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Abstract. We numerically benchmark methods for computing harmonic maps into the unit
sphere, with particular focus on harmonic maps with singularities. For the discretization we
compare two different approaches, both based on Lagrange finite elements. While the first
method enforces the unit-length constraint only at the Lagrange nodes, the other one adds a
pointwise projection to fulfill the constraint everywhere. For the solution of the resulting al-
gebraic problems we compare a nonconforming gradient flow with a Riemannian trust-region
method. Both are energy-decreasing and can be shown to converge globally to stationary
points of the discretized Dirichlet energy. We observe that while the nonconforming and the
conforming discretizations both show similar behavior for smooth problems, the nonconform-
ing discretization handles singularities better. On the solver side, the second-order trust-region
method converges after few steps, whereas the number of gradient-flow steps increases propor-
tionally to the inverse grid element diameter.

1. Introduction

Harmonic maps are stationary configurations of the Dirichlet energy [24, 33]. In this work
we focus on maps into the unit sphere Sm−1 := {x ∈ Rm : |x| = 1}. More formally, given a
Lipschitz domain Ω ⊂ Rn with n ∈ {2, 3}, we seek stationary configurations u : Ω → Sm−1 with
m ∈ {2, 3}, m ≥ n, of the Dirichlet energy

(1) E[u] := 1
2

∫
Ω

|∇u|2 dx.

Equivalently, we will sometimes regard the problem as looking for vector fields u : Ω → Rm that
make E[·] stationary while fulfilling the constraint
(2) |u|2 = 1 almost everywhere in Ω.

For well-posedness we require Dirichlet boundary conditions
(3) u = uD on ∂Ω,

for a function uD : Ω → Sm−1 of suitable smoothness [33, Chap. 3.4].
Harmonic maps into spheres have numerous practical applications. They appear in models of

liquid crystal materials, which, on a microscopic level, consist of rod-shaped molecules that ex-
hibit a natural desire for mutual alignment. Popular macroscopic liquid crystal models are based
on the Oseen–Frank energy, which is the Dirichlet energy of the field of molecule orientations.
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The emergence of new technologies in the manufacturing of liquid crystal compound materials
as well as new ideas for technical applications [21,35,53,55] have led to an ongoing interest also
in corresponding simulation schemes [14,42,52].

Harmonic maps into spheres also play a role in micromagnetics, which models orientation fields
of magnetic dipoles. The Dirichlet energy is the simple-most representative of a family of different
energy-based models [22]. It also serves as a prototype energy that already captures a range of
interesting effects. Furthermore, harmonic maps serve as the basis for more complicated energies
such as the Ginzburg–Landau model or the chiral skyrmions discussed in [39]. In this context
singular harmonic maps are particularly interesting, since they arise as limits of minimizers of
the Ginzburg–Landau energy [40].

Finally, from a mathematical point of view harmonic maps are interesting in their own right,
and a considerable body of literature exists with investigations of mathematical properties of
harmonic maps. Overviews and further literature can be found in [18,33,49].

The construction of finite element (FE) methods for the approximation of harmonic maps
requires special care. The central challenge is the handling of the non-Euclidean image space
Sm−1, or, equivalently, of the nonlinear, nonconvex constraint |u(x)|2 = 1 for (almost) all x in
the domain Ω. This affects both the discretization of the problem as well as solution strategies for
the resulting algebraic systems. In the last decades various approaches have been proposed that
can be employed in the numerical approximation of harmonic maps. For example, several authors
have proposed finite-difference approximations of the Dirichlet energy [19, 54], as well as point-
relaxation methods [37] and gradient-type methods [5, 8]. For the constraint, approaches like
parametrizations [51], Lagrange multipliers [19,34] and penalization [23,38] have been proposed.
Several works also treat numerical methods for more general problems such as p-harmonic maps
[51] or fractional harmonic maps [6].

While all these methods warrant thorough benchmarking, for reasons of space we limit this
paper to two particular discretizations and two particular solver algorithms. In [9,13], Bartels and
coworkers proposed a nonconforming discretization method that consists of Rm-valued Lagrange
finite elements that are constrained to fulfill the unit-length constraint only at the Lagrange
points. Stationary points of the discretized energy (1) are approximated via an implicit discrete
gradient flow employing a linearization of the unit-length constraint (2). This solver approach
is nonconforming in the sense that the iterates slowly accumulate a violation of the constraints.
Bartels et al. showed, however, that this constraint violation remains bounded in terms of the
time step size τ , and that the discrete solutions weakly converge to stationary points of the
Dirichlet energy as the grid element size h and the time step size τ go to zero. The energy
monotonicity property of the discrete gradient flow implies a convergence rate of O

(
(τk)− 1

2
)

for
the norms of the corrections, where k denotes the number of solver steps.

The second approach has been proposed by Sander et al. [43,44], who aimed at a completely
conforming method. The authors construct so-called geometric finite elements, which are gen-
eralizations of piecewise polynomial functions (of arbitrary order) that map into Sm−1 at any
point in the domain. For problems with sufficiently smooth solutions, Hardering et al. showed
optimal convergence rates for the H1- and L2-discretization errors for these elements, for any
polynomial order [29, 32]. Remarkably, such finite elements can also represent singular maps to
a certain extent, which suggests to employ them for simulating harmonic maps with singular-
ities. To solve the discrete problems Sander et al. interpreted them as optimization problems
on a product manifold, and solved them using a Riemannian trust-region method [1, 43]. The
convergence of this algebraic solver follows from general results for optimization methods on
manifolds [1].

The goal of this paper is to compare the practical properties of the two different discretizations
and solver algorithms for the numerical approximation of harmonic maps into the unit sphere.
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The overall outcome is not a priori clear: While the conforming methods preserve more of the
mathematical structure of the problem, the nonconforming methods are simpler to implement.
Also, the behavior in the presence of singularities is hard to predict; indeed, previous works
already observe that computing the exact placement of singularities is difficult [34]. As both
solver methods are based on energy minimization they are unlikely to find anything but locally
minimizing harmonic maps.

To test the relative merits of the methods we define a set of benchmark problems. This set
includes smooth harmonic maps, but also maps with different types of singularities. In our mea-
surements we focus on the discretization error, the constraint violation of the nonconforming
methods, and the solver speed. We find that the approximation power of the two discretizations
is the same for smooth problems, but the conforming discretization shows slightly better con-
vergence orders than the nonconforming one in the presence of singularities. For problems with
smooth solutions, discretization error convergence orders are clearly observed, and they match
the theoretical predictions. For problems with singular solutions, it is much more difficult to
determine an order, and the precise behavior depends on the exact position of the singularity.
Both solvers converge, but for three-dimensional problems with a singularity, we observe that the
placement of the final singularity can depend on the initial iterate. This effect, which was already
noted in [34] for two-dimensional problems, is more pronounced for the conforming discretization
than for the nonconforming one, and remains to be addressed in future work.

As predicted by theory, the constraint violation produced by the gradient-flow solver remains
bounded as long as the step size is chosen to be proportional to the element diameter. The
values we measured are small enough to be unproblematic for most practical applications. By
construction, the trust-region solver does not introduce any constraint violation at all.

Considerable differences show when comparing the solver speeds. The iteration numbers of the
trust-region method are low, and in most situations they seem to remain bounded independently
of the grid resolution. The gradient-flow solver, on the other hand, has to tie its step size to the
grid element diameter. That way, the total number of iterations increases as the grid is refined.
As the iterations of both methods have comparable cost, this leads to a large speed advantage
for the trust-region solver. Experiments that combine the gradient-flow method with a Newton
solver can be found in [10].

The paper is structured as follows: Chapter 2 briefly reviews the different notions of harmonic
maps used in this text. Chapter 3 then introduces the two discretization methods, and Chapter 4
does the same for the algebraic solvers. The different benchmark problems are presented in
Chapter 5. Finally, the last two chapters contain the actual numerical results, with Chapter 6
investigating the discretizations, and Chapter 7 the solvers.

2. Harmonic maps into the sphere

Let Ω be an open, bounded domain in Rn. We use the standard notation Hk(Ω;Rm) for
vector-valued Sobolev spaces defined on Ω with k ≥ 1, and we denote the k-th order Sobolev
vector fields with vanishing boundary trace by Hk

0 (Ω;Rm). For sphere-valued problems, we
introduce the subspace

Hk(Ω; Sm−1) :=
{

v ∈ Hk(Ω;Rm) : v(x) ∈ Sm−1 a.e.
}

,

and its subspace of functions that satisfy the boundary conditions (3) in a trace sense

Hk
D(Ω; Sm−1) :=

{
u ∈ Hk(Ω; Sm−1) : u|∂Ω = uD|∂Ω

}
.
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There are various related definitions of harmonic maps. This text uses three of them, which
we review here briefly. More details can be found in [18, 24, 33]. In the following, (·, ·) denotes
the standard L2 scalar product.

Definition 1 (Stationary harmonic map). A function u ∈ H1(Ω; Sm−1) is called stationary
harmonic map if it satisfies the weak Euler–Lagrange equation

(4) (∇u, ∇φ) = 0

for all φ ∈ H1
0 (Ω;Rm) with u · φ = 0 a.e. in Ω.

