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Abstract

An eigenvalue problem arising in optimal insulation related to the minimization of the heat
decay rate of an insulated body is adapted to enforce a positive lower bound imposed on the
distribution of insulating material. We prove the existence of optimal domains among a class of
convex shapes and propose a numerical scheme to approximate the eigenvalue. The stability of
the shape optimization among convex, bounded domains in R3 is proven for an approximation
with polyhedral domains under a non-conformal convexity constraint. We prove that on the
ball, symmetry breaking of the optimal insulation can be expected in general. To observe how
the lower bound affects the breaking of symmetry in the optimal insulation and the shape
optimization, the eigenvalue and optimal domains are approximated for several values of mass
m and lower bounds `min ≥ 0. The numerical experiments suggest, that in general symmetry
breaking still arises, unless m is close to a critical value m0, and `min large enough such that
almost all of the mass m is fixed through the lower bound. For `min = 0, the numerical
results are consistent with previous numerical experiments on shape optimization restricted to
rotationally symmetric, convex domains.
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1. Introduction

In previous research [9, 6, 5] an eigenvalue in optimal insulation was considered, which translates
to minimizing the heat decay rate of a heat conducting body Ω ⊂ Rd surrounded by an insulating
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material ` : ∂Ω→ R+ of mass m, so that
∫
∂Ω `ds = m. The eigenvalue

λ`(Ω) = inf
u∈H1(Ω)

{∫
Ω
|∇u|2 dx+

∫
∂Ω

u2

`
ds :

∫
Ω
u2 dx = 1

}
(1)

results from a model reduction for the thickness of the insulating layer (see [1]). For the eigen-
value a breaking of symmetry was observed, if there was not enough insulating material, both
for the optimal distribution of insulating material as well as the optimal domains in a shape
optimization problem under a convexity constraint [9, 6, 5].

A numerical scheme for this eigenvalue was proposed in [5] and the shape optimization among ro-
tationally symmetric convex domains was considered in [6]. The numerical experiments confirm
the breaking of symmetry both for the domain B1(0) and the approximated optimal domains of
the shape optimization problem.

This breaking of symmetry was further investigated in [19, 20] and it was shown that for do-
mains which are bounded with a C1 regular boundary or convex, concentration breaking occurs
[19, Theorem 1.7], such that a part of the boundary is left uncovered, if m is too small. An-
alytically not much is known about the shape of optimal domains, except that for low values
of m the ball cannot be optimal [9]. Numerical experiments for the shape optimization can be
found in [5, 6]. In [5] a two-dimensional shape optimization is conducted as well as a three-
dimensional shape optimization among assembled half ellipsoids. The numerical approximation
of the eigenvalue from [5] confirms the expected asymmetry. In [6] rotationally symmetry is
assumed, and the shape optimization reduced to a two-dimensional setting. This allows to give
more conclusive results to the optimal domains concerning the eigenvalue in optimal insulation.
For this optimization problem, even with the assumption of rotational symmetry, the approx-
imated eigenfunctions and optimal domains were consistent with the expectations from prior
analytical results, in particular the breaking of symmetry [9]. However, the restriction to rota-
tionally symmetric domains is only justified by simple numerical experiments [5], and even for
a rotationally symmetric domain we cannot infer symmetry of the corresponding eigenfunction.

Due to the symmetry breaking, a part of the boundary is left uncovered for small values m of
insulating material [9, 19]. Since the insulating material might have additional properties, it is of
interest to avoid a concentration breaking and to ensure that the whole boundary is covered by
the given material. To guarantee this, we place a lower bound on the distribution of insulating
material and restrict the set of admissible distributions to

Hm̂,`min
(∂Ω) :=

{̂̀ : ∂Ω→ R : ̂̀≥ `min,

∫
∂Ω

̂̀ds = m̂

}
for a positive lower bound `min > 0. This corresponds to an adaptation of the results of [9, 1],
but with Robin boundary conditions in the model reduction. This was previously considered for
an energy problem in [13] and the results can be used to adapt the eigenvalue problem in optimal
insulation to an eigenvalue problem with a lower bound placed on the insulating material. For
large enough values of mass m̂ for which the optimal distribution is expected to be constant,
such a lower bound has no effect. For low values of mass m̂ however, it is not clear, how a lower
bound on the optimal insulation affects the breaking of symmetry both in the optimal insulation
as well as the shape optimization. We prove that on the ball, symmetry breaking arises in the
optimal insulation for `min > 0 and m̂ < m0 unless all the mass is fixed through `min.

The numerical experiments in Section 6 suggest, that in the shape optimization in general
symmetry breaking still arises, unless m̂ is close to a critical value m0, and `min is large enough
such that almost all of the mass m̂ is fixed through the lower bound, but that the optimal
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domains for fixed m̂ transform to the ball as `min increases, and kinks in the boundary of the
domains smoothen.
The work is structured as followed. We first summarize the results for the eigenvalue arising
in optimal insulation as introduced in [9] and the results of [13], from which we can derive an
eigenvalue problem in optimal insulation with a positive lower bound imposed on the distribution
of insulating material. For the eigenvalue on the ball, we show that symmetry breaking occurs
even for positive `min. We prove the existence of an optimal domain among a class of convex
bounded domains with fixed volume in Rd, d = 2, 3, and show that the problem is not well-posed
in the absence of a convexity constraint. A numerical scheme for the approximation of the
eigenvalue is proposed and the stability of the shape optimization is proven in the framework
of [7] for an approximation with a non-conformal polyhedral convexity in R3, under suitable
assumptions on the admissible discrete domains. Lastly, we report numerical experiments and
approximated domains for both eigenvalues.

2. An eigenvalue problem arising in optimal insulation

Assume that a heat conducting body Ω is surrounded by a thin layer of insulating material,
arranged in such a way that the heat is retained as well as possible. The optimization criterion
is the minimization of the decay rate of the temperature, and m is the total amount of the
insulating material. The goal is to find the optimal thickness `(σ) of the insulating layer, for
every σ ∈ ∂Ω. As shown in [9] this corresponds to the minimization of the eigenvalue

λm(Ω) = inf
u∈H1(Ω)

{∫
Ω
|∇u|2 dx+

1

m
‖u‖2L1(∂Ω) : ‖u‖L2(Ω) = 1

}
. (2)

The boundary term corresponds to Robin-type boundary conditions which result from the model
reduction for the thickness of the insulating layer ` : ∂Ω → R+, a nonnegative measurable
function with total mass m. The optimal distribution of insulating material can be reconstructed
from a minimal u as shown below in (7).
Let Ωε = Ω ∪ Σε, with

Σε = {x : x = σ + εs`(σ)ν(σ), σ ∈ ∂Ω, s ∈ (0, 1)}, (3)

with ε > 0, ν(σ) the outer unit normal such that Σε corresponds to the region occupied by
insulating material in which the conductivity ε is significantly smaller than in the domain Ω.
The energy problem with a given heat source f is described by the functional

Gε(u) =
1

2

∫
Ω
|∇u|2 dx+

ε

2

∫
Σε

|∇u|2 dx−
∫

Ω
fudx, (4)

defined on the Sobolev space H1
0 (Ωε), which corresponds to the boundary value problem

−∆uε = f in Ω,

−∆uε = 0 in Σε,

uε = 0 on ∂Ωε,

∂u−ε
∂ν

= ε
∂u+

ε

∂ν
on ∂Ω.

(5)

It has been shown e.g. in [1] that the sequence of functionals Gε Γ-converges in the strong
L2-topology to

G(u, `) =
1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fudx+

1

2

∫
∂Ω

u2

`
ds
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as ε → 0. Rather than considering the energy problem, we optimize the heat decay rate which
is determined by the following eigenvalue problem

λ`(Ω) = inf
u∈H1(Ω)

{∫
Ω
|∇u|2 dx+

∫
∂Ω

u2

`
ds :

∫
Ω
u2 dx = 1

}
(6)

for an admissible distribution of insulating material

` ∈ Hm(∂Ω) :=

{
` ∈ L1(∂Ω) : ` ≥ 0 and

∫
∂Ω
`ds = m

}
of a given mass m. A simple computation yields that, if u is the solution of (2), then the optimal
thickness `opt ∈ Hm(∂Ω) is given by

`opt(z) =
m |u(z)|∫
∂Ω |u| ds

. (7)

In [9] a surprising breaking of symmetry for the eigenvalue is observed.

