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Abstract. The Babuška or plate paradox concerns the failure of con-
vergence when a domain with curved boundary is approximated by
polygonal domains in linear bending problems with simple support bound-
ary conditions. It can be explained via a boundary integral representa-
tion of the total Gaussian curvature that is part of the Kirchhoff–Love
bending energy. It is shown that the paradox also occurs for a nonlinear
bending-folding model which enforces vanishing Gaussian curvature. A
simple remedy that is compatible with simplicial finite element methods
to avoid wrong convergence is devised.

1. Introduction

1.1. Babuška’s paradox. A remarkable observation due to Babuška, cf. [2],
is that canonical approximations of certain fourth order problems may fail
to converge when curved domains are approximated using polygons. In
particular, considering the Kirchhoff–Love bending energy

I(ω; v) =
σ

2

∫
ω
|∆v|2 dx+

1− σ

2

∫
ω
|D2v|2 dx

in the set of functions v ∈ V (ω) = H2(ω) ∩H1
0 (ω) corresponding to simple

support boundary conditions, the approximating functionals I(ωm; ·) with a
sequence of approximating polygons ωm for ω do not converge in variational
sense to I(ω, ·) if ω has curved boundary parts. The incorrect convergence
is illustrated in Figure 1. A simple explanation follows from the relation∫

ω̂
|D2v|2 dx =

∫
ω̂
|∆v|2 − 2 detD2v dx

=

∫
ω̂
|∆v|2 dx−

∫
∂ω̂

κ̂|∂νv|2 ds,

which holds for Lipschitz domains ω̂ ⊂ R2 whose boundaries consist of
finitely many C2 arcs whose piecewise curvature is denoted by κ̂ which is
positive for locally convex arcs, cf. [11] for a related density result. Since
the functionals I(ωm; ·) and I(ω; ·) are quadratic expressions in D2v we
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have that if (vm)m≥0 ⊂ H1
0 (ω) is a sequence with vm ∈ H2(ωm) ∩H1

0 (ωm)
and vm ⇀ v in H1

0 (ω) then I(ωm; vm) → I(ω; v) implies that the trivial
extensions of D2vm converge strongly to D2v in L2(ω). This leads to a
contradiction since the boundary integral terms in I(ωm; ·) vanish for every
m ≥ 0 but provide a nontrivial contribution to I(ω; ·) unless the boundary
of ω is piecewise straight or the normal derivative vanishes on ∂ω. Note
that also distributional curvature contributions in the corner points do not
improve the convergence since in those points we have ∂νv = 0. The paradox
is thus a consequence of an insufficient convergence of the approximating
boundary curvatures κm.

Figure 1. Interpolant of the exact deflection (left), ap-
proximation imposing the boundary condition along the en-
tire boundary (middle), and approximation obtaind imposing
the boundary condition in the corner points (right); pictures
taken from [5].

1.2. Remedies. If domains ωm with piecewise quadratic boundaries are
used to approximate ω then the boundary curvatures converge as functions
and the paradox is avoided. To avoid the failure of convergence and still
permit the use of polygonal approximations it suffices to relax the boundary
condition in the approximating problems by imposing it only in the corner
points of ωm and in parts where ∂ω and ∂ωm coincide, cf. [26, 5]. Figure 1
illustrates the modification. Hence, we set

Ṽm = {v ∈ H2(ωm) : v = 0 on ∂ω ∩ ∂ωm}.
In this case, it is straightforward to establish a Γ convergence result for

Ĩ(ωm; ·) with admissible sets Ṽm to I(ω; ·) defined on V (ω). If vm → v

in L2 with functions vm ∈ Ṽm and I(ωm; vm) is bounded then the trivial
extensions of the Hessians D2vm converge weakly in L2(ω) to D2v while
suitable interpolants Imvm ∈ H1

0 (ωm) converge weakly to v ∈ H1
0 (ω). Hence,

v ∈ V and I(ω; v) ≤ lim infm→∞ I(ωm; vm). Given a function v ∈ V , the

restrictions vm = v|ωm belong by construction to the spaces Ṽm and we have
that I(ωm; vm) → I(ω; v) as m → ∞. We refer to [10, 22, 1] for other
approximations that lead to correct convergence.