The tangentiality condition u · φ = 0 can be avoided by the equivalent formulation

(∇u, ∇φ) = (|∇u|2u, φ)

where we now test with all φ ∈ H1
0 (Ω;Rm) ∩ L∞(Ω;Rm), see [12].

Definition 2 ((Locally) minimizing harmonic map). A map u ∈ H1(Ω; Sm−1) is called (locally)
minimizing harmonic map if it is a (local) minimizer of the Dirichlet energy (1).

In general, a minimizing harmonic map of sufficient smoothness is also a stationary harmonic
map, but the converse is not always the case.

The characterization (4) can be generalized via partial integration to cover cases of lesser
regularity.

Definition 3 (Distributional harmonic map). A map u ∈ L∞(Ω;Rm) with |u| = 1 a.e. in Ω is
called distributional harmonic map if

(u, ∆φ) = 0
for all φ ∈ C∞

0 (Ω;Rm) with u · φ = 0 almost everywhere in Ω.

It is a particularity of sphere-valued problems that the set of continuous maps Ω → Sm−1 is
not connected. In other words, given two continuous functions v1, v2 : Ω → Sm−1 with identical
Dirichlet boundary values it may not be possible to continuously deform one into the other. The
underlying reason is the fact that the homotopy groups of the sphere are not all trivial. Indeed,
maps from a simply connected n-dimensional domain Ω ⊂ Rn into Sm−1 are closely related to the
n-th homotopy group of Sm−1. This group is trivial in the case n = m = 2, but isomorphic to Z
in the cases n = m = 3 and n = 2, m = 3 considered here. By this isomorphism the connected
components of the function spaces can be labeled by an integer (which is is sometimes called
topological degree or quantum number [50]). The disconnected nature of the function space is a
structure that may or may not be preserved by discretizations.

The issue of connectedness is more subtle for the Sobolev spaces H1(Ω; Sm−1) that underly
finite element theory. In particular, the homotopy classes of W 1,p may not all be weakly closed,
and therefore some of them may not contain minimizing harmonic maps [33, Chap. 5.3]. A
discussion about the connected components of W 1,p(M, N) for general manifolds M , N can be
found in [33, Chap. 3.3].

3. Discretizations

We now present the two discretization approaches of [9, 13] and [43, 44] for maps from the
flat domain Ω into Sm−1 ⊂ Rm. The central challenge is the fact that it is impossible to
satisfy the unit-length constraint (2) everywhere in Ω if piecewise polynomials are used for the
approximation. In the following we assume Ω to be polyhedral, and we let Th be a shape-regular
triangulation of Ω with triangles or tetrahedra of diameter no larger than h > 0. The set of
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polynomials with degree at most p ≥ 0 on a simplex T ∈ Th is denoted with Pp(T ), and the
space of continuous, piecewise polynomial m-vector fields is

Sp(Th;Rm) :=
{

vh ∈ C(Ω;Rm) : vh|T ∈ Pp(T )m for all T ∈ Th

}
.

We use the notation Ip
h : H2(Ω;Rm) → Sp(Th;Rm) for the p-th order Lagrange interpolation

operator associated to a set of Lagrange points Lh, of size N := |Lh|.

3.1. Geometrically nonconforming Lagrange finite elements. A natural approach to cope
with the nonlinear nature of the image space Sm−1 is to approximate sphere-valued maps with
functions from Sp(Th;Rm) and require the unit-length constraint (2) only at the Lagrange points.
For first-order finite elements this has been proposed and analyzed in [9]. We obtain the following
admissible set, which also enforces the boundary conditions:

Anc
h :=

{
vh ∈ Sp(Th;Rm) : |vh(z)| = 1 for all z ∈ Lh and vh(z) = uD(z) for all z ∈ Lh ∩ ∂Ω

}
.

This is a smooth nonlinear submanifold of the vector space Sp(Th;Rm), but observe that Anc
h

is a connected set. It therefore waives one of the central features of the actual solution space,
which consists of disconnected homotopy classes.

Discrete approximations of minimizing harmonic maps can now be defined as minimizers of
the Dirichlet energy (1) in the discrete admissible set Anc

h . This works because while Anc
h is not

a subset of the actual solution space H1(Ω; Sm−1), the Dirichlet functional (1) extends naturally
to H1(Ω;Rm) ⊃ Anc

h .
The Definition 1 of weak stationary harmonic maps involves test functions. As the space

of admissible functions is nonlinear, the corresponding test function spaces differ from point to
point. Formally, the test functions for a map v ∈ H1(Ω; Sm−1) are elements of the tangent
space TvH1(Ω; Sm−1), and likewise for discrete maps vh ∈ Anc

h . More practically, test functions
are constructed as variations of admissible functions [45]. For a given vh ∈ Anc

h let therefore
γ : [−ϵ, ϵ] → Anc

h be a differentiable path with γ(0) = vh. The set of test functions for Anc
h at vh

is the set of all functions φh : Ω → Rm that can be represented as

φh = dγ(t)
dt

∣∣∣∣
t=0

with such a path γ. For the geometrically nonconforming discretization, this construction results
in a space of piecewise polynomial vector fields that are orthogonal to vh at the Lagrange points,
and zero at the boundary

T nc
h (vh) :=

{
φh ∈ Sp(Th;Rm) : vh(z) · φh(z) = 0 for all z ∈ Lh, φh(z) = 0 for all z ∈ Lh ∩ ∂Ω

}
.

Finding discrete stationary harmonic maps then means finding functions uh ∈ Anc
h such that

(∇uh, ∇φh) = 0

for all φh ∈ T nc
h (uh). This corresponds to the continuous problem (4).

The nonconforming discretization of harmonic maps allows for different convergence theories.
All results in the literature concern the first-order case p = 1 only, but the convergence theories
from [13] apply verbatim to higher-order discretizations. Most generally, one can establish the
Γ-convergence of the discretizations of the Dirichlet energy E from (1) defined by

Eh[uh] :=
{

E[uh] if uh ∈ Anc
h ,

∞ else,
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to the continuous minimization problem. A discrete compactness result then implies the accu-
mulation of approximations at solutions of the continuous problem. A proof for the case m = 3
is given in [12].

Theorem 4 (Discrete compactness, [12, Theorem 7.6]). Let p = 1 and let (uh)h>0 ⊂ H1(Ω;R3)
be a bounded sequence such that each uh ∈ Anc

h and
(∇uh, ∇φh) = Rh(φh)

for all φh ∈ T nc
h (uh) for functionals Rh ∈ H1

0 (Ω;R3)′ with Rh → 0 in H1
0 (Ω;R3)′ as h → 0.

Then every weak accumulation point of (uh)h>0 is a stationary harmonic map.

Sketch of the proof. The satisfaction of the unit-length constraint by the accumulation points
follows from standard interpolation and inverse estimates. The fact that weak limits are harmonic
maps follows in the case m = 3 from the equivalent characterization

(∇u, ∇[u × ϕ]) = 0
for all ϕ ∈ H1

0 (Ω;R3)∩L∞(Ω;R3), by choosing the interpolant of uh×ϕ for given ϕ ∈ C∞(Ω;R3)
as a test function and then passing to the limit. □

This result can be extended to manifolds that are more general than the unit-sphere [11].

Remark 5. In the proof of Theorem 4 one establishes the fact that for a sequence of discrete
vector fields whose nodal values belong to Sm−1, any weak accumulation point in H1(Ω) has
values in Sm−1 almost everywhere. The assumption of the nodal values belonging to Sm−1

can be further weakened: Given a sequence of discrete vector fields whose nodal values are not
necessarily on Sm−1 but approach unit length as h → 0, it still follows that any accumulation
point in H1(Ω;Rm) satisfies the constraint exactly; cf. [13]. This allows to prove convergence of
solutions obtained with the nonconforming discrete gradient flow discussed in Section 4.1, which
does not preserve the constraint exactly.

Recently, discretization error bounds have also been proved. For piecewise linear Lagrange
elements and n = m = 2, optimal error estimates in the energy norm have been derived for a
corresponding saddle-point formulation in [34]. This result is extended in [15] to the cases m = 3
and n > 2.

3.2. Geometrically conforming projection-based finite elements. The second discretiza-
tion constructs finite elements that map into the sphere Sm−1 everywhere, not just at the La-
grange points. It does so by adapting the notion of a polynomial. The construction has been
proposed in [29] and [27] under the name of projection-based finite elements, and is a member of
the larger family of geometric finite elements [32].

In essence, projection-based finite elements are defined by projecting Lagrange finite elements
with nodal values in Sm−1 pointwise onto Sm−1. More formally, consider the closest-point
projection from Rm onto Sm−1 defined by

P : Rm \ {0} → Sm−1, P (ξ) := ξ

|ξ|
.

This projection induces a superposition operator [7]

P : C(Ω;Rm) → W k,q(Ω; Sm−1) Pv(x) := P (v(x)), ∀x ∈ Ω,

for suitable k and q. With its help we define the space of p-th order projection-based finite
elements as

Sp,proj(Th; Sm−1) :=
{

Pvh : vh ∈ Sp(Th;Rm) and vh(z) ∈ Sm−1 for all z ∈ Lh

}
.
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(a) Smooth (b) Point singularity (c) Line singularity

Figure 1. Three first-order projection-based finite element functions on a tri-
angle, with values in S1. The prescribed values at the Lagrange points are
enlarged for better visibility.