Theorem 2.1 ([9, Theorem 3.1]). Let Ω be a ball. Then there exists m0 > 0 such that solutions
to (2) are radial if m > m0, while solutions are not radial for 0 < m < m0. As a consequence,
the optimal density `opt is not constant if m < m0.

In [9] it is further noted that this threshold value m0 is given by the unique positive m for which
λm = µ2, the first non-zero eigenvalue of the Neumann problem. A numerical estimation of the
critical value gives m0 ≈ 1.8534 for B1(0) ⊂ R2 and m0 ≈ 5.7963 for B1(0) ⊂ R3.
A corresponding shape optimization problem for a fixed mass m > 0 is defined as follows:

min
{
λm(Ω) : Ω ∈ CV (Q)

}
(Pm)

where
CV (Q) =

{
Ω ⊂ Q : Ω is convex and open in Rd and |Ω| = V

}
being V > 0 and Q ⊂ Rd a convex and compact domain for d = 2, 3.

Proposition 2.2 ([6, Proposition 1]). There exists an optimal domain Ω for the shape opti-
mization problem (Pm).

Existence of a solution is proven with compactness results for special functions of bounded
variation [11, 10] and the compactness results for convex domains [12]. In particular, the uniform
bound on the trace inequality is important which implies the strong L2-convergence of the
eigenfunctions of a minimizing sequence [6]. Without the convexity constraint, non-existence of
an optimal domain can be established by taking a disjoint union of n balls of radius rn → 0,
giving that the infimum in problem (Pm) vanishes, see [5].

3. Imposing a lower bound on the optimal insulation

For the previously defined eigenvalue of optimal insulation a breaking of symmetry can be ob-
served for small values of insulating material, leading to concentration breaking of the protective
layer, such that some part of the boundary is not insulated. Since the film can have additional
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purposes other then insulation, such as for stability or against contamination, it appears in-
teresting to look at insulation problems, for which a positive lower bound is imposed on the
insulation such that no part of the boundary is left uncovered. Then the admissible distribu-
tions of insulating material are restricted to

Hm̂,`min
(∂Ω) :=

{̂̀ : ∂Ω→ R : ̂̀≥ `min,

∫
∂Ω

̂̀ds = m̂

}
(8)

for a positive lower bound `min > 0.
Instead of seeking the optimal distribution ̂̀∈ Hm̂,`min

(∂Ω), we partition the insulating layer into

a fixed, constant part of thickness `min and a variable part ` ∈ Hm(∂Ω) such that ̂̀= `min + `,
with

m := m̂− |∂Ω| `min.

A constant distribution of insulating material corresponds to Robin boundary condition. There-
fore for a constant, positive lower bound `min > 0, an equivalent formulation of this problem can
be derived from a similar model reduction for (5) as in [9], but with Robin boundary conditions
instead of Dirichlet boundary conditions on ∂Ωε, see (9).
This problem and the existence of minimizers was considered in [13], and the results imply that
these two approaches are indeed equivalent.
Let Ωε = Ω∪Σε, with Σε as in (3), with ` : ∂Ω 7→ (0,+∞) a bounded Lipschitz function with a
positive lower bound. In [13] an energy problem is considered, which seeks a function u ∈ H1(Ω)
minimizing for a given heat source f ∈ L2(Ω) the functional

Fε(u) =
1

2

∫
Ω
|∇u|2 dx+

ε

2

∫
Σε

|∇u|2 dx+
β

2

∫
∂Ωε

u2 dHn−1 −
∫

Ω
fudx

for a fixed parameter β > 0. Assuming sufficient regularity, the minimizer of Fε satisfies

−∆uε = f in Ω,

−∆uε = 0 in Σε,
∂uε
∂ν

+ βuε = 0 on ∂Ωε,

∂u−ε
∂ν

= ε
∂u+

ε

∂ν
on ∂Ω.

(9)

It is proven in [13] that as ε → 0 the sequence of functionals Fε Γ-converges in the strong
L2-topology to

Fβ(u, `) =
1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fudx+

β

2

∫
∂Ω

u2

1 + β`
ds.

This corresponds to having two layers of insulating material, one being described by `, and one
of constant thickness β−1 = `min. The minimizer of the functional Fβ(·, `) satisfies−∆u = f in Ω

(1 + β`)
∂u

∂ν
+ βu = 0 on ∂Ω.

Similar as to the problem in optimal insulation without a lower bound we seek a solution for
the following minimization problem

min
{
Fβ(v, `) : (v, `) ∈ H1(Ω)×Hm(∂Ω)

}
(10)
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where Hm(∂Ω) is the set of admissible distributions

Hm(∂Ω) =

{
` ∈ L1(∂Ω), ` ≥ 0,

∫
∂Ω
`ds = m

}
.

The following proposition shows that for a given v ∈ H1(Ω) there exists a corresponding optimal
distribution.

Proposition 3.1 ([13, Proposition 4.1]). Let β > 0, m > 0 be fixed, let v ∈ L2(∂Ω), and
hv ∈ L2(∂Ω) be the function defined by

hv(s) :=

{
(cvβ)−1|v(s)| − β−1 if |v(s)| ≥ cv,
0 otherwise,

(11)

where cv is the unique positive constant satisfying

cv =
(∣∣{|v| ≥ cv}∣∣+mβ

)−1
∫
{|v|≥cv}

|v(s)|ds. (12)

In particular cv = 0 if and only if v = 0 Hd−1-a.e. on ∂Ω. Then hv is the solution of the
minimization problem

min

{∫
∂Ω

v2

β−1 + `
ds : ` ∈ Hm(∂Ω)

}
.

Knowing the optimal distribution ` for a given function v ∈ H1(Ω) leads to a proof of the
existence of a pair of minimizers.

Theorem 3.2 ([13, Theorem 4.1]). Given any β,m > 0, there exits a couple (u, hu) ∈ H1(Ω)×
L2(∂Ω), with hu ∈ Hm(∂Ω), which minimizes (10). Moreover,

hu(s) :=

{
(cuβ)−1|u(s)| − β−1 if |u(s)| ≥ cu,
0 otherwise,

where cu is the unique positive constant satisfying

cu =
(∣∣{|u| ≥ cu}∣∣+mβ

)−1
∫
{|u|≥cu}

|u(s)|ds. (13)

Furthermore, the couple (u, hu) is a solution of{
−∆u = f in Ω

(1 + βhu)∂νu+ βu = 0 on ∂Ω,

and is unique if the domain Ω is connected.

The uniqueness is a consequence of a convexity property of the functionals Fβ, cf. [13, Proposi-
tion 4.3].

Remark 3.3. For further analysis and error estimates, the following observations are useful.

1. The optimal distribution is scaling invariant, in the sense that for w = av, it holds that
hv = hw, with v ∈ H1(Ω) such that v ≥ 0, a > 0.
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2. Occasionally, it is convenient to write the boundary term as∫
∂Ω

u2

β−1 + hu
ds =

∫
∂Ω
Gcu(u) ds

with the Lipschitz continuous function

Gc(x) = χ{|x|<c}βx
2 + χ{|x|≥c}βc|x|

where the dependence of c on u is neglected.

3. To approximate the optimal distribution for a given u ∈ H1(Ω) the constant cu has to be
approximated. We use the observation, that

hu = `minf(u, cu) with f(v, a) = max(v/a− 1, 0),

which is a bounded, continuous function for a > 0 and v ≥ 0. For |c1 − c2| ≤ δ, without
loss of generality with 0 < c1 ≤ c2, and u ≥ 0 we compute

|hu,c1 − hu,c2 | = `min

∣∣max(u/c1 − 1, 0)−max(u/c2 − 1, 0)
∣∣

= `min

∣∣χ{u≥c2}(u/c1 − u/c2) + χ{u∈[c1,c2)}(u/c1 − 1)
∣∣

≤ `minδ

c1

(
u

c1
+ 1

)
which yields an estimate for an error caused by an approximation of the constant cu.
Further, for fixed c > 0 and un → u in L2(∂Ω) we have that

‖hun,c − hu,c‖L2(∂Ω) ≤ (`min/c)‖un − u‖L2(∂Ω) → 0.

Since cu = 0 if and only if u = 0 almost everywhere on ∂Ω, for the strongly convergent
sequence un → 0 in L1(∂Ω) the formula (12) implies 0 ≤ cun ≤ (`min/m)‖un‖L1(∂Ω) → 0.