1.3. Bending and folding. Nonlinear bending models often involve an
isometry condition on deformations which implies that the Frobenius norms
of the Hessian and the Laplacian coincide. Recalling that their difference
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causes the critical boundary term in the small deflection model raises the
question whether the paradox may in fact be an artifact of an oversimplistic
model reduction. To show that failure of convergence also takes place in
models describing large bending deformations we consider a Kirchhoff model
that allows for the folding of thin elastic sheets along a given crease line
γ ⊂ ω. This has applications in the construction of biomimetic devices,
cf. [28]; cf. [9] for related mathematical probems. Along the crease line only
continuity is imposed while away from it nonlinear bending is measured via
a piecewise Kirchhoff bending energy, i.e., following [13, 4, 20] we consider
the minimization of the functional

I(v) =
1

2

∫
ω\γ

|D2v|2 dx.

Shearing and stretching effects are inadmissible which is encoded by the
condition that deformations are isometries. Incorporating also the continuity
across the crease line, the set of admissible deformations is given by

V (ω, γ) =
{
v ∈ H2(ω \ γ;R3) ∩W 1,∞(ω;R3) : (∇v)T(∇v) = I2×2

}
.

For finite element discretizations it is attractive to approximate γ by a se-
quence of piecewise straight curves γm. This gives rise to the approximating
energy functionals

Im(v) =
1

2

∫
ω\γm

|D2v|2 dx

in the admissible sets

V (ω, γm) =
{
v ∈ H2(ω \ γm;R3) ∩W 1,∞(ω;R3) : (∇v)T(∇v) = I2×2

}
.

It turns out however, that the folding of isometries is impossible along poly-
gons as this leads to singularities in the deformation gradients which prevent
a correct convergence.

1.4. Approximations using slits. As in the linear setting, we relax the
continuity condition by using a perforation and imposing continuity only at
the vertices c0, c1, . . . , cm of the curves γm, i.e., considering the functionals

Ĩm on the admissible sets

Ṽ (ω, γm) =
{
v ∈ H2(ω \ γm;R3) ∩W 1,∞(ω \ γm;R3) : (∇v)T(∇v) = I2×2,

v continuous in c0, c1, . . . , cm
}
.

To establish the variational convergence of Ĩm with admissible sets Ṽm to
I defined on V we define a fattened crease line γ̂m as a union of triangles
along the the polygonal crease line γm so that the resulting approximating
subdomains ω̂i

m, i = 1, 2, are contained in the exact subdomains ωi, i = 1, 2,
cf. Figure 2. To identify a limit v of a sequence (vm) of deformations vm ∈
Ṽm, we choose triangulations Tm that contain the triangles that define the
fattened crease line γ̂m and carry out a linear nodal interpolation of vm which
defines functions Imvm ∈ W 1,∞(ω) with interpolation error Imvm−vm that
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converges strongly to zero inH1(ω′;R3) for domains ω′ with positve distance
to the exact crease line γ.

ω1 ω1
m

γm

ω̂1
m

ω2 ω2
m ω̂2

m

γ
γ̂m

Figure 2. Crease line γ (left), polygonal approximation
γm (middle), and fattened polygonal crease line γ̂m (right).
In each case the lines define partitions of the domain ω. For
the fattened crease line γ̂m we have ω̂i

m ⊂ ωi, i = 1, 2.

1.5. Confirmation by experiments. The locking effect introduced by ap-
proximating curved crease lines by polygonal ones and still imposing con-
tinuity is confirmed by real and numerical experiments. Figure 3 shows an
experiment with a thin elastic sheet and curved crease line. When it is ap-
proximated using a simple polygonal curve and continuity is imposed along
the entire line, stress concentrations occur at the vertices which are accom-
ponied by piecewise flat deformations in a neighborhood of the crease line.
Introducing slits along the segments relaxes the situation and the experiment
indicates correct convergence.