A canonical interpolation operator into Sp,proj(Ω; Sm−1) is given by

Ip,proj
h : C(Ω;Rm) → Sp,proj(Th; Sm−1)

v 7→ P(Ip
hv).

Similar to the nonconforming discretization we then introduce the subspace of functions that
comply with the boundary condition at the boundary Lagrange points

Aproj
h :=

{
vh ∈ Sp,proj(Ω; Sm−1) : vh(z) = uD(z) for all z ∈ Lh ∩ ∂Ω

}
.

Note that the correspondence between functions in Sp,proj and their sets of values c ∈ (Sm−1)N

(with N := |Lh|) at the Lagrange points is one-to-one. This allows to treat projection-based finite
elements algorithmically as such sets of values, just as in the case of standard finite elements.

It was shown in [29] that elements of Sp,proj are in H1(Ω; Sm−1) as long as configurations
are avoided where the projection P (ξ) := ξ/|ξ| becomes undefined. By this embedding prop-
erty, the subset of continuous projection-based finite elements (with fixed boundary conditions)
decomposes into disconnected homotopy classes just like C(Ω; Sm−1) does.

However, as a particularity, the space Sp,proj(Th; Sm−1) also contains maps with singularities.
These appear whenever the values at the Lagrange nodes on an element T are such that T
contains a zero of the Lagrange interpolation in Rm, because there, P : Rm → Sm−1 is not
defined. Figure 1 shows two such configurations for the case m = n = 2. It is easily seen that
finite element maps with singularities can be classified according to the dimension of the support
of the singularity. For example, on a triangle, the Lagrange interpolation can be zero in a single
point or on a line intersecting the triangle. Consequently, the projection-based finite element
functions can have point or line singularities. However, as the values at the Lagrange points
are constrained to have unit length, the singularities cannot appear everywhere within T . In
particular, singularities at Lagrange points are not possible.

The precise regularity of these singular finite element functions remains an open question. The
line-singular function on the right of Figure 1 is discontinuous on a line, and therefore clearly
not an element of W 1,q (because it is not absolutely continuous on almost every line parallel to
the coordinate directions [25]). However, the precise Sobolev regularity of point-singular finite
element functions has not been worked out yet.

Depending on the viewpoint, the singular projection-based finite element functions are a nui-
sance or a feature. If the aim is to approximate smooth functions, then the appearance of singular
finite element functions can be problematic, because one is leaving the realm of established error
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theory, and implementations have to guard against division by zero. Luckily, this happens only
rarely in practice, usually when the grid is too coarse.

When trying to approximate singular functions, on the other hand, having singular approxi-
mation functions at hand may be considered an asset. Indeed, singular functions are difficult to
approximate in standard finite element spaces, and introducing additional bespoke singular finite
element functions (as, e.g., in XFEM [26]) is a standard way to increase the approximation power.
As we will see below, for harmonic maps we do not observe a clear advantage, and the topic
needs further investigation. An additional technical problem is that special quadrature rules are
required to integrate the singular functions. We have experimented with Gauß–Legendre und
low-order composite rules, and did not find one to be clearly superior to the other. Ideally, some
sort of adaptive rule would be used.

As for the nonconforming discretization, test functions are constructed as variations of finite
element functions. As functions in Sp,proj map into Sm−1 everywhere, such variations are vector
fields φh : Ω → Rm for which uh(x)·φh(x) = 0 for all x ∈ Ω.1 Using a construction similar to the
one given in [45], one can show that the test function space at a function vh ∈ Sp,proj is isomorphic
to

∏
z∈Lh

Tvh(z)S
m−1. To construct this isomorphism, let Iproj be the operator that maps coefficient

sets in (Sm−1)N to functions in Sp,proj and let vh ∈ Sp,proj with coefficients v1, . . . , vN . Then, for
all bi ∈ TviS

m−1, i = 1, . . . , N and x ∈ Ω, the corresponding test function φh can be evaluated
by

φh[b1, . . . , bN ](x) =
N∑

i=1

∂Iproj(v1, . . . , vN ; x)
∂vi

· bi.

In line with Section 3.1 we define T proj
h (vh) as the set of test functions at vh ∈ Aproj

h that vanish
on the boundary nodes.

As the admissible set Aproj
h is not a vector space, the standard approximation error theory of

finite elements does not apply. However, for problems with smooth solutions there are rigorous
optimal a priori discretization error estimates both for the L2 norm and the H1 norm [29,32]. The
proofs generalize results like the Bramble–Hilbert lemma in order to prove optimal interpolation
error estimates. Then, the H1 discretization error is estimated with a nonlinear version of
the Céa Lemma [28]. To get bounds on the L2 error, a generalized Aubin–Nitsche lemma for
predominantly quadratic energies such as the Dirichlet energy is proved [30,31,32]. Here as well,
the theoretical results are not restricted to the unit sphere, but hold for more general Riemannian
manifolds [32].

4. Solvers for the discrete problems

We now discuss two solver algorithms for the algebraic problems that arise from the dis-
cretizations in Section 3. Both solvers presented here are based on energy minimization, and
they are therefore unlikely to find stationary harmonic maps that are not locally minimizing.
One of them is a conforming algorithm, i.e., each iterate is guaranteed to be an element of the
discrete admissible set. For the other one, this only holds in the limit of vanishing step size. We
use the symbol Ah to denote either the admissible set Anc

h or Aproj
h , and Th(vh) to denote the

corresponding test function space at vh ∈ Ah, when the difference is irrelevant.

4.1. Nonconforming discrete gradient flow. The first solver interprets the minimization
problem for the energy (1) over Anc

h as being posed on (Rm)N , N := |Lh|, subject to the
constraint |u(z)| = 1 for each Lagrange point z ∈ Lh. Its approach to deal with the constraint

1Here we tacitly interpret tangent vectors of Sm−1 as elements of the surrounding space Rm.
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. . .

u0
h

τdtu1
h

u1
h

τdtu2
h

u2
h

τdtu3
h

Figure 2. Steps of the discrete gradient flow

is to linearize it and then, starting from some initial configuration u0
h ∈ Ah, follow a discrete

gradient flow for the energy (1), imposing the linearized constraint in the Lagrange points of the
finite element space. In order to define the discrete gradient flow, we use the L2 scalar product
of the gradients ( ∇· , ∇· ). Writing Pvh

for the H1-projection into the linear space Th(vh) at a
vh ∈ Sp(Th;Rm), and introducing a pseudo-time variable t, the gradient flow is

∂uh

∂t
= −Puh

(∇H1E[uh]),

with weak form (
∇∂uh

∂t
, ∇φh

)
= −(∇uh, ∇φh).

The proposed algorithm is then an implicit Euler method for this flow.

Algorithm 1: Discrete gradient flow
Input: initial iterate u0

h ∈ Anc
h , step size τ > 0, stopping threshold ϵstop > 0

1 for k = 0, 1, 2, . . . do
2 determine dtuk+1

h ∈ Th(uk
h) such that

(∇dtuk+1
h , ∇φh) = −(∇uk

h, ∇φh) − τ(∇dtuk+1
h , ∇φh) for all φh ∈ Th(uk

h)

3 set uk+1
h = uk

h + τdtuk+1
h

4 if |dtuk+1
h |H1 ≤ ϵstop then

5 return uk+1
h

6 end
7 end

Determining the tangential correction in Line 2 is a linear elliptic equation on the vector space
Th(uk

h). There are several ways how to enforce the restriction to the tangent space. Following
own previous work, our implementation uses Lagrange multipliers. At each step k, we solve the
linear system (

S (Ak)⊤

Ak 0

)(
dk+1

λk+1

)
=
(

b

0

)
,
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where dk+1 ∈ (Rm)N is a representation of the discrete function dtuk+1
h in the nodal basis of

Sp(Th;Rm), the matrix S is the algebraic representation of the scalar product (∇·, ∇·)L2 in the
finite element space, b ∈ RmN encodes the explicit terms on the right hand side of Line 2 of
Algorithm 1, and Ak is a matrix encoding the linearized nodal constraints dtuk+1

h (z) · uk
h(z) = 0,

z ∈ Lh, with the corresponding Lagrange multiplier λk+1 ∈ RN . The resulting linear systems are
symmetric but indefinite, and are solved with a direct solver if dim Ω = 2, and with a GMRES
solver if dim Ω = 3.

Rigorous convergence analysis for this algorithm for the case of the first-order nonconforming
discretization of Chapter 3.1 appears in [9, 13]. To obtain convergence, the time step size τ has
to tend to zero with the mesh size h. Monotonicity of the method implies that the norms of the
corrections dtu

k
h decay like O

(
(τk)− 1

2
)
. In this case the successive violations of the constraint,

shown in Figure 2, are controlled by the energy of the initial iterate and the step size,

(5) max
k=0,1,2,...

∫
Ω

I1
h

(∣∣|uk
h|2 − 1

∣∣)dx ≤ cτE[u0
h].

In particular, the maximum violation is independent of the number of iterations, and the bound
does not depend on structural properties of the underlying triangulation. This observation holds
for all target manifolds that are given as level sets of suitably regular functions.

