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Abstract

In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive
an a posteriori error identity for arbitrary conforming approximations of the primal formula-
tion and the dual formulation of the scalar Signorini problem. In addition, on the basis of a
(Fenchel) duality theory on the discrete level, we derive an a priori error identity that applies
to the approximation of the primal formulation using the Crouzeix–Raviart element and to
the approximation of the dual formulation using the Raviart–Thomas element, and leads to
quasi-optimal error decay rates without imposing additional assumptions on the contact set
and in arbitrary space dimensions.
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1. Introduction

The scalar Signorini problem is a model problem that captures non-trivial effects present in
elastic contact problems. It is a non-linear problem as it contains a non-linear boundary condition:
in a bounded domain Ω ⊆ Rd, d ∈ N, the solution u : Ω → R of the scalar Signorini problem (i.e.,
the displacement field) on a part of the (topological) boundary ΓC ⊆ ∂Ω (i.e., the contact set) is
greater or equal to χ : ΓC → R (i.e., the obstacle) (cf. [41]). It can be expressed in form of a convex
minimization problem with an optimality condition given via variational inequality (cf. [26]).

1.1 Related contributions

Finite element approximation as well as its a priori and a posteriori error analysis for unilateral
contact problems is an active area of research for many decades. There is a vast literature on this
topic; including conforming, non-conforming, and hybrid finite element methods (cf. [7, 11, 8, 9]),
mixed (cf. [40]), and mortar finite element methods (cf. [12]). These methods typically employ
element-wise affine or quadratic polynomial finite elements, due to limited regularity of the
solution of these nonlinear contact problems (cf. Remark 3.3).

Due to scarcity, we refer to a few articles and references therein on this topic:

• In the context of a posteriori error analyses that provide reliable and efficient error bounds,
we refer the reader to the contributions [29, 46, 10, 34].

• In the context of a priori error analyses, in [32], assuming that the solution lies in Hs+1(Ω),
s ∈ ( 12 , 1], and that the contact set ΓC has a certain regularity, quasi-optimal a priori error
estimates are derived; in [30], assuming, again, that the solution lies in Hs+1(Ω), s ∈ ( 12 , 1],
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but no additional regularity of the contact set ΓC , improved quasi-optimal a priori error
estimates are derived; recently, in [22], important and interesting results are established to
obtain quasi-optimal a priori error estimates for conforming finite element methods in two
and three space dimensions without additional assumptions on the contact set ΓC when the
solution lies in Hs+1(Ω), s∈ ( 12 ,

1
2+

k
2 ], where k ∈ {1, 2} is the polynomial degree being used;

in [15, 17], Nitsche’s type methods with symmetric and non-symmetric variants are proposed
and analyzed for the contact problem with Hs+1(Ω), s ∈ ( 12 , 1], regular solution and derived
optimal order convergence in H1-norm. A penalty method is formulated and its convergence
at continuous and discrete level are studied in [16] for the two dimensional contact problem
withHs+1(Ω), s ∈ ( 12 , 1], regular solution but without any assumption on the contact set ΓC ,
and further therein, the authors have established optimal convergence rates by deriving
necessary relation between penalty parameter and the mesh size.

1.2 New contributions

The contributions of the present paper to the existing literature are two-fold:

• On the basis of (Fenchel) duality theory on the continuous level (combining approaches
from [39], [14], and [4]), we derive an a posteriori error identity that applies to arbitrary
conforming approximations of the primal formulation and the dual formulation of the scalar
Signorini problem. More precisely, denoting by u ∈ K and z ∈ K∗ the primal and dual
solution, respectively, for admissible approximations v ∈ K and y ∈ K∗, it holds that

1
2∥∇v −∇u∥2Ω + ⟨z · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN

+ 1
2∥y − z∥2Ω + ⟨y · n, u− χ⟩∂Ω − ⟨g, u− χ⟩ΓN

= 1
2∥∇v − y∥2Ω + ⟨y · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN

,

(1.1)

In addition, the induced local refinement indicators of the primal-dual gap (a posteriori)
error estimator (i.e., the right-hand side of) can be employed in adaptive mesh-refinement.

• On the basis of (Fenchel) duality theory on the discrete level, analogously to the a posteriori
error identity on the continuous level (1.1), we derive an a priori error identity that applies
to the approximation of the primal formulation using the Crouzeix–Raviart element (cf. [19])
and the approximation of the dual formulation using the Raviart–Thomas element (cf. [38]).
More precisely, denoting by ucrh ∈ Kcr

h and zrth ∈ Krt,∗
h the discrete primal and discrete dual

solution, respectively, for admissible approximations vh ∈Kcr
h and yh ∈Krt,∗

h , it holds that

1
2∥∇hvh −∇hu

cr
h ∥2Ω + (zrth · n, πhvh − χh)ΓC

+ 1
2∥Πhyh −Πhz

rt
h ∥2Ω + (yh · n, πhucrh − χh)ΓC

= 1
2∥∇hvh − yh∥2Ω + (yh · n, πhvh − χh)ΓC

.

(1.2)

From the a priori error identity (1.2), we derive quasi-optimal error decay rates without impo-
sing additional assumptions on the regularity of the contact set ΓC for arbitrary dimensions.
This improves the existing literature (cf. [45, 31, 35]) on a priori error analyses for
approximations of the scalar Signorini problem using the Crouzeix–Raviart element.

1.3 Outline

This article is organized as follows: In Section 2, we introduce the notation, the relevant func-
tion spaces and finite element spaces. In Section 3, a (Fenchel) duality theory for the continuous
scalar Signorini problem is developed. This (Fenchel) duality theory is used in Section 4 in the
derivation of an a posteriori error identity. In Section 5, a discrete (Fenchel) duality theory for
the discrete scalar Signorini problem is developed. This discrete (Fenchel) duality theory, in turn,
is used in Section 6 in the derivation of an a priori error identity, which, in turn, is used to derive
error decay rates given only fractional regularity assumptions on the solution and the obstacle. In
Section 7, we carry out numerical experiments that support the findings of Section 4 and Section 6.
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2. Preliminaries

Throughout the article, let Ω ⊆ Rd, d ∈ N, be a bounded simplicial Lipschitz domain such that
∂Ω is divided into three disjoint (relatively) open sets: a Dirichlet part ΓD ⊆ ∂Ω with |ΓD| > 01,
a Neumann part ΓN ⊆ ∂Ω, and a contact part ΓC ⊆ ∂Ω such that ∂Ω = ΓD ∪ ΓN ∪ ΓC .

2.1 Standard function spaces

For a (Lebesgue) measurable set ω ⊆ Rn, n ∈ N, and (Lebesgue) measurable functions or vec-
tor fields v, w : ω → Rℓ, ℓ ∈ N, we employ the inner product (v, w)ω :=

´
ω
v ⊙ w dx, whenever the

right-hand side is well-defined, where ⊙ : Rℓ ×Rℓ → R either denotes scalar multiplication or the
Euclidean inner product. The integral mean over a (Lebesgue) measurable set ω ⊆ Rn, n ∈ N, with
|ω| > 0 of an integrable function or vector field v : ω → Rℓ, ℓ ∈ N, is defined by ⟨v⟩ω := 1

|ω|
´
ω
v dx.

For m ∈ N and an open set ω ⊆ Rn, n ∈ N, we define the spaces

Hm(ω) :=
{
v ∈ L2(ω) | Dαv ∈ L2(ω) for all α ∈ (N0)

n with |α| ≤ m
}
,

H(div;ω) :=
{
y ∈ (L2(ω))n | div y ∈ L2(ω)

}
,

where Dα := ∂|α|

∂x
α1
1 ·...·∂xαn

n
and |α| :=∑n

i=1 αi for each multi-index α := (α1, . . . , αn) ∈ (N0)
n, and

the Sobolev norm ∥ · ∥m,ω := ∥ · ∥ω + | · |m,ω, where ∥ · ∥ω := ((·, ·)ω)
1
2 and

| · |m,ω :=

( ∑
α∈(N0)n : 0<|α|≤m

∥Dα(·)∥2ω

) 1
2

,

turns Hm(ω) into a Hilbert space.
For s ∈ (0,∞) \ N and an open set ω ⊆ Rn, n ∈ N, the Sobolev–Slobodeckij semi-norm, for

every v ∈ Hm(ω), is defined by

|v|s,ω :=

( ∑
|α|=m

ˆ
ω

ˆ
ω

|(Dαv)(x)− (Dαv)(y)|2
|x− y|2θ+d

dxdy

) 1
2

,

where m ∈ N0 and θ ∈ (0, 1) are such that s = m+ θ. Then, for s ∈ (0,∞) \ N and an open set
ω ⊆ Rn, n ∈ N, the Sobolev–Slobodeckij space is defined by

Hs(ω) :=
{
v ∈ Hm(ω) | |v|s,ω <∞

}
,

where m∈N0 and θ ∈ (0, 1) are such that s=m+ θ and the Sobolev–Slobodeckij norm

∥ · ∥s,ω := ∥ · ∥m,ω + | · |s,ω
turns Hs(ω) into a Hilbert space.

Denote by tr(·) :H1(Ω)→H
1
2 (∂Ω) the trace operator and by tr((·) · n) : H(div; Ω)→H− 1

2 (∂Ω)
the normal trace operator, where n : ∂Ω → Sd−1 denotes the outward unit normal vector field to ∂Ω.
Then, for every v ∈H1(Ω) and y ∈H(div; Ω), there holds the integration-by-parts formula (cf.
[24, Sec. 4.3, (4.12)])

(∇v, y)Ω + (v,div y)Ω = ⟨tr(y) · n, tr(v)⟩∂Ω , (2.1)

where, for every ŷ ∈ H− 1
2 (γ), v̂ ∈ H

1
2 (γ), and γ ∈ {ΓD,ΓN ,ΓC , ∂Ω}, we abbreviate

⟨ŷ, tr(v̂)⟩γ := ⟨ŷ, tr(v̂)⟩H 1
2 (γ) . (2.2)

More precisely, in (2.2), for every subset γ ⊆ ∂Ω and s > 0, the Hilbert space Hs(γ) is defined as
the range of the restricted trace operator tr(·)|γ defined onHs+ 1

2 (Ω) endowed with the image norm,
for every w ∈ Hs(γ), defined by

∥w∥s,γ := inf
v∈Hs+1

2 (Ω) : tr(v)|γ=w
∥v∥s+ 1

2 ,Ω
,

and H−s(γ) := (Hs(γ))∗ is defined as the corresponding topological dual space.

1For a (Lebesgue) measurable set M ⊆ Rd, d ∈ N, we denote by |M | its d-dimensional Lebesgue measure. For
a (d− 1)-dimensional submanifold M ⊆ Rd, d ∈ N, we denote by |M | its (d− 1)-dimensional Hausdorff measure.



S. Bartels, T. Gudi and A. Kaltenbach 4

Eventually, we employ the notation

H1
D(Ω) :=

{
v ∈ H1(Ω) | tr(v) = 0 a.e. on ΓD

}
,

H2
N (div; Ω) :=

{
y ∈ H(div; Ω)

∣∣∣∣ ⟨tr(y) · n, tr(v)⟩∂Ω = 0 for all v ∈ H1
D(Ω)

with tr(v) = 0 a.e. on ΓC

}
.

In what follows, we omit writing both tr(·) and tr((·) · n) in this context.

2.2 Triangulations and standard finite element spaces

Throughout the article, we denote by {Th}h>0 a family of uniformly shape regular triangula-

tions of Ω⊆Rd, d∈N, (cf. [24]). Here, h> 0 refers to the averaged mesh-size, i.e., h= ( |Ω|
card(Nh)

)
1
d ,

where Nh contains the vertices of the triangulation Th. We define the following sets of sides:

Sh := Si
h ∪ S∂Ω

h ,

Si
h :=

{
T ∩ T ′ | T, T ′ ∈ Th ,dimH (T ∩ T ′) = d− 1

}
,

S∂Ω
h :=

{
T ∩ ∂Ω | T ∈ Th ,dimH (T ∩ ∂Ω) = d− 1

}
,

Sγ
h :=

{
S ∈ S∂Ω

h | int(S) ⊆ γ
}
for γ ∈

{
ΓD,ΓN ,ΓC

}
,

where the Hausdorff dimension is defined by dimH (M) := inf{d′≥0 | H d′
(M)=0} for allM ⊆Rd.

