDF-adapted norm. The definition of u̇n leads to the multistep
scheme ẏn = f(tn, y

n) which has a second order consistency property and
is referred to as a BDF2 scheme. It satisfies an energy stability property
which is a consequence of the identity, cf. [17, pp. 308],

(2) u̇n · un = dt|Un|2G +
τ3

4
|d2
tu
n|2,

where Un = (un, un−1) for n ≥ 1 and for an arbitrary pair X = (x, y) of
elements x, y from an inner product space we set

|X |2G = (GX ) · X = g11|x|2 + 2g12x · y + g22|y|2,

with g11 = 5/4, g12 = −1/2 and g22 = 1/4. The positive eigenvalues
λ± = (3± 2

√
2)/4 of the symmetric matrix G = (gij) yield the equivalence

λ−(|x|2 + |y|2) ≤ |(x, y)|2G ≤ λ+(|x|2 + |y|2).

Moreover, we have |(x, y)|2G −
1
4

(
|x|2 + |y|2

)
= x · (x− y), and

(3) |(x, y)|2G −
1

2
|x− y|2 =

3

4
|x|2 − 1

4
|y|2.
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The identity indicates that the expression on the right-hand side is of rele-
vance. We include an expression for its difference to squares of linear com-
binations of x and y.

Lemma 2.3 (Convergence to identity). For λ ∈ R we have

3

2
|x|2 − 1

2
|y|2 − |λx+ (1− λ)y|2 = (3− 2λ)y · (x− y) +

(3

2
− λ2

)
|x− y|2.

Proof. The left-hand side of the identity defines the quadratic form

q(x, y) = (x, y) ·A(x, y) = a11|x|2 + 2a12x · y + a22|y|2,
with a11 = 3/2 − λ2, a12 = −λ(1 − λ), and a22 = −3/2 + 2λ − λ2. Letting
m = (x+ y)/2 and r = (x− y)/2, we have, noting q(m,m) = 0, that

q(x, y) = q(m,m) + 2(m,m) ·A(r,−r) + q(r,−r)
= 2(a11 − a22)m · r + (a11 − 2a12 + a22)|r|2

= (3/2− λ)(x+ y) · (x− y) + λ(1− λ)|x− y|2,
The asserted relation now follows from noting that (x + y) · (x − y) = 2y ·
(x− y) + |x− y|2. �

The value λ = 3/2 leads to a quadratic difference.

Remark 2.4. Using (3) in Lemma 2.3 leads to

2|(x, y)|2G − |λx+ (1− λ)y|2 = (3− 2λ)y · (x− y) +
(5

2
− λ2

)
|x− y|2.

Hence, the convergence 2|(x, y)|2G → |λx + (1 − λ)y|2 as x − y → 0 is only
linear in general.

3. Main results

We provide in this section the derivation of the identities and estimates
for the energy stability and constraint violation. We always denote a pair
of subsequent approximations for n ≥ 1 via

Un = (un, un−1)

with the iterates (un)n=0,... obtained with Algorithm 1.1. Throughout the
following we assume that the norm induced by the scalar product (·, ·)?
controls the L2 norm, i.e., that

‖v‖ ≤ c1/2
? ‖v‖?

for all v ∈ H1
D(Ω;R`). The first result concerns the initialization step.

Proposition 3.1 (Initialization). (a) We have

‖∇U1‖2G ≤ cG‖∇u0‖2, τ‖dtu1‖2? ≤
1

2
‖∇u0‖2.

(b) We have ∥∥∥3

2
|u1|2 − 1

2
|u0|2 − 1

∥∥∥
L1

=
3

2
τ2‖dtu1‖2.
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Proof. (a) Choosing v = dtu
1 in Step (0) of Algorithm 1.1 shows that we

have
1

2
‖∇u1‖2 + τ‖dtu1‖2? +

τ2

2
‖∇dtu1‖2 =

1

2
‖∇u0‖2,

which implies the bounds for ‖∇U1‖2G and τ‖dtu1‖2?.
(b) Since dtu

1 · u0 = 0 in Step (0) of Algorithm 1.1 we have that |u1|2 =
|u0|2 + τ2|dtu1|2. Noting |u0|2 = 1 shows the identity. �

The second result implies that the iteration is energy decreasing and that
it becomes stationary for n→∞.