Figure 3. Bending of an elastic plate via compressing the
plate at the end-points of a crease line. Curved crease line
(left), singularities occur when a polygonal approximation is
used (middle), these disappear if slits are introduced along
the straight segments (right).

The real experiments can be simulated by means of a finite element dis-
cretization of the bending-folding model. We use a mixed formulation to
define a discrete second fundamental form based on the Hellan–Herrman–
Johnson element. This element has the particular feature that it can be
used on curved elements, in contrast to many other finite element methods
developed for fourth order problems. Figure 4 shows the results of canonical
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discretizations using curved crease-line approximations, piecewise straight
discrete crease lines, and straight crease lines imposing continuity only at
the vertices. The deformations obtained with curved and slit approxima-
tions are nearly indistinguishable while the one with continuity and straight
segments leads to a reduced deformation and stress concentrations at the
vertices.

Figure 4. Deformations and energy densities in the simula-
tion of folding and bending experiments using the symmetry
of the problem along the long midline. A correct discrete
deformation is obtained for a curved approximation of the
crease line (left), while the polygonal approximation leads to
flatter pieces and a singularity (middle), introducing discon-
tinuities along the straight segments provides another correct
approximation (right).

1.6. Outline. The article is organized as follows. A variational convergence
result for approximations imposing continuity only in vertices is stated in
Section 2. In Section 3 we recall an angle-curvature relation for folded
isometries which implies that isometries are flat along straight segments of
crease lines. This implies the nonexistence of nontrivially folded isometries
for polygonal crease lines that are continuously differentiable in the sub-
domains. Additional results from numerical experiments are provided in
Section 4.

2. Discontinuous approximations

In this section we verify the convergence of the approximate minimization
problems which only impose continuity of deformations in the vertices of
a polygonal crease line approximation. To avoid assumptions about the
extension of isometries we use a fattened crease line, cf. the right plot in
Figure 2. This ensures that subdomains of approximating problems are
subsets of the subdomains of the continuous problem which allows for a
straightforward identification of recovery sequences.

Given a piecewise C1 curve γ parametrized by a function b ∈ W 1,∞(α, β;R2)
with |b′| = 1 which partitions ω into two disjoint Lipschitz domains ω1 and
ω2 we consider the minimization of the functional

I(v) =
1

2

∫
ω\γ

|D2v|2 dx,
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defined on the set of deformations that are isometric and piecewise H2, i.e.,
on the set

V =
{
v ∈ H2(ω \ γ;R3) ∩W 1,∞(ω;R3) : (∇v)T(∇v) = I2×2

}
.

We note that V ̸= ∅ holds since unfolded isometries are contained in V . For
a sequence of polygonal approximations (γm) of γ that are obtained by linear
interpolations bm of b we choose matching, shape-regular triangulations (Tm)
of ω with vanishing maximal mesh-size as m → ∞. We then consider the
fattened crease lines γ̂m obtained as a union of triangles T ⊂ ω, that are
associated with the segments and such that the exact crease line is contained
in the union of the triangles, cf. Figure 2. The fattened crease line gives rise
to a disjoint partitioning (up to boundary points)

ω = ω̂m,1 ∪ γ̂m ∪ ω̂m,2

such that ω̂m,ℓ ⊂ ωℓ and γ ⊂ γ̂m. We thus consider the functionals

Ĩm(v) =
1

2

∫
ω\γ̂m

|D2v|2 dx

defined on the set of isometric deformations that are continuous in the ver-
tices c0, c1, . . . , cm of γm, and H2-regular in the subdomains, i.e., on the
set

Ṽm =
{
v ∈ H2(ω \ γ̂m;R3) : (∇v)T(∇v) = I2×2,

v continuous in c0, c1, . . . , cm
}
.

We remark that we have Ṽm ⊂ W 1,∞(ω \ γ̂m;R3). We formally extend the

functionals by +∞ to deformations v ∈ L2(ω;R3)\ Ṽm. Functions in Ṽm and
their derivatives are identified with their trivial extensions to ω throughout
the following.