It is also assumed that the triangulations {Th}h>0 and boundary parts ΓD, ΓC , and ΓN are chosen
such that S∂Ω

h = SΓD

h ∪̇SΓC

h ∪̇SΓN

h , e.g., in the case d = 2, ΓD, ΓC , and ΓN touch only in vertices.
For k ∈ N0 and T ∈ Th, let Pk(T ) denote the set of polynomials of maximal degree k on T .

Then, for k ∈ N0, the set of element-wise polynomial functions is defined by

Lk(Th) :=
{
vh ∈ L∞(Ω) | vh|T ∈ Pk(T ) for all T ∈ Th

}
.

For ℓ∈N, the (local) L2-projection Πh : (L
1(Ω))ℓ→(L0(Th))ℓonto element-wise constant functions

or vector fields, respectively, for every v ∈ (L1(Ω))ℓ is defined by Πhv|T := ⟨v⟩T for all T ∈ Th.
For m ∈ N0 and S ∈ Sh, let Pm(S) denote the set of polynomials of maximal degree m on S.

Then, for m ∈ N0 and Mh ∈ {Sh,Si
h,S∂Ω

h ,SΓD

h ,SΓC

h ,SΓN

h }, the set of side-wise polynomial
functions is defined by

Lm(Mh) :=
{
vh ∈ L∞(∪Mh) | vh|S ∈ Pm(S) for all S ∈ Mh

}
.

For ℓ∈N, the (local) L2-projection πh : (L
1(∪Sh))

ℓ→(L0(Sh))
ℓ onto side-wise constant functions

or vector fields, respectively, for every vh ∈ (L1(∪Sh))
ℓ is defined by πhvh|S := ⟨vh⟩S for all S ∈ Sh.

For every vh ∈ Lm(Th), m ∈ N0, and S ∈ Sh, the jump across S is defined by

JvhKS :=

®
vh|T+ − vh|T− if S ∈ Si

h , where T+, T− ∈ Th satisfy ∂T+ ∩ ∂T− = S ,

vh|T if S ∈ S∂Ω
h , where T ∈ Th satisfies S ⊆ ∂T .

For every yh ∈ (Lm(Th))d, m ∈ N0, and S ∈ Sh, the normal jump across S is defined by

Jyh · nKS :=

®
yh|T+ · nT+ + yh|T− · nT− if S ∈ Si

h , where T+, T− ∈ Th satisfy ∂T+ ∩ ∂T− = S ,

yh|T · n if S ∈ S∂Ω
h , where T ∈ Th satisfies S ⊆ ∂T ,

where, for every T ∈ Th, we denote by nT : ∂T → Sd−1 the outward unit normal vector field to T .

2.2.1 Crouzeix–Raviart element

The Crouzeix–Raviart finite element space (cf. [19]) is defined as the space of element-wise
affine functions that are continuous in the barycenters of interior sides, i.e.,

S1,cr(Th) :=
{
vh ∈ L1(Th) | πhJvhK = 0 a.e. on ∪ Si

h

}
.
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The Crouzeix–Raviart finite element space with homogeneous Dirichlet boundary condition on ΓD

is defined by

S1,cr
D (Th) :=

{
vh ∈ S1,cr(Th) | πhvh = 0 a.e. on ∪ SΓD

h

}
.

A basis of S1,cr(Th) is given via φS ∈S1,cr(Th), S ∈Sh, satisfying φS(xS′) = δS,S′ for all S, S′ ∈Sh.
The (Fortin) quasi-interpolation operator Πcr

h :H1(Ω)→S1,cr(Th) (cf. [25, Secs. 36.2.1, 36.2.2]),
for every v ∈ H1(Ω) defined by

Πcr
h v :=

∑
S∈Sh

⟨v⟩S φS , (2.3)

preserves averages of gradients and of moments (on sides), i.e., for every v ∈ H1(Ω), it holds that

∇hΠ
cr
h v = Πh∇v a.e. in Ω , (2.4)

πhΠ
cr
h v = πhv a.e. on ∪ Sh . (2.5)

Here, ∇h : L1(Th) → (L0(Th))d, defined by (∇hvh)|T := ∇(vh|T ) for all vh ∈ L1(Th) and T ∈ Th,
denotes the element-wise gradient operator.

For every s ∈ [0, 1], there exists a constant c > 0 (cf. [25, Lem. 36.1]), independent of h > 0,
such that for every v ∈ H1+s(Ω) and T ∈ Th, it holds that

∥v −Πcr
h v∥T + hT ∥∇v −∇Πcr

h v∥T ≤ c h1+s
T |v|1+s,T . (2.6)

2.2.2 Raviart–Thomas element

The (lowest order) Raviart–Thomas finite element space (cf. [38]) is defined as the space of
element-wise affine vector fields that have continuous constant normal components on interior sides,
i.e.,

RT 0(Th) :=
®
yh ∈ (L1(Th))d

∣∣∣∣ yh|T · nT = const on ∂T for all T ∈ Th ,
Jyh · nKS = 0 on S for all S ∈ Si

h

´
.

The Raviart–Thomas finite element space with homogeneous normal boundary condition on ΓN

is defined by

RT 0
N (Th) :=

{
yh ∈ RT 0(Th) | yh · n = 0 a.e. on ΓN

}
.

A basis of RT 0(Th) is given via vector fields ψS ∈ RT 0(Th), S ∈ Sh, satisfying ψS |S′ ·nS′ = δS,S′

on S′ for all S′ ∈ Sh, where nS ∈ Sd−1 for all S ∈ Sh is the fixed unit normal vector on S pointing
from T− to T+ if T+ ∩ T− = S ∈ Sh. For every s >

1
2 , the (Fortin) quasi-interpolation operator

Πrt
h : (Hs(Ω))d → RT 0(Th) (cf. [24, Sec. 16.1]), for every y ∈ (Hs(Ω))d defined by

Πrt
h y :=

∑
S∈Sh

⟨y · nS⟩S ψS , (2.7)

preserves averages of divergences and of normal traces, i.e., for every y ∈ (Hs(Ω))d ∩H(div; Ω),
it holds that

divΠrt
h y = Πhdiv y a.e. in Ω , (2.8)

Πrt
h y · n = πhy · n a.e on ∪ Sh . (2.9)

For every s∈ ( 12 , 1], there exists a constant c>0 (cf. [24, Thms. 16.4, 16.6]), independent of h>0,
such that for every y ∈ (Hs(Ω))d ∩H(div; Ω) and T ∈ Th, it holds that

∥y −Πrt
h y∥T ≤ c hsT |y|s,T . (2.10)

For every vh ∈ S1,cr(Th) and yh ∈ RT 0(Th), we have the discrete integration-by-parts formula

(∇hvh,Πhyh)Ω + (Πhvh, div yh)Ω = (πhvh, yh · n)∂Ω . (2.11)
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3. Scalar Signorini problem

In this section, we discuss the (continuous) scalar Signorini problem.

• Primal problem. Given f ∈ L2(Ω), g ∈ H− 1
2 (ΓN ), uD ∈ H

1
2 (ΓD), and χ ∈ H1(Ω) with χ = uD

a.e. on ΓD, the scalar Signorini problem is given via the minimization of I : H1(Ω) → R∪{+∞},
for every v ∈ H1(Ω) defined by

I(v) := 1
2∥∇v∥2Ω − (f, v)Ω − ⟨g, v⟩ΓN

+ IK(v)

= 1
2∥∇v∥2Ω − (f, v)Ω − ⟨g, v⟩ΓN

+ IΓD

{uD}(v) + IΓC
+ (v − χ) ,

(3.1)

where

K :=
{
v ∈ H1(Ω) | v = uD a.e. on ΓD , v ≥ χ a.e. on ΓC

}
,

and IK := IΓD

{uD}+I
ΓC
+ ((·)−χ), IΓD

{uD}, I
ΓC
+ : H1(Ω) → R∪{+∞}, for every v̂ ∈ H1(Ω) are defined by

IΓD

{uD}(v̂) :=

®
0 if v̂ = uD a.e. on ΓD ,

+∞ else ,

IΓC
+ (v̂) :=

®
0 if v̂ ≥ 0 a.e. on ΓC ,

+∞ else .

Throughout the article, we refer to the minimization of the functional (3.1) as the primal problem.
Since the functional (3.1) is proper, strictly convex, weakly coercive, and lower semi-continuous,
the direct method in the calculus of variations yields the existence of a unique minimizer u ∈ K,
called primal solution. In what follows, we reserve the notation u ∈ K for the primal solution.
• Primal variational inequality. The primal solution u ∈ K equivalently is the unique solution

of the following variational inequality: for every v ∈ K, it holds that

(∇u,∇u−∇v)Ω ≤ (f, u− v)Ω + ⟨g, u− v⟩ΓN
. (3.2)

• Dual problem. A (Fenchel) dual problem to the scalar Signorini problem is given via the
maximization of D : H(div; Ω) → R ∪ {−∞}, for every y ∈ H(div; Ω) defined by

D(y) := − 1
2∥y∥2Ω + ⟨y · n, χ⟩∂Ω − ⟨g, χ⟩ΓN

− IK∗(y)

= − 1
2∥y∥2Ω + ⟨y · n, χ⟩∂Ω − ⟨g, χ⟩ΓN

− IΩ{−f}(div y)− IΓN

{g}(y · n)− IΓC
+ (y · n) ,

(3.3)

where

K∗ :=
{
y ∈ H(div; Ω) | IΩ{−f}(div y) = IΓN

{g}(y · n) = IΓC
+ (y · n) = 0

}
,

IK∗ := IΩ{−f}(div ·) + (IΓN

{g} + IΓC
+ )((·) · n) : H(div; Ω) → R ∪ {+∞}, IΩ{−f} : L

2(Ω) → R ∪ {+∞},
for every ŷ ∈ L2(Ω) is defined by

IΩ{−f}(ŷ) :=

®
0 if ŷ = −f a.e. in Ω ,

+∞ else ,

and IΓN

{g}, I
ΓC
+ : H− 1

2 (∂Ω) → R ∪ {+∞}, for every ŷ ∈ H− 1
2 (∂Ω), are defined by

IΓN

{g}(ŷ) :=

®
0 if ⟨ŷ, v⟩∂Ω = ⟨g, v⟩ΓN

for all v ∈ H1
D(Ω) with v = 0 a.e. on ΓC ,

+∞ else ,

IΓC
+ (ŷ) :=


0 if ⟨ŷ, v⟩ΓC

≥ 0 for all v ∈ H1
D(Ω)

with v = 0 a.e. on ΓN and v ≥ 0 a.e. on ΓC ,

+∞ else .

The identification of the (Fenchel) dual problem (in the sense of [23, Rem. 4.2, p. 60/61]) to
the minimization of (3.1) with the maximization of (3.3) can be found in the proof of the following
result that also establishes the validity of a strong duality relation and convex optimality relations.
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Proposition 3.1 (strong duality and convex duality relations). The following statements apply:

(i) A (Fenchel) dual problem to the scalar Signorini problem is given via the maximization of (3.3).
(ii) There exists a unique maximizer z ∈ H(div; Ω) of (3.3) satisfying the admissibility conditions

div z = −f a.e. in Ω , (3.4)

IΓN

{g}(z · n) = 0 , (3.5)

IΓC
+ (z · n) = 0 . (3.6)

In addition, there holds a strong duality relation, i.e., it holds that

I(u) = D(z) . (3.7)

(iii) There hold convex optimality relations, i.e., it holds that

z = ∇u a.e. in Ω , (3.8)

⟨z · n, u− χ⟩∂Ω = ⟨g, u− χ⟩ΓN
. (3.9)

Remark 3.2. (i) If g ∈ L1(ΓN ), then (3.5) is equivalent to z · n = g a.e. on ΓN ;
(ii) If z · n|ΓC

∈ L1(ΓC), then (3.6) is equivalent to z · n ≥ 0 a.e. on ΓC .

Proof (of Proposition 3.1). ad (i). First, if we introduce the proper, lower semi-continuous,
and convex functionals G : (L2(Ω))d → R and F : H1(Ω) → R ∪ {+∞}, for every y ∈ (L2(Ω))d

and v ∈ H1(Ω), defined by

G(y) := 1
2∥y∥2Ω ,

F (v) := −(f, v)Ω − ⟨g, v⟩ΓN
+ IΓD

{uD}(v) + IΓC
+ (v − χ) ,

then, for every v ∈ H1(Ω), we have that

I(v) = G(∇v) + F (v) .

