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Abstract

In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive
an a posteriori error identity for arbitrary conforming approximations of the primal formula-
tion and the dual formulation of the scalar Signorini problem. In addition, on the basis of a
(Fenchel) duality theory on the discrete level, we derive an a priori error identity that applies
to the approximation of the primal formulation using the Crouzeix—Raviart element and to
the approximation of the dual formulation using the Raviart—Thomas element, and leads to
quasi-optimal error decay rates without imposing additional assumptions on the contact set
and in arbitrary space dimensions.
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1. INTRODUCTION

The scalar Signorini problem is a model problem that captures non-trivial effects present in
elastic contact problems. It is a non-linear problem as it contains a non-linear boundary condition:
in a bounded domain Q C R?, d € N, the solution u: ! — R of the scalar Signorini problem (i.e.,
the displacement field) on a part of the (topological) boundary I'c C 99 (i.e., the contact set) is
greater or equal to x: T'c — R (i.e., the obstacle) (cf. [41]). It can be expressed in form of a convex
minimization problem with an optimality condition given via variational inequality (cf. [20]).

1.1 Related contributions

Finite element approximation as well as its a priori and a posteriori error analysis for unilateral
contact problems is an active area of research for many decades. There is a vast literature on this
topic; including conforming, non-conforming, and hybrid finite element methods (¢f. [7, 11, 8, 9]),
mixed (¢f. [40]), and mortar finite element methods (cf. [12]). These methods typically employ
element-wise affine or quadratic polynomial finite elements, due to limited regularity of the
solution of these nonlinear contact problems (cf. Remark 3.3).
Due to scarcity, we refer to a few articles and references therein on this topic:
e In the context of a posteriori error analyses that provide reliable and efficient error bounds,
we refer the reader to the contributions [29, 46, 10, 34].

e In the context of a priori error analyses, in [32], assuming that the solution lies in H**1(Q),
se( %, 1], and that the contact set I has a certain regularity, quasi-optimal @ priori error
estimates are derived; in [30], assuming, again, that the solution lies in H¥71(Q), s € ($,1],
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but no additional regularity of the contact set I'¢, improved quasi-optimal a priori error
estimates are derived; recently, in [22], important and interesting results are established to
obtain quasi-optimal a priori error estimates for conforming finite element methods in two
and three space dimensions without additional assumptions on the contact set I'c when the
solution lies in H**t1(Q), s € (%, %—f— g], where k € {1, 2} is the polynomial degree being used;
in [15, 17], Nitsche’s type methods with symmetric and non-symmetric variants are proposed
and analyzed for the contact problem with H**1(€), s € (3, 1], regular solution and derived
optimal order convergence in H'-norm. A penalty method is formulated and its convergence
at continuous and discrete level are studied in [16] for the two dimensional contact problem
with H511(Q), s € (%, 1], regular solution but without any assumption on the contact set I'¢,
and further therein, the authors have established optimal convergence rates by deriving
necessary relation between penalty parameter and the mesh size.

New contributions

The contributions of the present paper to the existing literature are two-fold:

e On the basis of (Fenchel) duality theory on the continuous level (combining approaches

from [39], [14], and [4]), we derive an a posteriori error identity that applies to arbitrary
conforming approximations of the primal formulation and the dual formulation of the scalar
Signorini problem. More precisely, denoting by v € K and z € K* the primal and dual
solution, respectively, for admissible approximations v € K and y € K*, it holds that

%va*vu“?}+ <Z‘”a’U*X>8Q - <g;’U*X>FN

‘5‘%”?9—2”?2‘*'@'”,“—)089—<97U—X>FN (1'1)
= 3lIVv =yl + (¥ v = x)oa — (9.0 = X)ry »

In addition, the induced local refinement indicators of the primal-dual gap (a posteriori)
error estimator (i.e., the right-hand side of) can be employed in adaptive mesh-refinement.
On the basis of (Fenchel) duality theory on the discrete level, analogously to the a posteriori
error identity on the continuous level (1.1), we derive an a priori error identity that applies
to the approximation of the primal formulation using the Crouzeix—Raviart element (cf. [19])
and the approximation of the dual formulation using the Raviart—-Thomas element (cf. [38]).
More precisely, denoting by u§” € K§" and 2}’ € K ,:t’* the discrete primal and discrete dual

solution, respectively, for admissible approximations vy, € K" and yj, € K ;t’*, it holds that
31IVhon = Viug [ + (21 - 0, mhon — xa)re

+ 3 IMayn = Mnzit & + (yn -, mhuf)” — Xn)re (1.2)

= %thvh - th?z + (yh * N, ThVp — Xh)Fc .

From the a priori error identity (1.2), we derive quasi-optimal error decay rates without impo-
sing additional assumptions on the regularity of the contact set I'¢ for arbitrary dimensions.
This improves the existing literature (c¢f. [45, 31, 35]) on a priori error analyses for
approximations of the scalar Signorini problem using the Crouzeix—Raviart element.

1.3  Outline

This article is organized as follows: In Section 2, we introduce the notation, the relevant func-

tion spaces and finite element spaces. In Section 3, a (Fenchel) duality theory for the continuous
scalar Signorini problem is developed. This (Fenchel) duality theory is used in Section 4 in the
derivation of an a posteriori error identity. In Section 5, a discrete (Fenchel) duality theory for
the discrete scalar Signorini problem is developed. This discrete (Fenchel) duality theory, in turn,
is used in Section 6 in the derivation of an a priori error identity, which, in turn, is used to derive
error decay rates given only fractional regularity assumptions on the solution and the obstacle. In
Section 7, we carry out numerical experiments that support the findings of Section 4 and Section 6.
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2. PRELIMINARIES

Throughout the article, let Q C R%, d € N, be a bounded simplicial Lipschitz domain such that
0f) is divided into three disjoint (relatively) open sets: a Dirichlet part I'p C 02 with [I'p| > 0,
a Neumann part I'y C 0f2, and a contact part I'c C 9 such that 90 =TpUTl'y Ul¢.