Proposition 3.2 (Energy decay). For every N ≥ 1 we have

‖∇UN‖2G + τ

N∑
n=2

‖u̇n‖2? +
τ4

4

N∑
n=2

‖d2
t∇un‖2 = ‖∇U1‖2G.

Proof. Choosing v = u̇n in Step (1) of Algorithm 1.1 yields, using (2), that

τ‖u̇n‖2? + ‖∇Un‖2G − ‖∇Un−1‖2G +
τ4

4
‖d2

t∇un‖2 = 0.

A summation over n = 2, 3, . . . , N leads to the asserted identity. �

Remark 3.3. Remark 2.4 implies that for the extrapolated value ûn+1/2 =
(3un − un−1)/2 we have

1

2
‖∇ûn+1/2‖2 +

1

8
τ2‖dtun‖2 = ‖∇Un‖2G,

which yields an energy law and shows that the BDF2 method has a stabilizing
effect.

We next derive constraint violation estimates which provide an uncon-
ditional linear rate and a quadratic error under a mild discrete regularity
condition. Qualitatively, the condition requires that sequences of approxi-
mations are uniformly bounded in W 1,∞(0, δ;L2(Ω))∩H3/2(0, T ;L2(Ω)) for
some δ > 0.

Proposition 3.4 (Constraint violation I). For every N ≥ 1 we have

(4)
∥∥∥3

2
|uN |2 − 1

2
|uN−1|2 − 1

∥∥∥
L1

=
3

2
τ2‖dtu1‖2 +

3

2
τ4

N∑
n=2

‖d2
tu
n‖2.

(a) Unconditionally and uniformly in N ≥ 1, (4) is bounded by c1τ .
(b) Assume that for N ′ ≥ 1 we have

(5) ‖dtu1‖2 + τ2
N ′∑
n=2

‖d2
tu
n‖2 ≤ cr.

Then, (4) is bounded by c2τ
2 for every N = 1, 2, . . . , N ′.
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Proof. Noting that u̇n · ûn = 0 and un − ûn = τ2d2
tu
n, we find, using (2),

|Un|2G − |Un−1|2G = τ u̇n · un − τ4

4
|d2
tu
n|2 = τ3u̇n · d2

tu
n − τ4

4
|d2
tu
n|2.

Using further that u̇n − τd2
tu
n = (dtu

n + dtu
n−1)/2 and d2

tu
n = (dtu

n −
dtu

n−1)/τ leads to

|Un|2G − |Un−1|2G = τ3
(
u̇n − τd2

tu
n
)
· d2

tu
n +

3

4
τ4|d2

tu
n|2

=
1

2
τ2
(
|dtun|2 − |dtun−1|2

)
+

3

4
τ4|d2

tu
n|2.

Multiplying by 2 and using (3) implies that

3

2
|un|2 − 1

2
|un−1|2 =

3

2
|un−1|2 − 1

2
|un−2|2 +

3

2
τ4|d2

tu
n|2.

Since |u1|2 = |u0|2 + τ2|dtu1|2 and |u0|2 = 1 this shows that the sequence
sn = 3

2 |u
n|2 − 1

2 |u
n−1|2, n ≥ 1, is increasing almost everywhere in Ω with

s1 ≥ 1. Summing over n = 2, . . . , N , subtracting 1 on both sides, integrating
over Ω, and using Proposition 3.1 thus implies the identity.
(a) Proposition 3.1 shows that τ‖dtu1‖2 is uniformly bounded. The inverse
estimate of Lemma 2.2 in combination with the energy stability established
in Proposition 3.2 thus proves the unconditional estimate.
(b) The assumed bound directly leads to the quadratic error estimate. �

The proposition implies a bound for the constraint violation for the iter-
ates of Algorithm 1.1.