4. The eigenvalue problem

In [13] an energy problem is considered. Here, we are interested in the corresponding eigenvalue
problem. To minimize the heat decay rate, we consider the functional

J`min
(u, `) =

∫
Ω
|∇u|2 dx+

∫
∂Ω

u2

`min + `
ds (14)

for ` ∈ Hm(∂Ω), and look for a minimizer (u, `) ∈ H1(Ω)×Hm(∂Ω) of

λm,`min
(Ω) = inf

(u,`)∈H1(Ω)×Hm(∂Ω)

{
J`min

(u, `), ‖u‖L2(Ω) = 1
}
. (15)

This is equivalent to seeking a pair of minimizers (u, ̂̀) ∈ H1(Ω) × Hm̂,`min
(∂Ω), with the

admissible set of distribtions defined by (8), of the functional

J(u, ̂̀) =

∫
Ω
|∇u|2 dx+

∫
∂Ω

u2̂̀ ds. (16)

Using similar arguments as in [13], it is straightforward to show that the eigenvalue problem is
well defined. From [9] it is known that, if Ω is a ball, breaking of symmetry does not occur if
m+ `min|∂Ω| = m̂ > m0, with m0 the critical value of mass related to the Neumann eigenvalue
[9, Theorem 3.1]. Without a lower bound (that is if `min = 0), symmetry breaking occurs if
m < m0, but if `min > 0, this is no longer obvious.
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Proposition 4.1. Let Ω = B1(0) ⊂ Rd be the unit ball, and m̂ < m0 the critical value of mass
from Theorem 2.1. Then there exists no radial symmetric solution to the eigenvalue problem

λm,`min
(Ω) = min

06=u∈H1(Ω)

∫
Ω |∇u|

2 dx+
∫
∂Ω u

2(`min + hu)−1 ds∫
Ω u

2 dx
(17)

for `min ∈ [0, m̂/|∂Ω|) with the optimal distribution hu as given by Theorem 3.2.

Proof: Let us proceed step by step.

1. The case `min = 0 corresponds to the eigenvalue problem without a lower bound. The
non-existence of a radial solution in the case m̂ < m0 is therefore covered by Theorem 2.1.

2. In the case `min > 0, for a radial function u ∈ H1(Ω) the optimal distribution, as given by
Theorem 3.2, is constant. Without loss of generality we assume that u is non-negative on
∂Ω. The constant cu, see (13), is then given by

cu =
`min

`min|∂Ω|+m

∫
∂Ω
uds =

`min|∂Ω|
`min|∂Ω|+m

ū

=
`min|∂Ω|

m̂
ū < u a.e. on ∂Ω.

(18)

where m = m̂ − `min|∂Ω| is the free mass that hu distributes, and ū = (|∂Ω|)−1
∫
∂Ω uds

is the integral mean of the trace of u. Since u is assumed to be radially symmetric u ≡ ū
a.e. on ∂Ω, and therefore {|u| ≥ cu} = ∂Ω. The optimal insulation is then given by the
constant distribution of insulating material

hu ≡ m̂/|∂Ω| − `min.

This implies that for any radial symmetric minimizer to (17) the eigenvalue problem be-
comes equivalent to the Robin eigenvalue problem

λ1(Ω, α) = min
06=u∈H1(Ω)

∫
Ω |∇u|

2 dx+ α
∫
∂Ω u

2 ds∫
Ω u

2 dx
(19)

for α = (m̂/|∂Ω|)−1, such that u ∈ H1(Ω) is an eigenfunction to first Robin eigenvalue. The
first Robin eigenvalue is simple and the eigenfunction can be chosen to satisfy u ≥ δ > 0
on Ω see e.g. the Krein-Rutman theorem or [4]. Without loss of generality we assume that
‖u‖L2(Ω) = 1.

3. Let v ∈ H1(Ω) be a test function which is bounded from below on ∂Ω. Due to (18) we
have u+ εv > cu > 0 for ε > 0 small enough, such that {u+ εv ≥ cu} = ∂Ω. If cu < cu+εv,
we compute

0 < cu+εv − cu = (`min/m̂)

(∫
{u+εv≥cu+εv}

u+ εv ds−
∫
∂Ω
uds

)

= (`min/m̂)

(∫
∂Ω
εv ds−

∫
{u+εv∈(cu,cu+εv)}

u+ εv ds

)

≤ (`min/m̂)

∫
∂Ω
εv ds.
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Now, since

lim
ε→0

cu+εv = cu and u+ εv > cu,

we have that for ε small enough u+ εv > cu+εv. A similar computation holds for the case
cu ≥ cu+εv, for which {u+εv ≥ cu+εv} = ∂Ω by assumption. Then, the above computation
yields

cu+εv − cu =
`min

m̂

∫
∂Ω
εv ds

for any v ∈ H1(Ω) such that the trace of v is bounded from below on ∂Ω and ε > 0 is
small enough. The optimal distribution for the perturbed function is given by

hu+εv = (`min/cu+εv)(u+ εv)− `min

=
`min(u+ εv)

cu + (`min/m̂)
∫
∂Ω εv ds

− `min

such that the optimal distribution is differentiable with respect to ε for ε > 0 small enough.
We set f(ε) = `min + hu+εv and compute the first derivative

d

dε
(f(ε))|ε=0 =

cu`minv − `2minūm̂
−1
∫
∂Ω v ds

c2
u

=
`2minū|∂Ω|
m̂c2

u

(
v − 1/|∂Ω|

∫
∂Ω
v ds

)
.

The second derivative yields

d2

d2ε
(f(ε))|ε=0 =

−2`minm̂
−1
∫
∂Ω vds

(
cu`minv − `2minūm̂

−1
∫
∂Ω v ds

)
c3
u

=
−2`3minū|∂Ω|

∫
∂Ω v

m̂2c3
u

(
v − 1/|∂Ω|

∫
∂Ω
v ds

)
.

We note, that for both derivatives, the integral mean vanishes. Then, a expansion of the
boundary term in ε yields∫
∂Ω

(u+ εv)2

`min + hu+εv
ds =

∫
∂Ω

u2

f(0)
ds+ ε

∫
∂Ω

u(2vf(0)− uf ′(0))

f(0)2
ds

+ ε2

∫
∂Ω

(
u2 f

′(0)2

f(0)3
− f(0)f ′′(0)

2f(0)3
− 2uvf(0)f ′(0)

f(0)3
+
v2f(0)2

f(0)3

)
+ o(ε3).

The radial symmetry of u, such that both u and hu are constant on ∂Ω, imply that several
terms vanish, since the integral mean of f ′ and f ′′ vanishes∫

∂Ω

(u+ εv)2

`min + hu+εv
ds =

∫
∂Ω

u2

`min + hu
ds+ ε

∫
∂Ω

2uv

`min + hu
ds+ ε2

∫
∂Ω

v2

`min + hu
ds

+ ε2

∫
∂Ω

uf ′(0)

f(0)2

(
uf ′(0)

f(0)
− 2v

)
+ o(ε3).
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For the last term we have that∫
∂Ω

uf ′(0)

f(0)2

(
uf ′(0)

f(0)
− 2v

)
ds =

∫
∂Ω

u

(`min + hu)2

`2minu|∂Ω|
m̂c2

u

(
v − 1/|∂Ω|

∫
∂Ω
v ds

)
(
`2minu

2|∂Ω|(v − 1/|∂Ω|
∫
∂Ω v ds)

m̂c2
u(`min + hu)

− 2v

)
ds

=

∫
∂Ω

u

(m̂/|∂Ω|)2

`2minu|∂Ω|
m̂(`min|∂Ω|um̂−1)2

(
v − 1/|∂Ω|

∫
∂Ω
v ds

)
(
`2minu

2|∂Ω|(v − 1/|∂Ω|
∫
∂Ω v ds)

m̂(`min|∂Ω|um̂−1)2(m̂/|∂Ω|)
− 2v

)
ds

=

∫
∂Ω

|∂Ω|
m̂

(
v − 1/|∂Ω|

∫
∂Ω
v ds

)(
−1/|∂Ω|

∫
∂Ω
v ds− v

)
ds

=
|∂Ω|
m̂

∫
∂Ω

((
1/|∂Ω|

∫
∂Ω
v ds

)2

− v2

)
ds

=
|∂Ω|
m̂

(
1/|∂Ω|

(∫
∂Ω
vds

)2

−
∫
∂Ω
v2ds

)
.