In order to maintain the optimal convergence of the discretization, a violation of order O(h)
in the constraint has to be guaranteed, which requires choosing τ = O(h). This however reduces
the speed of the convergence of the iteration which is O((τN)− 1

2 ).
On the other hand, note that the linear convergence of the constraint violation potentially

spoils the approximation error when a higher-order finite element space is employed. As a remedy
a higher-order approximation in time may be used to define the discrete gradient flow. Recently,
it has been shown that using a second-order backward differentiation formula leads to quadratic
constraint consistency [3].

An earlier version of Algorithm [5] projected each tangential correction back onto the sphere
at each Lagrange point. That way, no algebraic constraint violation was accumulated, and the
algorithm remained conforming. However, such projections may lead to energy increase. Energy
decrease can be guaranteed for certain types of triangulations, but the corresponding restrictions
limit the applicability of the algorithm in three-dimensional situations [9]. We do not consider
this variant of the algorithm any further in this text.

4.2. Riemannian trust-region method. For a method that does not violate the algebraic
sphere constraints, we turn to the field of optimization on manifolds [1]. Here, the admissible
set Ah ∈ {Anc

h , Aproj
h } is viewed as the product manifold (Sm−1)N . The discrete problem for

finding minimizing harmonic maps then has the form of a minimization problem for the Dirichlet
energy (1) on that manifold.

In order to solve the minimization problem on Ah we employ a Riemannian trust-region
method. Such a method generalizes standard trust-region methods to objective functionals de-
fined on a Riemannian manifold [1]. In the spirit of Newton’s method, the general idea is to
consider a quadratic model of the objective functional around the current iterate. The algorithm
then computes a correction φk

h in the tangent space of the current iterate uk
h ∈ Ah. However,

as the model is assumed to be accurate only in a neighborhood of 0 on Th(uk
h), the tangential

correction is restricted to remain in a ball around 0 (the name-giving trust region), the radius
of which is controlled adaptively. To be more precise, in each step k the quadratic trust-region
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Algorithm 2: Riemannian trust-region method
Input: Initial iterate u0

h ∈ Ah, initial trust-region radius ∆0 > 0, tolerances β1 > β2 > 0
and stopping threshold ϵstop > 0

1 for k = 0, 1, 2, . . . do
2 Solve (6) for φh ∈ Th(uk

h) // Compute tangential correction
3 if |φh|H1 < ϵstop then
4 return uk

h

5 else
6 Evaluate ρk from (7) // Estimate model quality
7 if ρk > β1 then
8 uk+1

h = Expuk
h
(φh) and ∆k+1 = 2∆k // ‘Very successful’ step

9 else if ρk > β2 then
10 uk+1

h = Expuk
h
(φh) and ∆k+1 = ∆k // ‘Successful’ step

11 else
12 uk+1

h = uk
h and ∆k+1 = 1

2 ∆k // ‘Unsuccessful’ step
13 end
14 end
15 end

subproblem at an iterate uk
h is

min
φh∈Th(uk

h
)
mk(φh) := E[uk

h] +
〈
Grad E[uk

h], φh

〉
+ 1

2
〈
Hess E[uk

h](φh), φh

〉
(6)

subject to
∥φh∥uk

h
≤ ∆k,

where ∥·∥uk
h

is a suitable norm, and ∆k is the current trust-region radius. The terms Grad E

and Hess E denote the Riemannian gradient and Hessian, respectively. These can be computed
from simple modifications of the corresponding Euclidean quantities of the functional extended
into the surrounding Euclidean space [2], which take a particularly simple form for the unit
sphere as a target manifold. In a finite element context, one can conveniently solve the quadratic
minimization problems (6) by choosing the infinity norm ∥·∥vk

h
= ∥·∥∞ with respect to some

coordinate system to define the trust-region, and then use a monotone multigrid (MMG) method
for the minimization. Detailed descriptions are given in [36,43,47].

Given an appropriate tangential update φk
h, the next iterate is then uk+1

h = expuk
h
(φk

h) ∈ Ah,
where expuk

h
is the Riemannian exponential map of Ah at uk

h. As Ah is a product manifold, the
exponential map acts on each factor space Sm−1 separately. Conveniently, the exponential map
of the sphere has the closed-form expression

expξ v = cos|v| · ξ + sin|v|
|v|

· v where ξ ∈ Sm−1 and v ∈ TξSm−1.

Like the gradient-flow method of the previous section, the trust-region method computes an up-
date in a tangent space. However, while the gradient-flow algorithm uses Lagrange multipliers
to enforce tangentiality, the trust-region method introduces a basis for Th(uk

h) and solves the
quadratic minimization problem (6) with respect to this basis. As a consequence, the update
problem involves fewer variables, and it is elliptic instead of a saddle-point problem. For coeffi-
cients in S2, the basis is constructed as the push-forward of the canonical basis of R2 under the
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inverse stereographic projection, which is conformal. While the tangent problem of the gradient-
flow method could be easily formulated in terms of a basis for Th(uk

h), the trust-region problem
involves an additional inequality constraint. Solving minimization problems with inequality and
equality constraints is possible, but much more complicated.

Whether the new iterate uk+1
h = Expuk

h
(φh) is actually accepted depends on whether it

realizes sufficient energy decrease. This is measured by the ratio of actual and expected energy
decrease

ρk :=
E
[

Expuk
h
(0)
]

− E
[

Expuk
h
(φh)

]
mk(0) − mk(φh) .(7)

This quantity also controls the evolution of the trust-region radius [20].
The global convergence of this method to first-order stationary points has been proved by

Absil et al. [1]. Moreover, depending on the accuracy of the inner solver, the local convergence is
superlinear or even quadratic. We refer to [1] for more details. More applications of the method
to manifold-valued finite element problems appear in [41,47].

5. Benchmarks problems

In this section we present the benchmark problems that will serve to test the discretizations
and solver algorithms. All problems are posed on the open n-dimensional square Ω = (− 1

2 , 1
2 )n.

5.1. Inverse stereographic projection. The first test problem constructs a harmonic map
that is C∞ in the domain.

Problem 1 (Inverse stereographic projection). Let Ω = (− 1
2 , 1

2 )2 and set m = 3, i.e., the
image space is S2 ⊂ R3. Denote the stereographic projection (from the north pole) by

πst : S2 \
{

(0, 0, 1)T
}

→ R2 πst(ξ1, ξ2, ξ3) :=
(

ξ1

1 − ξ3
,

ξ2

1 − ξ3

)T

,

and note that it is invertible with

π−1
st (x1, x2) =

(
x2

1 + x2
2 + 1

)−1

 2x1
2x2

x2
1 + x2

2 − 1

 .

Find a harmonic map u : Ω → S2 such that u = π−1
st on the domain boundary ∂Ω.

Direct calculations show that π−1
st itself is a stationary map, and it is in C∞. Its minimization

properties are discussed in [17].

5.2. Radial projection. The next two problems compute harmonic maps with a single singu-
larity. Both use the radial projection map

u⊙ : Ω → Sdim Ω, u⊙(x) := x

|x|
as the boundary condition function.

Problem 2 (Radial projection).
(a) Find a harmonic map on Ω :=

(
− 1

2 , 1
2
)3 with image in S2 such that u = u⊙ on ∂Ω.

(b) Find a harmonic map on Ω :=
(

− 1
2 , 1

2
)2 with image in S1 such that u = u⊙ on ∂Ω.
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(a) R2 ⊃ Ω → S2 (b) R3 ⊃ Ω → S2 (c) R2 ⊃ Ω → S1

Figure 3. Discrete solutions uh for Problems 1, 2(a) and 2(b)

Both problems have u⊙ as a solution. A direct computations in polar coordinates shows that
u⊙ is an element of W 1,q(Ω; Sm−1) for q < n (see also [33, Chap. 3.2]) and that it also belongs
to W 2,q(Ω; Sm−1) for q < n

2 . Further properties depend on the space dimensions:
(a) If n = m = 3, the radial projection u⊙ is the unique minimizer of the Dirichlet energy

in H1(Ω, S2). This was proven by Brezis, Coron and Lieb [18, Corollary 7.9], based on
the work of Schoen and Uhlenbeck [48]. The corresponding minimal energy on Ω is

E[u⊙] = 6
π/2∫

−π/4

π − 2 arctan( 1
sin(ϑ) )

sin(ϑ) dϑ ≈ 7.674124,

which can be verified with a computer algebra system. As 2 ≮ n
2 if n = 3, we have

u⊙ /∈ H2(Ω; S2) in this case.
(b) If n = m = 2, the radial projection u⊙ is not even in H1(Ω; S1) (see also [49, p. 71]), and

therefore E[u⊙] is not well-defined. However, it is still an element of L2(Ω; S1).
The radial projection

(
− 1

2 , 1
2
)

→ S1 is still harmonic in the distributional sense, even though
its Dirichlet energy is undefined. We give a short proof of this result, which we have not found
elsewhere.

Lemma 6. If n = m = 2 the radial projection u⊙ : x 7→ x
|x| is harmonic in the distributional

sense, i.e., (u⊙, ∆φ) = 0 for any φ ∈ C∞
0 (Ω;Rm) with u⊙ · φ = 0 a.e.