Corollary 3.5 (Constraint violation II). Unconditionally with q = 1 or
under condition (5) with q = 2 we have∥∥|uN |2 − 1

∥∥
L1 ≤ cqτ q

for all N ≥ 1 or N = 1, 2, . . . , N ′, respectively.

Proof. An application of the triangle inequality and the estimates of Propo-
sition 3.4 show that∥∥|uN |2 − 1

∥∥
L1 ≤

∥∥∥|uN |2 − 1− 1

3
|uN−1|2 +

1

3

∥∥∥
L1

+
1

3

∥∥|uN−1|2 − 1
∥∥
L1

≤ c′qτ q +
1

3

∥∥|uN−1|2 − 1
∥∥
L1 .

Iterating the estimate and noting |u0|2 = 1 leads to∥∥|uN |2 − 1
∥∥
L1 ≤ c′qτ q

N−1∑
j=0

3−j ≤ c′qτ q
3

2
,

which proves the estimate. �

Lemma 2.3 implies an estimate for the constraint violation for certain lin-
ear combinations of iterates under additional discrete regularity conditions.
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Proposition 3.6 (Constraint violation III). (a) Assume that the discrete
regularity condition (5) is satisfied and that

max
n=2,...,N ′

‖dtun‖ ≤ c′r.

Then we have for every N = 1, 2, . . . , N ′ and ûN+1/2 = (3uN−uN−1)/2 that∥∥|ûN+1/2|2 − 1
∥∥
L1 ≤ c′qτ2.

The estimate holds unconditionally with τ instead of τ2.
(b) If in addition to the conditions in (a) we have that

max
n=2,...,N ′

‖d2
tu
n‖ ≤ c′′r ,

then for every N = 1, 2, . . . , N ′ and λ ∈ R we have for uNλ = λuN + (1 −
λ)uN−1 that ∥∥|uNλ |2 − 1

∥∥
L1 ≤ c′′qτ2,

where c′′q also depends on λ. The estimate holds with τ instead of τ2 if only
the conditions of (a) are imposed.

Proof. We first note that Lemma 2.3 implies that for n ≥ 1 we have∥∥|unλ|2 − 1
∥∥
L1 ≤

∥∥∥3

2
|un|2 − 1

2
|un−1|2 − 1

∥∥∥
L1

+ τ |3− 2λ|
∥∥un−1 · dtun

∥∥
L1 +

τ2

2
|3− 2λ2| ‖dtun‖2.

(6)

(a) If λ = 3/2 the second term on the right-hand side disappears. The
last term is of quadratic order under the stated assumption and generally
of linear order since τ‖dtun‖2 is uniformly bounded. Hence, the asserted
estimates follow from Proposition 3.4.
(b) For n = 1 the second term on the right-hand side of (6) disappears since
Step (0) of Algorithm 1.1 guarantees u0 · dtu1 = 0. For n ≥ 2 we have

un−1 · dtun = un−1 · (dtun − u̇n) + (un−1 − ûn) · u̇n + ûn · u̇n.

Using that ûn · u̇n = 0, ûn − un−1 = τdtu
n−1, and u̇n − dtun = (τ/2)d2

tu
n

we find that

‖un−1 · dtun‖L1 ≤
τ

2
‖un−1‖‖d2

tu
n‖+ τ‖u̇n‖‖dtun−1‖.