Thus, in accordance with [23, Rem. 4.2, p. 60/61], the (Fenchel) dual problem to the minimization of
(3.1) is given via the maximization ofD : (L2(Ω))d → R∪{−∞}, for every y ∈ (L2(Ω))d defined by

D(y) := −G∗(y)− F ∗(−∇∗y) , (3.10)

where∇∗: (L2(Ω))d→(H1(Ω))∗ is the adjoint operator to the gradient operator∇:H1(Ω)→(L2(Ω))d.
Due to [23, Prop. 4.2, p. 19], for every y ∈ (L2(Ω))d, we have that

G∗(y) = 1
2∥y∥2Ω . (3.11)

Since v + χ ∈ H1(Ω) with v + χ = uD a.e. on ΓD for all v ∈ H1
D(Ω), for every y ∈ (L2(Ω))d,

using the integration-by-parts formula (2.1), we find that

F ∗(−∇∗y) = sup
v∈H1(Ω)

{
− (y,∇v)Ω + (f, v)Ω + ⟨g, v⟩ΓN

− IΓD

{uD}(v)− IΓC
+ (v − χ)

}
= sup

v∈H1
D(Ω)

{
− (y,∇v)Ω + (f, v)Ω + ⟨g, v⟩ΓN

− IΓC
+ (v)

}
− (y,∇χ)Ω + (f, χ)Ω + ⟨g, χ⟩ΓN

=


IΩ{−f}(div y) + IΓN

{g}(y · n) + IΓC
+ (y · n)

−(y,∇χ)Ω + (f, χ)Ω + ⟨g, χ⟩ΓN

´
if y ∈ H(div; Ω) ,

+∞ else .

=


IΩ{−f}(div y) + IΓN

{g}(y · n) + IΓC
+ (y · n)

−⟨y · n, χ⟩∂Ω + ⟨g, χ⟩ΓN

´
if y ∈ H(div; Ω) ,

+∞ else .

(3.12)

Using (3.11) and (3.12) in (3.10), for every y ∈ H(div; Ω), we arrive at the representation (3.3).
Eventually, since D = −∞ in (L2(Ω))d \H(div; Ω), it is enough to restrict (3.10) to H(div; Ω).
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ad (ii). Since both G : (L2(Ω))d → R and F : H1(Ω) → R ∪ {+∞} are proper, convex, and
lower semi-continuous and since G : (L2(Ω))d → R is continuous at χ ∈ dom(F )∩dom(G◦∇), i.e.,

G(y) → G(∇χ)
(
y → ∇χ in (L2(Ω))d

)
,

by the celebrated Fenchel duality theorem (cf. [23, Rem. 4.2, (4.21), p. 61]), there exists a maximizer
z ∈ (L2(Ω))d of (3.10) and a strong duality relation applies, i.e.,

I(u) = D(z) . (3.13)

Since D = −∞ in (L2(Ω))d \ H(div; Ω), from (3.13), we infer that z ∈ H(div; Ω). Moreover,
since (3.3) is strictly concave, the maximizer z ∈ H(div; Ω) is uniquely determined.

ad (iii). By the standard (Fenchel) convex duality theory (cf. [23, Rem. 4.2, (4.24), (4.25), p. 61]),
there hold the convex optimality relations

−∇∗z ∈ ∂F (u) , (3.14)

z ∈ ∂G(∇u) . (3.15)

While the inclusion (3.15) is equivalent to the convex optimality relation (3.8), the inclusion (3.14),
by the standard equality condition in the Fenchel–Young inequality (cf. [23, Prop. 5.1, p. 21])
and the admissibility condition (3.4), is equivalent to

−(z,∇u)Ω = (−∇∗z, u)Ω

= F ∗(−∇∗z) + F (u)

= −⟨z · n, χ⟩∂Ω + ⟨g, χ⟩ΓN
− (f, u)Ω − ⟨g, u⟩ΓN

= −⟨z · n, χ⟩∂Ω − ⟨g, u− χ⟩ΓN
+ (div z, u)Ω

= ⟨z · n, u− χ⟩∂Ω − ⟨g, u− χ⟩ΓN
+ (div z, u)Ω − ⟨z · n, u⟩∂Ω ,

which, by the integration-by-parts formula (2.1), is equivalent to the claimed convex optimality
relation (3.9).

• Dual variational inequality. A dual solution z ∈ K∗ equivalently is the unique solution of the
following variational inequality: for every y ∈ K∗, it holds that

(z, z − y)Ω ≤ ⟨z · n− y · n, χ⟩∂Ω . (3.16)

• Augmented problem. There exists a Lagrange multiplier Λ∗ ∈ (H1
D(Ω))∗ such that for every

v ∈ H1
D(Ω), there holds the augmented problem

(∇u,∇v)Ω + ⟨Λ∗, v⟩H1
D(Ω) = (f, v)Ω + ⟨g, v⟩ΓN

. (3.17)

With the convex optimality relations (3.8),(3.9) and the integration-by-parts formula (2.1), for
every v ∈ H1

D(Ω), we find that

⟨Λ∗, v⟩H1
D(Ω) = ⟨z · n, v⟩∂Ω − ⟨g, v⟩ΓN

.

In particular, the convex optimality relation (3.9) then also reads as the complementarity condition

⟨Λ∗, u− χ⟩H1
D(Ω) = 0 .

Remark 3.3 (regularity in 2D). In the two-dimensional case, the following regularity results apply:

(i) If Ω ⊆ R2 is a bounded domain with smooth boundary, ΓC = ∂Ω, and χ ∈ H
3
2 (∂Ω), then

u ∈ H2(Ω) (cf. [42, Lem. 2.2]).

(ii) If Ω ⊆ R2 is a polygonal, convex, and bounded domain, ΓC = ∂Ω, and χ ∈ H
3
2 (∂Ω), then

u ∈ H2(Ω) (cf. [27, Thm. 4.1]).

(iii) If Ω⊆R2 is a polygonal bounded domain, ΓC ̸=∂Ω, and χ∈H 3
2 (∂Ω), then u∈H2(U)∩C1,λ(U)

for λ ∈ (1, 12 ) (cf. [37] or [1, Thm. 2.1]), where U ⊆ R2 is a neighborhood of the critical
points, i.e., the points where the boundary condition changes and that are corners of the do-
main. In addition, in [1, Thm. 3.1], a description of possible singular behavior close to the
critical points can be found.
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4. A posteriori error analysis

In this section, resorting to convex duality arguments, we derive an a posteriori error identity
for arbitrary conforming approximations of the primal problem (3.1) and the dual problem (3.3)
at the same time. To this end, we introduce the primal-dual gap estimator η2gap : K ×K∗ → R,
for every v ∈ K and y ∈ K∗ defined by

η2(v, y) := I(v)−D(y) . (4.1)

The primal-dual gap estimator (4.1) can be decomposed into two contributions that precisely
measure the violation of the convex optimality relations (3.8),(3.9), respectively.

Lemma 4.1. For every v ∈ K and y ∈ K∗, we have that

η2gap(v, y) := η2A(v, y) + η2B(v, y) ,

η2gap,A(v, y) :=
1
2∥∇v − y∥2Ω ,

η2gap,B(v, y) := ⟨y · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN
.

Remark 4.2 (interpretation of the components of the primal-dual gap estimator).

(i) The estimator η2gap,A measures the violation of the convex optimality relation (3.8);

(ii) The estimator η2gap,B measures the violation of the convex optimality relation (3.9).

Proof (of Lemma 4.1). Using the admissibility conditions (3.4)–(3.6), the integration-by-parts
formula (2.1), and the binomial formula, for every v ∈ K and y ∈ K∗, we find that

I(v)−D(y) = 1
2∥∇v∥2Ω − (f, v)Ω − ⟨g, v⟩ΓN

+ 1
2∥y∥2Ω − ⟨y · n, χ⟩∂Ω + ⟨g, χ⟩ΓN

= 1
2∥∇v∥2Ω + (div y, v)Ω + 1

2∥y∥2Ω − ⟨y · n, χ⟩∂Ω − ⟨g, v − χ⟩ΓN

= 1
2∥∇v∥2Ω − (y,∇v)Ω + 1

2∥y∥2Ω + ⟨y · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN

= 1
2∥∇v − y∥2Ω + ⟨y · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN

.

Next, we identify the optimal strong convexity measures for the primal energy functional (3.1)
at the primal solution u ∈ K, i.e., ρ2I : K → [0,+∞), for every v ∈ K defined by

ρ2I(v) := I(v)− I(u) , (4.2)

and for the negative of the dual energy functional (3.3), i.e., ρ2−D :K∗ → [0,+∞), for every y ∈K∗

defined by

ρ2−D(y) := −D(y) +D(z) , (4.3)

which will serve as ‘natural’ error quantities in the primal-dual gap identity (cf. Theorem 4.5).

Lemma 4.3 (optimal strong convexity measures). The following statements apply:

(i) For every v ∈ K, we have that

ρ2I(v) =
1
2∥∇v −∇u∥2Ω + ⟨z · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN

.

(ii) For every y ∈ K∗, we have that

ρ2−D(z) = 1
2∥y − z∥2Ω + ⟨y · n, u− χ⟩∂Ω − ⟨g, u− χ⟩ΓN

.

Remark 4.4.

(i) By the convex optimality relation (3.9), the integration-by-parts formula (2.1), the convex op-
timality relation (3.8), the admissibility condition (3.4), and the primal variational inequality
(3.2), for every v ∈ K, we have that

⟨z · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN
= ⟨z · n, v − u⟩∂Ω − ⟨g, v − u⟩ΓN

= (z,∇v −∇u)Ω + (div z, v − u)Ω − ⟨g, v − u⟩ΓN

= (∇u,∇v −∇u)Ω − (f, v − u)Ω − ⟨g, v − u⟩ΓN

≥ 0 .
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(ii) By the convex optimality relation (3.9), the integration-by-parts formula (2.1), the convex
optimality relation (3.8), the admissibility condition (3.4), and the dual variational inequality
(3.16), for every y ∈ K∗, we have that

⟨y · n, u− χ⟩∂Ω − ⟨g, u− χ⟩ΓN
= ⟨y · n− z · n, u⟩∂Ω − ⟨y · n− z · n, χ⟩∂Ω
= (y − z,∇u)Ω + (div y − div z, u)Ω − ⟨y · n− z · n, χ⟩∂Ω
= (y − z, z)Ω − ⟨y · n− z · n, χ⟩∂Ω
≥ 0 .

Proof (of Lemma 4.3). ad (i). Using the binomial formula, the convex optimality relation (3.8),
the admissibility condition (3.4), the integration-by-parts formula (2.1), and the convex optimality
relation (3.9), for every v ∈ K, we find that

I(v)− I(u) = 1
2∥∇v∥2Ω − 1

2∥∇u∥2Ω − (f, v − u)Ω − ⟨g, v − u⟩ΓN

= 1
2∥∇v −∇u∥2Ω + (∇u,∇v −∇u)Ω − (f, v − u)Ω − ⟨g, v − u⟩ΓN

= 1
2∥∇v −∇u∥2Ω + (z,∇v −∇u)Ω + (div z, v − u)Ω − ⟨g, v − u⟩ΓN

= 1
2∥∇v −∇u∥2Ω + ⟨z · n, v − u⟩∂Ω − ⟨g, v − u⟩ΓN

= 1
2∥∇v −∇u∥2Ω + ⟨z · n, v − χ⟩∂Ω − ⟨g, v − χ⟩ΓN

.

ad (ii). Using the binomial formula, the admissibility conditions (3.4)–(3.6), the convex opti-
mality relation (3.8), the integration-by-parts formula (2.1), again, the admissibility condition (3.4),
and the convex optimality relation (3.9), for every y ∈ K∗, we find that

−D(y) +D(z) = 1
2∥y∥2Ω − 1

2∥z∥2Ω + ⟨z · n− y · n, χ⟩∂Ω
= 1

2∥y − z∥2Ω + (z, y − z)Ω + ⟨z · n− y · n, χ⟩∂Ω
= 1

2∥y − z∥2Ω + (∇u, y − z)Ω + ⟨z · n− y · n, χ⟩∂Ω
= 1

2∥y − z∥2Ω + (div z − div y, u)Ω + ⟨z · n− y · n, χ− u⟩∂Ω
= 1

2∥y − z∥2Ω + ⟨y · n, u− χ⟩∂Ω − ⟨g, u− χ⟩ΓN
.