With `min + hu = m̂/|∂Ω|, this yields that the boundary term expands to∫
∂Ω

(u+ εv)2

`min + hu+εv
ds =

|∂Ω|
m̂

(∫
∂Ω
u2ds+ ε

∫
∂Ω

2uvds

)
+ ε2 1

m̂

(∫
∂Ω
vds

)2

+ o(ε3).

4. We now consider the function

F (ε) =

∫
Ω |∇(u+ εv)|2 dx+

∫
∂Ω

(u+εv)2

`min+hu+εv
ds∫

Ω(u+ εv)2 ds
.

Expanding with respect to ε and using the assumption that
∫

Ω u
2dx = 1 yields

F (ε) =

(∫
Ω
|∇u+ εv|2 dx+

∫
∂Ω

(u+ εv)2

`min + hu+εv
ds

)
(

1− ε
∫

Ω
2uv dx+ ε2

((∫
Ω

2uvdx

)2

−
∫

Ω
v2dx

)
+ o(ε3)

)
.

We combine this with the expanded boundary term and (19) and get

F (ε) = F (0) + 2ε

(∫
Ω
∇u · ∇vdx+

|∂Ω|
m̂

∫
∂Ω
uvds− F (0)

∫
Ω
uvdx

)
+ ε2

(∫
Ω
|∇v|2dx+

1

m̂

(∫
∂Ω
vdx

)2

− F (0)

∫
Ω
v2dx

)

− ε2

((∫
Ω

2∇u∇vdx+
|∂Ω|
m̂

∫
∂Ω

2uvds

)∫
Ω

2uvds− F (0)

(∫
Ω

2uv dx

)2
)

+ o(ε3).

5. Since F (0) is the first Robin eigenvalue, and u the corresponding eigenfunction, the ε-term
vanishes for every v ∈ H1(Ω). This implies that

d

dε
F (ε)|ε=0 = 0

and therefore that the eigenfunction is a critical point for any suitable test function v.
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6. For the second variation, we consider the ε2-term.
Using again the variational eigenvalue equation we have that(∫

Ω
2∇u∇v dx+

|∂Ω|
m̂

∫
∂Ω

2uv ds

)∫
Ω

2uv ds = F (0)

(∫
Ω

2uv dx

)2

.

We choose now v ∈ H1(Ω) the eigenfunction to the eigenvalue problem in optimal in-
sulation (2) such that ‖v‖L2(Ω) = 1 and which can be chosen to be non-negative and is
therefore bounded from below and satisfies the assumption to ensure the differentiablity
of hu+εv with respect to ε > 0 small enough. Since v is a minimizer to

λm̂(Ω) = min
06=u∈H1(Ω)

∫
Ω |∇v|

2dx+ 1
m̂

(∫
∂Ω |v|dx

)2∫
Ω v

2dx

for which no radial minimizer exists by assumption on m̂ < m0, we have that∫
Ω
|∇v|2dx+

1

m̂

(∫
∂Ω
|v|dx

)2

= λm̂(Ω) < F (0).

This implies that for v the eigenfunction to the classical eigenvalue problem (2), the second
derivative of the function F (ε) satisfies

d2

dε2
F (ε)|ε=0 < 0

such that the radial solution u becomes a local maximizer when perturbed in the direction
of the eigenfunction v of the eigenvalue problem (2). Since v is not radial symmetric for
m̂ < m0 this implies in particular that no radial symmetric minimizer can exist.

4.1. Existence of optimal domains

We now consider the optimization of the eigenvalue λm,`min
(Ω), defined by (15), within the class

of convex bounded sets of prescribed volume in two or three dimensions, i.e. within where

CV (Q) =
{

Ω ⊂ Q : Ω is convex and open in Rd and |Ω| = V
}

being V > 0 and Q ⊂ Rd a convex and compact domain for d = 2, 3.
We are interested in the shape optimization of the eigenvalue where a lower bound `min > 0 is
imposed on distribution of insulating material, but the overall mass m̂ of insulating material is
fixed:

min
{
λ`(Ω) : Ω ∈ CV (Q), ` ∈ Hm̂,`min

(∂Ω)
}
.

We consider instead an equivalent problem and minimize the eigenvalue λ̂m̂,`min
(Ω) =

λmΩ,`min
(Ω) where the remaining free mass mΩ = m̂− `min|∂Ω| depends on the perimeter |∂Ω|:

min
{
λ̂m̂,`min

(Ω) : Ω ∈ CV (Q), |∂Ω| ≤ m̂/`min

}
. (P̂m̂,`min

)

The isoparamteric inequality implies an upper bound for `min such that the perimeter constraint
can be satisfied, i.e. `min ≤ m̂/|∂BR|, for a ball BR with radius R > 0 such that the ball has
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volume V . The case `min = 0 corresponds to the regular eigenvalue of optimal insulation [6].
Then, the existence of optimal domains in the cases where `min = 0 or `min = m̂/|∂BR| follows
from [6] and the isoperimeteric inequality. For `min ∈ (0, m̂/|∂BR|) the following existence result
can be deduced.

Proposition 4.2. There exists an optimal domain Ω for (P̂m̂,`min
) if 0 ≤ `min ≤ m̂/|∂BR| for

a ball BR with radius R > 0 such that the ball has volume V .

Proof: Let us proceed step by step.

1. If `min = 0, existence follows from [6]. If `min = m̂/|∂BR|, the perimeter constraint and
isoperimetric inequality, [18, Equation (1.3)], imply that the only admissible domains is
the ball, and the eigenvalue corresponds to the Robin eigenvalue λ1(BR, `

−1
min).

2. If `min ∈ (0, m̂/|∂BR|), the admissible class of domains is non-empty, and with Theorem
3.2, we can choose a minimizing sequence (Ωn)n∈N to (P̂m̂,`min

), with Ωn ∈ CV (Q) and
corresponding eigenfunctions un ∈ H1(Ωn) and distributions of insulating material `n ∈
Hmn(∂Ωn) for mn = m̂− `min|∂Ωn|. Without loss of generality we may assume that un is
non-negative, and that the distribution `n is optimal, i.e.

`n = hun :=
`min

cn
max(u− cn, 0)

where cn is the unique constant satisfying

mncn`
−1
min =

∫
{|un|≥cn}∩∂Ωn

(|un| − cn) ds

as defined in Proposition 3.1. Using a compactness results for convex domains, [12, Lemma
3.1], there exists a convex domain Ω ∈ CV (Q) such that after passing to a subsequence,
the characteristic functions χΩn converge in variation to χΩ, which corresponds in this
setting to the usual intermediate convergence for functions of bounded variation, [12] and
[3, Proposition 3.6]. In particular this implies that χΩn → χΩ strongly in L1(Q) and
|∂Ω| = limn→∞ |∂Ωn|, such that

lim
n→∞

mn = m̂− `min|∂Ω| =: m, (20)

and Ω also satisfies the perimeter constraint |∂Ω| ≤ m̂/`min.

3. After trivially extending the functions un to Q, the sequence of extended functions ũn
is bounded in SBV (Q), the special functions of bounded variation. The bounds on the
objective functional imply

‖ũn‖L2(Q) = 1, ‖∇ũn‖L2(Q,Rd) ≤ C.

Here, ∇ũn refers to the piecewise weak gradient with

∇ũn|Ωn = ∇un and ∇ũn|Q̂\Ωn
= 0.

Using [12, Theorem 2.6], the weak differentiabilty of ũn on Ωn and Q\Ωn and the uniform
bound on the trace operator in the class CV (Q), see [6, 21], we derive∫

Jũn

u2
ndHd−1 =

∫
∂Ωn

u2
n ds ≤ C‖un‖L2(∂Ωn) ≤ C‖ũn‖H1(Ωn) ≤ C (21)

from which we infer the boundedness of the sequence (un)n∈N and in particular also of
(u2
n)n∈N in SBV (Q).
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4. With the compactness results for special functions of bounded variation, [11, Theorem 2.1]
and [10, Theorem 2], there exists a function ũ ∈ SBV (Q), such that after passing to a
subsequence, ũn converges weakly in SBV (Q) to ũ, see, in particular

Dũn ⇀
? Dũ in the sense of measures (22)

ũn → ũ strongly in L2(Q) (23)

∇ũn ⇀ ∇ũ weakly in L2(Q,Rd). (24)

Using these convergence results, we deduce as in [6, Proposition 1] that u|Ω ∈ H1(Ω) and
u|Q\Ω = 0.
With the lower semicontinuity of jump energies [8, Theorem 2.12], it follows that∫

∂Ω
|u| ds ≤

∫
∂Ωn

|un| ds. (25)

In summary, we have that u ∈ H1(Ω) with

‖∇u‖2L2(Ω) ≤ lim inf
n→∞

‖∇un‖2L2(Ωn)

and ‖u‖L2(Ω) = 1. Left to show is the lower semicontinuity of the boundary term.