Corollary 3.5 implies that unconditionally we have ‖un−1‖ ≤ c for all n ≥ 1.
The assumed bound for ‖dtun‖ and the relation 2u̇n = 3dtu

n − dtun−1 pro-
vide a uniform bound on ‖u̇n‖. The asserted estimate thus follows from (6)
by including the estimate of Proposition 3.4 (a) as well as the assumed
bounds. �

Remark 3.7. (i) Choosing the test functions v = dtu
1 and v = u̇n in

Steps (0) and (1) of Algorithm 1.1, respectively, yields that

‖dtu1‖2? ≤ ‖∇u1‖‖∇dtu1‖, ‖u̇n‖2? ≤ ‖∇un‖‖∇u̇n‖.
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Hence, if the norm ‖ · ‖? controls the H1 norm we have that ‖dtu1‖H1

and ‖u̇n‖H1, n ≥ 2, are bounded by the initial energy. Noting 2u̇n =
3dtu

n − dtun−1 then implies a uniform bound on ‖dtun‖, n ≥ 1.
(ii) If the norm ‖ · ‖? controls the L∞ norm, e.g., via suitable Sobolev in-
equalities or inverse estimates in a spatially discrete setting, then a pointwise
bound for the constraint violation error can be deduced.

4. Experiments

We report in this section the performance of the devised method used
as an iterative procedure to determine stationary configurations for the
pointwise constrained Dirichlet energy and a nonlinear bending functional.
The algorithm devised and analyzed for approximating harmonic maps into
spheres can be greatly generalized and applies to the numerical solution of
a constrained minimization problem

Minimize I[u] =
1

2
a(u, u)− b(u), u ∈ V,

subject to boundary conditions `bc(u) = uD and a constraint

G(u) = 0.

Given some approximation û ∈ V satisfying `bc(û) = uD we define a corre-
sponding linear space via

F [û] = {v ∈ V : `bc(v) = 0, g(û; v) = 0
}
,

where g is the derivative of G. Our algorithm then reads as follows.

Algorithm 4.1. Choose u0 ∈ V with `bc(u
0) = uD and G(u0) = 0.

(0) Compute dtu
1 ∈ F [u0] with

(dtu
1, v)? + a(u0 + τdtu

1, v) = b(v)

for all v ∈ F [u0]; set u1 = u0 + τdtu
1 and n = 2.

(1) Set ûn = 2un−1 − un−2 and compute u̇n ∈ F [ûn] = 0 with

(u̇n, v)? +
1

3
a(4un−1 − un−2 + 2τ u̇n, v) = b(v)

for all v ∈ F [ûn]; set un = (4un−1 − un−2 + 2τ u̇n)/3.
(2) Stop if ‖u̇n‖? + ‖dtun‖] ≤ εstop or nτ ≥ T .
(3) Increase n→ n+ 1 and continue with (1).

We refer the reader to [7] for a discussion of admissible functions G that
lead to a constraint violation as discussed above. The norm ‖ · ‖] has to
be sufficiently strong to provide control over the linearization error in the
constraint.
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Figure 1. Nodal interpolant of the inverse stereographic
projection π−1

st in Example 4.2 on a coarse grid (left and
middle) and initial configuration u0

h (right).

4.1. Harmonic maps. We define harmonic maps as stationary configura-
tions for the Dirichlet energy

Ihm(u) =
1

2

∫
Ω
|∇u|2 dx

in the set of mappings u ∈ H1(Ω;R`) for Ω ⊂ Rd satisfying the pointwise
unit-length constraint

|u|2 − 1 = 0

almost everywhere in Ω and the boundary condition u|ΓD
= uD on a subset

ΓD ⊂ ∂Ω with positive surface measure. For an extension u0 ∈ H1(Ω;R`) of
uD, Algorithm 1.1 determines a sequence (un) that converges to a harmonic
map of low energy. In a discrete setting we use the conforming finite element
spaces

Vh = S1(Th)`,

consisting of elementwise affine, globally continuous functions, and impose
the initial unit-length and subsequent orthogonality relations in the nodes
z ∈ Nh of the triangulation Th. To compute certain error quantities we
employ the corresponding nodal interpolation operator Ih : C(Ω;R`) →
S1(Th)`. The results established for Algorithm 1.1 carry over nearly ver-
batim to its discrete counterpart; cf. [9, 8]. We test its performance for a
setting leading to a smooth harmonic map. Experiments for harmonic maps
with singularities led to similar results.