2.1 Standard function spaces

For a (Lebesgue) measurable set w C R™, n € N, and (Lebesgue) measurable functions or vec-
tor fields v, w: w — R’ £ € N, we employ the inner product (v, w),, = fw v ® w dx, whenever the
right-hand side is well-defined, where ®: R? x R® — R either denotes scalar multiplication or the
Euclidean inner product. The integral mean over a (Lebesgue) measurable set w C R™, n € N, with
|w| > 0 of an integrable function or vector field v: w — R¥, £ € N, is defined by (v),, == Wl\ [, vdz.

For m € N and an open set w C R™, n € N, we define the spaces

H™(w) = {ve L*(w) |D € L*(w) for all € (Ny)" with |a| < m},
H(div;w) = {y € (I3(@))" | divy € I*(@)},

where D := m and |a| == Y"1 | a; for each multi-index o == (a1, ..., a,) € (Ng)”, and
1. own

the Sobolev norm || - lmw = || - llw + | - [m.w, where || - || == ((-, -)w)% and

1
2
| o = < > IID‘X(')lli) :
ac(Ng)": 0<|a|<m
turns H™(w) into a Hilbert space.
For s € (0,00) \ N and an open set w C R, n € N, the Sobolev-Slobodeckij semi-norm, for
every v € H™(w), is defined by

D*v)(z) — (D*v 2 :
ol ::< > [ ( >|; ) yéw W) dy) |
loe|l=m wJw

where m € Ny and 6 € (0,1) are such that s = m + 6. Then, for s € (0,00) \ N and an open set
w CR™ n €N, the Sobolev-Slobodeckij space is defined by

H*(w) = {v € H™(w) | [v]sw < oo},
where m € Ny and 0 € (0, 1) are such that s=m + 6 and the Sobolev-Slobodeckij norm

[ s =1 - llmw + 1+ |50
turns H®(w) into a Hilbert space.

Denote by tr(-): H'(Q) — Hz (99) the trace operator and by tr((-) - n): H(div; Q) — H~2(5Q)
the normal trace operator, where n: 92 — S?~! denotes the outward unit normal vector field to 9.
Then, for every v € H(Q) and y € H(div; Q), there holds the integration-by-parts formula (cf.
24, Sec. 4.3, (4.12)])

(Vv,9)a + (v, divy)o = (tr(y) - n, tr(v))oq , (2.1)
where, for every 3 € H*%('y), vE H%('y), and v € {I'p,T'n, [, 90}, we abbreviate
(@, tr(0))y = U, tx(0)) 1 (4) - (2.2)

More precisely, in (2.2), for every subset v C 99 and s > 0, the Hilbert space H*(7y) is defined as
1

the range of the restricted trace operator tr(-)|, defined on H**2 (Q) endowed with the image norm,

for every w € H*(v), defined by

l[wlls, = [olls+1.0,

, inf
vEH*T3(Q) : tr(v)|y=w

and H*(y) = (H*®(vy))* is defined as the corresponding topological dual space.

IFor a (Lebesgue) measurable set M C R%, d € N, we denote by |M| its d-dimensional Lebesgue measure. For
a (d — 1)-dimensional submanifold M C R% d € N, we denote by |M| its (d — 1)-dimensional Hausdorff measure.
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Eventually, we employ the notation
Hp(Q) :={ve H(Q)|tr(v)=0ae.onTp},

t -n,t =0 f Nve HL (O
HZ(div; Q) = { y € H(div; Q) ‘ ( r(y) n, tr(v))ao or all v H(Q) '
with tr(v) =0 a.e. on I'c

In what follows, we omit writing both tr(-) and tr((-) - n) in this context.

2.2 Triangulations and standard finite element spaces

Throughout the article, we denote by {7 }r>0 a family of uniformly shape regular triangula-

tions of Q CR?, d €N, (cf. [24]). Here, h > 0 refers to the averaged mesh-size, i.e., h = (#(/I\fh))%’

where N}, contains the vertices of the triangulation 7;,. We define the following sets of sides:

Sy =8 uSP,

S ={TNT"|T,T" € Ty ,dimyp(TNT')=d -1},

SP={TNoQ| T €Ty ,dimy(TNIQ) =d—1},

Sy =1{S eS8 |int(S) C v} for v € {Tp,I'n,Ic},
where the Hausdorff dimension is defined by dim s (M) :=inf{d’ >0 | 2% (M)=0} for all M CR?.
It is also assumed that the trlangulatlons {Th}n>0 and boundary parts I'p, I'c, and T' v are chosen
such that 889 SFDUSFC US N e.g.,in the case d = 2, I'p, I'c, and T'y touch only in vertices.

For k € NO and Te 771, let P*(T) denote the set of polynomials of maximal degree k on T
Then, for k € Ny, the set of element-wise polynomial functions is defined by

L5(Ty) = {vn € L=(Q) | vp|r € PK(T) for all T € Ty, } .

For /€N, the (local) L2-projection ITj, : (L(€2))* — (L°(T))* onto element-wise constant functions
or vector fields, respectively, for every v € (L' (Q2))* is defined by I,v|7 = (v) for all T € Tp,.
For m € Ny and S € Sy, let P™(S) denote the set of polynomials of maximal degree m on S.
Then, for m € Ny and M, € {S5,,8},879,5,7,5,°,5,~}, the set of side-wise polynomial
functions is defined by
L™(Mp) = {vn € L®(UMp,) | vn|s € P™(S) for all S € M} .