5. Using that cu satsfies (13) yields

0 ≤ cn ≤ C
∫
∂Ωn

un ds ≤ C‖un‖H1(Ωn)

and implying that the sequence (cn)n∈N is bounded.
We first consider the case lim infn→∞ cn = 0. After passing to a subsequence we have that

0 = lim inf
n→∞

cn = lim
k→∞

cnk

= lim
k→∞

(|{unk
≥ cnk

} ∩ ∂Ωnk
|+mnk

`−1
min)−1

∫
∂Ωn∩{unk

≥cnk
}
|unk
| ds.

Using the estimate |∂Ωnk
| ≤ |∂Q|, since Ωnk

⊂ Q, and (20) yields

0 ≥ (|∂Q|+m`−1
min)−1 lim

k→∞

∫
∂Ωnk

∩{unk
≥cnk

}
|unk
| ds

≥ (|∂Q|+m`−1
min)−1 lim

k→∞

(∫
∂Ωnk

|unk
| ds−

∫
∂Ωnk

∩{unk
<cnk

}
cnk

ds

)
.

The assumed convergence of the subsequence lim cnk
= 0 and the lower semicontinuity of

the boundary term (25) yields ∫
∂Ω
|u|ds ≤ 0.

This implies that u|∂Ω = 0 almost everywhere on ∂Ω, such that for any ` ∈ Hm(∂Ω)∫
∂Ω

u2

`min + `
ds = 0 ≤ lim inf

n→∞

∫
∂Ωn

u2
n

`min + `n
ds

implying the optimality of the domain Ω.
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6. In the following we consider the case lim inf cn > 0. We pass to a convergent subsequence
and set c = lim cn. We extend the function

hun =
`min

cn
max(un − cn, 0) ∈ L2(∂Ω)

to Q by considering

˜̀
n =

{
(`min/cn) max(un − cn, 0) in Ωn

0 in Q\Ωn.

Then ˜̀n|Ωn ∈ H1(Ωn), [14, p. 5.20], and ˜̀n ∈ SBV (Q) with ˜̀n|∂Ωn = hun on ∂Ωn using
the chain rule for BV functions [3, Theorem 3.99]. The bound on ũn|Ωn in H1(Ωn) and
the fact that limn cn = c > 0 yield that the sequence (˜̀n)n∈N is bounded in SBV (Q), using
again the uniform bound of the trace operator to bound the jump terms.
The compactness results in SBV (Q) imply the existence of a function ˜̀ ∈ SBV (Q),
such that ˜̀n converge weakly to ˜̀ in SBV (Q) and weakly in L2(Q) after passing to a
subsequence. With the same arguments as before we conclude that ˜̀|Ω in H1(Ω) and˜̀|Q\Ω = 0 and for the trace ` = ˜̀|∂Ω on ∂Ω that∫

∂Ω
`ds ≤ lim inf

n→∞

∫
∂Ωn

`n ds = m.

7. Next, we show that ∫
∂Ω

u2

`min + `
ds ≤

∫
∂Ωn

u2
n

`min + `n
ds. (26)

To achieve this, we consider the functions

ṽn :=


u2
n

`min + hun
in Ωn

0 in Q\Ωn.

Using that ũn = 0 in Q\Ω, and the explicit formula of hun , we have ṽn = Gcn(ũn) with

Gcn(x) =

{
`−1
minx

2 if |x| < cn

cn`
−1
min|x| if |x| ≥ cn

which are Lipschitz continuous functions. The chain rule for functions in BV then implies
that ṽn in SBV (Q), with

Dṽn =χΩn

(
χ{ũn<cn}`min2ũn∇ũn + χ{ũn≥cn}cnβ∇ũn

)
⊗ dx

+
ũ2
n

`min + hun,cn
ν ⊗ dHd−1b ∂Ωn.

Combined with the bounds on ‖un‖H1(Ωn) and cn, this implies that ṽn|Ω is in H1(Ωn). The
sequence ṽn is bounded in SBV (Q), and admits a weakly convergent subsequence ṽn ⇀ ṽ
in SBV (Q). With similar arguments as before, we conclude that ṽ|Ω ∈ H1(Ω).
Next, we show that

ṽ =
u2

`min + `
. (27)
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Using `n ⇀ ` weakly in L2(Q), ũn → ũ strongly in L2(Q), as well as the Sobolev embedding
H1(Ω) ↪→ L4(Ω), we infer that ṽn ⇀ ṽ in L2(Ω). The uniqueness of the limit, in particular
[3, Equation (3.11)], implies (27) and the lower semicontinuity of jump terms implies the
assertion (26).

8. For 0 < m1 ≤ m2, and `1 ∈ Hm1(∂Ω), there exists `2 ∈ Hm2(∂Ω), such that for any
u ∈ H1(Ω) ∫

∂Ω

u2

`min + `2
ds ≤

∫
∂Ω

u2

`min + `1
ds.

Indeed, if we take `2 = (m2/m1)`1, then `2 − `1 ≥ 0 on ∂Ω, which implies the assertion.
As a consequence, for any u ∈ H1(Ω), the optimal distribution hu from Proposition 3.1 is
optimal also among all distributions ` ∈ L2(∂Ω) with ` ≥ 0 and

∫
∂Ω `ds ≤ m. With (26),

this implies ∫
∂Ω

u2

`min + hu
ds ≤

∫
∂Ω

u2

`min + `
ds ≤ lim inf

n→∞

∫
∂Ωn

u2
n

`min + `n
ds

and the optimality of the limit Ω to the problem (P̂m̂,`min
).

The proof uses the embedding of H1(Ω) ↪→ L4(Ω) which holds only if d ≤ 4. In the absence of a
convexity constraint non-existence of an optimal domain can be proven similar to the eigenvalue
in optimal insulation [5].

Remark 4.3 (Non-existence). We choose a domain Ω, which is the disjoint union of two balls
with radii 0 < r1 < r2 chosen such that the volume constraint on the domains Ω is satisfied,
for simplicity we take that |Ω| = |B1(0)|. One can verify that for any `min > 0 the perimeter
constraint is satisfied for Ω provided that r1 is small enough.
Using the explicit formula (11), we compute

λ̂m̂,`min
(Ω) = inf

u∈H1(Ω)

{∫
Ω
|∇u|2 dx+ `−1

min

∫
∂Ω∩{|u|<cu}

u2 ds+
cu
`min

∫
∂Ω∩{|u|≥cu}

|u| ds

}

= inf
u∈H1(Ω)


∫

Ω
|∇u|2 dx+ `−1

min

∫
{|u|<cu}

u2 ds+
1

`min|{|u| ≥ cu}|+m

(∫
{|u|≥cu}

|u|ds

)2
 .

with the constant cu given by (12). Now, choosing u ≡ 1 on Br1 and u ≡ 0 on Br2 , we compute

cu =
(

1 +
m̂

`min|∂Br1 |

)−1
.

The value cu ∈ (0, 1] is such that

{|u| ≥ cu} = ∂Br1 and {|u| < cu} = ∂Br2 .

Normalizing the function u such that ‖u‖2L2(Ω) = 1 yields the estimate

λ̂m̂,`min
(Ω) ≤ |∂Br1 |2

|Br1 |(`min||∂Br1 |+ m̂)
≤ d2|B1(0)|
m̂+ `mindr

d−1
1 |B1|

rd−2
1

which can be arbitrary close to zero if d ≥ 3.
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The numerical approximation of the optimal domains can be improved by accounting for the
effect the change of volume has on the eigenvalue. For this it is useful to know the scaling
properties of the eigenvalues under consideration. For a domain Ω ⊂ Rd, we consider tΩ :=
{tx : x ∈ Ω} for t > 0. For the eigenvalues of the Dirichlet, Neumann and Robin Laplacian the
following scaling properties are known for n ∈ N, [17, p. 84]:

λn(tΩ) = t−2λn(Ω), µn(tΩ) = t−2µn(Ω), λn(tΩ, αt−1) = t−2λn(Ω, α).