Eventually, we have everything at our disposal to establish an a posteriori error identity
that identifies the primal-dual total error ρ2tot : K ×K∗ → [0,+∞), for every v ∈ K and y ∈ K∗

defined by

ρ2tot(v, y) := ρ2I(v) + ρ2−D(y) , (4.4)

with the primal-dual gap estimator η2gap : K ×K∗ → [0,+∞) (cf. (4.1)).

Theorem 4.5 (primal-dual gap identity). For every v ∈ K and y ∈ K∗, we have that

ρ2tot(v, y) = η2gap(v, y) .

Proof. Combining the definitions (4.1), (4.2), (4.3), (4.4), and the strong duality relation (3.7),
for every v ∈ K and y ∈ K∗, we find that

ρ2tot(v, y) = ρ2I(v) + ρ2−D(y)

= I(v)− I(u) +D(z)−D(y)

= I(v)−D(y)

= η2gap(v, y) .

Note that the primal-dual gap identity (cf. Theorem 4.5) applies to arbitrary conforming
approximations of the primal problem (3.1) and the dual problem (3.3). To be numerically prac-
ticable it is necessary to have a computationally inexpensive way to approximate the primal and
the dual problem at the same time. In Section 5, exploiting orthogonality relations between the
Crouzeix–Raviart and the Raviart–Thomas element, we transfer all convex duality relations from
Section 3 to a discrete level to arrive at a discrete reconstruction formula that allows us to approxi-
mate the primal and the dual problem at the same time using only the Crouzeix–Raviart element.
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5. Discrete scalar Signorini problem

In this section, we discuss the discrete scalar Signorini problem.

• Discrete primal problem. Let fh∈L0(Th), gh∈L0(SΓN

h ), uhD∈L0(SΓD

h ), andχh∈L0(SΓD

h ∪SΓC

h )
with χh = uhD a.e. in ΓD. Then, the discrete scalar Signorini problem is given via the minimization
of Icrh : S1,cr(Th) → R ∪ {+∞}, for every vh ∈ S1,cr(Th) defined by

Icrh (vh) :=
1
2∥∇hvh∥2Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN

+ IKcr
h
(vh)

= 1
2∥∇hvh∥2Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN

+ IΓD

{uh
D}(πhvh) + IΓC

+ (πhvh − χh) ,
(5.1)

where

Kcr
h :=

{
vh ∈ S1,cr(Th) | πhvh = uhD a.e. on ΓD , πhvh ≥ χh a.e. on ΓC

}
,

and IKcr
h

:= IΓD

{uh
D}(πh(·)) + IΓC

h (πh(·)− χh) : S1,cr(Th) → R ∪ {+∞}.
In what follows, we refer to theminimization of the functional (5.1) as the discrete primal problem.

Since the functional (5.1) is proper, strictly convex, weakly coercive, and lower semi-continuous,
the direct method in the calculus of variations yields the existence of a unique minimizer ucrh ∈ Kcr

h ,
called the discrete primal solution. We reserve the notation ucrh ∈Kcr

h for the discrete primal solution.

• Discrete primal variational inequality. The discrete primal solution ucrh ∈ Kcr
h equivalently is

the unique solution of the following variational inequality: for every vh ∈ Kcr
h , it holds that

(∇hu
cr
h ,∇hu

cr
h −∇hvh)Ω ≤ (fh,Πhu

cr
h −Πhvh)Ω + (gh, πhu

cr
h − πhvh)ΓN

. (5.2)

• Discrete dual problem. The (Fenchel) dual problem to the discrete scalar Signorini problem is
given via the maximization of Drt

h : RT 0(Th) → R ∪ {−∞}, for every yh ∈ RT 0(Th) defined by

Drt
h (yh) := − 1

2∥Πhyh∥2Ω + (yh · n, χh)ΓD∪ΓC
− IKrt,∗

h
(yh)

= − 1
2∥Πhyh∥2Ω + (yh · n, χh)ΓD∪ΓC

− IΩ{−fh}(div yh)− IΓN

{gh}(yh · n)− IΓC
+ (yh · n) ,(5.3)

where

Krt,∗
h :=

{
yh ∈ RT 0(Th) | div yh = −fh a.e. in Ω , yh · n = gh a.e. ΓN , yh · n ≥ 0 a.e. on ΓC

}
,

and IKrt,∗
h

:= IΩ{−fh}(div (·)) + (IΓN

{gh} + IΓC
+ )((·) · n) : RT 0(Th) → R ∪ {+∞}.

The identification of the (Fenchel) dual problem (in the sense of [23, Rem. 4.2, p. 60/61]) to the
minimization of (5.1) with the maximization of (5.3) can be found in the proof of the following
result that also establishes the validity of a discrete strong duality relation and discrete convex
optimality relations.

Proposition 5.1 (strong duality and convex duality relations). The following statements apply:

(i) The (Fenchel) dual problem to the discrete scalar Signorini problem is defined via the
maximization of (5.3).

(ii) There exists a unique maximizer zrth ∈ RT 0(Th) of (5.3) satisfying the discrete admissibility
conditions

div zrth = −fh a.e. in Ω , (5.4)

zrth · n = gh a.e. on ΓN , (5.5)

zrth · n ≥ 0 a.e. on ΓC , (5.6)

In addition, there holds a discrete strong duality relation, i.e., we have that

Icrh (ucrh ) = Drt
h (zrth ) . (5.7)

(iii) There hold the discrete convex optimality relations, i.e., we have that

Πhz
rt
h = ∇hu

cr
h a.e. in Ω , (5.8)

zrth · n (πhucrh − χh) = 0 a.e. on ΓC . (5.9)
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Proof. ad (i). If we introduce the functionals Gh : (L0(Th))d → R and Fh : S1,cr(Th) → R∪{+∞},
for every yh ∈ (L0(Th))d and vh ∈ S1,cr(Th) defined by

Gh(yh) :=
1
2∥yh∥2Ω ,

Fh(vh) := −(fh,Πhvh)Ω − (gh, πhvh)ΓN
+ IΓD

{uh
D}(πhvh) + IΓC

+ (πhvh − χh) ,

then, for every vh ∈ S1,cr(Th), we have that

Icrh (vh) = Gh(∇hvh) + Fh(vh) .

Thus, in accordancewith [23, Rem. 4.2, p. 60], the (Fenchel) dual problem to theminimization of (5.1)
is given via the maximization of D0

h : (L0(Th))d → R∪{−∞}, for every yh ∈ (L0(Th))d defined by

D0
h(yh) := −G∗

h(yh)− F ∗
h (−∇∗

hyh) , (5.10)

where ∇∗
h : (L0(Th))d → (S1,cr(Th))∗ denotes the adjoint operator to ∇h : S1,cr(Th) → (L0(Th))d.

For every yh ∈ (L0(Th))d, we have that

G∗
h(yh) =

1
2∥yh∥2Ω . (5.11)

For fixed χ̂h ∈ S1,cr(Th) with πhχ̂h = χh a.e. on ΓD ∪ ΓC , due to χh = uhD a.e. on ΓD, for every
yh ∈ (L0(Th))d, using the lifting lemma (cf. Lemma A.1) and the discrete integration-by-parts
formula (2.11), we find that

F ∗
h (−∇∗

hyh) (5.12)

= sup
vh∈S1,cr(Th)

{
− (yh,∇hvh)Ω+(fh,Πhvh)Ω+(gh, πhvh)ΓN

+IΓD

{uh
D}(πhvh)+I

ΓC
+ (πhvh − χh)

}
= sup

vh∈S1,cr
D (Th)

{
− (yh,∇hvh)Ω+(fh,Πhvh)Ω+(gh, πhvh)ΓN

+IΓC
+ (πhvh)

}
− (yh,∇hχ̂h)Ω + (fh,Πhχ̂h)Ω + (gh, πhχ̂h)ΓN

=


IΩ{−fh}(div yh) + IΓN

{gh}(yh · n) + IΓC
+ (yh · n)

−(Πhyh,∇hχ̂h)Ω + (fh,Πhχ̂h)Ω + (gh, πhχh)ΓN

´
if yh = Πhyh for some yh ∈ RT 0(Th) ,

+∞ else ,

=


IΩ{−fh}(div yh) + IΓN

{gh}(yh · n) + IΓC
+ (yh · n)

−(yh · n, χh)ΓD∪ΓC

´
if yh = Πhyh for some yh ∈ RT 0(Th) ,

+∞ else .

Using (5.11) and (5.12) in (5.10), for every yh = Πhyh ∈ Πh(RT 0(Th)), where yh ∈ RT 0(Th), we
arrive at the representation (5.3). Since D0

h = −∞ in (L0(Th))d \Πh(RT 0(Th)), it is enough to
restrict (5.3) to Πh(RT 0(Th)). Then, we have that D0

h(Πhyh) = Drt
h (yh) for all yh ∈ RT 0(Th).

ad (ii). Since Gh : (L0(Th))d →R and Fh : S1,cr(Th)→R∪{+∞} are proper, convex, and lower
semi-continuous and since Gh : (L0(Th))d→R is continuous at χ̂h∈dom(Fh)∩dom(Gh◦∇h), i.e.,

Gh(yh) → Gh(∇hχ̂h)
(
yh → ∇hχ̂h in (L0(Th))d

)
,

by the celebrated Fenchel duality theorem (cf. [23, Rem. 4.2, (4.21), p. 61]), there exists a maximizer
z0h ∈ (L0(Th))d of (5.10) and a discrete strong duality relation applies, i.e.,

Icrh (ucrh ) = D0
h(z

0
h) .

SinceD0
h = −∞ in (L0(Th))d\Πh(RT 0(Th)), there exists zrth ∈ RT 0(Th) such that z0h = Πhz

rt
h a.e.

in Ω. In particular, we have thatD0
h(z

0
h) = Drt

h (zrth ), so that zrth ∈ RT 0(Th) is a maximizer of (5.3)
and the discrete strong duality relation (5.7) applies. By the strict convexity ofGh : (L0(Th))d →R
and the divergence constraint, the maximizer zrth ∈ RT 0(Th) is uniquely determined.

ad (iii). By the standard (Fenchel) convex duality theory (cf. [23, Rem. 4.2, (4.24), (4.25), p. 61]),
there hold the convex optimality relations

−∇∗
hΠhz

rt
h ∈ ∂Fh(uh) , (5.13)

Πhz
rt
h ∈ ∂Gh(∇hu

cr
h ) . (5.14)
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The inclusion (5.14) is equivalent to the discrete convex optimality relation (5.8). The inclusion
(5.13), by the standard equality condition in the Fenchel–Young inequality (cf. [23, Prop. 5.1, p.
21]), πhu

cr
h = χh a.e. on ΓD, and the discrete admissibility conditions (5.4),(5.5), is equivalent to

−(Πhz
rt
h ,∇hu

cr
h )Ω = (−∇∗

hΠhz
rt
h , u

cr
h )Ω

= F ∗
h (−∇∗

hΠhz
rt
h ) + Fh(u

cr
h )

= −(zrth · n, χh)ΓD∪ΓC
− (fh,Πhu

cr
h )Ω − (gh, πhu

cr
h )ΓN

= (zrth · n, πhucrh − χh)ΓC
+ (div zrth ,Πhu

cr
h )Ω − (zrth · n, πhucrh )∂Ω ,

which, by the discrete integration-by-parts formula (2.11), is equivalent to (zrth ·n, πhucrh −χh)ΓC
=0.

Since zrth · n ≥ 0 a.e. on ΓC and πhu
cr
h − χh ≥ 0 a.e. on ΓC , we conclude that (5.8) applies.

• Discrete dual variational inequality. A discrete dual solution zrth ∈Krt,∗
h equivalently is the

unique solution of the following variational inequality: for every yh ∈ Krt,∗
h , it holds that

(Πhz
rt
h ,Πhz

rt
h −Πhyh)Ω ≥ (zrth · n− yh · n, χh)ΓN

. (5.15)

• Discrete augmented problem. There exists a discrete Lagrange multiplier Λcr,∗
h ∈ (S1,cr

D (Th))∗
such that for every vh ∈ S1,cr

D (Th), there holds the discrete augmented problem

⟨Λcr,∗
h , vh⟩S1,cr

D (Th) = (∇hu
cr
h ,∇hvh)Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN

. (5.16)

With the convex optimality relation (5.8) and the discrete integration-by-parts formula (2.11),
introducing the discrete Lagrange multiplier λcrh := zrth ·n|ΓC

∈ L0(SΓC

h ), for every vh ∈ S1,cr
D (Th),

we find that

⟨Λcr,∗
h , vh⟩S1,cr

D (Th) = (λcrh , πhvh)ΓC
.