Example 4.2 (Stereographic projection). For d = 2, ` = 3 we set Ω =
(−1/2, 1/2)2, ΓD = ∂Ω, and uD = π−1

st |∂Ω with the inverse stereographic
projection π−1

st : Ω→ S2 given for x ∈ Ω by

π−1
st (x) = (|x|2 + 1)−1

[
2x

1− |x|2
]
.

Then u = π−1
st is a smooth harmonic map satisfying u|∂Ω = uD.



QUADRATIC CONSTRAINT CONSISTENCY 13

The function u is illustrated in the left and middle plots of Figure 1. For
a spatial discretization we choose a uniform triangulation Th of Ω into 8192
right-angled triangles. The initial function u0

h and the discrete boundary
data uD,h are obtained via a nodal interpolation of the exact solution u
and a subsequent perturbation of interior nodal values, cf. the right plot of
Figure 1. For this discrete perturbation we have Ihm(u0

h) ≈ 22.06 whereas
the exact optimal energy is given by Ihm(u) ≈ 3.009.

Using step sizes τ = 2−m, the fixed stopping criterion εstop = 10−3 in
combination with the L2 norm that specifies ‖ · ‖], and choosing the L2

and H1
D inner products for the gradient flow metric (·, ·)?, respectively, we

obtained the results shown in Table 1. The function ustop
h denotes the iterate

after Nstop steps for which the stopping criterion was satisfied first. The
tables show the number of iterations Nstop, the constraint violation measure

δuni[uh] =
∥∥Ih (|uh|2 − 1

) ∥∥
L1 ,

the energy errors

δener[uh] =
∣∣Ihm[uh]− Ihm[u]

∣∣,
and the discrete regularity quantities

A2 = τ2
N ′∑
n=2

‖d2
tu
n
h‖2, B2 = ‖dtu1

h‖2,

with N ′ = Nstop, whose boundedness is needed to guarantee the quadratic
constraint consistency results. The experimental convergence rates eocuni

and eocener were computed as logarithmic slopes.
Our observations are as follows: (i) the numbers of iterations to meet

the stopping criterion increase linearly with the decreasing step size and
are comparable for the implicit Euler and BDF2 method as well as for the
L2 and H1 gradient flows; (ii) the discrete regularity condition appears to
be satisfied for the L2 and H1 gradient flows and both numerical methods,
although a small growth for the quantity B2 is observed in the case of the
L2 flows; (iii) the constraint violation and energy errors decay linearly for
the implicit Euler and (nearly) quadratically for the BDF2 methods before
spatial discretization errors dominate the energy error. Our explanation
for (i) is that the gradient flows and stopping criteria determine times t?
at which the time derivative is sufficiently small and approximately n ≈
t?/τ iterations are needed to reach this point via the time stepping method
realized by the algorithm. While the H1 flow provides strong control over
the time derivative, cf. Remark 3.7, the rough initial data appear to lead to
a certain initial growth of the first time derivative in case of the L2 flows
providing an explanation for (ii). The growth of the time derivate leads to
a slight initial reduction of the quadratic convergence rate reported in (iii).