For the eigenvalue with an insulating film (6) for the scaled domain tΩ, for t ∈ (0,∞) we can
verify that

λ`t(tΩ) = t−2λ`t−1(Ω)

where the function `t ∈ L2(∂(tΩ)) is defined by `t(x) = `(x/t) a.e. for x ∈ ∂(tΩ). If we consider
the problem with a lower bound, so that ̂̀= `min + `, then this implies the following scaling
properties

m̂t = tdm̂, mt = tdm, `min,t = t`min, `t = t`.

For the numerical approximation of the eigenvalue in optimal insulation, we always consider the
eigenvalue scaled to the volume of the unit ball, and give the scaling parameters for reference. To
achieve this, given a domain Ω ∈ CV (Q) and a scaled domain tΩ, we compute t = (|tΩ|/|Ω|)1/d.
After adjusting the parameters `min,t,mt and m̂t accordingly, the eigenvalues are iteratively
minimized as described in Section 5.1 and the rescaled eigenvalue

λ̂m̂,`min
(Ω) = t2λ̂m̂t,`min,t

(tΩ) (28)

is evaluated.

5. Numerical approximation

In this section, we consider the numerical approximation of the eigenvalue in optimal insulation
with a lower bound on the thickness of the insulating film. We propose an iterative scheme to
minimize the objective functional, give an error estimate for the approximation of the eigenvalue
with discrete convex domains and consider the stability of the shape optimization among convex
domains in R3.
To approximate the convex domains in R3, we use the discrete convex domains previously defined
in [7].

5.1. Iterative minimization

When minimizing over the product of two functions, decoupling arises naturally as a consequence
of the discrete product rule for the difference quotient

dt(akbk) = (dtak)bk + ak−1(dtbk)

for dtak = (1/τ)(ak − ak−1)

for a suitable stepsize τ > 0. This allows us to minimize J`min
separately with respect to

u ∈ H1(Ω) and ` ∈ Hm(∂Ω). Minimizers u of J`min
(·, `) with ` ∈ Hm(∂Ω) fixed satisfy the

Euler-Lagrange equation∫
Ω
∇u · ∇v dx+

∫
∂Ω

uv

`min + `
ds = λ`,`min

(Ω)

∫
Ω
uv dx (29)
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for all v ∈ H1(Ω) and

λ`,`min
(Ω) := inf

u∈H1(Ω)
{J`min

(u, `) : ‖u‖L2 = 1} .

No additional regularization is needed here, since `min > 0.
The constraint ‖u‖L2(Ω) = 1 motivates to use test functions v ∈ H1(Ω) for which (u, v)L2(Ω) = 0,
such that the right-hand side in (29) with the unknown eigenvalue disappears. An iterative
scheme can then be derived with the corresponding evolution equation as in [5]. Using the
optimal distribution (11) yields the following algorithm.

Algorithm 5.1. Suppose (·, ·)?,Ω is an appropriate inner product on H1(Ω). For the initial
data u0 ∈ H1(Ω), `0 ∈ Hm(∂Ω) and ‖u0‖2 = 1, set k = 1, and repeat the following steps:

1. Find dtuk ∈ H1(Ω) with (uk−1, dtuk)?,Ω = 0 s.t. for all v ∈ H1(Ω) with (uk−1, v)?,Ω = 0:

(dtuk, v)?,Ω +

∫
Ω
∇uk · ∇v dx+

∫
∂Ω

ukv

`min + `k−1
ds = 0.

2. Compute the optimal distribution `k = huk ∈ Hm(∂Ω) according to (11).

3. Stop if ‖dtuk‖?,Ω ≤ εstop; otherwise increase k to k + 1 and continue with (1).

The iterates are energy decreasing and satisfy an approximate energy estimate on finite intervals
[0, T ].

Proposition 5.2. Algorithm 5.1 is energy decreasing in the sense that for all K =
0, 1, . . . , bT/τc we have

J`min
(uK , `K) + τ

K∑
k=1

‖dtuk‖2? ≤ J`min
(u0, `0).

If ‖u0‖L2(Ω) = 1, then ‖uK‖L2(Ω) ≥ 1, in particular

‖uK‖2L2(Ω) = 1 + τ2
k∑
k=1

‖dtuk‖2L2(Ω).

Proof: Testing with v = dtuk yields

0 = ‖dtuk‖2? +

∫
Ω
∇uk · ∇dtuk dx+

∫
∂Ω

(dtuk)uk
`min + `k−1

ds

= ‖dtuk‖2? +
1

2
dt‖∇uk‖2 +

τ

2
‖∇dtuk‖2 +

1

2

∫
∂Ω

dt(u
2
k)

`min + `k−1
+ τ

(dtuk)
2

`min + `k−1
ds

using the equality

uk(dtuk) =
1

2
dt(u

2
k) +

τ

2
(dtuk)

2.

This implies

0 ≥ ‖dtuk‖2? +
1

2
dt‖∇uk‖2 +

1

2

∫
∂Ω

dt(u
2
k)

`min + `k−1
ds.
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We use the minimizing property of `k = huk , i.e.∫
∂Ω

u2
k

`min + `k
ds ≤

∫
∂Ω

u2
k

`min + `k−1
ds

to deduce that

0 ≥ ‖dtuk‖2? +
1

2
dt‖∇uk‖2 +

1

2τ

∫
∂Ω

u2
k

`min + `k
−

u2
k−1

`min + `k−1
ds

= ‖dtuk‖2? +
1

2
dt‖∇uk‖2 +

1

2

∫
∂Ω
dt

(
u2
k

`min + `k

)
ds.

Further, the orthogonality (dtuk, uk) = 0 implies ‖uk‖2L2 = ‖uk−1‖2L2 + τ2‖dtuk‖2L2 . Summing
over k = 1, . . . ,K leads to the assertion.

Since no regularization is necessary the energy convergence is better than for the version without
a positive lower bound. However, if `min is small, we observe a higher error in the numerical
approximation, both in a slower convergence behaviour of the iterations and error rates in the
discretization, see Proposition 5.3 and Figure 1.

5.2. Convergence analysis

We consider here only the approximation of the eigenvalue in convex domains Ω ⊂ R3, where
the domain Ω is approximated with polyhedral domains with a family of regular triangulations
(Th)h>0 interpolating the convex domains, and discretize the space H1(Ω) with the space of
continuous piecewise affine linear functions

S1(Th) =
{
vh ∈ C(Ωh) : vh|T ∈ P1(T ) for all T ∈ Th

}
.

Proposition 5.3. For a convex domain Ω ⊂ R3 with a C2,1-boundary assume that there exists
a pair of minimizers (u, `) with u ∈ H2(Ω)∩W 1,∞(Ω), ‖u‖L2(Ω) = 1 and ` ∈ H2(∂Ω)∩Hm(∂Ω).
There exists a polyhedral domain Ωh ⊂ Ω with a triangulation Th with maximal mesh size h and

Ω4Ωh ⊂
{
x ∈ Q : dist(x, ∂Ω) ≤ ch2

}
so that

min
uh∈S1(Th),`h∈S1(∂Th)

∣∣J`min
(u, `)− J`min

(uh, `h)
∣∣ ≤ C(`−2

min)h.

Proof: 1. We can find a sequence of discrete domains satisfying the requirement as described
using standard approximation results of the triangulation [15, Section 3.6] and interpolated
surfaces [16].

2. Set

uh =
Ih(u)

‖Ih(u)‖L2(Ωh)
, `h = m

Ĩh(`)

‖Ĩh(`)‖L1(∂Ωh)

with the nodal interpolation operator Ih : C(Ω)→ S1(Th) and Ĩh : C(∂Ω)→ S1(∂Th), the
nodal interpolation operator on the boundary ∂Ω as defined in [16, Section 4].
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For h > 0 small enough, the functions uh and `h are well defined. Standard interpola-
tion results, see [15, Section 3.3.1] and [16, Lemma 4.3] for element sides on the discrete
boundary, imply

‖u− uh‖+ h‖∇[u− uh]‖ ≤ Ch2‖D2u‖
‖`− `Lh‖L2(∂Ω) ≤ Ch2‖`‖H2(∂Ω)

where `Lh is the lift of `h from ∂Ωh to ∂Ω, as described in [16, Section 4.1].