For /€N, the (local) L2-projection mj,: (L(USh))*— (£°(Sn))? onto side-wise constant functions
or vector fields, respectively, for every v;, € (L*(USy))¢ is defined by mpvp|s i= (vp)s forall S € Sy,.
For every v, € L™(Ty), m € Ny, and S € Sy, the jump across S is defined by

[on]s = vplr, —oplr.  if S E€S), where T}, T € Tj, satisfy 9T, N9T_ = S,
his UnlT if S e S,?Q, where T € T}, satisfies S C 0T

For every y, € (L™(Tx))?%, m € Ng, and S € S, the normal jump across S is defined by

[ - nls = ynlr, - nr, +yplrnp. if S €S), where Ty, T_ € Tj, satisfy 9T N9T_ = S,
Yrlr -1 if Se S,?Q, where T' € T}, satisfies S C 0T,

where, for every T € Ty, we denote by np: 0T — S9! the outward unit normal vector field to T

2.2.1 Crouzeiz—Raviart element

The Crouzeiz—Raviart finite element space (cf. [19]) is defined as the space of element-wise
affine functions that are continuous in the barycenters of interior sides, i.e.,

S (Th) = {on € L'(Th) | mon] = 0 ave. on US}}.
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The Crouzeix—Raviart finite element space with homogeneous Dirichlet boundary condition on I'p
is defined by

S5 (Th) = {vn € SY(Th) | myon = 0 ae. on USE?}.

A basis of SV (Ty,) is given via o5 € SV (T3,), S € Sy, satisfying ¢s(zs/) = ds, g for all S, S € Sp,.
The (Fortin) quasi-interpolation operator 115" : H*(Q) —SY<"(Ty,) (cf. [25, Secs. 36.2.1, 36.2.2]),
for every v € H'(Q) defined by

U= Z (v)s ps, (2.3)

SeS

preserves averages of gradients and of moments (on sides), i.e., for every v € H(Q), it holds that

Vill'v =1I,Vv  ae. in 2, (2.4)
mpllf v = o a.e.on USy. (2.5)

Here, Vy: LY(Tr) — (L%(Tr))4, defined by (Vyvp)|r = V(vp|r) for all v, € LY(Tx) and T € T,
denotes the element-wise gradient operator.

For every s € [0, 1], there exists a constant ¢ > 0 (¢f. [25, Lem. 36.1]), independent of h > 0,
such that for every v € H'**(Q) and T € Ty, it holds that

[o =057 0ll7 + b Vo = VI 0|7 < ehg™ [v]1gs - (2.6)

2.2.2 Raviart—Thomas element

The (lowest order) Raviart-Thomas finite element space (cf. [38]) is defined as the space of
element-wise affine vector fields that have continuous constant normal components on interior sides,
i.€.,

RT(Th) = {yh € (LY(Th))*

Yn|lT - mr = const on OT for all T € Ty, ,
[yn-n]s =0on S forall S € S .

The Raviart—Thomas finite element space with homogeneous normal boundary condition on I' x
is defined by

RIY(Th) = {yh € RT°(T1) | yn -n =0 a.e. on FN}.

A basis of RT?(T},) is given via vector fields 15 € RTY(Ty,), S € Sh, satisfying ¢s|s - ns = ds,5/
on S’ for all 8’ € Sy, where ng € S~ ! for all S € S, is the fixed unit normal vector on S pointing

from T_ to Ty if Ty NT_ =S5 € Sp,. For every s > %, the (Fortin) quasi-interpolation operator

It (H5(Q))4 — RT(Ty) (cf. [24, Sec. 16.1)), for every y € (H*(2))? defined by
Wiy = > (y-ns)sts, (2.7)

SEShH

preserves averages of divergences and of normal traces, i.e., for every y € (H*(Q))¢ N H(div;Q),
it holds that

divIl}'y = ,divy  a.e. in Q, (2.8)
'y -n=my-n aeon USy. (2.9)

For every s € (2, 1], there exists a constant ¢ >0 (cf. [24, Thms. 16.4, 16.6]), independent of h >0,
2

such that for every y € (H*(Q))¢ N H(div; Q) and T € Ty, it holds that
ly — Iyl < chi [yls,r - (2.10)
For every v, € SH"(Ty,) and yp, € RT(Ty,), we have the discrete integration-by-parts formula
(Vion, Mayn)a + (Mpon, divyr)o = (Thvn, yn - 7)o - (2.11)
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3. SCALAR SIGNORINI PROBLEM

In this section, we discuss the (continuous) scalar Signorini problem.

e Primal problem. Given f € L%(Q), g € H 2(T'y), up € H2(T'p), and x € H!(Q) with y = up
a.e. on I'p, the scalar Signorini problem is given via the minimization of I: H*(Q) — RU {+oc},
for every v € H(2) defined by

I(v) = [IVolg = (f;v)a — (g, v)ry + Ik (v)
1 2 r r (3.1)
— LIVl — (f0)a — (9,00 + 102 (0) + 15 (0 = %),

where
={veH' (Q) |v=upae onTp,v>xae onTc},

and I e = [0 }+IFC(( )=x), [0y, 15 0 HY(Q) = RU{+o0}, for every © € H'(Q) are defined by

r - 0 if v =up a.e.onI'p,
Loy (0) =
{un} +oo else,

if v > .e. T
IEC(E)\)::{O ifv>0a.e onl¢g,
+oo else.

Throughout the article, we refer to the minimization of the functional (3.1) as the primal problem.
Since the functional (3.1) is proper, strictly convex, weakly coercive, and lower semi-continuous,
the direct method in the calculus of variations yields the existence of a unique minimizer v € K,
called primal solution. In what follows, we reserve the notation u € K for the primal solution.
e Primal variational inequality. The primal solution v € K equivalently is the unique solution
of the following variational inequality: for every v € K, it holds that
(vua VU_VU)Q < (fvu_v)ﬂ + <g7u_v>FN . (32)
e Dual problem. A (Fenchel) dual problem to the scalar Signorini problem is given via the
maximization of D: H(div; Q) — R U {—oc}, for every y € H(div; ) defined by
D(y) = =5yl + (v - n x)aa — (9, X)rx — Lic () (33
=~ 4l + (- Xae = (9. ey — Iy (dive) = T (- n) =I5 (y ).

where

K* = {y € H(div;Q) | I jy(divy) = I[N (y-n) = I1°(y - n) = 0},
I = I¢ gy (dive) + (I8 + 159)(() - n): H(div; Q) = RU {+oc}, I ;31 L*(Q) = RU {400},
for every y € L2(9) is dei}%ned by
N 0 ify=—fae. in
19 = ’
{_f}(y) {—i—oo else,

and I7% I5¢: H=2(0Q) — R U {+o0}, for every § € H™2 (1), are defined by

{9}
r 0 if (7,v)a0 = (g,v)ry for all v € H5(Q) with v =0 a.e. on I'¢,
Ly (0) =
g +o0o  else,
0 if (g,v)r. >0 for all v € H5(Q)
I£C (y) = with v =0 a.e. on I'y and v > 0 a.e. on ',

+o00  else.