A compactness result follows by an approximate extension of functions

vm ∈ Ṽm to functions ṽm ∈ W 1,∞(ω;R3) via a nodal interpolation of vm in
the triangulations of ω that contain the fattened crease lines γ̂m.

Proposition 2.1 (Compactness). Let (vm) ⊂ L2(ω;R3) be such that vm ∈
Ṽm and Ĩm(vm) ≤ c for all m ∈ N. Then there exists a sequence (ṽm) ⊂
W 1,∞(ω,R3) such that ∥∇ṽm∥L∞(ω) ≤ c′ and ṽm − vm → 0 in H1(ω′;R3)

for every ω′ that is compactly contained in ω \ γ. If v ∈ W 1,∞(ω;R3) is a
weak-⋆ accumulation point of (ṽm) then we have v ∈ V and D2v is a weak
accumulation point in L2(ω;R3×2×2) of (D2vm).

Proof. Let (Tm) be a sequence of regular triangulations of ω that match the
curves (γm). Each Tm contains the triangles that define the fattened crease
line γ̂m such that the maximal diameter hm tends to zero. Since all nodes of
Tm belong to the closure of ω\ γ̂m the nodal interpolant Imvm is well defined

for every vm ∈ Ṽm. Moreover, ∥∇Imvm∥L∞(ω) ≤ cm∥∇vm∥L∞(ω\γ̂m) ≤ cm.
The uniform shape regularity implies that cm is uniformly bounded. Setting
ṽm = Imvm thus proves the first part.
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Let v ∈ W 1,∞(ω;R3) be a weak-⋆ accumulation point of (ṽm) and note
that the (piecewise) Hessians D2vm have a weak accumulation point X

in L2(ω;R3×2×2) since Ĩm(vm) is bounded. Since the differences vm − ṽm
converge strongly to zero in H1(ω′;R3) for every set ω′ that is compactly
contained in ω \ γ, it follows that v ∈ H2(ω \ γ;R3) with D2v = X and
(∇v)T(∇v) = I2×2, i.e., v ∈ V . □

The convergence result is an immediate consequence of the construction
of the approximations.

Proposition 2.2 (Gamma convergence). (i) If (vm) ⊂ L2(ω;R3) is such

that vm ∈ Ṽm and Ĩm(vm) ≤ c then there exists v ∈ L2(ω;R3) such that
vm → v in L2(ω;R3) (up to the selection of a subsequence) and v ∈ V with

I(v) ≤ lim infm→∞ Ĩm(vm).
(ii) If v ∈ V then there exists a sequence (vm) such that vm ∈ Vm for all m,
limm→∞ vm = v in L2(ω;R3), and I(v) = limm→∞ Im(vm).

Proof. (i) Using Proposition 2.1 we obtain functions ṽm ∈ W 1,∞(ω;R3) with
uniformly bounded norms. After extraction of a subequence, this provides
a limit v ∈ W 1,∞(ω;R3) with ṽm ⇀⋆ v in W 1,∞(ω;R3). Proposition 2.1
guarantees that v ∈ V and I(v) ≤ lim infm→∞ Im(vm). This proves the first
statement.
(ii) Given v ∈ V we note that the restrictions vm = v|ω̂m

satisfy vm ∈ Vm.
Their trivial extensions converge in L2 to v, and the energies converge, since
|ωℓ \ ω̂m,ℓ| → 0 as m → ∞. □

The main implication of the convergence result concerns the accumulation
of almost-minimizers at minimizers.

Corollary 2.3 (Convergence of almost-minimizers). Assume that (um) ⊂
L2(ω;R3) is such that um ∈ Ṽm and Ĩm(um) ≤ min

v∈Ṽm
I(v) + δm for a

sequence of positive numbers δm → 0. Then there exists a minimizer u ∈ V
for I such that um → u and D2um ⇀ D2u weakly in L2(ω;R3).