Proof. One directly checks that ∂iu⊙, i = 1, 2, and −∆u⊙ are, respectively, perpendicular and
parallel to u⊙, which itself coincides with the unit normal n to the ball Bε(0) of radius ε around
the origin. With this, a splitting of the integral and two integrations by parts lead to∫

Ω
u⊙ · ∆φ dx =

∫
Bε(0)

u⊙ · ∆φ dx +
∫

∂(Ω\Bε(0))
u⊙ · (∇φn) ds

−
∫

∂(Ω\Bε(0))
(∇u⊙n) · φ ds +

∫
Ω\Bε(0)

∆u⊙ · φ dx,

for any φ ∈ C∞
0 (Ω;Rm). The first integral on the right-hand side is bounded in terms of ε2, the

second integral is bounded in terms of ε, the third integral vanishes since ∇u⊙n = 0, and the
fourth integral vanishes because u⊙ is harmonic outside of Bε(0). □
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Figure 4. Stationary configurations of harmonic maps from
(

− 1
2 , 1

2
)3 to S2

with multiple singularities, obtained with the nonconforming discretization and
Algorithm 1 with initial singularity degrees κ = 2, 3, 4, 5 (left to right). Singular-
ities are located on the horizontal mid-surface, which is colored by the Frobenius
norm of the discrete solution gradients.

5.3. Multiple singularities. The final benchmark investigates harmonic maps with multiple
singularities. It also appears in [5].

Recall that if a map v : Ω → S2 is continuous in a ball Bε(x) around a point x ∈ Ω except at x
itself, the degree of the singularity at x is defined as the topological winding number of v|∂Bε(x)
with respect to x, see [18].

Problem 3 (Multiple singularities in R3). Interpret the stereographic projection πst as
a map into the complex plane, and define
(8) uκ

D(x) := π−1
st ◦ gκ ◦ πst ◦ u⊙,

where
gκ : C → C, gκ(z) := zκ, ∀κ ∈ N.

For given κ ∈ N, find a harmonic map u : Ω =
(

− 1
2 , 1

2
)3 → S2 such that u = uκ

D on ∂Ω.

The map uκ
D has a degree-κ singularity at the origin. For κ = 1 this is identical to Prob-

lem 2(a). However, according to Brezis, Coron, and Lieb [18] (locally) minimizing harmonic
maps cannot have singularities of (absolute) degree greater than one. Hence, the maps uκ

D are
unstable configurations for κ > 1, and will typically not be observed in simulations using energy-
descent-based solver algorithms. Figure 4 shows configurations for the cases κ = 2, . . . , 5 obtained
by numerical simulations using the nonconforming discretization and the discrete gradient-flow
solver. One can see that the initial degree κ singularity of uκ

D splits up, and the system runs
into a stable state with κ isolated singularities of unit degree each.

6. Benchmarking the discretizations

We now numerically compare the two discretizations of Section 3 on the benchmark Prob-
lems 1, 2(a) and 2(b) defined in Section 5. We omit Problem 3, which involves harmonic maps
with multiple singularities. The configurations of Problem 3 are essentially multiple copies of
the single-singularity case of Problem 2, and we therefore do not expect to see any new effects.
Also, this problem has no closed-form solution, but solving it numerically is also problematic (see
Chapter 7.3 below). As a consequence, we do not have a good reference to test the discretization
errors with.
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6.1. Benchmarking procedure. For the numerical experiments we employ uniform triangu-
lations Th of Ω ⊂ Rn into simplices. Starting from triangulations with only 2 triangles (if Ω is
two-dimensional) or 6 tetrahedra (if Ω is three-dimensional) we obtain sequences of test grids by
uniform refinement. We label these grids by their refinement level r ∈ N. A grid for Ω =

(
− 1

2 , 1
2
)n

with refinement level r has an element diameter of h = 2−r
√

n.
We solve the algebraic systems resulting from the different discretizations to machine preci-

sion with the Riemannian trust-region solver of Section 3.2. That way, no algebraic constraint
violation occurs, and the algebraic error introduced by the iterative nature of the solver remains
negligible. We use the parameters ∆0 = 1

2 , δ1 = 0.9 and δ2 = 10−2 for the outer solver. The
inner multigrid solver is set to iterate until the H1 seminorm of the correction drops below 10−10.
The initial iterates will be given below. The implementation is a hand-written C++ code based
on the Dune libraries [16,46]. The dune-alugrid [4] extension module is used as the grid data
structure, and the dune-gfe module2 provides the implementation of the projection-based finite
elements.

Let u denote the known exact solution of a problem, and let uh be a finite element approxi-
mation on a grid of maximal edge length h. We can directly compute the errors in the L2-norm
∥uh − u∥L2 and the H1-seminorm |uh − u|H1 . On our hierarchy of grids obtained by uniform
refinement, we can estimate the corresponding orders of convergence by

EOCL2

h := log2

(∥u2h − u∥L2

∥uh − u∥L2

)
and EOCH1

h := log2

( |u2h − u|H1

|uh − u|H1

)
.

Note that for the nonconforming discretization, the approximate solutions uh are piecewise
polynomial functions, and therefore the harmonic energy can be integrated exactly. However, the
reference solutions u are not polynomial, and therefore computing the errors and convergence
orders always involves a quadrature error. The projection-based finite elements, however, are
not piecewise polynomials themselves, and no exact quadrature formula is known even for the
harmonic energy. Here, we use Gauss–Legendre quadrature of second and sixth order for the
harmonic energy and the EOCs, respectively. Finding more appropriate quadrature formulas for
geometric finite elements remains an interesting research subject of its own.

6.2. Inverse stereographic projection. We begin with Problem 1, i.e., the computation of
a harmonic map from Ω =

(
− 1

2 , 1
2
)2 to S2, with boundary data given by the restriction of

the inverse stereographic projection π−1
st to Ω. One solution to this is the inverse stereographic

projection itself, which is smooth.
We measure the discretization errors for finite elements of orders p = 1 and p = 2, starting

the solver from the interpolant of the inverse stereographic projection. The results are shown in
Table 1. The rates agree with what would be expected for a linear problem, i.e., they are iin
O(hp+1) for the L2-error and in O(hp) for the H1-error. For the projection-based finite element
discretization this has been proven in [29, 32]. For nonconforming discretizations with p = 1,
optimal error estimates in the energy norm have been derived for a corresponding saddle-point
formulation in [34] for the case m = n = 2, and for more general two- and three-dimensional
settings in [15].

Table 1 also shows the discrete energies of the minimizers for the different grids. The values
produced by the two different discretizations roughly agree—more so for the second-order finite
elements. Observe how the minimal energy increases with increasing mesh refinement for the
nonconforming discretization, whereas it decreases for the conforming discretization. The latter
would be the expected behavior for nested finite element spaces. However, neither the conforming

2https://gitlab.mn.tu-dresden.de/osander/dune-gfe/

https://gitlab.mn.tu-dresden.de/osander/dune-gfe/
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nonconforming conforming
r |Th| E[uh] EOCL2

h EOCH1
h E[uh] EOCL2

h EOCH1
h

order p = 1
1 8 2.667 - - 3.192 - -
2 32 2.920 1.930 0.949 3.062 2.152 1.044
3 128 2.986 1.984 0.988 3.023 2.005 1.002
4 512 3.003 1.996 0.997 3.013 1.997 1.000
5 2048 3.008 1.999 0.999 3.010 1.999 1.000
6 8192 3.009 2.000 1.000 3.009 2.000 1.000
7 32 768 3.009 2.000 1.000 3.009 2.000 1.000
8 131 072 3.009 2.000 1.000 3.009 2.000 1.000

order p = 2
1 8 3.004 - - 3.030 - -
2 32 3.009 2.962 1.938 3.011 2.924 1.927
3 128 3.009 2.990 1.987 3.009 3.027 1.984
4 512 3.009 2.998 1.997 3.009 3.013 1.996
5 2048 3.009 2.999 1.999 3.009 3.004 1.999
6 8192 3.009 3.000 2.000 3.009 3.001 2.000
7 32 768 3.009 3.000 2.000 3.009 3.000 2.000

Table 1. Experimental discretization error convergence orders for Problem 1

nor the nonconforming finite elements form nested approximation space hierarchies with respect
to the refinement r.

6.3. Radial projection. We repeat the same experiment for Problems 2(a) and 2(b), which
both lead to harmonic maps with a singularity.

6.3.1. The case n = m = 3. We first test the discretizations on Problem 2(a), the solution of
which is the radial projection u⊙ : x 7→ x

|x| on the three-dimensional domain Ω =
(

− 1
2 , 1

2
)3.

Recall that the radial projection map u⊙ is in H1(Ω; S2), but not in H2(Ω; S2) (more details in
Chapter 5.2).

We cannot pick the solution as the initial iterate, and instead we choose

(9) u0
h ∈ Ah, u0

h(x) =
{

u⊙(x) if x ∈ Lh and x ̸= (0, 0, 0)T ,

(0, 0, 1)T if x ∈ Lh and x = (0, 0, 0)T .

The special treatment for the value at (0, 0, 0)T ∈ Ω is necessary because it is a Lagrange point,
but u⊙ is not defined there. (Even though projection-based finite elements can represent singular
functions, they cannot represent functions that are singular at Lagrange points.) The choice of
(0, 0, 1)T for the value at x = (0, 0, 0)T is arbitrary; note that it breaks some of the problem’s
inherent symmetry.