The identification of the (Fenchel) dual problem (in the sense of [23, Rem. 4.2, p. 60/61]) to
the minimization of (3.1) with the maximization of (3.3) can be found in the proof of the following
result that also establishes the validity of a strong duality relation and convex optimality relations.
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Proposition 3.1 (strong duality and convex duality relations). The following statements apply:

(i) A (Fenchel) dual problem to the scalar Signorini problem is given via the mazimization of (3.3).
(ii) There exists a unique mazimizer z € H(div; Q) of (3.3) satisfying the admissibility conditions

dive=—f a.e in, (3.4)
I3(z-n) =0, (3.5)
I'e(z-n)=0. (3.6)

In addition, there holds a strong duality relation, i.e., it holds that
I(u) = D(z). (3.7

(#ii) There hold convex optimality relations, i.e., it holds that

z=Vu a.e in€Q, (3.8)
{z-n,u = X)oo = (g:u = X)ry - (3.9)

Remark 3.2. (i) If g€ LY(Ty), then (3.5) is equivalent to z -n = g a.e. on I'n;
(ii) If z - n|r. € LY (D), then (3.6) is equivalent to z-n >0 a.e. on I'c.

Proof (of Proposition 3.1). ad (i). First, if we introduce the proper, lower semi-continuous,
and convex functionals G: (L?(2))? = R and F: H(Q) — RU {40}, for every y € (L?(Q))¢
and v € H'(Q2), defined by
G(y) = 3llyll%,
F(v) = —=(f,0)a = (g, v)ry + 1.0, (0) + 15 (0 = X)),
then, for every v € H'(Q), we have that
I(v) = G(Vv) + F(v).
Thus, in accordance with [23, Rem. 4.2, p. 60/61], the (Fenchel) dual problem to the minimization of
(3.1) is given via the maximization of D: (L?(Q))% — RU{—o0}, for every y € (L?(2))% defined by
D(y) = -G"(y) - F*(=V"y), (3.10)
where V*: (L2(Q))% — (H'(Q))* is the adjoint operator to the gradient operator V: H'(Q)— (L2(Q))<.
Due to [23, Prop. 4.2, p. 19], for every y € (L%(Q2))?, we have that
G*(y) = 5lyllf - (3.11)
Since v+ x € HY(Q) with v + x = up a.e. on I'p for all v € H (), for every y € (L3(2))4,
using the integration-by-parts formula (2.1), we find that

F*(-V*y) = TTIIEQ) { =, Vv)a + (f,v)a + (g,v)ry — IEfD}(v) — [£c (v—x)}
veH!

sup { - (y7 VU)Q + (fvv)ﬂ + <g7v>FN - I£C (U)}
vEH}D(Q)

— (W, VX)a + (f,x)a + (9, X)rx
I 5y (divy) + I A (y - n) + 159y - n)
= —(u, Vx)a + (fix)e+ (9, X)ry
+00 else.
IE py(divy) + [ 5 (y-n) + 19 (y - n)

= —(y-n,x)on + (9, X)ry
+00 else.

} if y € H(div; Q), (3.12)

} it y € H(div; ),

Using (3.11) and (3.12) in (3.10), for every y € H(div; ), we arrive at the representation (3.3).
Eventually, since D = —oo in (L%(Q2))4 \ H(div; ), it is enough to restrict (3.10) to H(div; ().
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ad (ii). Since both G: (L*(Q2))? — R and F': H'(Q) — RU {+o0} are proper, convex, and
lower semi-continuous and since G': (L?(2))? — R is continuous at y € dom(F)Ndom(GoV), i.e
Gly) = G(Vx) (y— Vx in(L*(Q)7),
by the celebrated Fenchel duality theorem (cf. [23, Rem. 4.2, (4.21), p. 61]), there exists a maximizer
z € (L2(Q))? of (3.10) and a strong duality relation applies, i.e.,
I(u) = D(z). (3.13)
Since D = —oco in (L2(Q))4\ H(div; ), from (3.13), we infer that z € H(div;Q). Moreover,

since (3.3) is strictly concave, the maximizer z € H(div;{2) is uniquely determined.
ad (ii). By the standard (Fenchel) convex duality theory (cf. [23, Rem. 4.2, (4.24), (4.25), p. 61]),
there hold the convex optimality relations
—V*z € 0F (u), (3.14)
z € 0G(Vu). (3.15)
While the inclusion (3.15) is equivalent to the convex optimality relation (3.8), the inclusion (3.14),
by the standard equality condition in the Fenchel-Young inequality (cf. [23, Prop. 5.1, p. 21])
and the admissibility condition (3.4), is equivalent to
—(z,Vu)ag = (=V*z,u)q
= F*(=V72) + F(u)
—(z-n,x)oa + (9, X> = (fyw)a — (g, u)ry
—(z 1, X)aq — (9,u — X)ry + (divz, u)o
= (2 n,u—Xx)on — <97 = X)ry + (divz,u)q — (2 - n,u)s0,
which, by the integration-by-parts formula (2.1), is equivalent to the claimed convex optimality
relation (3.9). O

e Dual variational inequality. A dual solution z € K* equivalently is the unique solution of the
following variational inequality: for every y € K*, it holds that

(2,2 —yla < (z-n—y n,x)oa- (3.16)

o Augmented problem. There exists a Lagrange multiplier A* € (H},())* such that for every
v € H5H(Q), there holds the augmented problem

(Vu, Vv)o + (A, v) gL ) = (f,v)a + (9, V)ry - (3.17)