3. Angle-curvature relations and nonexistence

3.1. Folding angle. We consider a connected folding arc (segment) γ that
is parametrized by the embedded arclength curve b ∈ W 2,∞(α, β;R2) and
let u ∈ H2(ω \ γ;R3) be a folded isometry, i.e.,

u ∈ V =
{
v ∈ H2(ω \ γ;R3) ∩W 1,∞(ω;R3) : (∇v)T(∇v) = I2×2

}
.

The curve γ is assumed to partition ω into two subdomains ω1 and ω2. We
further assume that the restrictions uℓ = u|ωℓ

, ℓ = 1, 2, can be extended
as H2 isometries to open neighborhoods of ωℓ. The mapping u ◦ b provides
an arclength parametrization of the deformed folding arc with unit tangent
vector

t = γ′ = (Du ◦ b)b′,
which is the same for both uℓ, ℓ = 1, 2, cf. Figure 5.
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u(ω2)

u(ω1)

n1 n2

θ

t

u(γ)

Figure 5. Folding angle between the jumping normals
along a crease which partitions the deformed sheet into parts
of opposite curvatures and defines two isometries of the sub-
domains. The induced Darboux frames specify curvature and
torsion quantities for the deformed folding arc u(γ).

We let nℓ = ∂1uℓ × ∂2uℓ : ωℓ → R3, ℓ = 1, 2, denote the continuous unit
normals to the deformed adjacent surfaces in a neighborhood of γ. Along γ
we identify these and other quantities with mappings defined on the interval
[α, β] via, e.g., nℓ(s) = nℓ(b(s)). By the extensibility assumption and the
regularity result [19, 21] we have that nℓ ∈ C([α, β];R3) and

(1) n2 = R(θ, t)n1,

where R(θ, t) is the rotation about t by the angle θ, which satisfies

cos θ = n1 · n2.

Choosing conormal vectors mℓ = nℓ × t, ℓ = 1, 2, that are tangential to the
surfaces and normal to the folding curve, we consider the Darboux frames

rℓ = [t,mℓ, nℓ],

for ℓ = 1, 2. The second and third column vectors of the frames are related
via

m2 = cos(θ)m1 + sin(θ)n1,

n2 = − sin(θ)m1 + cos(θ)n1.

The frames give rise to the geodesic and normal curvatures

κℓ = t′ ·mℓ, µℓ = t′ · nℓ,

and the geodesic torsions

τℓ = (mℓ)
′ · nℓ.

Since the isometric deformations uℓ preserve intrinsic quantities we have
that

κ = κ1 = κ2.

The combination of this identity with the equations for m2 and n2 implies
that we have

κ = t′ ·m2 = t′ · (cos(θ)m1 + sin(θ)n1) = cos(θ)κ+ sin(θ)µ1,
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i.e.,

(1− cos(θ))κ = sin(θ)µ1.

Analogously, using that m1 = cos(θ)m2 − sin(θ)n2, we find that

(1− cos(θ))κ = − sin(θ)µ2.

Incorporating the trigonometric identities cos(2α) = cos2(α) − sin2(α) and
sin(2α) = 2 cos(α) sin(α) we deduce that

2 sin2
(θ
2

)
κ = ±2 sin

(θ
2

)
cos

(θ
2

)
µℓ.

For the geodesic torsions we similarly derive, using the orthogonality of the
column vectors of rℓ, that

τ2 = (m2)
′ · n2 = (cos(θ)m1 + sin(θ)n1)

′ · (− sin(θ)m1 + cos(θ)n1)

= θ′(− sin(θ)m1 + cos(θ)n1) · (− sin(θ)m1 + cos(θ)n1)

+
(
cos(θ)(m1)

′ + sin(θ)(n1)
′
)
· (− sin(θ)m1 + cos(θ)n1)

= θ′(sin2(θ) + cos2(θ)) + cos2(θ)(m1)
′ · n1 − sin2(θ)(n1)

′ ·m1

= θ′ + τ1.

The calculations imply the following result from [17], which extends ob-
servations from [12].