The experimental results are listed in Table 2. The measured orders of convergence are much
lower now that the solution is not in H2(Ω; S2), and they have a larger variance. For both
discretizations we obtain orders that are a little under 1 for the L2-error and around 0.4 for
the H1-error. Given the regularity of the solution u⊙, these convergence orders are plausible.
However, no rigorous a priori discretization error bounds exist currently for either discretization.
The conforming discretization seems to perform a bit better than the nonconforming one, but
this may be coincidental. Its L2-error is much closer to 1, but it has an outlier at ≈ 0.5 for the
grid with r = 3. The reason for this is unclear.
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nonconforming conforming
r |Th| E[uh] EOCL2

h EOCH1
h E[uh] EOCL2

h EOCH1
h

order p = 1
1 48 5.308 - - 7.858 - -
2 384 6.610 1.052 0.312 8.001 1.023 0.435
3 3072 7.164 0.776 0.364 7.937 0.555 0.479
4 24 576 7.423 0.720 0.376 7.820 0.863 0.409
5 196 608 7.549 0.805 0.406 7.751 0.928 0.441
6 1 572 864 7.612 0.888 0.438 7.714 0.962 0.464

order p = 2
1 48 6.642 - - 7.920 - -
2 384 7.164 0.861 0.363 7.833 1.258 0.480
3 3072 7.409 0.894 0.414 7.753 1.205 0.495
4 24 576 7.538 0.925 0.438 7.713 1.138 0.496
5 196 608 7.605 0.954 0.459 7.694 1.080 0.497

Table 2. Experimental discretization error convergence orders for Prob-
lem 2(a), with the singularity at (0, 0, 0)T and using the initial iterate defined
in (9)

Again, Table 2 also shows the energies of the minimizers for the two discretizations. The
energies increase as the grid is refined for the nonconforming discretization (with one exception),
whereas it decreases for the nonconforming discretization. This is the same behavior as in the
smooth case.

6.3.2. Moving the singularity off the Lagrange point. The situation of the previous section is
somewhat special: The singularity of the exact solution is right on a Lagrange point for all grid
refinements, and it therefore cannot be represented even with a projection-based finite element
function.

To study whether this has harmful consequences, we redo the previous experiment with a
singularity that is slightly shifted. More precisely, we keep the domain Ω =

(
− 1

2 , 1
2
)3, but we

set the Dirichlet boundary values such that

u⊙,δ := x − δ

|x − δ|
, δ := 2−6

(1
3 ,

1
3 ,

1
3

)T

becomes a solution. With this choice of δ, the singularity is not on a Lagrange point for all grids
that we test with, and we can therefore use it as initial iterate without modification.

Table 3 shows the results. One can see that the new position of the singularity does have an
influence on the convergence behavior. For both types of discretizations, the measured orders
are a little higher. On the other hand, the orders are still highly unstable from level to level, and
it is not possible to single out a fixed value as the definite order. There is even one outlier where
the order becomes negative. Fully understanding the behavior of the discretizations in such a
nonregular scenario certainly requires further work.

6.3.3. The case n = m = 2. In the situation of Problem 2(b) the solution is even less regular. The
radial projection u⊙ :

(
− 1

2 , 1
2
)

→ S1 is still a harmonic map, but it is so only in the distributional
sense (Lemma 6). As a consequence, the Dirichlet energy of u⊙ is not a finite number. The
problem is still well-defined in finite element spaces when using numerical quadrature, but we
cannot hope for convergence in the H1 sense.

To compute finite element solutions we use the same approach as for Problem 2(a) with
n = m = 3. The singularity is on a Lagrange point again, and we set the initial iterate to the
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nonconforming conforming
r |Th| E[uh] EOCL2

h EOCH1
h E[uh] EOCL2

h EOCH1
h

order p = 1
1 48 5.272 - - 7.814 - -
2 384 6.590 1.073 0.321 7.986 1.048 0.436
3 3072 7.151 0.820 0.385 7.978 0.349 0.354
4 24 576 7.416 0.815 0.391 7.834 0.962 0.403
5 196 608 7.545 1.027 0.532 7.747 1.462 0.778
6 1 572 864 7.609 1.472 0.407 7.712 1.698 0.549

order p = 2
1 48 6.638 - - 7.911 - -
2 384 7.162 0.849 0.442 7.828 1.366 0.524
3 3072 7.403 0.918 0.466 7.751 1.530 0.592
4 24 576 7.533 1.171 0.512 7.712 1.790 0.546
5 196 608 7.602 1.783 0.806 7.693 −0.255 0.967

Table 3. Experimental discretization error convergence orders for Prob-
lem 2(a), with singularity at δ = 2−6( 1

3 , 1
3 , 1

3 )T

nonconforming conforming
r |Th| E[uh] EOCL2

h |uh − u|H1 E[uh] EOCL2
h |uh − u|H1

order p = 1
1 8 5.172 - 4.301 5.528 - 5.498
2 32 6.866 0.652 4.373 6.794 0.676 6.695
3 128 8.834 0.621 4.483 8.791 0.824 6.842
4 512 1.096 · 101 0.761 4.529 1.094 · 101 0.878 6.853
5 2048 1.312 · 101 0.832 4.544 1.311 · 101 0.897 6.855
6 8192 1.529 · 101 0.868 4.548 1.529 · 101 0.910 6.856
7 32 768 1.747 · 101 0.890 4.549 1.747 · 101 0.920 6.856
8 131 072 1.965 · 101 0.905 4.550 1.965 · 101 0.928 6.856

order p = 2
1 8 7.430 - 3.636 1.019 · 101 - 3.850
2 32 9.452 0.643 3.763 1.230 · 101 0.933 3.883
3 128 1.159 · 101 0.787 3.805 1.447 · 101 0.921 3.885
4 512 1.376 · 101 0.845 3.818 1.664 · 101 0.923 3.886
5 2048 1.593 · 101 0.876 3.822 1.882 · 101 0.929 3.887
6 8192 1.811 · 101 0.895 3.823 2.100 · 101 0.935 3.887
7 32 768 2.028 · 101 0.909 3.823 2.318 · 101 0.941 3.887

Table 4. Experimental discretization error convergence orders for Prob-
lem 2(b)

vector (1, 0)T there. The results are shown in Table 4. For both discretizations we still observe
convergence in the L2-sense to u⊙. The orders are even a bit less oscillatory than in the three-
dimensional situation. Indeed, the orders of the conforming discretization are slightly better
than the orders of the nonconforming one, and both seem to be increasing slowly with increasing
mesh resolution. All orders stay below 1, and it is unclear whether the orders would approach
a limit on even finer grids. In similar experiments in [34], Hu, Tai, and Winther observed the
same linear convergence.

However, in the H1-sense there is no convergence at all. Table 4 shows the errors, and one
can observe that they converge to a fixed value not equal to zero.
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(a) R2 ⊃ Ω → S2 (b) R3 ⊃ Ω → S2 (c) R2 ⊃ Ω → S1

Figure 5. Initial configurations u0
h for Problems 1, 2(a) and 2(b). These are

perturbations of the problem solutions.

7. Benchmarking the solvers

In this second chapter of numerical tests we benchmark the solver algorithms of Chapter 4.
The intention is to test both solvers of Chapter 4 with both discretizations of Chapter 3. However,
the nonconforming gradient-flow solver cannot be combined with the conforming discretization,
which cannot, without modifications, handle values not on the sphere. We therefore end up with
three combinations:

(1) The nonconforming gradient-flow solver of Chapter 4.1 for problems discretized with the
nonconforming discretization (henceforth abbreviated as Solve(GF)/Discr(N)),

(2) the Riemannian trust-region solver of Chapter 4.2 with the nonconforming discretization
(Solve(TR)/Discr(N)),

(3) the Riemannian trust-region solver with the conforming discretization (Solve(TR)/Discr(C)).
We are interested in iteration numbers, wall times, and how the nonconformity of the gradient-

flow solver influences the final result. In order to measure this nonconformity we use the quantity

δ1[vh] :=
∫

Ω
I1

h

(∣∣|vh|2 − 1
∣∣) dx,

which is the quantity that appears in the theoretical constraint violation bound (5). As δ1 is
zero for all iterates provided by the Riemannian trust-region method, we show it only for the
gradient-flow solver.

We again use the C++/Dune implementation of the previous chapter. For the wall-time
measurements we used a standard laptop computer with an AMD Ryzen 7 processor and 16 GB
of DDR4 RAM. We set both solvers to iterate until the H1-seminorm of the correction drops
below ϵstop = 10−3. Other than that, we used the same settings for the Riemannian trust-region
solver as before, i.e., initial trust-region radius ∆0 = 1

2 and step acceptance parameters β1 = 0.9
and β2 = 10−2. For the gradient-flow solver we set the pseudo time step size τ to four times the
maximum element diameter h of the grid.

7.1. Inverse stereographic projection. For the first test we again consider Problem 1, where
both domain Ω = (− 1

2 , 1
2 )2 and image space S2 are two-dimensional. This situation has a smooth

solution in form of the inverse stereographic projection π−1
st .