4.2. Bending isometries. Large bending deformations of thin elastic sheets
can be determined via a dimensionally reduced description resulting as a Γ
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τ Nstop δuni[u
stop
h ] eocuni A2 B2 Ihm[ustop

h ] δener[u
stop
h ] eocener

Implicit Euler method (L2-gradient flow)
2−4 23 1.288e–01 — 1.949e+01 2.738e+01 4.667 1.658e+00 —
2−5 31 1.130e–01 0.19 5.992e+01 9.432e+01 4.442 1.433e+00 0.21
2−6 47 9.219e–02 0.29 1.594e+02 2.937e+02 4.133 1.124e+00 0.35
2−7 78 6.867e–02 0.42 3.488e+02 7.921e+02 3.777 7.681e–01 0.55
2−8 140 4.619e–02 0.57 6.077e+02 1.791e+03 3.453 4.443e–01 0.79
2−9 261 2.823e–02 0.71 8.446e+02 3.375e+03 3.229 2.201e–01 1.01
2−10 502 1.601e–02 0.82 9.606e+02 5.423e+03 3.108 9.877e–02 1.15
2−11 982 8.627e–03 0.89 9.222e+02 7.648e+03 3.052 4.308e–02 1.19
2−12 1941 4.502e–03 0.94 7.700e+02 9.734e+03 3.028 1.910e–02 1.17
2−13 3858 2.305e–03 0.97 5.711e+02 1.145e+04 3.018 8.678e–03 1.13
2−14 7693 1.167e–03 0.98 3.812e+02 1.272e+04 3.013 3.970e–03 1.12

BDF2 method (L2-gradient flow)
2−4 39 2.878e–01 — 2.125e+01 2.738e+01 6.518 3.509e+00 —
2−5 79 2.204e–01 0.39 5.448e+01 9.432e+01 6.493 3.484e+00 0.01
2−6 39 1.615e–01 0.45 1.420e+02 2.937e+02 5.649 2.640e+00 0.40
2−7 76 1.035e–01 0.64 3.229e+02 7.921e+02 4.557 1.548e+00 0.77
2−8 144 5.535e–02 0.90 5.905e+02 1.791e+03 3.703 6.935e–01 1.15
2−9 275 2.464e–02 1.16 8.508e+02 3.375e+03 3.245 2.356e–01 1.55
2−10 534 9.370e–03 1.39 9.793e+02 5.423e+03 3.074 6.448e–02 1.86
2−11 1053 3.156e–03 1.57 9.324e+02 7.648e+03 3.025 1.586e–02 2.02
2−12 2096 9.710e–04 1.70 7.671e+02 9.734e+03 3.013 3.718e–03 2.09
2−13 4184 2.794e–04 1.79 5.635e+02 1.145e+04 3.010 6.977e–04 2.41
2−14 8363 7.647e–05 1.86 3.754e+02 1.272e+04 3.009 7.961e–05 3.13

Implicit Euler method (H1-gradient flow)
2−0 22 5.631e–02 — 1.190e–02 3.199e–02 3.468 4.592e–01 —
2−1 32 3.429e–02 0.72 1.351e–02 5.686e–02 3.236 2.265e–01 1.02
2−2 53 1.921e–02 0.84 1.127e–02 8.188e–02 3.112 1.029e–01 1.14
2−3 95 1.021e–02 0.91 7.554e–03 1.011e–01 3.055 4.601e–02 1.16
2−4 178 5.270e–03 0.95 4.424e–03 1.133e–01 3.030 2.097e–02 1.13
2−5 344 2.678e–03 0.98 2.402e–03 1.203e–01 3.019 9.751e–03 1.11
2−6 677 1.350e–03 0.99 1.252e–03 1.240e–01 3.014 4.547e–03 1.10
2−7 1342 6.778e–04 0.99 6.397e–04 1.260e–01 3.011 2.057e–03 1.14
2−8 2672 3.396e–04 1.00 3.233e–04 1.269e–01 3.010 8.412e–04 1.29
2−9 5333 1.700e–04 1.00 1.625e–04 1.274e–01 3.009 2.411e–04 1.80
2−10 10655 8.503e–05 1.00 8.147e–05 1.277e–01 3.009 5.704e–05 2.08