Proposition 3.1 (Folding angle, [17]). Let u ∈ V and let b ∈ W 2,∞(α, β;R2)
be an arclength parametrization for γ. Assume that the restrictions of u to
the subdomains ωℓ can be extended as H2 isometries to open neighborhoods
of ωℓ for ℓ = 1, 2. There exists a well defined folding angle θ ∈ C([α, β])
satisfying (1) such that

(2) κ sin
(θ
2

)
= µ̂ cos

(θ
2

)
,

with µ̂ = µ1, wherever the surface is folded, i.e., θ ̸∈ 2πZ. The induced
normal curvatures and geodesic torsions are related via µ2 = −µ1 wherever
θ ̸∈ 2πZ, and τ2 = τ1 + θ′.

The identities imply that, e.g., if κ = 0 then θ ∈ πZ, i.e., u is unfolded
or folded back, or µ̂ = 0. In the latter case it can be shown that the folding
angle θ is constant, cf. [16] for details. Whenever κ ̸= 0 we have that the
folding angle is zero or uniquely defined via θ = 2arctan(µ̂/κ).

3.2. Failure of convergence. The Babuška paradox arises in the context
of the nonlinear bending-folding model via a nonexistence result of folded
H2-isometries for polygonal crease lines.

Proposition 3.2 (Nonexistence). Let γa, γb ⊂ R2 be nondegenerate disjoint
open line segments with a common endpoint xC . Let ω ⊂ R2 be simply
connected and such that γ = γa ∪ γb ∪ {xC} is contained in ω and both
endpoints of γ belong to ∂ω, cf. Figure 6. Denote the connected components
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of ω \ γ by ω1 and ω2. Let uℓ ∈ C1
(
ωℓ;R3

)
and assume that u1 = u2 on γ.

(i) If γa, γb are not parallel, then Du1(xC) = Du2(xC).
(ii) If, furthermore, uℓ ∈ H2(ωℓ;R3), ℓ = 1, 2, are isometric deformations,
then Du1 = Du2 along γ.

Proof. (i) Since the tangential derivatives of u1 and u2 coincide along the seg-
ments γa and γb we have thatDu1(xC)τa = Du2(xC)τa as well asDu1(xC)τb =
Du2(xC)τb with the linearly independent tangent vectors τa, τb ∈ R2 so that
Du1(xC) = Du2(xC).
(ii) Applying [17, Theorem 1.1], i.e., using [17, Proposition 2.9] and observ-
ing that the ‘weak torsion constraint’ is indeed satisfied, on overlapping open
balls B ⊂ ω \ γb centered at points in γa, we see that the folding angle must
be constant on γa. Similarly, the folding angle is constant on γb. Hence, by
continuity of the normal along γ and (i) the folding angle must be zero on
all of γ. This implies that the normals n1 and n2 coincide along γ and hence
that the traces of the deformation gradients are identical on γ. □

xC

ω1

ω2

γa γb

Figure 6. Polygonal crease γ = γ1 ∪ γ2 line with vertex xC

Remark 3.3. The proposition implies that also accumulation points of
piecewise C1 regular isometric deformations in V (γm) are unfolded for a
sequence of polygonal crease lines. If curved segments are used then the
folding angle vanishes at the vertices but may be different from zero between
vertices, and the numerical experiment illustrated in the left plot of Figure 3
indicates correct convergence.

4. Numerical experiments

We describe in this section the numerical method that leads to the approx-
imations shown in Figure 4. For related numerical methods to approximate
isometric deformations we refer the reader to [3, 27, 6, 7].

4.1. Experimental setting. We consider the rectangular domain ω =
(0, 2)× (−1/2, 1/2) and define a crease line as the interesection of ω with a
circle of unit radius, i.e., γ = ω ∩ ∂B1(0). The devised numerical methods
impose suitable continuity conditions along γ and its approximations and
that no bending moment is transferred while the deformation gradient is
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allowed to be discontinuous. We impose compressive boundary conditions
along a boundary part γD = [0, 0.2]×{±0.5} that are continuously increased
via a pseudo time t ∈ [0, 1], i.e., we set

uD(t, x, y) =
[
x, y, 0

]T
+
[
0,−(1/10)y(1− x)t, 0

]T
.