We define the discrete flux

zrth := ∇hu
cr
h − fh

d
(idRd −ΠhidRd) ∈ (L1(Th))d , (5.17)

which is admissible in the discrete dual problem and a discrete dual solution.

Proposition 5.2. The discrete flux zrth ∈ (L1(Th))d, defined by (5.17), satisfies zrth ∈ RT 0(Th),
the discrete admissibility relations (5.4)–(5.6), the discrete convex optimality relations (5.8),(5.9),
and is a discrete dual solution.

Proof. ad zrth ∈ RT 0(Th) with (5.4)–(5.6) and (5.8). Due to (5.16), the lifting lemma (cf. Lemma

A.1) implies that zrth ∈ RT 0(Th) with (5.4), (5.5), and (5.8). In addition, for every vh ∈ S1,cr
D (Th)

with πhvh ≥ 0 a.e. on ΓC , the discrete integration-by-parts formula (2.11) and the discrete primal
variational inequality (cf. (5.2)) yield that

(zrth · n, πhvh)ΓC
= (Πhz

rt
h ,∇hvh)Ω + (div zrth ,Πhvh)Ω − (zrth · n, πhvh)ΓN

= (∇hu
cr
h ,∇hvh)Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN

≥ 0 .
(5.18)

Thus, choosing vh =φS for all S ∈SΓC

h in (5.18) and exploiting that πhφS =χS , for every S ∈SΓC

h ,
we find that admissibility condition (5.6) is satisfied.

ad (5.9). If S ∈ SΓC

h is such that πhu
cr
h > χh on S, then there exists some αS < 0 such that

πhu
cr
h +αSχS ≥ χh on S. Thus, from vh = ucrh +αSφS ∈ S1,cr

D (Th) in (5.2), we get zrth ·n = 0 on S.
ad Maximality. Using the discrete convex optimality relations (5.8),(5.9), the discrete integra-

tion-by-parts formula (2.11), and the discrete admissibility conditions (5.4)–(5.6), we observe that

Icrh (ucrh ) = 1
2∥∇hu

cr
h ∥2Ω − (fh,Πhu

cr
h )Ω − (gh, πhu

cr
h )ΓN

= 1
2∥∇hu

cr
h ∥2Ω + (div zrth ,Πhu

cr
h )Ω − (zrth · n, πhucrh )ΓN

= 1
2∥∇hu

cr
h ∥2Ω − (Πhz

rt
h ,∇hu

cr
h )Ω + (zrth · n, πhucrh )ΓD∪ΓC

= − 1
2∥Πhz

rt
h ∥2Ω + (zrth · n, πhucrh )ΓD∪ΓC

= Drt
h (zrth ) ,

which, by the discrete strong duality relation (5.7), shows that zrth ∈RT 0(Th) is maximal for (5.3).
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6. A priori error analysis

In this section, resorting to the discrete convex duality relations established in Section 5, we
derive an a priori error identity for the discrete primal problem (5.1) and the discrete dual prob-
lem (5.3) at the same time. From this a priori error identity, in turn, we derive an a priori error
estimate with an explicit error decay rate that is quasi-optimal. To this end, we proceed analo-
gously to the continuous setting (cf. Section 4) and start with examining the discrete primal-dual
gap estimator η2gap,h : K

cr
h ×Krt,∗

h → [0,+∞), for every vh ∈ Kcr
h and yh ∈ Krt,∗

h defined by

η2gap,h(vh, yh) := Icrh (vh)−Drt
h (yh) . (6.1)

The discrete primal-dual gap estimator (cf. (6.1)) can be decomposed into two contributions that
precisely measure the violation of the discrete convex optimality relations (5.8),(5.9), respectively.

Lemma 6.1 (discrete primal-dual gap estimator). For every vh ∈Kcr
h and yh ∈Krt,∗

h , we have that

η2gap,h(vh, yh) := η2A,gap,h(vh, yh) + η2B,gap,h(vh, yh) ,

η2A,gap,h(vh, yh) :=
1
2∥∇hvh −Πhyh∥2Ω ,

η2B,gap,h(vh, yh) := (yh · n, πhvh − χh)ΓC
.

Remark 6.2 (interpretation of the components of the discrete primal-dual gap estimator).

(i) The estimator η2A,gap,h measures the violation of the discrete convex optimality relation (5.8);

(ii) The estimator η2B,gap,h measures the violation of the discrete convex optimality relation (5.9).

Proof (of Lemma 6.1). Using the discrete admissibility conditions (5.4)–(5.6), the discrete integra-
tion-by-parts formula (2.11), and the binomial formula, for every vh ∈ Kcr

h and yh ∈ Krt,∗
h , due

to πhvh = χh a.e. on ΓD, we find that

Icrh (vh)−Drt
h (yh) =

1
2∥∇hvh∥2Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN

+ 1
2∥Πhyh∥2Ω − (yh · n, χh)ΓD∪ΓC

= 1
2∥∇hvh∥2Ω + (div yh,Πhvh)Ω + 1

2∥Πhyh∥2Ω
− (yh · n, πhvh)ΓN

− (yh · n, χh)ΓD∪ΓC

= 1
2∥∇hvh∥2Ω − (Πhyh,∇hvh)Ω + 1

2∥Πhyh∥2Ω + (yh · n, πhvh − χh)ΓD∪ΓC

= 1
2∥∇hvh − yh∥2Ω + (yh · n, πhvh − χh)ΓC

.

Next, we identify the optimal strong convexity measures for the discrete primal energy functional
(5.1) at the discrete primal solution ucrh ∈Kcr

h , i.e., ρ2Icr
h
:Kcr

h →[0,+∞), for every vh∈Kcr
h defined by

ρ2Icr
h
(vh) := Icrh (vh)− Icrh (ucrh ) , (6.2)

and for the negative of the discrete dual energy functional (5.3), i.e., ρ2−Drt
h
:Krt,∗

h → [0,+∞),
for every yh ∈Krt,∗

h defined by

ρ2−Drt
h
(yh) := −Drt

h (yh) +Drt
h (zrth ) , (6.3)

whichwill serve as ‘natural’ error quantities in the discrete primal-dual gap identity (cf. Theorem6.5).

Lemma 6.3 (discrete optimal strong convexity measures). The following statements apply:

(i) For every vh ∈ Kcr
h , we have that

ρ2Icr
h
(vh) =

1
2∥∇hvh −∇hu

cr
h ∥2Ω + (zrth · n, πhvh − χh)ΓC

.

(ii) For every yh ∈ Krt,∗
h , we have that

ρ2−Drt
h
(yh) =

1
2∥Πhyh −Πhz

rt
h ∥2Ω + (yh · n, πhucrh − χh)ΓC

.

Remark 6.4. Note that for every vh ∈ Kcr
h , it holds that πhvh − χh ≥ 0 a.e. on ΓC , and for

every yh ∈ Krt,∗
h , we have that yh · n ≥ 0 a.e. on ΓC , so that for every vh ∈ Kcr

h and yh ∈ Krt,∗
h ,

we have that

yh · n (πhvh − χh) ≥ 0 a.e. on ΓC .
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Proof (of Lemma 6.3). ad (i). Using the binomial formula, the discrete admissibility conditions
(5.4),(5.5), the discrete convex optimality relation (5.8), the discrete integration-by-parts formula
(2.11), and the discrete convex optimality relation (5.9), for every vh ∈ Kcr

h , due to πhvh = uhD =
πhu

cr
D a.e. on ΓD, we find that

Icrh (vh)− Icrh (ucrh ) = 1
2∥∇hvh∥2Ω − 1

2∥∇hu
cr
h ∥2Ω − (fh,Πhvh −Πhu

cr
h )Ω − (gh, πhvh − πhu

cr
h )ΓN

= 1
2∥∇hvh −∇hu

cr
h ∥2Ω + (Πhz

rt
h ,∇hvh −∇hu

cr
h )Ω

− (div zrth ,Πhvh −Πhu
cr
h )Ω − (zrth · n, πhvh − πhu

cr
h )ΓN

= 1
2∥∇hvh −∇hu

cr
h ∥2Ω + (zrth · n, πhvh − πhu

cr
h )ΓC

= 1
2∥∇hvh −∇hu

cr
h ∥2Ω + (zrth · n, πhvh − χh)ΓC

.

ad (ii). Using the binomial formula, the admissibility conditions (5.4)–(5.6), the convex
optimality relation (5.8), the discrete integration-by-parts formula (2.11), again, the admissibility
condition (5.4), and the convex optimality relation (5.9), for every yh ∈ Krt,∗

h , due to yh · n =
gh = zrth · n a.e. on ΓN and πhuh = uhD = χh a.e. on ΓD, we find that

−Drt
h (yh) +Drt

h (zrth ) = 1
2∥Πhyh∥2Ω − 1

2∥Πhz
rt
h ∥2Ω + (zrth · n− yh · n, χh)∂Ω

= 1
2∥Πhyh − zrth ∥2Ω + (∇hu

cr
h ,Πhyh −Πhz

rt
h )Ω + (zrth · n− yh · n, χh)∂Ω

= 1
2∥Πhyh −Πhz

rt
h ∥2Ω

+ (div zrth − div yh,Πhu
cr
h )Ω + (zrth · n− yh · n, χh − πhu

cr
h )∂Ω

= 1
2∥Πhyh −Πhz

rt
h ∥2Ω + (yh · n, πhucrh − χh)ΓC

.

Eventually, we have everything at our disposal to establish a discrete a posteriori error identity
that identifies the discrete primal-dual total error ρ2tot,h : K

cr
h × Krt,∗

h → [0,+∞), for every

vh ∈ Kcr
h and yh ∈ Krt,∗

h defined by

ρ2tot,h(vh, yh) := ρ2Icr
h
(vh) + ρ2−Drt

h
(yh) , (6.4)

with the discrete primal-dual gap estimator η2gap,h : K
cr
h ×Krt,∗

h → [0,+∞) (cf. (6.1)).

Theorem 6.5 (discrete primal-dual gap identity). For every vh∈Kcr
h and yh∈Krt,∗

h , we have that

ρ2tot,h(vh, yh) = η2gap,h(vh, yh) .

Proof. Using the definitions (6.1), (6.2), (6.3), (6.4), and the discrete strong duality relation (5.7),
for every vh ∈ Kcr

h and yh ∈ Krt,∗
h , we find that

ρ2tot,h(vh, yh) = ρ2Icr
h
(vh) + ρ2−Drt

h
(yh)

= Icrh (vh)− Icrh (ucrh ) +Drt
h (zrth )−Drt

h (yh)

= Icrh (vh)−Drt
h (yh)

= η2gap,h(vh, yh) .

Inserting the (Fortin) quasi-interpolations (2.3) and (2.7) of the primal and the dual solution, re-
spectively, in the primal-dual gap identity (cf. Theorem 6.5), we arrive at an a priori error identity,
in which the right-hand side represents the residual in the discrete formulation.

Theorem 6.6 (a priori error identity and error decay rates). If fh := Πhf ∈ L0(Th), gh :=
πhg ∈ L0(SΓN

h ), where g ∈ L2(ΓN ), uhD := πhuD ∈ L0(SΓD

h ), and χh := πhΠ
cr
h χ ∈ L0(SΓC

h ),
then the following statements apply:

(i) If z ∈ (Lp(Ω))d, where p > 2, then Πcr
h u ∈ Kcr

h , Πrt
h z ∈ Krt,∗

h , and

ρ2tot,h(Π
cr
h u,Π

rt
h z) =

1
2∥Πhz −ΠhΠ

rt
h z∥2Ω + (z · n, πhΠcr

h (u− χ)− (u− χ))ΓC
.