3. We have that
‖u‖H1(Ω\Ωh) ≤ C|Ω\Ωh|1/2‖u‖W 1,∞(Ω) ≤ Ch.

With the continuity of the trace operator we get

|J`min
(uh, `h)− J`min

(u, `)| ≤ (∇[uh + u],∇[uh − u])L2(Ωh) + ‖∇u‖2L2(Ω\Ωh)

+ C

∫
∂Ω

∣∣∣∣ ( u2
h

`min + `h

)L
− u2

`min + `

∣∣∣∣ds
≤ C(h‖u‖2H2(Ω) + h2‖u‖2W 1,∞(Ω)) +

∫
∂Ω

|(uLh )2 − u2|
`min + `Lh

ds+ C

∫
∂Ω

u2|`− `Lh |
(`min + `Lh )(`min + `)

ds

≤ Ch‖u‖2H2(Ω) + Ch2‖u‖2W 1,∞(Ω) + C`−1
minh‖u‖

2
H2(Ω) + ‖u2‖L2(∂Ω)`

−2
minh

2‖`‖H2(∂Ω)

≤ Ch‖u‖2H2(Ω)(1 + `−1
min) + `−2

minh
2‖u‖2L4(∂Ω)‖`‖H2(∂Ω) + Ch2‖u‖2W 1,∞(Ω)

≤ Ch
(

(1 + `−1
min)‖u‖H2(Ω) + h‖u‖2W 1,∞(Ω) + `−2

minh‖`‖H2(∂Ω)

)
with the continuous embedding of W 1,2 ↪→ L4(∂Ω) for d ≤ 3, [14, Theorem 6.15]. This
proves the asserted estimates.

5.3. Stability of the shape optimization

Since we consider the shape optimization among convex domains in R3, a conformal approxi-
mation of the convexity constraint among polyhedral domains is difficult. To circumvent this,
we approximate convex domains with discrete convex domains as defined in [7].

Definition 5.4 ([7, Definition 2.1]). Let Ωh ⊂ R3 be a polyhedral bounded domain with a trian-
gulation Th with maximal mesh size h. We say that Ωh is discrete convex if ∂Ωh is a piecewise
linear Lagrange interpolant of the boundary ∂Ω of a convex domain Ω.

We discretize the class of admissible domains CV (Q) with

Ch,cusr

V (Q) = {Ωh ⊂ Q : with Th ∈ Th,cusr and Ωh interpolates Ω ∈ CV (Q)}

with (Th,cusr)h>0 the class of uniform shape regular triangulations, such that for a tri-
angulation Th ∈ Th,cusr and T ∈ Th we have hT = diam(T ) ≤ h and hT ≤ cusrρT for
ρT = sup{r : r > 0, x ∈ T,Br(x) ⊂ T} the inner radius of T .

With the results in [7] it is possible to prove the stability of shape optimization for simple prob-
lems, e.g. problems constrained by a Poisson problem, despite the non-conformal approximation
of the convexity constraint. Of particular importance is the following compactness result.
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Corollary 5.5 ([7, Corollary 2.6]). Let (Ωh)h>0 be a sequence of discrete convex domains with

Ωh ⊂ Ch,cusr

V (Q) for h > 0. Then there exists a convex domain Ω ∈ CV (Q), such that after
passing to a subsequence χΩh

→ χΩ in L1(Q).

This is a weaker result than the compactness with respect to convergence in variation, which
is available for convex domains [12], but sufficient for simple optimization problems such as the
ones considered in [7]. When adressing the approximation of problems with boundary terms or
eigenvalues, better convergence results are needed, mainly a uniform bound on the trace operator
as used in [6] and Proposition 4.2. The uniform bound can be proven with a constructive proof,
cf. [6, 21], by using a cone condition as described in [2]. With some technical assumptions on the
admissible triangulations it is then possible to construct a uniform bound on the trace operator
for the discrete domains. For now, we make the assumptions, that the class of discrete domains
is suitable, such that the trace operator can be uniformly bounded.



Minimize J`min
(Ωh, uh, `h)

w.r.t. Ωh ∈ Ch,cusr

V (Q) with |∂Ωh| ≤ m̂/`min

with Th ∈ Tcusr,h triangulation of Ωh

s.t. (uh, `h) ∈ S1(Th)× S1(∂Th) minimizes J`min
(Ωh, ·, ·)

and ‖uh‖L2(Ωh) = 1, `h ∈ Hm(∂Ωh) with mh = m̂− |∂Ωh|`min

(Ph
m̂,`min

)

Convergence as h→ 0 holds in the sense of the following theorem.

Theorem 5.6. Assume that the class of discrete convex domains (Ch,cusr

V (Q))h>0 are such that
a uniform bound on the trace inequality independent on h applies. Let (Ωh, uh, `h, Th)h>0 be
solutions to the discrete Problems (Ph

m̂,`min
). Then for every accumulation point (Ω, u), the

domain Ω solves Problem (P̂m̂,`min
) as h→ 0 with u ∈ H1(Ω) is the corresponding eigenfunction.

Proof: Let us proceed step by step.

1. Using the compactness for discrete convex domains in [7, Corollary 2.6] there exists a
convex domain Ω ∈ CV (Q), such that the characteristic functions converge in L1(Ω).
Without the convergence in variation of the characteristic functions, the perimeter is only
lower semicontinuous and in particular

m = m̂− `min|∂Ω| ≥ m̂− `min lim inf
h→0

|∂Ωh| = lim sup
h→0

mh.

2. Using the uniform trace operator for the class (Ch,cusr

V (Q))h>0, we use the same arguments
as in the proof of Proposition 4.2 to show that the trivially extended functions ũh admit
a convergent subsequence such that

ũh ⇀ ũ ∈ SBV (Q) with ũ|Ω ∈ H1(Ω), ‖u‖L2(Ω) = 1.

Likewise, we can find a function ` ∈ L2(∂Ω), such that∫
∂Ω
`ds ≤ lim inf

h→0

∫
∂Ωh

`h ds ≤ lim inf
h→0

mh ≤ m (30)

and
J`min

(u, hu) ≤ J`min
(u, `) ≤ lim inf

h→0
J`min

(uh, `h) (31)

for the optimal distribution hu ∈ Hm(∂Ω) given by Proposition 3.1.
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3. Suppose Ω? is an optimal domain to Problem (P̂m̂,`min
) with eigenfunction u? ∈ H1(Ω)

and optimal distribution of insulating material `? ∈ Hm(∂Ω). Using Proposition 5.3,
density arguments and Reshetnyak’s theorem [11, Theorem 2.5] we can find a sequence of
admissible triples (Ω?

h, u
?
h, `

?
h), such that

lim
h→0

J`min
(Ω?

h, u
?
h, `

?
h) = J`min

(Ω?, u?, `?).

With (31), we then have

J`min
(Ω?, u?, `?) = lim

h→0
J`min

(Ω?
h, u

?
h, `

?
h) ≥ lim inf

h→0
J`min

(Ωh, uh, `h) ≥ J`min
(Ω, u, `u)

which implies the optimality of the limit Ω with eigenfunction u ∈ H1(Ω) and optimal
distribution `u ∈ Hm(∂Ω).

6. Numerical experiments

In this section we first consider the numerical approximation of the eigenfunction on B1(0) ⊂ R3,
for several values m < m0 where m0 is the critical value, such that, for the eigenvalue without
a lower bound, symmetry breaking occurs. For m > m0, the optimal distribution is constant,
such that the lower bound becomes redundant.
Then we approximate the optimal domains for the eigenvalues arising in optimal insulation both
with and without a lower bound. For ease of notation when `min = 0 we set λ̂m̂,0 := λm̂(Ω),
approximated as described in [5] with regularization parameter ε = N−1/d/10 for the boundary
term, with d = 3 and N the number of nodes in the triangulation.