With the convex optimality relations (3.8),(3.9) and the integration-by-parts formula (2.1), for
every v € H}(Q), we find that

<A*a U>H113(Q) = <Z : TL,U)aQ - <g7v>FN
In particular, the convex optimality relation (3.9) then also reads as the complementarity condition
<A*, u — X>H113(Q) =0.
Remark 3.3 (regularity in 2D). In the two-dimensional case, the following regqularity results apply:
(i) If @ C R? is a bounded domain with smooth boundary, T'c = 0Q, and x € H%(aﬁ), then
u € H?(Q) (cf. [12, Lem. 2.2)). (
(ii) If Q C R? is a polygonal, convex, and bounded domain, T'c = 02, and x € H%(QQ), then
uw€ H*(Q) (cf [27, Thm. 4.1]).
(iii) IfQCR? is a polygonal bounded domain, T ¢ # 0%, and x € H? (99), then ue H2(U)NCYM(U)
for X € (1,3) (cf. [37] or [1, Thm. 2.1]), where U € R? is a neighborhood of the critical
points, i.e., the points where the boundary condition changes and that are corners of the do-

main. In addition, in [1, Thm. 3.1], a description of possible singular behavior close to the
critical points can be found.
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4. A posteriori ERROR ANALYSIS

In this section, resorting to convex duality arguments, we derive an a posteriori error identity
for arbitrary conforming approximations of the primal problem (3.1) and the dual problem (3.3)
at the same time. To this end, we introduce the primal-dual gap estimator ngap: Kx K" —R,
for every v € K and y € K* defined by

n*(v,y) ==1I(v) — D(y). (4.1)

The primal-dual gap estimator (4.1) can be decomposed into two contributions that precisely
measure the violation of the convex optimality relations (3.8),(3.9), respectively.

Lemma 4.1. For everyv € K and y € K*, we have that

Neap(V,y) =124 (v, ) + 15 (v, y),
Naap,a(0:9) = 5] Vv = yll?,,
Naap. (0, 9) = (Y- 1,0 = X)aa — (9,0 — X)ry -
Remark 4.2 (interpretation of the components of the primal-dual gap estimator).

(i) The estimator T/gap,A measures the violation of the convex optimality relation (3.8);
(ii) The estimator néap’B measures the violation of the convex optimality relation (3.9).

Proof (of Lemma /.1). Using the admissibility conditions (3.4)—(3.6), the integration-by-parts
formula (2.1), and the binomial formula, for every v € K and y € K*, we find that
I(v) = D(y) = 31Vl = (f,0)a = (g, 0)rx + 3lYlle — (¥ - 1y X)o0 + (9, X)ry
= 3IVollg, + (divy, v)a + 3llyl& — (¥ - 7. x)oe — (9,0 = X)ry
= 5VollE = (v, Voo + 5yl + (v - 1m0 = x)ae — (9.0 = X)ry
= 31IVv =yl + (¥ -n,v = X)oa = (9,0 = X)ry - O

Next, we identify the optimal strong convezity measures for the primal energy functional (3.1)
at the primal solution u € K, i.e., p?: K — [0, +00), for every v € K defined by

pi(v) = 1I(v) = I(u), (4.2)
and for the negative of the dual energy functional (3.3), i.e., p2 5: K* — [0, +00), for every y € K*
defined by

P2 p(y) = ~D(y) + D(2), (4.3)
which will serve as ‘natural’ error quantities in the primal-dual gap identity (¢f. Theorem 4.5).

Lemma 4.3 (optimal strong convexity measures). The following statements apply:
(i) For every v € K, we have that

pi(v) = 5lIVv = Vul[g + (z - n,v = x)oa = (g,v = X)ry -

(ii) For every y € K*, we have that

p2p(2) =4y — 2§ + (v nou— x)oa — (g9,u — X)ry -

Remark 4.4.

(i) By the convex optimality relation (3.9), the integration-by-parts formula (2.1), the convex op-
timality relation (3.8), the admissibility condition (3.4), and the primal variational inequality
(3.2), for every v € K, we have that

(z-n,v=x)aa — (9,v = X)ry = (2" 1,V — U)o — (9,0 — U)ry
= (2, Vv = Vu)q + (divz,v —u)o — (9,v — u)ry
= (VU,VU - VU)Q - (fvv _U)Q - <g,U _u>FN
0.

Y
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(i) By the convex optimality relation (3.9), the integration-by-parts formula (2.1), the convex
optimality relation (3.8), the admissibility condition (3.4), and the dual variational inequality
(3.16), for every y € K*, we have that

(y-n,u—x)aa — (g, u—X)ry = (Y n—2-nusa— (Y n—2z-n,X)00
=(y— 2, Vu)g+ (divy —divz,u)g — (y-n— z-n,x)sq
=W —2z2)a—(y - n—2-n,x00
>0.

Proof (of Lemma 4.3). ad (i). Using the binomial formula, the convex optimality relation (3.8),
the admissibility condition (3.4), the integration-by-parts formula (2.1), and the convex optimality
relation (3.9), for every v € K, we find that

I(v) = I(u) = 5[|VV]|§ = 5lIVullg, = (f,v = w)a — (g,v — u)ry
= 31IVo = Vul§ + (Vu, Vo = Vu)o — (f,0 = u)o — (9,0 — u)ry
= 1[|Vv — Vul|g + (2, Vv = Vu)g + (divz,v — u)g — (9,0 — u)ry
= 5IVo = Vulg + (z-n,v = u)ag — (9,0 — u)ry
= 5lIVv = Vul + (z - n,v = x)oa — (g0 = X)ry -

ad (ii). Using the binomial formula, the admissibility conditions (3.4)—(3.6), the convex opti-
mality relation (3.8), the integration-by-parts formula (2.1), again, the admissibility condition (3.4),
and the convex optimality relation (3.9), for every y € K*, we find that