(ii) If u, χ ∈ H1+s(Ω), where s ∈ ( 12 , 1], and if ∆χ ∈ L2(Ω) or d = 2, then

ρ2tot,h(Π
cr
h u,Π

rt
h z) ≤ c h2s (∥u∥21+s,Ω + ∥χ∥21+s,Ω) .
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Remark 6.7. The a priori error estimate in Theorem 6.6(ii) holds as soon as u ∈ H1(∂Ω):

(i) According to [6, Cor. 3.7], the trace operator

Tr := (tr, tr ◦ ∇)⊤ : H∆(Ω) :=
{
v ∈ H

3
2 (Ω) | ∆v ∈ L2(Ω)

}
→ H1(∂Ω)× (L2(∂Ω))d ,

is well-defined, linear, and continuous. Thus, if u ∈ H
3
2 (Ω), due to ∆u = div z = −f ∈ L2(Ω),

we have that u ∈ H∆(Ω) and, thus, the traces u|∂Ω ∈ H1(∂Ω) and (∇u)|∂Ω ∈ (L2(Ω))d.
(ii) If Ω⊆R2 is polygonal bounded Lipschitz domain and s ∈ ( 12 , 1], then (cf. [28, Thm. 1.5.2.1])

Tr:=(tr, tr◦∇)⊤:H1+s(Ω)→Hs+ 1
2 (∂Ω)×(Hs− 1

2 (∂Ω))d is well-defined, linear and continuous.

Proof (of Theorem 6.6). ad (i). First, using (2.5), we observe that

πhΠ
cr
h u = πhu

®
= πhuD = uhD a.e. on ΓD ,

≥ πhχ = χh a.e. on ΓC ,

i.e., it holds that Πcr
h u ∈ Kcr

h . Second, if z ∈ (Lp(Ω))d, where p > 2, according to [24, Sec. 17.1],
Πrt

h z ∈ RT 0
N (Th) is well-defined and using (2.8) and (2.9), we observe that

divΠrt
h z = Πhdiv z = −fh a.e. in Ω ,

Πrt
h z · n = πh(z · n)

®
= πhg = gh a.e. on ΓN ,

≥ 0 a.e. on ΓC ,

i.e., it holds that Πrt
h z ∈ Krt,∗

h . Then, using Theorem 6.5 together with Lemma 6.1 and Lemma 6.3
as well as the convex optimality relation (3.9), (2.4), and (2.9), we find that

ρ2tot,h(Π
cr
h u,Π

rt
h z) =

1
2∥∇hΠ

cr
h u−ΠhΠ

rt
h z∥2Ω + (Πrt

h z · n, πhΠcr
h u− χh)ΓC

= 1
2∥Πhz −ΠhΠ

rt
h z∥2Ω + (z · n, πhΠcr

h (u− χ)− (u− χ))ΓC

=: I1h + I2h .

(6.5)

ad (ii). We need to estimate I1h and I2h:
ad I1h. Using the L

2-stability property of Πh and the fractional approximation properties of Πrt
h

(cf. (2.10)), we find that

I1h ≤ 1
2∥z −Πrt

h z∥2Ω ≤ c h2s |z|2s,Ω ≤ c h2s ∥u∥21+s,Ω . (6.6)

ad I2h. Abbreviating ũ := u− χ ∈ H1+s(Ω), we find that

(z · n, πhΠcr
h ũ− ũ)ΓC

= (z · n,Πcr
h ũ− ũ)ΓC

+ (z · n, πhΠcr
h ũ−Πcr

h ũ)ΓC

=: I2,1h + I2,2h .
(6.7)

ad I2,1h . Using that Πcr
h ũ− ũ ⊥ L0(Sh) (cf. (2.5)), that πh(z ·n) = (πhz) ·n a.e. in ∪Sh, a local

trace inequality (cf. [24, Rem. 12.19, (12.17)]), and the fractional approximation properties of πh
and Πcr

h (cf. (2.6)), we obtain

I2,1h = (z · n− πh(z · n),Πcr
h ũ− ũ)ΓC

≤ ∥z − πhz∥ΓC
(h−

1
2 ∥ũ−Πcr

h ũ∥Ω + h
1
2 ∥∇ũ−∇hΠ

cr
h ũ∥Ω)

≤ c hs−
1
2 |z|s− 1

2 ,ΓC
hs+

1
2 |ũ|s+ 1

2 ,Ω

≤ c h2s(∥u∥21+s,Ω + ∥χ∥21+s,Ω) .

(6.8)

ad I2,2h . We decompose I2,2h into local contributions, i.e., we define

I2,2h =
∑

S∈SΓC
h

(z · n, πhΠcr
h ũ−Πcr

h ũ)S =:
∑

S∈SΓC
h

I2,2S . (6.9)

Next, we distinguish the cases |S \ ({ũ > 0}∩ΓC)| = 0 (i.e., no contact), |S \ ({ũ = 0}∩ΓC)| = 0
(i.e., contact), and |S \ ({ũ = 0} ∩ ΓC)| > 0 (i.e., both contact and no contact) (equivalent to
|S \ ({ũ > 0} ∩ ΓC)| > 0): In doing so, we use the identity

Πcr
h ũ− πhΠ

cr
h ũ = ∇SΠ

cr
h ũ · (idRd − πhidRd) in S , (6.10)

where, for each v ∈ H1(S), we denote by ∇Sv ∈ (L2(S))d the tangential gradient, which, for every
v∈H∆(TS)∩H1+s(TS), where TS ∈Th is such that S⊆∂TS , satisfies (cf. [24, Rem. 12.19, (12.17)])

∥∇Sv∥S ≤ ∥(∇v)|S∥S ≤ c (h
− 1

2

S ∥∇v∥TS
+ hs−

1
2

S |∇v|s,TS
) . (6.11)
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In particular, from (6.11) together with the fractional approximation properties of Πcr
h (cf. (2.6))

and |∇Πcr
h ũ|s,TS

= 0 since ∇Πcr
h ũ|TS

= const, it follows that

∥∇S ũ−∇SΠ
cr
h ũ∥S ≤ (h

− 1
2

S ∥∇ũ−∇Πcr
h ũ∥TS

+ hs−
1
2

S |∇ũ|s,TS
)

≤ hs−
1
2

S |ũ|s+ 1
2 ,TS

.
(6.12)

ad |S\({ũ > 0}∩ΓC)| = 0 (i.e., no contact). In this case, due to the convex optimality relation
(3.9), we have that z · n = 0 a.e. on S and, thus,

I2,2S = 0 . (6.13)

ad |S \ ({ũ = 0} ∩ ΓC)| = 0 (i.e., contact). In this case, we have that ũ = 0 a.e. on S,
which implies that ∇S ũ = 0 a.e. on S. Therefore, using that πhΠ

cr
h ũ−Πcr

h ũ ⊥ L0(Sh), (6.10),
the fractional approximation properties of πh (cf. [24, Rem. 18.17]), and (6.12), we obtain

I2,2S = (z · n− πh(z · n), πhΠcr
h ũ−Πcr

h ũ)S

= (z · n− πh(z · n), (∇S ũ−∇SΠ
cr
h ũ) · (idRd − πhidRd))S

≤ hS ∥z − πhz∥S∥∇S ũ−∇SΠ
cr
h ũ∥S

≤ c hS h
s− 1

2
S |z|s− 1

2 ,S
hs−

1
2

S |ũ|s+ 1
2 ,TS

≤ c h2sS (∥u∥21+s,TS
+ ∥χ∥21+s,TS

) .

(6.14)

ad |S \ ({ũ= 0} ∩ ΓC)|> 0 (i.e., both contact and no contact). On the one hand, we have
that ũ = 0 a.e. on S ∩ {ũ = 0}, which implies that ∇S ũ = 0 a.e. on S ∩ {ũ = 0}. Using that
πhΠ

cr
h ũ− Πcr

h ũ ⊥ L0(Sh), (6.10), [20, Lem. 8.2.3], the fractional approximation properties of πh,
that πh∇SΠ

cr
h ũ = ∇SΠ

cr
h ũ, the L

2-stability of πh, and (6.12), we obtain

I2,2S = (z · n− πh(z · n), (⟨∇S ũ⟩S∩{ũ=0} −∇SΠ
cr
h ũ) · (idRd − πhidRd))S

≤ ∥z − πhz∥S hS (∥∇S ũ−∇SΠ
cr
h ũ∥S + ∥⟨∇S ũ⟩S∩{ũ=0} −∇S ũ∥S)

≤ c ∥z − πhz∥S hS
(
∥∇S ũ−∇SΠ

cr
h ũ∥S + |S|

|S∩{ũ=0}|∥πh(∇S ũ)−∇S ũ∥S
)

≤ c ∥z − πhz∥S hS
(
∥∇S ũ−∇SΠ

cr
h ũ∥S

+ |S|
|S∩{ũ=0}| (∥πh(∇S ũ−∇SΠ

cr
h ũ)∥S + ∥∇S ũ−∇SΠ

cr
h ũ∥S)

)
≤ c |S|

|S∩{ũ=0}| h
2s
S (∥u∥21+s,TS

+ ∥χ∥21+s,TS
) .

(6.15)

On the other hand, we have that z ·n = 0 a.e. in S∩{ũ > 0}. Using that πhΠ
cr
h ũ−Πcr

h ũ ⊥ L0(Sh),
that ⟨z ·n⟩S∩{ũ>0} = ⟨z⟩S∩{ũ>0} ·n a.e. in S, (6.10), [20, Lem. 8.2.3], the fractional approximation
properties of πh, and (6.12), we obtain

I2,2S = (z · n, (∇S ũ−∇SΠ
cr
h ũ) · (idRd − πhidRd))S

= (z · n− ⟨z · n⟩S∩{ũ>0}, (∇S ũ−∇SΠ
cr
h ũ) · (idRd − πhidRd))S

≤ ∥z − ⟨z⟩S∩{ũ>0}∥S hS ∥∇S ũ−∇SΠ
cr
h ũ∥S

≤ c |S|
|S∩{ũ>0}| ∥z − πhz∥S hS ∥∇S ũ−∇SΠ

cr
h ũ∥S

≤ c |S|
|S∩{ũ>0}| h

2s
S (∥u∥21+s,TS

+ ∥χ∥21+s,TS
) .

(6.16)

Since S = (S∩{ũ > 0})∪̇(S∩{ũ = 0}), we have that |S∩{ũ > 0}| ≥ 1
2 |S| or |S ∩ {ũ = 0}| ≥ 1

2 |S|.
Using in the first case (6.15) and in the second case (6.16), we arrive at

I2,2S ≤ c h2sS (∥u∥21+s,TS
+ ∥χ∥21+s,TS

) . (6.17)

Combining (6.13), (6.14), and (6.17) in (6.9), we deduce that

I2,2h ≤ c h2s (∥u∥21+s,Ω + ∥χ∥21+s,Ω) . (6.18)

Using (6.8) and (6.18) in (6.7), we infer that

I2h ≤ c h2s (∥u∥21+s,Ω + ∥χ∥21+s,Ω) . (6.19)

Eventually, using (6.19) and (6.6) in (6.5), we conclude the claimed a priori error estimate.
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7. Numerical experiments

In this section, we review the theoretical findings of Section 4 and Section 6 via numerical ex-
periments. All experiments were carried out using the finite element software package FEniCS (ver-
sion 2019.1.0, cf. [36]). All graphics are created using the Matplotlib library (version 3.5.1, cf. [33]).

7.1 Implementation details

We compute the discrete primal solution ucrh ∈ S1,cr
D (Th) and the associated discrete Lagrange

multiplier λcrh ∈ L0(SΓC

h ) jointly satisfying the discrete augmented problem (5.16) via the primal-
dual active set strategy interpreted as a semi-smooth Newton method. For sake of completeness, in
the case uD =0, we will briefly outline important implementation details related with this strategy.