To guarantee that the sheet bends upwards we include a uniform vertical
force that is zero at t = 1, i.e.,

f(t) =
[
0, 0, (2/5)(1− t2)

]T
.

We reduce the computational effort by exploiting the symmetry of the set-
ting and only discretize the subdomain ω′ = (0, 2)× (−1/2, 0) imposing ap-
propriate boundary conditions along the symmetry axis γsym = [0, 2]× {0}.
We use the Young’s modulus E = 10 and a vanishing Poisson ratio which is
compatible with the isometry condition. We consider three different treat-
ments of the crease line and the continuity condition:

(S1) The crease line is isoparametrically resolved by the numerical method
and continuity is imposed along the entire crease line.

(S2) The crease line is approximated by a polygonal curve γℓ on which
continuity is imposed.

(S3) The crease is approximated by a polygonal curve γℓ and continuity
is imposed at the vertices of γℓ.

The settings are illustrated in Figure 7. In view of our theoretical results
we expect the formation of certain singularities at the vertices of the polyg-
onal crease line in setting (S2) and correct approximations in settings (S1)
and (S3).

γ γm γslit
m

Figure 7. Experimental setting with boundary conditions
(arrows), symmetry axis (dashed), boundary point xP (gray
dot), and crease line treatments (S1)-(S3) from left to right.

4.2. Saddle-point formulation. We reformulate the variational formula-
tion of the bending-folding model as a saddle-point problem in order to use
the methods devised for Koiter shells in [24, 23]. We note that for isomet-
ric deformations we have the relation |D2v| = |Hn◦v| for the corresponding
Frobenius norms and the second fundamental form given by

Hn◦v = −(∇v)T∇(n ◦ v), n ◦ v =
∂xv × ∂yv

|∂xv × ∂yv|
.
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We incorporate the second fundamental form in terms of a mixed formulation
by introducing the bending moment tensor as the energetic conjugate to the
curvature tensor, i.e.,

m = −E

12
(∇v)T∇(n ◦ v).

The resulting Hellinger–Reissner two-field formulation includes the isometry
condition via a penalty term and is given by the Lagrange functional

L(v,m) =

∫
ω
α|(∇v)⊤(∇v)− I2×2|2 −

6

E
|m|2 + ((∇v)T∇(n ◦ v)) : m− f · v dx.

We thus aim at approximating a saddle-point minv maxm L(v,m) imposing
the boundary conditions

v = uD on γD, mνν = 0 on ∂ω, vy = 0 on γsym,

where mνν = (mν) · ν, and the different continuity conditions on the crease
line γ of settings (S1)-(S3) together with the condition mνν = 0 on γ or γℓ
for the traces from both sides with a unit normal ν along γ.

4.3. Hellan–Herrmann–Johnson method. We let Th be a triangulation
of ω, which contains polynomially curved elements in setting (S1). On in-
terelement boundaries we consider the clockwise oriented unit tangent vector
t and let ν be an outward unit normal. The set of edges of elements is de-
noted by Eh. The jump of an elementwise continuous quantity w over an
inner edge E = T+ ∩ T− ∈ Eh with a fixed unit normal pointing from T−
into T+ is defined as

JwK|E = w|T+ − w|T− ,

for boundary edges we simply set JwK|E = w|E . The deformation and
bending moment fields are discretized by Lagrangian and Hellan–Herrmann–
Johnson [14, 15, 18, 8] finite elements, respectively,

Uk = {v ∈ C0(ω,R3) : v|T ∈ P̃k(T,R3) for all T ∈ Th},

Mk = {m ∈ L2(ω,R2×2
sym) : m|T ∈ P̃k(T,R2×2

sym) for all T ∈ Th and

JmννKE = 0 for all E ∈ Eh},

where P̃k(T ) denotes the set of functions that are (isoparametrically) trans-
formed polynomials. We use the strategies developed in [24, 25, 23] to
obtain an approximation of the Lagrange functional that can be applied to
deformations that are merely continuous. Despite the elementwise second
fundamental form ∇h(n ◦ v), which is discontinuous over sides of elements,
the angle arccos(n+ · n−) of the jump of the normal vectors across elements
is considered at the edges. For a discrete pair (v,m) ∈ Uk × Mk−1 the
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Lagrange functional is defined via