—D(y) + D(2) = 5llyll& — 3l12l1& + (= - n —y -1, X)a0
=3ly—zlla + (29 = 2)a + (z-n =y - n,X)en
=5l —zlIE + (Vu,y = 2)a + (z-n —y - n,x)a0
:%Hy—zﬂé—&—(dwz—dlvy, wao+{(z-n—y-n,x—usn
= 3lly =218+ (v nu—x)ae — (g.u = X)ry - O

Eventually, we have everything at our disposal to establish an a posteriori error identity
that identifies the primal-dual total error p2,,: K x K* — [0, +00), for every v € K and y € K*
defined by

Prot(v,y) = p7(v) + p2 p(y) (4.4)
with the primal-dual gap estimator 2, ,: K x K* — [0,400) (cf. (4.1)).
Theorem 4.5 (primal-dual gap identity). For every v € K and y € K*, we have that
Prot (V3 4) = Mo (0,9) -

Proof. Combining the definitions (4.1), (4.2), (4.3), (4.4), and the strong duality relation (3.7),
for every v € K and y € K*, we find that

i (0,y) = p7(v) + p* p(y)

= I(v) = I(u) + D(2) — D(y)
=1(v) = D(y)
:ngap(v’y)' ]

Note that the primal-dual gap identity (¢f. Theorem 4.5) applies to arbitrary conforming
approximations of the primal problem (3.1) and the dual problem (3.3). To be numerically prac-
ticable it is necessary to have a computationally inexpensive way to approximate the primal and
the dual problem at the same time. In Section 5, exploiting orthogonality relations between the
Crouzeix—Raviart and the Raviart—Thomas element, we transfer all convex duality relations from
Section 3 to a discrete level to arrive at a discrete reconstruction formula that allows us to approxi-
mate the primal and the dual problem at the same time using only the Crouzeix—Raviart element.
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5. DISCRETE SCALAR SIGNORINI PROBLEM

In this section, we discuss the discrete scalar Signorini problem.

e Discrete primal problem. Let fi, € LO(Tr), gn € LO(S. V), uly € LO(S}P), and x1, € LO(S) P US; ©)
with x5, = u a.e. in I'p. Then, the discrete scalar Signorini problem is given via the minimization
of If™: SL<"(Tp,) — RU {+oc}, for every vy, € S1<"(T},) defined by

I () = 3IVhonlly — (fr, avn)o — (gns mhvn)ry + Ixer (vp)

5.1
= LIVaonllg = (fro nvn)a — (gn, Thor)ry + I{ng}(ﬂhvh) + 1N (mhon — X)) (5:1)

where
K" = {vh € Sl"”(’ﬁl) | Thop = u'}) a.e.on I'p, mpup > xp a.e. on I‘C} ,

and Irpr = I B () + 1, (mn () = xn): 857 (Th) — RU {00}

In what follows, we refer to the minimization of the functional (5.1) as the discrete primal problem.
Since the functional (5.1) is proper, strictly convex, weakly coercive, and lower semi-continuous,
the direct method in the calculus of variations yields the existence of a unique minimizer u§" € K;",
called the discrete primal solution. We reserve the notation uj" € K" for the discrete primal solution.

o Discrete primal variational inequality. The discrete primal solution uj” € K}" equivalently is
the unique solution of the following variational inequality: for every v, € K}", it holds that

(Viauy, Viuy — Vivr)a < (fa, Opug — yvp)a + (gh, Thuf, — Thvr)ry - (5.2)

o Discrete dual problem. The (Fenchel) dual problem to the discrete scalar Signorini problem is
given via the maximization of D}': RTY(T,) — RU{—o0}, for every y, € RT(T;) defined by

Dit(yn) = =5 IMnynlld, + (n - 7 xn)rpure — Ixre (yn) 53)
= =51 Maynlld + (wn - ns xw)rpore — I 5,y (divyn) = I (yn - 1) = 159 (g - n)

where
K}:tv* — {yh c RTO(E) | divy, = —fn a.e. in Q, yp-n=gp a.e. Oy, yp-n >0 ae. on Fc},

and Lyre = I (div () + Iy, + I59)(() - n): RTO(Th) — RU {+00}.

The identification of the (Fenchel) dual problem (in the sense of [23, Rem. 4.2, p. 60/61]) to the
minimization of (5.1) with the maximization of (5.3) can be found in the proof of the following
result that also establishes the validity of a discrete strong duality relation and discrete convex
optimality relations.

Proposition 5.1 (strong duality and convex duality relations). The following statements apply:

(i) The (Fenchel) dual problem to the discrete scalar Signorini problem is defined via the
mazimization of (5.3).

(ii) There exists a unique mazimizer z' € RT%(Ty) of (5.3) satisfying the discrete admissibility

conditions
dive)! = —f, ae inQ, (5.4)
z£t~n:gh a.e. on Iy,
zZt-nZO a.e. on o,

In addition, there holds a discrete strong duality relation, i.e., we have that
17 () = Dyt (). (5.7)
(i4i) There hold the discrete convex optimality relations, i.e., we have that
Ozt = Viaui™  ace inQ, (5.8)

it on (mpus” — xn) =0 a.e. onI'c.
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Proof. ad (i). If we introduce the functionals Gy, : (£°(73))? — R and Fj,: S¥°"(T;,) — RU{+o0c},
for every 7, € (L%(T3))? and vy, € SV°"(T;,) defined by
Gr(@n) = 3llTnld
Fy(vn) = —(fn, Onon)a — (gn, 7hon)ry + I{Fﬁg}(ﬁhvh) + IJFrC (Thon — Xh)
then, for every vy, € SH"(T}), we have that
I7"(vn) = Gr(Viop) + Fr(vp) .
Thus, in accordance with [23, Rem. 4.2, p. 60], the (Fenchel) dual problem to the minimization of (5.1)
is given via the maximization of DY : (L%(T))? — RU{—oc}, for every 3, € (L°(T5))? defined by
Di(@n) = =G @n) — F (=Vi7n), (5.10)
where V3 : (L9(T3))? — (S%"(Th))* denotes the adjoint operator to Vj,: SH"(T,) — (L°(Tp))4.
For every 3, € (£°(T#))¢, we have that
Gh(@n) = 5l7nla - (5.11)
For fixed X), € SV (Ty,) with 74Xk = xn a.e. on T'p UT ¢, due to x5, = uly a.e. on T'p, for every