We fix an ordering of the sides (Si)i=1,...,Ncr
h

and an ordering of the elements (Ti)i=1,...,N0
h
,

where N cr
h := card(Sh \ SΓD

h ), N cr,C
h = card(SΓC

h ) and N0
h := card(Th) such that2

span({φSi
| i = 1, . . . , N cr

h }) = S1,cr
D (Th) ,

span({χSi | i = 1, . . . , N cr,C
h }) = L0(SΓC

h ) ,

span({χTi
| i = 1, . . . , N cr,0

h }) = Πh(S1,cr
D (Th)) ,

whereN cr,0
h = dim(Πh(S1,cr

D (Th))) ∈ {N0
h , N

0
h−1} because of codimL0(Th)(Πh(S1,cr

D (Th))) ∈ {0, 1}
(cf. [5, Cor. 3.2]). Then, if we define the matrices

Scrh := ((∇hφSi
,∇hφSj

)Ω)i,j=1,...,Ncr
h

∈ RNcr
h ×Ncr

h ,

Pcr,0
h := ((ΠhφSi

, χTj
)Ω)i=1,...,Ncr

h ,j=1,...,Ncr,0
h

∈ RNcr
h ×Ncr,0

h ,

pcr,Ch := ((ΠhφSi
, χSj

)ΓC
)i=1,...,Ncr

h ,j=1,...,Ncr,C
h

∈ RNcr
h ×Ncr,C

h ,

and, assuming for the entire section that χh := πhΠ
cr
h χ ∈ L0(Sh), the vectors

Xcr
h := ((χh, χSi

)ΓC
)i=1,...,Ncr

h
∈ RNcr

h ,

F0
h := ((fh, χTi)Ω)i=1,...,Ncr,0

h
∈ RNcr,0

h ,

Gcr
h := ((gh, χSi

)ΓN
)i=1,...,Ncr

h
∈ RNcr

h ,

the same argumentation as in [3, Lem. 5.3] shows that the discrete augmented problem (5.16) is
equivalent to finding vectors (Ucr

h ,Λ
cr
h )⊤ ∈ RNcr

h × RNcr,C
h such that

Scrh Ucr
h + pcr,Ch Λcr

h = Pcr,0
h F0

h +Gcr
h in RNcr

h ,

Ch(U
cr
h ,Λ

cr
h ) = 0RNcr,C

h in RNcr,C
h ,

(7.1)

where for given α > 0, the mapping Ch : RNcr
h ×RNcr,C

h →RNcr,C
h for every (Uh,Λh)

⊤∈RNcr
h ×RNcr,C

h

is defined by3

Ch(Uh,Λh) := Λh −min
{
0RNcr,C

h ,Λh + α (pcr,0h )⊤(Uh −Xcr
h )
}

in RNcr,C
h .

More precisely, the discrete primal solution ucrh ∈ S1,cr
D (Th) and the associated discrete Lagrange

multiplier λcrh ∈ L0(SΓC

h ) jointly satisfying the discrete augmented problem (5.16) as well as the
vectors (Ucr

h ,Λ
cr
h )⊤ ∈ RNcr

h × RNcr,C
h satisfying (7.1), respectively, are related by4

ucrh =

Ncr
h∑

i=1

(Ucr
h · ei)φSi

∈ S1,cr
D (Th) , λcrh =

Ncr,C
h∑
i=1

(Λcr
h · ei)χSi

∈ L0(SΓC

h ) .

2In practice, the element T̂ ∈ Th for which Rχ“T ⊥ Πh(S1,cr
D (Th)) is found via searching and erasing a zero col-

umn (if existent) in the matrix ((ΠhφSi
, χT )Ω)i=1,...,Ncr

h
,T∈Th

∈ RNcr
h ×N0

h leading to Pcr,0
h ∈ RNcr

h ×Ncr,0
h .

3Here, for a = (ai)i=1,...,n, b = (bi)i=1,...,n ∈ Rn, n ∈ N, we define min{a, b} = (min{ai, bi})i=1,...,n ∈ Rn.
4Here, for each i = 1, . . . , N , N ∈ N, we denote by ei = (δij)j=1,...,N ∈ RN , the i-th unit vector.
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Next, define the mapping Fh :RNcr
h ×RNcr,C

h →RNcr
h ×RNcr,C

h for every (Uh,Λh)
⊤∈RNcr

h ×RNcr,C
h by

Fh(Uh,Λh) :=

ï
Scrh Uh + pcr,Ch Λh − Pcr,0

h F0
h −Gcr

h

Ch(Uh,Λh)

ò
in RNcr

h × RNcr,C
h .

Then, the non-linear system (7.1) is equivalent to finding (Ucr
h ,Λ

cr
h )⊤ ∈ RNcr

h ×RNcr,C
h such that

Fh(U
cr
h ,Λ

cr
h ) = 0RNcr

h ×RNcr,C
h in RNcr

h × RNcr,C
h .

By analogy with [3, Thm. 5.11], one finds that the mapping Fh : RNcr
h ×RNcr,C

h → RNcr
h ×RNcr,C

h

is Newton-differentiable at every (Uh,Λh)
⊤ ∈ RNcr

h × RNcr,C
h and with the (active) set

Ah := Ah(Uh,Λh) :=
{
i ∈ {1, . . . , N cr,C

h } | (Λh + α(pcr,Ch )⊤(Uh −Xcr
h )) · ei < 0

}
,

for every (Uh,Λh)
⊤ ∈ RNcr

h × RNcr,C
h , we have that

DFh(Uh,Λh) :=

ï
Scrh pcr,Ch

IAh
(pcr,Ch )⊤ IA c

h

ò
in RNcr

h +Ncr,C
h × RNcr

h +Ncr,C
h ,

where IAh
, IA c

h
:= INcr,C

h ×Ncr,C
h

− IAh
∈ RNcr,C

h × RNcr,C
h for every i, j ∈ {1, . . . , N cr,0

h } are de-
fined by (IAh

)ij := 1 if i = j ∈ Ah and (IAh
)ij := 0 else.

For a given iterate (Uk−1
h ,Λk−1

h )⊤∈RNcr
h ×RNcr,C

h , one step of the semi-smooth Newton method

determines a direction (δUk−1
h , δΛk−1

h )⊤ ∈ RNcr
h × RNcr,C

h such that

DFh(U
k−1
h ,Λk−1

h )(δUk−1
h , δΛk−1

h )⊤ = −Fh(U
k−1
h ,Λk−1

h ) in RNcr
h × RNcr,C

h . (7.2)

Setting the update (Uk
h,Λ

k
h)

⊤ := (Uk−1
h +δUk−1

h ,Λk−1
h +δΛk−1

h )⊤ ∈ RNcr
h ×RNcr,C

h and the active

set A k−1
h := Ah(U

k−1
h ,Λk−1

h ), the linear system (7.2) can equivalently be re-written as

Scrh Uk
h + pcr,Ch Λk

h = Pcr,0
h F0

h in RNcr
h ,

I(A k−1
h )cΛ

k
h = 0RNcr,0

h in RNcr,C
h ,

IA k−1
h

(pcr,Ch )⊤Uk
h = IA k−1

h
(pcr,Ch )⊤Xcr

h in RNcr,C
h .

(7.3)

The semi-smooth Newton method (7.2) can, thus, equivalently be formulated in the following
form, which is a version of a primal-dual active set strategy.

Algorithm 7.1 (primal-dual active set strategy). Choose parameters α > 0 and εSTOP > 0.
Moreover, let (U0

h,Λ
0
h)

⊤ ∈ RNcr
h ×RNcr,C

h be an initial guess and set k = 1. Then, for every k ∈ N:
(i) Define the most recent active set

A k−1
h := Ah(U

k−1
h ,Λk−1

h ) :=
{
i ∈ {1, . . . , N cr,C

h } | (Λk−1
h +α(pcr,Ch )⊤(Uk−1

h −Xcr
h ))·ei < 0

}
.

(ii) Compute the iterate (Uk
h,Λ

k
h)

⊤ ∈ RNcr
h × RNcr,C

h such thatï
Scrh pcr,Ch

IA k−1
h

(pcr,Ch )⊤ I(A k−1
h )c

òï
Uk

h

Λk
h

ò
=

ï
Pcr,0
h F0

h

IA k−1
h

(pcr,Ch )⊤Xcr
h

ò
.

(iii) Stop if |Uk
h −Uk−1

h | ≤ εSTOP; otherwise, increase k → k + 1 and continue with step (i).

Remark 7.2 (Important implementation details). (i) Algorithm 7.1 converges super-linearly
if (U0

h,Λ
0
h)

⊤ ∈ RNcr
h ×RNcr,C

h is sufficiently close to the solution (Ucr
h ,Λ

cr
h )⊤ ∈ RNcr

h × RNcr,C
h .

As the Newton-differentiability only holds in finite-dimensional situations and deteriorates as
N cr

h +N cr,C
h →∞, the condition on the initial guess becomes more critical for N cr

h +N cr,C
h →∞.

(ii) The degrees of freedom related to the entries Λk
h|(A k−1

h )c can be eliminated from the linear
system of equations in Algorithm 7.1, step (ii) (see also (7.3)2).

(iii) Since only a finite number of active sets are possible, the algorithm terminates within a finite
number of iterations at the exact solution (Ucr

h ,Λ
cr
h )⊤ ∈ RNcr

h × RNcr,C
h . For this reason, in

practice, the stopping criterion in step (iii) is reached with |Uk∗

h −Uk∗−1
h | = 0 for some k∗ ∈ N,

in which case, one has that Uk∗

h = Ucr
h , provided εSTOP > 0 is sufficiently small.
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7.2 Numerical experiments concerning the a priori error analysis

In this subsection, we review the theoretical findings of Section 6.
For our numerical experiments, we choose a setup from [43, Sec. 7], [18, §6], or [2, Sec. 5.1].

More precisely, let Ω := (0, 1)2, ΓC := (0, 1) × {0}, ΓD := ∂Ω \ ΓC (cf. Figure 1(left)), i.e.,
ΓN := ∅, and χ := 0 ∈ H2(Ω). Then, we compute f ∈ L2(Ω) such that the primal solution u ∈ K,
in polar coordinates centered at (0.5, 0)⊤ ∈ ΓC , i.e., for every x = (x1, x2)

⊤ ∈ Ω, setting

r(x) :=
(
(x1 − 1

2 )
2 + x22

) 1
2 , θ(x) := arccos

(x1− 1
2

r(x)

)
,

for every x ∈ Ω, is defined by

u(x) := −10ψ(r(x)) r(x)
3
2 sin

(
3
2θ(x)

)
.

Here, ψ : [0,∞) → R (cf. Figure 1(right)) is the zero extension of a ninth-order spline with
respect to the single element partition of [0, 0.45] which satisfies ψ(r) > 0 for all r ∈ (0.05, 0.045),
ψ(r) = 0 for all r ∈ [0.45,∞), and

1− ψ(0) = ψ(0.45) = ψi(0) = ψi(0.45) = 0 for all i = 1, . . . , 4 .
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Figure 1: left : Ω, ΓC , ΓD, {u > 0}∩ΓC = {z ·n = 0}∩ΓC , and {u = 0}∩ΓC = {z ·n > 0}∩ΓC ;
right : ψ,ψ′, ψ′′, ψ′′′, ψ′′′′ : [0, 1] → R.

In this example, we have that u ∈ H2(Ω), so that Theorem 6.6(ii) suggests an experimental
convergence rate of about O(h2k) = O(Nk), where Nk := dim(S1,cr

D (Thk
))+dim(L0(SΓC

hk
)), k ∈ N,

for the discrete primal-dual total errors (cf. (6.4)), which are equal to the discrete primal-dual gap
estimators (cf. (6.1)), i.e., we expect (cf. Theorem 6.6(i))

ρ2tot,hk
(Πcr

hk
u,Πrt

hk
z) = ρ2gap,hk

(Πcr
hk
u,Πrt

hk
z) = O(h2k) = O(Nk) .

An initial triangulation Th0
, h0 =

√
2, is constructed by subdividing the unit square Ω along its

diagonal from (0, 0)⊤ to (1, 1)⊤ into two triangles. Refined triangulations Thk
, k = 1, . . . , 7, where

hk+1 = hk

2 for all k = 1, . . . , 7, are obtained by applying the red-refinement routine (cf. [44]).
For the resulting series of triangulations Thk

, k = 1, . . . , 7, we apply the primal-dual active set
strategy (cf. Algorithm 7.1) to compute the discrete primal solution ucrhk

∈ Kcr
hk
, k = 1, . . . , 7, the

discrete Lagrange multiplier λcrhk
∈ L0(SΓC

hk
), k=1, . . . , 7, and, subsequently, resorting to (5.17),

the discrete dual solution zrthk
∈ Krt,∗

hk
, k = 1, . . . , 7. Then, we compute the error quantities

etotk := ρ2tot,hk
(Πcr

hk
u,Πrt

hk
z) ,

egapk := ρ2gap,hk
(Πcr

hk
u,Πrt

hk
z) ,

e∆k := |ρ2tot,hk
(Πcr

hk
u,Πrt

hk
z)− ρ2gap,hk

(Πcr
hk
u,Πrt

hk
z)| ,

 k = 1, . . . , 7 . (7.4)

For determining the convergence rates, the experimental order of convergence (EOC), i.e.,

EOCk(ek) :=
log(ek)− log(ek−1)

log(hk)− log(hk−1)
, k = 1, . . . , 7 ,

where, for every k = 1, . . . , 7, we denote by ek, either e
gap
k , etotk , or e∆k , respectively, is recorded.