BDF2 method (H1-gradient flow)
2−0 16 7.048e–02 — 1.458e–02 3.199e–02 3.570 5.604e–01 —
2−1 22 2.809e–02 1.33 1.735e–02 5.686e–02 3.162 1.533e–01 1.87
2−2 44 9.071e–03 1.63 1.396e–02 8.188e–02 3.046 3.712e–02 2.05
2−3 86 2.599e–03 1.80 8.722e–03 1.011e–01 3.018 9.086e–03 2.03
2−4 171 6.991e–04 1.89 4.814e–03 1.133e–01 3.011 2.079e–03 2.13
2−5 341 1.817e–04 1.94 2.515e–03 1.203e–01 3.009 2.706e–04 2.94
2−6 682 4.635e–05 1.97 1.283e–03 1.240e–01 3.009 1.953e–04 0.47
2−7 1363 1.171e–05 1.99 6.476e–04 1.260e–01 3.009 3.140e–04 -0.69
2−8 2725 2.942e–06 1.99 3.253e–04 1.269e–01 3.009 3.440e–04 -0.13
2−9 5450 7.374e–07 2.00 1.630e–04 1.274e–01 3.009 3.516e–04 -0.03
2−10 10899 1.846e–07 2.00 8.160e–05 1.277e–01 3.009 3.535e–04 -0.01

Table 1. Step sizes, number of iterations, constraint viola-
tion, discrete regularity measures, and energy errors for the
implicit Euler and BDF2 methods approximating L2 and H1

gradient flows for harmonic maps in Example 4.2.
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limit of three-dimensional hyperelasticity, cf. [15]. The variational formula-
tion seeks a minimizing deformation for the functional

Ibend(u) =
1

2

∫
ω
|D2u|2 dx

in the set of functions u ∈ H2(ω;R3) satisfying the pointwise isometry con-
straint

(∇u)T(∇u)− id2×2 = 0,

with the identity matrix id2×2 ∈ R2×2, and the boundary conditions

u|γD = uD, ∇u|γD = φD,

for given functions uD ∈ C(γD;R3) and φD ∈ C(γD;R3×2). Our discretiza-
tion is based on the nonconforming space of discrete Kirchhoff triangles and
a discrete gradient operator, i.e.,

Vh =
{
vh ∈ C(ω;R3) : vh|T ∈ P3,red(T )3 for all T ∈ Th,
vh,∇vh continuous in every z ∈ Nh

}
,

where P3,red(T ) denotes a nine-dimensional subspace of cubic polynomials,
and, with the space of elementwise quadratic, continuous functions S2(Th),

∇h : Vh → S2(Th)3×2.

The matrix of second derivatives D2u in Iiso is replaced by the discrete
second derivatives D2

huh = ∇∇huh. The isometry constraint is imposed at
the nodes z ∈ Nh of the triangulation; cf. [6, 11] for related details. The
discretization defines the bilinear form

ah(uh, vh) =

∫
ω
D2
huh : D2

hvh dx,

the linear functional

`bc,h(uh) =
(
uh|γD ,∇huh|γD

)
,

and the linearized constraint functional evaluated at the nodes of the trian-
gulation

bh(ûh; vh) =
([

(∇ûh)T(∇vh) + (∇vh)T(∇ûh)
]
(z)
)
z∈Nh

.

Other approaches to the discretization of nonlinear bending problems such
as discontinuous Galerkin methods as devised in [13] can also be formulated
in this abstract way. We test Algorithm 4.1 for a setting leading to the
formation of a Möbius strip.