LHHJ(v,m) =

∫
∪Th

α|(∇v)T(∇v)− I2×2|2 −
6

E
|m|2 −Hn◦v : m dx

−
∫
ω
f · v dx+

∫
∪Eh

arccos(n+ ◦ v · n− ◦ v)mνν ds,

with the elementwise defined second fundamental formHn◦v =
∑3

i=1∇2
hvi (n◦

v)i. The boundary conditions on γD are also approximated using a penalty
term. This allows us to adaptively increase the penalty parameters to en-
force the boundary condition and isometry constraint in the first load-step.
This additional control over the constraints improves the convergence of the
employed Newton’s method. For further implementation details we refer to
[24, 23]. We remark that using the norm of the Hessian as in [29] instead
of the second fundamental form introduces a simpler structure but leads
to additional equations. Corresponding experimental results were nearly
identical.

4.4. Numerical results. We use uniform mesh refinements and additional
local geometric refinements with refinement factor 0.125 towards γ in set-
ting (S1) and the interior vertices in case of (S2) and (S3). The reported
results correspond to cubic polynomials for the deformation, i.e., we always
set k = 3, and a fixed polygonal crease line γℓ with four vertices in the full
domain ω. To compare the experimental results for the different approx-
imations of the crease line, we plotted in Figure 8 the vertical deflection
uh · e3 at the boundary point xp = (2, 0, 0). We observe a reduced deflection
in setting (S2) in comparison to settings (S1) and (S3), confirming the ex-
pected locking effect if continuity is imposed along a polygonal crease line.
The failure of incorrect convergence is also visible in the different norms
of the bending moment m shown in Tables 1 and 2. While the results for
settings (S1) and (S3) nearly coincide, an incorrect L2 norm and a rapidly
growing L64 norm are obtained. The singular effect in setting (S2) becomes
worse when a second geometric refinement is carried out, i.e., we obtained
∥m∥L64 = 923.670, 1644.595, 2430.662 for h = 0.2, 0.1, 0.05, respectively.

In the experiments we used the (final) penalty parameter α = 106 for both,
the constraint approximation and enforcement of the compressive boundary
condition. We used 30 uniform load-steps for the pseudo time t ∈ [0, 1].
To improve the convergence behavior of Newton’s method we use a damped
version with parameter η = 0.05. Further, for the first load-step we used an
internal loop to gradually reduce the violation of the isometry and deforma-
tion boundary constraints by the function

√
β with β ∈ [0, 1] to ensure that

the first intermediate configuration is reached. We used 5 uniform internal
steps for this purpose. We stopped Newton’s method when a residual of
10−6 was reached.
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Figure 8. Evolution of vertical deflections during the
pseudo time-stepping at xp = (2, 0, 0) for crease line approx-
imations of settings (S1)-(S3) and triangulations with mesh
size h = 0.05.

h ∥m∥L2 ∥m∥L64 ∥m∥L2 ∥m∥L64 ∥m∥L2 ∥m∥L64

0.2 6.841 22.173 7.417 27.226 6.838 21.938
0.1 6.832 22.042 7.457 50.182 6.827 21.704
0.05 6.832 22.512 7.503 95.972 6.828 21.714

Table 1. Lp norms of the bending moment tensor for uni-
form mesh refinement in settings (S1)-(S3) from left to right.

h ∥m∥L2 ∥m∥L64 ∥m∥L2 ∥m∥L64 ∥m∥L2 ∥m∥L64

0.2 6.841 22.188 7.604 161.623 6.838 21.936
0.1 6.832 22.043 7.582 307.049 6.827 21.703
0.05 6.832 22.070 7.614 589.891 6.828 21.714

Table 2. Lp norms of the bending moment tensor for uni-
form mesh refinement with one geometric refinement in set-
tings (S1)-(S3) from left to right.
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