€ (L%(Ty))?, using the lifting lemma (cf Lemma A.1) and the discrete integration-by-parts
formula (2.11), we find that

i (=V3in) (5.12)

= sup  {—=@n Vavn)a+ (fr. dnvn)a+ (gn Thvn)ry +I€ﬁ}(ﬂhvh)+l};c(ﬂhvh —xn)}
vp €8T (Th) b

= swp {—@n Vavn)a+ (fr Davn)a + (gh, hon)ry + 150 (thon) }
'UhESlD‘N(Th)

— Un, Vaxn)o + (fo uXn)a + (9h ThXn)r

I{ fh}(dlvyh)—l—l{ }(yh n) + I, (yp - n)

=9 —(IIayn, Vaxn)a + (fh>HhXh)Q + (gh, ThXh)T N
400 else,

I?_fh}(dlvyh) + I{g }(yh n) + 15 (yn - n)
- _(yh naXh)FDUFC
+00 else.
Using (5.11) and (5.12) in (5.10), for every ¥, = Iy € L (RT(Tr)), where y, € RTO(Ty,), we
arrive at the representation (5.3). Since DY = —oco in (£%(73))? \ U, (RT(Tr)), it is enough to
restrict (5.3) to II,(RT°(Ty)). Then, we have that DY (Il,y,) = D}t (yp) for all y, € RT(Th).
ad (ii). Since Gp,: (L°(T,))¢ — R and Fy, : S (T;,) — RU{+o0} are proper, convex, and lower
semi-continuous and since G, : (£L°(73,))¢ — R is continuous at X, € dom(Fy,)Ndom(GoVy,), i.e
Gu(@n) = Gu(VaXn)  (Tn — Vaxn  in (L£2(Th))4),

by the celebrated Fenchel duality theorem (cf. [23, Rem. 4.2, (4.21), p. 61]), there exists a maximizer
9 ¢ (LY9(Tw))? of (5.10) and a discrete strong duality relation applies, i.e.,
I (uf") = Dj(zp) -
Since DY) = —oo in (LO(T3))\I1,(RT(T3)), there exists 2 6 RTO(Tr) such that 2)) = II,27" a.e.
in Q. In particular, we have that DY (2)) = Dy(z5t), so that zrt € RTO(Ty) is a maximizer of (5. 3)
and the discrete strong duality relation (5.7) applies By the strlct convexity of Gy : (L0(Tp))¢ —
and the divergence constraint, the maximizer 2}’ € RT%(7},) is uniquely determined.
ad (iii). By the standard (Fenchel) convex duahty theory (cf. [23, Rem. 4.2, (4.24), (4.25), p. 61]),
there hold the convex optimality relations
—V;th,’f € th(uh) s (513)
Iz € OGH(Vhug). (5.14)

} if 5, = My, for some v, € RT(Ty),

} if 77, = My, for some yp € RT(Ty),



ERROR IDENTITIES FOR THE SCALAR SIGNORINI PROBLEM 13

The inclusion (5.14) is equivalent to the discrete convex optimality relation (5.8). The inclusion
(5.13), by the standard equality condition in the Fenchel-Young inequality (cf. [23, Prop. 5.1, p.
21)), mpuf” = xp a.e. on I'p, and the discrete admissibility conditions (5.4),(5.5), is equivalent to
—(Ipzy", Viui e = (=Villaz! ufl o

= Fyy (=ViIlpzp') + Fp(uf))

= —(z1" - n, xn)rpure — (Fus Taug) e — (gn, Thug ey

= (27t n, mus” — xn)re + (divz)t Tpus o — (25 - n, mhusoeq
which, by the discrete integration-by- parts formula (2.11), is equivalent to (2}* - n, mpu§” — xp)re =0.
Since z* -n > 0 a.e. on I'c and mpuf” — x5 > 0 a.e. on I'c, we conclude that (5.8) applies. [

e Discrete dual variational inequality. A discrete dual solution 2] € K Th equivalently is the
unique solution of the following variational inequality: for every y, € K; ", it holds that

(Mpzp' Mpzp' — pyn)a > (27" 1 — yn -0y Xa)Ty - (5.15)

e Discrete augmented problem. There exists a discrete Lagrange multiplier A} € (SBCT(’E))*
such that for every vy, € SBCT(’E), there holds the discrete augmented problem

(A vn)sver(my = (Vi Vivn)o = (fr, Thon)a — (9hs Thvn)ry - (5.16)

With the convex optimality relation (5.8) and the discrete integration-by-parts formula (2.11),
introducing the discrete Lagrange multiplier A§" := 23%-n|p, € LY(S,9), for every vy, € S5 (Th),
we find that
(AR on)sger () = (A7 mhvn)re
We define the discrete flux
Zt = Vyui — %(ide — IidRa) € (£1<771))d, (5.17)
which is admissible in the discrete dual problem and a discrete dual solution.
Proposition 5.2. The discrete fluz 2}t € (LY(Ty))?, defined by (5.17), satisfies 2t € RT°(Th),
the discrete admissibility relations (5.4)—(5.6), the discrete convex optimality relations (5.8),(5.9),
and is a discrete dual solution.
Proof. ad z}' € RTO(E) with (5.4)—~(5.6) and (5.8). Due to (5.16), the lifting lemma (¢f. Lemma
A.1) implies that 2}t € RT°(T;) with (5.4), (5.5), and (5.8). In addition, for every v, € S5 (Tr)
with 7pvp, > 0 a.e. on T'¢, the discrete integration-by-parts formula (2.11) and the discrete primal
variational inequality (cf. (5.2)) yield that
(25" - n,mhon)re = nzp’, Vavp)a + (divz;’, pon)o — (25" - n, Thow)ry (5.18)
= (Vhuy', Vavn)o — (fr, Hpon)a — (gns mhon)ry > 0. '