6.1. Approximation of the eigenvalue with a lower bound on the ball

The critical value of mass m0 relates to the first non-trivial Neumann eigenvalue µ2 and satsfies
λm0(B1(0)) = µ2(B1(0)), see [9]. For the approximation in R3, we can estimate that m0 ≈
5.7963. Precise values for m0 can be found in [19, Theorem 1.6]. We consider m̂ ∈ {2, . . . , 5}
and `min = (m̂/|∂Ω|)q, q ∈ [0, 1], such that the mass fraction q of the total mass m̂ is fixed
through a constant distribution. In Figure 1 the eigenvalues for q = i/20, i = 0, . . . , 20 are
shown. If i = 0, i.e. `min = 0, this corresponds to the eigenvalue arising from the Dirichlet
boundary conditions (2). For i = 20, the insulating material is distributed evenly, resulting
in Robin boundary conditions. Following the results of Proposition 4.1 we observe symmetry
breaking in the optimal insulation occurs for all q < 1 and m̂ < m0. For `min small, especially
if m̂ is small as well, the increase of the eigenvalue with respect to `min is less distinct and
showing a clear spike for m̂ = 2 at around `min ≈ 0.03. This is most likely caused by numerical
inaccuracies as indicated by the error estimates in Section 5.2 which depend on `−2

min. In two-
dimensional experiments, where a higher resolution of the domain is possible, this is no longer
observed. The optimal asymmetric distributions of insulating material are shown in Figure 2
for m̂ ∈ {2, 3, 5}, and q = i/N , for N = 5, i = 0, . . . , N .
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Figure 1: Eigenvalues λm,`min
(B1(0)) with B1(0) ⊂ R3 for m̂ = {2, . . . , 5} and m = m̂ −

`min|B1(0)| (left to right, top to bottom) as functions of `min = (m̂/|∂B1(0)|)q, for q ∈ [0, 1],
evaluated for q = i/20, i = 0, . . . , 20, approximated on a triangulation with mesh size h = 2−3.

6.2. Shape optimization

We optimize the eigenvalue λ̂m̂,`min
within the class CV (Q). To reduce the number of constraints

we drop volume constraint and optimize the scaled eigenvalues instead. We then use the algo-
rithm as described in [7], and compute the deformation via a problem of linear elasticity with
elasticity parameters E = 0.5, ν = 0.2 for Young’s module, and the damping parameter ρ = 0.5
to ensure the coercivity of the elasticity bilinear form.
From [9, 6, 5] we expect that a breaking of symmetry occurs for the eigenfunctions of the ball
and the optimal domains if m̂ < m0 ≈ 5.7963.

The experiments below where repeated for different initial domains with a mesh size h = 2−3

and gave consistent results. For `min = 0, the results where consistent with the optimization
among rotationally symmetric domains from [6]. In particular, it can be observed, that there
exist stationary asymmetric domains for m̂ ∈ {2, . . . , 10}, and that the ball is stationary for
m̂ ≥ 6. The optimal domains were approximated for m̂ ∈ {2, . . . , 10}, and `min = (m̂/|∂B1(0)|)q
for q ∈ [0, 1), evaluated for q = i/5, q = 0, . . . , 4. For q = 1, the shape optimization is trivial, see
Section 4, and is solved by a ball with a constant layer of insulating material. The eigenvalue
problem is then equivalent to the Robin eigenvalue problem.
For q = 0, the shape optimization corresponds to the optimization of the eigenvalue in optimal
insulation (2), approximated as in [5] with regularization parameter ε = N−1/d/10, where N is
the number of nodes in the mesh. The optimized eigenvalues are shown in Figure 3 and Figure 4
for m̂ < m0 and m̂ > m0 respectively, where we include the values for q = 0 and q = 1 from the
values for the regular eigenvalue in optimal insulation λm̂(Ω) and for the first Robin eigenvalue
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on the ball λ1(B1(0), `−1
min) with `min = m̂/|∂B1(0)|.

In Figures 5 and 6 we show the optimized asymmetric domains for λ̂m̂,`min
for m̂ ∈ {2, . . . 9}

and different values of `min ∈ [0, m̂/|∂B1(0)|). For m̂ < m0, they are compared to the respective
eigenvalues in the unit ball. For m > m0, Theorem 2.1 implies that the optimal distribution on
the ball is always constant for any `min, such that the lower bound becomes redundant.
For `min = 0, i.e. the classical eigenvalue in optimal insulation, the results are consistent with
our expectations and the previous numerical experiments [6]. In particular, all approximated
domains and the corresponding distribution of insulating material are approximately rotation-
ally symmetric, even if the rotational symmetry is not enforced in the approximation with local
discrete convex domains. To ensure that no bias occurs due to only using rotationally symmetric
initial domains, we also optimized initial domains which are not rotationally symmetric.
For `min > 0 similar patterns regarding the breaking of symmetry can be observed. The exper-
iments suggest, that as q → 1 and vanishing free mass m → 0, the optimal domains transform
from the asymmetric domain to the ball, which is optimal if m = 0. This corresponds to a
constant distribution of insulating material. For m̂ < m0 the domains appear to be asymmetric
for all values of q, whereas if m̂ > m0 for larger q, the approximated asymmetric domain is not
optimal compared to the ball with a constant distribution or no asymmetric domain is approx-
imated and the ball appears to be optimal.
For q = 0, the optimal domains often tend to be non-smooth, see also [6]. With increasing q
the kink in the boundary seems to smoothen and in general for q > 0, a singular behaviour of
the boundary cannot be observed. Another interesting observation lies in the thickness of the
optimal distributions. For `min = 0 it was observed that for m̂ < m0, the insulating material
is thickest around the pointed end of the domains, while for larger m̂, this behaviour reverses,
such that the blunt end is insulated better. For `min > 0 , this pattern can be observed as well
and the location, where the insulating material is thickest, is observed to depend on whether
m̂ < m0 or m̂ > m0.
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Figure 2: Optimal distribution to the eigenvalue λm,`min
(B1(0)) with B1(0) ⊂ R3 for m̂ ∈ {2, 3, 5}

and m = m̂− `min|B1(0)| (left to right), and `min = (m̂/|∂B1(0)|)q, for q = i/5, for i = 0, . . . , 4
(top to bottom), the optimal distribution ̂̀= `min +hu is shown on the boundary; approximated
on a triangulation with mesh size h = 2−3. The optimal distributions appear to be non-radial
but rotationally symmetric for all q < 5, i.e. where the free mass m = m̂− |∂B1(0)|`min > 0.
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Figure 3: Eigenvalues λ̂m̂,`min
of the initial domain B1(0) ⊂ R3 and the approximated optimal

domains Ω? with `min = (m̂/|∂B1(0)|)q, for q ∈ [0, 1], evaluated for q = i/5, i = 0, . . . , 5, for
m̂ ∈ {2, 3, 4, 5} (left to right, top to bottom).
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Figure 4: Eigenvalues λ̂m̂,`min
of the approximated optimal domains Ω? with `min =

(m̂/|∂B1(0)|)q, for q ∈ [0, 1], evaluated for q = i/5, i = 0, . . . , 5, for m̂ ∈ {6, . . . , 9} (left to
right, top to bottom).
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Figure 5: Approximated optimal domains for λ̂m̂,`min
for m̂ ∈ {2, . . . , 5} (left to right) and

`min = (m̂/|∂B1(0)|)q, for q ∈ [0, 1), evaluated for q = i/5, i = 0, . . . , 4 (top to bottom), with
initial domain approximated on a mesh with maximal mesh size h = 2−3. With increasing `min,
the optimal domains transform from the asymmetric domain to the ball, and the observed kink
in the boundary smoothens. The optimal domains appear to be rotationally symmetric, and
symmetry breaking in the optimal insulation can be observed for all values of m̂ and `min <
(m̂/|∂B1(0)|). For the value i = 5 the optimal domains are balls with constant distributions
and are not shown here.
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Figure 6: Approximated optimal domains for λ̂m̂,`min
for m̂ ∈ {6, 7, 8} (left to right) and `min =

(m̂/|∂B1(0)|)q for q ∈ [0, 1), evaluated for q = i/5, i = 0, . . . , 4 (top to bottom), with initial
domain approximated on a mesh with maximal mesh size h = 2−3. With increasing `min, the
optimal domains transform from the asymmetric domain to the ball, and the observed kink in
the boundary smoothens. The optimal domains appear to be rotationally symmetric. Symmetry
breaking in the optimal domains and optimal insulation can be observed for smaller values of
m̂ and `min. For the value i = 5 the optimal domains are balls with constant distribution and
are not shown here.
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