7.1.1. Starting from close to the solution. As a first test, we start the solvers from the nodal
interpolation of the function π−1

st itself. This is the approach used for the discretization error
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Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| #Iter δ1[uh] #Iter δ1[uh] #Iter #Iter #Iter #Iter

1 8 1 2.776 · 10−17 3 2.776 · 10−17 1 2 1 2
2 32 5 1.196 · 10−6 2 7.235 · 10−9 2 2 2 2
3 128 4 4.370 · 10−8 1 1.551 · 10−11 2 1 2 1
4 512 1 5.197 · 10−10 1 2.508 · 10−14 1 1 1 1
5 2 048 1 1.002 · 10−11 1 1.566 · 10−16 1 1 1 1
6 8 192 1 1.756 · 10−13 1 1.256 · 10−16 1 1 1 1
7 32 768 1 2.986 · 10−15 1 1.226 · 10−16 1 1 1 1
8 131 072 1 1.510 · 10−16 1 1

Table 5. Iteration numbers and unit-length constraint violation δ1 for Prob-
lem 1, starting close to the solution

measurements of the previous chapter, only the termination criterion is now less strict. Table 5
shows the iteration numbers. Not surprisingly, convergence is very fast. Indeed, both solvers
rarely need more than a single iteration to reach a situation where the termination criterion
holds. Also, the constraint violation introduced by the gradient-flow solver remains very small.

As the iteration histories are so short we omit the wall-time measurements.

7.1.2. Starting from further away. To challenge the solvers a bit more, we now construct an
initial iterate that is further away from the solution. For this, define the scalar perturbation
function

(10) p̃n(x) := cos(3πx1) · 4n
n∏

i=1

(
x2

i − 1
4

)
,

and use it to define the initial iterate

(11) u0
h := Ih

((
π−1

st + p̃2 ·
(

1
0
0

))
∣∣∣π−1

st + p̃2 ·
(

1
0
0

)∣∣∣
)

.

See Figure 5a for how this looks like. The perturbation function (10) vanishes on the domain
boundary ∂Ω, and therefore the initial iterate still satisfies the boundary condition u0

h = π−1
st on

∂Ω. Also, the new initial iterate is still in the same homotopy class as π−1
st .

Table 6 shows the solver performance results. One can see that the trust-region method still
only needs a low number of iterations (4–5) to reach the required accuracy, independent of the
grid refinement and the approximation order. The gradient-flow solver, on the other hand, needs
much larger iteration numbers to reach the same accuracy. This is caused by the step size choice
τ = 4h, which leads to very small steps τ for finer grids. Indeed, the iteration numbers seem to
double from one grid to the next, reflecting the linear dependence of τ on h. The coupling of τ
and h, however, is necessary in order to keep a bound on the constraint violation δ1 according
to the estimate (5).

Table 6 shows that bounding the constraint violation in this way does work in practice. The
constraint violations of the minimizers computed by the gradient-flow method remain in the
range of 10−4 to 10−3, which will be negligible for many practical purposes. In fact, as predicted
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Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| #Iter δ1[uh] #Iter δ1[uh] #Iter #Iter #Iter #Iter

1 8 14 3.630 · 10−2 10 7.331 · 10−2 4 4 4 5
2 32 15 4.485 · 10−2 15 4.421 · 10−2 4 4 4 5
3 128 24 1.837 · 10−2 25 1.798 · 10−2 4 4 4 4
4 512 43 1.032 · 10−2 43 1.026 · 10−2 4 4 4 4
5 2048 79 5.480 · 10−3 79 5.472 · 10−3 4 4 4 4
6 8192 151 2.832 · 10−3 151 2.831 · 10−3 4 4 4 4
7 32 768 296 1.441 · 10−3 296 1.440 · 10−3 4 4 4 4
8 131 072 585 7.267 · 10−4 4 4

Table 6. Iteration numbers and unit-length constraint violation δ1 for Prob-
lem 1 with initial iterate uh

0 given by (11)

Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| time [s] time [s] time [s] time [s] time [s] time [s]

4 512 <1 1 0.444 0.566 0.480 0.621
5 2 048 2 8 0.685 1.217 0.819 1.389
6 8 192 13 99 1.647 3.409 1.992 4.185
7 32 768 152 1269 5.385 12.494 6.534 15.726
8 131 072 1880 20.466 25.159

Table 7. Wall-times for Problem 1 with perturbation, with initial iterate uh
0

given by (11)

by (5), the constraint violation is proportional to the time-step size: As we have coupled τ to be
proportional to h, the violation is roughly reduced by a factor of 2 for each grid refinement.

High iteration numbers would be unproblematic if the gradient-flow iterations were cheap.
However, both solvers have roughly the same cost per iteration, dominated by having to solve a
linear system of equations for each iteration. The matrix of the trust-region method is symmetric
and positive definite, but it is iteration-dependent, and therefore has to be reassembled at each
iteration. The linear system of the gradient-flow method is a saddle-point problem, on the other
hand, because (in our implementation) the tangentiality of the correction is enforced via Lagrange
multipliers. The benefit of this is that the two diagonal blocks of the matrix are independent of the
iteration, and have to be assembled only once. On the downside, the problem has more unknowns
than the formulation in local coordinates of the tangent space. An alternative implementation
could formulate the tangent problem of the gradient-flow method in local coordinates of the
tangent space, which would get rid of the Lagrange multipliers. Then, however, the entire
matrix would have to be reassembled at each step as well.

The net effect of iteration numbers and time-per iteration can be seen in Table 7. The wall-
time of the trust-region solver scales roughly linearly with the number of degrees of freedom. This
is the combination of the fact that the outer trust-region solver needs a resolution-independent
number of iterations, and that the inner solver is a multigrid solver with optimal complexity.
The gradient-flow solver does not have these features, and therefore the wall-time it requires
increases much faster as the grid gets finer. The difference between the two is in the range of
two orders of magnitude on the finer grids.
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Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| #Iter δ1[uh] #Iter δ1[uh] #Iter #Iter #Iter #Iter

1 48 1 4.163 · 10−17 58 2.015 · 10−3 1 4 6 5
2 384 353 1.171 · 10−3 90 4.888 · 10−4 5 8 6 5
3 3072 244 2.832 · 10−4 159 6.022 · 10−5 5 8 7 5
4 24 576 387 4.222 · 10−5 299 6.850 · 10−6 6 7 7 5
5 196 608 750 5.323 · 10−6 6 7 7 5

Table 8. Iteration numbers and unit-length constraint violation for Prob-
lem 2(a), starting from close to the solution

Solve(GF)/Discr(N) Solve(TR)/Discr(N) /Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| time [s] time [s] time [s] time [s] time [s] time [s]

3 3072 10.00 166.0 1.113 7.294 1.409 5.487
4 24 576 177.0 3358 6.658 69.904 9.490 53.473
5 196 608 3509 60.615 776.859 83.515 649.919

Table 9. Wall-times for Problem 2(a), starting from close to the solution

7.2. Radial projection. In the next sequence of tests we consider the benchmark problems 2(a)
and 2(b), which involve harmonic maps with one singularity. We will see that this singularity
influences the solver behavior.

7.2.1. The case n = m = 3. We start with Problem 2(a), which asks for a harmonic map on
Ω = (− 1

2 , 1
2 )3 with image in S2, with boundary data given by the radial projection u⊙ : x 7→ x

|x| .
This projection is also a solution of the problem. It is singular at the origin, but nevertheless an
element of H1(Ω; S2).

As the first test we start the solvers directly from (9), which is essentially the radial pro-
jection itself. Table 8 shows the number of iterations. One can see that this problem is more
difficult than the previous one: The number of required trust-region iterations is still bounded
independent from the grid resolution, but 5 to 8 iterations are now needed to reach the termi-
nation criterion even for this good initial iterate. The gradient-flow solver, on the other hand,
quickly requires three-digit iteration numbers, and the inverse proportional dependence on the
grid element diameter h can be observed again.

Table 8 also shows the constraint violation δ1 of the gradient-flow solver. As in the previous
example it decreases with each refinement step. Unlike previously, the reduction is even better
than what is expected from the bound (5).

The wall-time measurements in Table 9 reflect the different iteration numbers. Even con-
sidering that each refinement now multiplies the number of degrees of freedom by 8, the time
complexity of the trust-region is not quite optimal anymore. Still, it is between one and two
orders of magnitude faster than the gradient-flow solver.

7.2.2. Starting farther away from the solution. As for the previous problem we now start the
solver at initial data that is further away from the discrete solution. To construct an initial
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(a) no perturbation, r = 4 (b) no perturbation, r = 5 (c) no perturbation, r = 6

(d) with perturbation, r = 4 (e) with perturbation, r = 5 (f) with perturbation, r = 6

Figure 6. Nonconforming discretization: Limit configurations uh for Prob-
lem 2(a) for initial iterate (9) close to the solution (top row), and with initial
iterate (12) (bottom row)

iterate, we reuse the scalar perturbation function p̃n defined in (10), and define

(12) u0
h(x) := Ih

(
x + p̃3(x)

(
1
1
0

)
∣∣∣x + p̃3(x)

(
1
1
0

)∣∣∣
)

.

This new initial iterate is visualized in Figure 5b. The singularity has moved to about (0.148, 0.148, 0)T ,
but by the construction of p̃n in (10), the map u0

h still satisfies the boundary conditions u0
h = u⊙

on ∂Ω.
Table 10 shows the iteration numbers and nonconformity, and Table 11 shows the wall times.