Error identities for the scalar Signorini problem 21

In Figure 3, we report the expected optimal convergence rate of EOCk(e
tot
k ) ≈ EOCk(e

gap
k ) ≈ 2,

k = 1, . . . , 7, i.e., an error decay of order O(h2k) = O(Nk), k = 1, . . . , 7. In addition, we observe
that the a priori error identity in Theorem 6.6(i) is asymptotically satisfied. More precisely, for the
error between the discrete primal-dual total error (cf. (6.4)) and the discrete primal-dual gap esti-
mator (cf. (6.1)), we report a convergence rate of about EOCk(e

∆
k ) ≈ 3.7, k = 1, . . . , 7, i.e., an error

decay of order O(h3.7k ) = O(N1.85
k ), k = 1, . . . , 7, which is the quadrature error involved in the

computation of the quasi-interpolants Πcr
hk
u ∈ Kcr

hk
, k = 1, . . . , 7, and Πrt

hk
z ∈ Krt,∗

hk
, k = 1, . . . , 7.
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Figure 2: left : discrete primal solution ucrh5
∈ Kcr

h5
, where red stars mark sides S ∈ Th5

with

πh5
ucrh5

|S > 0; right : (local) L2-projection (onto (L0(Th5
))d) of discrete dual solution zrth5

∈Krt,∗
h5

,
where red squares mark sides S ∈ Th5 with zrth5

·n|S > 0. We find that zrth5
·nπh5

ucrh5
= 0 a.e. on ΓC .
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Figure 3: Logarithmic plots of the experimental convergence rates of the error quantities (7.4).
We observe the experimental orders of convergence EOCk(e

tot
k ) ≈ EOCk(e

gap
k ) ≈ 2, k = 1, . . . , 7,

and EOCk(e
∆
k ) ≈ 3.7, k = 1, . . . , 7.
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7.3 Numerical experiments concerning a posteriori error analysis

In this subsection, we review the theoretical findings of Section 4.
More precisely, we employ the local refinement indicators η2gap,T : K×K∗

trn∈L2(ΓC) → [0,+∞),
T ∈ Th, where

K∗
trn∈L2(ΓC) :=

{
y ∈ K∗ | y · n ∈ L2(ΓC)

}
,

induced by the primal-dual gap estimator (cf. (4.1)), for every v ∈ K, y ∈ K∗
trn∈L2(ΓC), and T ∈ Th,

defined by

η2gap,T (v, y) :=
1
2∥∇v − y∥2T + (y · n, v − χ)∂T∩ΓC

, (7.5)

in an adaptive mesh-refinement scheme. The definition of the local refinement indicators (cf. (7.5))
is motivated by the representation of the primal-dual gap estimator (cf. (4.1)) in Lemma 4.1.

The numerical experiments are based on the following adaptive algorithm:

Algorithm 7.3 (AFEM). Let εSTOP > 0, θ ∈ (0, 1), and T0 an initial triangulation of Ω. Then,
for every k ∈ N ∪ {0}:
(’Solve’) Compute the discrete primal solution ucrhk

∈Kcr
hk

and the discrete dual solution zrthk
∈Krt,∗

hk
.

Post-process ucrhk
∈Kcr

hk
and zrthk

∈Krt,∗
hk

to obtain a conforming approximations ucrhk
∈K

and zrthk
∈ K∗ of the primal solution u ∈ K and the dual solution z ∈ K∗, respectively;

(’Estimate’) Compute the resulting local refinement primal-dual indicators {η2gap,T (ucrhk
, zrthk

)}T∈Thk
.

If η2gap(u
cr
hk
, zrthk

) ≤ εSTOP, then STOP; otherwise, continue with step (’Mark’);
(’Mark’) Choose a minimal (in terms of cardinality) subset Mhk

⊆ Thk
such that∑

T∈Mhk

η2gap,T (u
cr
hk
, zrthk

) ≥ θ2
∑

T∈Thk

η2gap,T (u
cr
hk
, zrthk

) ;

(’Refine’) Perform a conforming refinement of Thk
to obtain Thk+1

such that each element
T ∈ Mhk

is ‘refined’ in Thk+1
. Increase k 7→ k+1 and continue with step (’Solve’).

Remark 7.4 (Implementation details). (i) The discrete primal solution ucrhk
∈ Kcr

hk
and the

discrete Lagrange multiplier λcrhk
∈ L0(SΓC

hk
) in step (’Solve’) are computed using the primal-

dual active set strategy (cf. Algorithm 7.1) for the parameter α = 1;
(ii) The computation of the discrete dual solution in step (’Solve’) is based on the reconstruction

formula (5.17). Note that zrthk
∈ K∗ if and only if f = fhk

∈ L0(Thk
) and g = ghk

∈ L0(SΓN

hk
);

(iii) If χ|ΓD∪ΓC
∈L1(SΓD

hk
∪SΓC

hk
), i.e., uD∈L1(SΓD

hk
), then as an admissible approximation ucrhk

∈K
in step (’Solve’), we employ a contact boundary modified node-averaging quasi-interpolant,
i.e.,

ucrhk
:=

∑
ν∈Nhk

{ucrhk
}ν φν ∈ K ,

where {ucrhk
}ν :=


1

card(Thk
(ν))

∑
T∈Thk

(ν) (u
cr
hk
|T )(ν) if ν ∈ Ω ∪ ΓN ,

max
{
χ(ν), 1

card(Thk
(ν))

∑
T∈Thk

(ν) (u
cr
hk
|T )(ν)

}
if ν ∈ ΓC ,

uD(ν) if ν ∈ ΓD ,

where (φν)ν∈Nhk
⊆ S1(Thk

) denotes the shape basis of S1(Thk
) := L1(Thk

)∩H1(Ω) and, for
every ν ∈ Nhk

, we denote by Thk
(ν) := {T ∈ Thk

| ν ∈ T} the set of elements containing ν;
(iv) By the primal-dual gap identity (cf. Theorem 4.5), the stopping criterion in step (’Estimate’)

guarantees accuracy of ucrhk
∈ K and zrthk

∈ K∗ in terms of the primal-dual total error (cf.

(4.4) with Lemma 6.3), i.e., ρ2tot(u
cr
k , z

rt
k ) = η2gap(u

cr
hk
, zrthk

) ≤ εSTOP in step (’Estimate’).
(i) If not otherwise specified, we employ the parameter θ = 1

2 in step (’Mark’).
(ii) To find the set Mhk

⊆Thk
in step (’Mark’), we resort to the Dörfler marking strategy (cf. [21]).

(iii) The (minimal) conforming refinement of Thk
with respect to Mhk

in step (’Refine’) is
obtained by deploying the red-green-blue-refinement algorithm (cf. [13]).
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7.3.1 Example with unknown primal and dual solution

In this example, let Ω := (−1, 1)2, ΓC := (−1, 1)×{−1}, ΓD := ((−1, 1)×{1})∪({1}×(0, 1))
(cf. Figure 4(left)), i.e., ΓN := ∂Ω\ (ΓD∪ΓC), f =−1∈L2(Ω), g=0∈L2(ΓN ), and χ∈H1

D(Ω)
with χ(x) :=min{ 1

2 (|x1|− 1
2 ), 0} for all x= (x1, x2)

⊤ ∈ΓC . In this case, the primal solution u∈K
is not known and since the Dirichlet part ΓD and the Neumann part ΓN touch in (1, 0)⊤ with
interior angle π (cf. Figure 4(left)), it cannot be expected to satisfy u ∈ H2(Ω), so that uniform
mesh refinement is expected to yield a reduced error decay rate compared to the quasi-optimal
linear error decay rate.

Algorithm 7.3 refines the mesh towards the contact set ΓC and (1, 0)⊤ (cf. Figure 5),
where we expect a singularity. In Figure 4(right), one finds that uniform mesh refinement
(i.e., θ = 1 in Algorithm 7.3) yields the reduced convergence rate hk ∼ N− 2

3
k , k = 0, . . . , 4,

while adaptive mesh refinement (i.e., θ = 1
2 in Algorithm 7.3) yields the optimal conver-

gence rate h2k ∼N−1
k , k=0, . . . , 20.
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Figure 4: left : Ω, ΓC , ΓD, ΓN , and (1, 0)⊤; right : primal-dual gap estimator η2gap(u
cr
hk
, zrthk

) for

k = 0, . . . , 20, when employing adaptive mesh refinement (i.e., θ = 1
2 in Algorithm 7.3), and for

k = 0, . . . , 4, when employing uniform mesh refinement (i.e., θ = 1 in Algorithm 7.3).
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A. Appendix

In this appendix, we prove a lifting lemma that for a given element-wise constant vector
field, a given element-wise constant function, and a given side-wise constant function defined on
Neumann sides, jointly satisfying a compatibility condition, provides a Raviart–Thomas vector
field whose (local) L2-projection coincides with the element-wise constant vector field, whose
divergence coincides with the element-wise constant function, and whose normal traces coincide
with the side-wise constant function on Neumann sides.

Lemma A.1 (lifting). Let yh ∈ (L0(Th))d, fh ∈ L0(Th), and gh ∈ L0(SΓN

h ) be such that for

every vh ∈ S1,cr
D (Th) with πhvh = 0 a.e. on ΓC , there holds the compatibility condition

(yh,∇hvh)Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN
= 0 . (A.1)

Then, the vector field yh ∈ (L1(Th))d defined by

yh := yh − fh
d
(idRd −ΠhidRd) a.e. in Ω , (A.2)

satisfies yh ∈ RT 0(Th) and
Πhyh = yh a.e. in Ω , (A.3)

div yh = −fh a.e. in Ω , (A.4)

yh · n = gh a.e. on ΓN . (A.5)

Proof. From the definition (A.2), it follows directly that (A.3) is satisfied. Since, due to |ΓD| > 0,
div : RT 0(Th) → L0(Th) is surjective, there exists ŷh ∈ RT 0(Th) such that div ŷh = −fh a.e. in Ω.
Then, using the discrete integration-by-parts formula (2.11) and (A.1), for every vh ∈ S1,cr

D (Th)
with πhvh = 0 a.e. on ΓN ∪ ΓC , we find that

(Πhŷh,∇hvh)Ω = −(div ŷh,Πhvh)Ω

= (fh,Πhvh)Ω

= (yh,∇hvh)Ω .

(A.6)

Using (A.3) in (A.6), for every vh ∈ S1,cr
D (Th) with πhvh = 0 a.e. on ΓN ∪ ΓC , we arrive at

(yh − ŷh,∇hvh)Ω = (Πhyh −Πhŷh,∇hvh)Ω = 0 . (A.7)

On the other hand, due to div(yh− ŷh) = 0 in T for all T ∈ Th, we have that yh − ŷh ∈ (L0(Th))d.
By (A.7) and the discrete Helmholtz–Weyl decomposition (cf. [5, Sec. 2.4]), we conclude that

yh − ŷh ∈ ker(div|RT 0(Th)) ,

and, thus, yh ∈ RT 0(Th) with (A.4). In addition, for every vh ∈ S1,cr
D (Th) with πhvh = 0 a.e. on ΓC ,

the discrete integration-by-parts formula (2.11) and (A.1) yield that

(yh · n, πhvh)ΓN
= (Πhyh,∇hvh)Ω + (div yh,Πhvh)Ω

= (yh,∇hvh)Ω − (fh,Πhvh)Ω

= (gh, πhvh)ΓN
.

(A.8)

Thus, choosing vh =φS for all S ∈SΓN

h in (A.8) and exploiting that πhφS =χS , for every S ∈SΓN

h ,
we find that (A.5) is satisfied.
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of the contact between two membranes, M2AN Math. Model. Numer. Anal. 43 no. 1 (2009), 33–52.
doi:10.1051/m2an/2008041.

[10] F. Ben Belgacem, C. Bernardi, A. Blouza, and M. Vohraĺık, On the unilateral contact
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