Example 4.3 (Möbius strip). Let ω = (0, L) × (−w/2, w/2) and γD =
{0, L} × [−w/2, w/2] with L = 12 and w = 2. We choose boundary data
uD and φD that map the two sides contained in ΓD to the same interval but
enforce a half-rotation of the strip ω.
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As initial data u0 that is compatible with the boundary conditions and
isometry constraint we use a Lipschitz continuous function that defines a flat,
folded Möbius strip. The interpolated function u0

h on a triangulation of ω
into 3072 triangles resembling halved squares is shown in Figure 2. The ini-
tial data is thus of unbounded bending energy as the mesh-size tends to zero.
Using the bilinear form ah to define discrete H2 gradient flows determined
by the implicit Euler and BDF2 methods we obtained the iterates shown
also in Figure 2. The unfolding of the initially flat configuration was ob-
tained with a forcing term in the energy that was set to zero for tn ≥ tf = 2.
From the coloring used for the plots in the figure we observe that the BDF2
methods leads to significantly reduced constraint errors. This observation is
confirmed by the numbers displayed in Table 2. For the implicit Euler and
the BDF2 methods we computed the isometry constraint violation errors

δiso[uh] =
∥∥Ih(|(∇uh)T(∇uh)− id2×2 |

)∥∥
L1 ,

and the discrete regularity quantities

A2 = τ2
N ′∑
n=2

‖∇d2
tu
n
h‖2, B2 = ‖∇dtu1

h‖2,

with N ′ = Nstop. Correspondingly, we used ‖vh‖] = ‖∇vh‖ to evaluate the
stopping criterion with εstop = 10−3. Our overall observations are similar to
those for the approximation of harmonic maps using an H1 gradient flow.
In particular, we find that (i) the number of iterations needed to satisfy the
stopping criterion grow linearly with τ−1 and are comparable for the implicit
Euler and BDF2 methods, (ii) the constraint violation decays significantly
faster for the BDF2 method than for the implicit Euler method and the
discrete energies are lower, and (iii) the discrete regularity quantities remain
bounded as the step sizes are reduced.
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Figure 2. Evolution of an initially flat Möbius strip from
Example 4.3 using the implicit Euler (top row) and BDF2
methods (bottom row) realizing discrete H2-gradient flows
with step sizes τ = 2−7. The coloring represents the con-
straint violation.

τ Nstop δiso[ustop
h ] eociso A2 B2 Ibend[ustop

h ]

Implicit Euler method (H2
h-gradient flow)

2−0 349 2.255e+01 — 4.617e+02 1.054e–01 14.98
2−1 198 1.342e+01 0.75 1.038e+03 1.874e–01 12.37
2−2 446 5.243e+00 1.36 9.363e+02 2.699e–01 10.95
2−3 874 2.493e+00 1.07 9.736e+02 3.332e–01 10.29
2−4 1791 1.226e+00 1.02 8.741e+02 3.735e–01 9.983
2−5 3617 6.142e–01 1.00 6.839e+02 3.965e–01 9.840
2−6 7261 3.072e–01 1.00 4.351e+02 4.088e–01 9.768
2−7 14538 1.538e–01 1.00 2.492e+02 4.151e–01 9.732
2−9 29086 7.695e–02 1.00 1.339e+02 4.184e–01 9.715

BDF2 method (H2
h-gradient flow)

2−0 151 5.993e+00 — 5.970e+01 1.054e–01 11.63
2−1 263 6.713e+00 -0.16 2.789e+02 1.874e–01 11.04
2−2 490 2.552e+00 1.40 4.090e+02 2.699e–01 10.05
2−3 1049 9.924e–01 1.36 6.480e+02 3.332e–01 9.834
2−4 2273 1.905e–01 2.38 4.980e+02 3.735e–01 9.727
2−5 4578 4.827e–02 1.98 5.081e+02 3.965e–01 9.704
2−6 9166 9.470e–03 2.35 3.986e+02 4.088e–01 9.698
2−7 18313 1.506e–03 2.65 2.535e+02 4.151e–01 9.697
2−9 36590 2.065e–04 2.87 1.390e+02 4.184e–01 9.697

Table 2. Step sizes, number of iterations, constraint viola-
tion, discrete regularity measures, and energies for the im-
plicit Euler and BDF2 methods approximating a discrete H2

gradient flow leading to the formation of a Möbius strip for
the boundary conditions specified in Example 4.3.
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