The iteration numbers and wall times have increased further, but qualitatively the behavior is
still the same as for the previous examples. However, looking at the computed configurations
reveals a problem: Figures 6 and 7 show the limit configurations on three different grids for the
nonconforming and the conforming discretization, respectively. In all pictures, a red dot marks
the origin, i.e., the place where the singularity should be. One can see that its final computed
position is not at the origin when starting from (12). Rather, it seems to be stuck at where it was
in u0

h. This is not caused by the relatively weak termination criterion—the results do not change
when setting ϵstop to 10−15. The effect is markedly stronger for the conforming discretization,
but it is also visible for the nonconforming one. There seems to be an effect that obstructs the
movement of singularities. One conjecture is that the fact that singularities are restricted to
certain parts of an element in a projection-based finite element computation introduces these
obstructions, but we have no direct justification for this yet.

Our results are in line with [34], where, in a two-dimensional example, the authors also
observed different limit configurations depending on the initial iterate.
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(a) no perturbation, r = 4 (b) no perturbation, r = 5 (c) no perturbation, r = 6

(d) with perturbation, r = 4 (e) with perturbation, r = 5 (f) with perturbation, r = 6

Figure 7. Conforming discretization: Limit configurations uh for Problem 2(a)
for initial iterate (9) close to the solution (top row), and with initial iterate (12)
(bottom row)

Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| #Iter δ1[uh] #Iter δ1[uh] #Iter #Iter #Iter #Iter

1 48 1 4.626 · 10−17 115 2.025 · 10−2 1 9 6 6
2 384 237 1.625 · 10−2 79 2.287 · 10−2 10 8 10 14
3 3072 125 7.342 · 10−3 361 7.507 · 10−3 8 10 10 13
4 24 576 920 3.894 · 10−3 1345 3.897 · 10−3 11 13 9 8
5 196 608 5077 2.009 · 10−3 10 20 11 10

Table 10. Iteration numbers and unit-length violation for Problem 2(a) with
initial iterate (12)

Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| time [s] time [s] time [s] time [s] time [s] time [s]

1 48 <1 3 0.780 1.454 0.213 0.455
2 384 6 7 1.065 1.986 0.587 3.277
3 3072 6 364 2.553 11.721 2.522 14.532
4 24 576 413 15040 14.691 144.848 17.072 101.011
5 196 608 23 700 105.062 2201.44 141.482 1326.09

Table 11. Wall-times for Problem 2(a) with initial iterate (12)
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Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| #Iter δ1[uh] #Iter δ1[uh] #Iter #Iter #Iter #Iter

1 8 1 5.551 · 10−17 12 5.551 · 10−17 1 5 4 5
2 32 18 4.752 · 10−3 21 4.611 · 10−4 5 6 7 7
3 128 33 1.507 · 10−3 36 1.429 · 10−4 5 5 9 7
4 512 61 3.042 · 10−4 64 3.003 · 10−5 6 5 9 7
5 2048 117 5.116 · 10−5 118 5.238 · 10−6 6 5 9 7
6 8192 226 7.817 · 10−6 228 8.241 · 10−7 6 5 9 7
7 32 768 445 1.130 · 10−6 446 1.220 · 10−7 6 6 9 7
8 131 072 883 1.581 · 10−7 6 9

Table 12. Iteration numbers and unit-length violation for Problem 2(b), start-
ing close to the solution

Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| time [s] time [s] time [s] time [s] time [s] time [s]

4 512 <1 1 0.725 1.400 1.371 2.483
5 2048 1 6 1.502 4.111 2.703 6.492
6 8192 9 76 4.476 13.263 7.368 18.874
7 32 768 95 858 15.06 51.086 22.476 60.835
8 131 072 1244 48.234 71.807

Table 13. Wall-times for Problem 2(b), starting close to the solution

7.2.3. The case n = m = 2. Next, we investigate Problem 2(b), the approximation of a harmonic
map from (− 1

2 , 1
2 )2 to S1 with boundary data given by the radial projection u⊙ now on this two-

dimensional domain. Since the solution of this, i.e., u⊙ itself, is now even less regular than in the
three-dimensional scenario, we expect additional numerical difficulties. However, the numerical
results suggest that these fears are unfounded.

We again start from the nodal interpolation of the solution x 7→ x
|x| , with the modification

described in Chapter 6.3.3. Table 12 shows the total number of iterations as well as the unit-
length constraint violation δ1. The number of iterations of both methods is comparable to the
three-dimensional situation of Chapter 7.2.1, which had an H1-solution (Table 8). However, the
nonconforming discretization seems to slightly reduce the number of total iteration steps of the
Riemannian trust-region method.

The wall times, shown in Table 13, match the results of the earlier test problems: While the
discrete gradient flow solver is faster for smaller problems, the trust-region solver outperforms it
by orders of magnitude once the grid reaches a certain size.

7.2.4. n = m = 2: Starting farther away from the solution. Similar to the previous examples we
use a perturbation of u⊙ as a starting configuration (see Figure 3c)

u0
h(x) := Ih

(
x + p̃2(x)( 1

0 )∣∣x + p̃2(x)( 1
0 )
∣∣
)

.

Very little changes for the trust-region solver: The iteration numbers increase only a bit, and
the wall time is increased by about 30 %. For the gradient-flow solver, the increase of iteration
numbers is above 500 with a corresponding increase of wall time. Finally, one can see from
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Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| #Iter δ1[uh] #Iter δ1[uh] #Iter #Iter #Iter #Iter

1 8 1 5.551 · 10−17 32 1.284 · 10−2 1 5 4 7
2 32 66 2.204 · 10−2 42 2.346 · 10−2 5 6 6 10
3 128 68 9.836 · 10−3 95 9.501 · 10−3 7 7 5 6
4 512 157 5.705 · 10−3 215 5.763 · 10−3 7 7 9 11
5 2048 378 3.105 · 10−3 492 3.199 · 10−3 7 9 8 9
6 8192 903 1.661 · 10−3 1130 1.704 · 10−3 10 9 7 9
7 32 768 2132 8.669 · 10−4 2591 8.817 · 10−4 9 9 1 9
8 131 072 4965 4.443 · 10−4 8 9

Table 14. Iteration numbers and unit-length violation for Problem 2(b) start-
ing away from the solution

Solve(GF)/Discr(N) Solve(TR)/Discr(N) Solve(TR)/Discr(C)
(p = 1) (p = 2) (p = 1) (p = 2) (p = 1) (p = 2)

r |Th| time [s] time [s] time [s] time [s] time [s] time [s]

4 512 <1 2 0.975 2.166 1.334 3.215
5 2048 3 25 2.146 7.623 2.405 7.712
6 8192 38 368 7.262 23.605 6.063 24.152
7 32 768 450 4816 22.632 79.261 27.029 81.243
8 131 072 6941 67.557 77.2647

Table 15. Wall-times for Problem 2(b), starting away from the solution

Table 14 that the constraint violation accumulated by the gradient-flow solver is now a factor
1000 larger than when starting from the radial projection. In absolute numbers it is still small,
though.

Curiously, in this two-dimensional setting we could not reproduce the effect shown in Figure 7,
where the singularity would get stuck away from its optimal position, regardless of the grid
resolution and solver precision. In the two-dimensional experiments, the limit position of the
singularity produced by both solvers and discretizations would always be right at the origin,
where it should be.

7.3. Harmonic maps with multiple singularities. As the final test we measure iteration
numbers and constraint violation for a harmonic map with several singularities (Problem 3).
Here, the start iterate u0

h is the function uκ
D defined in (8), which has a singularity of degree κ.

As such a configuration cannot stable for κ ≥ 2 [18], we expect the solvers to converge to
configurations with κ isolated singularities of degree 1. Figure 8 shows that this does actually
happen: The final configuration consists of κ singularities placed at roughly equal distances on a
circle. Unfortunately, one notices that the final configurations differ considerably depending on
which discretization is used. Recalling from Chapter 7.2.2 that the methods sometimes converge
to configurations where the singularity was not at the correct spot (in particular when using the
conforming discretization), the configurations shown in Figure 8 should not receive a lot of trust.
A deeper understanding of the behavior of discrete harmonic map models is needed before this
issue can be fully resolved.

Regarding the solver performance, the usual metrics are shown in Table 16 for first-order dis-
cretizations. There, one sees that numerically, this scenario does seem to be more difficult than
the others. In particular, for the trust-region methods the iteration numbers are not bounded
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(a) Nonconforming discretization

(b) Conforming discretization

Figure 8. Cut through midsurface x3 = 0 for κ = 2, . . . , 5 in Problem 3, using
the trust-region solver

anymore, but increase slowly with increasing mesh size. Unlike in earlier situations, more iter-
ations are now needed for the conforming discretization than for the nonconforming one. The
iteration numbers for the gradient-flow method are again much higher, but do not show a clear
pattern as in earlier case. The constraint violation remains in a reasonable range, and gets
smaller with decreasing τ = 4h.

As the number of required trust-region iterations has increased, the total wall-time difference
between the two solver algorithms is not as big anymore, at least for grid sizes in the range that
we could measure. However, the difference is still considerable.
Acknowledgements The authors gratefully acknowledge the support by the Deutsche Forschungs-
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