Thus, choosing v, = ¢g for all S € S};c in (5.18) and exploiting that m,pg = x g, for every S € S,l:c,
we find that adm1551b1hty condition (5.6) is satisfied.
ad (5.9). If S € S @ is such that mpuj” > x5 on S, then there exists some ag < 0 such that
Ul +asxs > xnpon S. Thus, from vy, = uf +agps € S})‘" (Tn) in (5.2), we get 2;**n =0on S.
ad Mazimality. Using the discrete convex optimality relations (5.8),(5.9), the discrete integra-
tion-by-parts formula (2.11), and the discrete admissibility conditions (5.4)—(5.6), we observe that

I (ug)) = IV w16 — (fr Tnus) e = (gn, Thufl ey
= L[| Vhui! I3 + (div 2", hug o — (277 nympug) ey
= 3IVaui 16 — (Mazp', Vaug o + (25" - ny mhus )rpure
= LMz I3 + (21" nymaus ) pure
= DZt(ZZt)7
wnic s y e aiscrete s rong uall yrea 101n (o. b OWS a Z E h lbmaXIma or
hich, by the discrete st duality relation (5.7), shows that RTO(T;, 1 f .0
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6. A priori ERROR ANALYSIS

In this section, resorting to the discrete convex duality relations established in Section 5, we
derive an a priori error identity for the discrete primal problem (5.1) and the discrete dual prob-
lem (5.3) at the same time. From this a priori error identity, in turn, we derive an a priori error
estimate with an explicit error decay rate that is quasi-optimal. To this end, we proceed analo-
gously to the continuous setting (cf. Section 4) and start with examining the discrete primal-dual
gap estimator ngapﬁ: K§™ x K30 — [0, 400), for every vy, € K§" and yj, € K" defined by

ngap,h(vhdyh) = }CLr(vh) - D;t(yh) . (61)

The discrete primal-dual gap estimator (¢f. (6.1)) can be decomposed into two contributions that
precisely measure the violation of the discrete convex optimality relations (5.8),(5.9), respectively.

Lemma 6.1 (discrete primal-dual gap estimator). For every vy, € K;" and yp, € K,:t’*, we have that
Naaph (Vs UR) = M4 gap h (Vs Yn) + 1B gap.n (Vh, YR »
Ma,gap,h (Vs Un) = 5[ Vavn = uynlld
772B,gap,h(vh7yh) = (Yn - 1, ThUK — XA)Te -
Remark 6.2 (interpretation of the components of the discrete primal-dual gap estimator).

i) The estimator n? measures the violation of the discrete convex optimality relation (5.8);
A,gap,h
(i) The estimator n%,gap’h measures the violation of the discrete convex optimality relation (5.9).

Proof (of Lemma 6.1). Using the discrete admissibility conditions (5.4)—(5.6), the discrete integra-
tion-by-parts formula (2.11), and the binomial formula, for every v, € K" and y;, € K;t’*, due
to mpvp = xp a.e. on I'p, we find that

I (o) = Dyt (yn) = 511V aonlley = (frs Thvn)a = (gn, mhon)ry + 51Tayalé — (yn - 7, xa)rpure
— 1 Vaonl + (divem, Tav)a + 3Taynl3
— (yn -1, ThoR)ry — (Y - 0 Xn)rpure

= 5IVronlld — Mayn, Vivr)a + 3 10aynllé + (yn - 7 mhon — xa)rpure
= 51 Vhon = ynllé + (yn -1, mhon — x)re - O
Next, we identify the optimal strong convexity measures for the discrete primal energy functional
(5.1) at the discrete primal solution u§" € K", i.e., p?ir (K" — 10, 400), for every v, € K" defined by
Phyr(on) =I5 (on) — I (u?), (6.2)

and for the negative of the discrete dual energy functional (5.3), i.e., pQ*DZt LK [0, +00),
for every y; € K;"* defined by

P2 pre(yn) = =D} (yn) + Di' (21), (6.3)
which will serve as ‘natural’ error quantities in the discrete primal-dual gap identity (¢f. Theorem 6.5).
Lemma 6.3 (discrete optimal strong convexity measures). The following statements apply:
(i) For every v, € K", we have that
pier(vn) = 5lIVavn — Vaug' & + (25" -, mhon — Xa)re -
(ii) For every yy € K;t’*, we have that
PQ,D;;t (yn) = 31 Tnyn — Tz (|13 + (yn - 1, Thug” — Xn)re -

Remark 6.4. Note that for every v, € K", it holds that mpvy, — xn > 0 a.e. on I'c, and for
Tt,%

every ypn € K,:t’*, we have that yn -n > 0 a.e. on I'c, so that for every v, € K™ and y, € K7,
we have that

yn-n(mpop —xn) =0 ae onTe.
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Proof (of Lemma 6.3). ad (i). Using the binomial formula, the discrete admissibility conditions
(5.4),(5.5), the discrete convex optimality relation (5.8), the discrete integration-by-parts formula
(2.11), and the discrete convex optimality relation (5.9), for every v, € K£", due to mpv, = ulty =
mhuf a.e. on I'p, we find that

I57 (o) = 157 ) = 3I¥enlh = 9 — (s ot = Tl ) = s = mual )
= %thvh — ViusT |3 + (T2t Vi, — Vius )a
— (div 2}t Hpop — Mpus g — (27° - 0, Thon — Thull ey
= 3IVaon = Vaugl & + (21 - 0, mhon — maug re
= 5IVhon — Viug|& + (25" nomhon — Xa)re -

ad (7). Using the binomial formula, the admissibility conditions (5.4)—(5.6), the convex
optimality relation (5.8), the discrete integration-by-parts formula (2.11), again, the admissibility

condition (5.4), and the convex optimality relation (5.9), for every y; € K;t’*, due to yp - n =

gn = z;t -n a.e. on I'y and mpup = u}jj = xp a.e. on I'p, we find that

—Dit(yn) + D' (z) = 5IMaynlld — 5IMnzp G + (257 - 7 — yn - 1, xa)oa
= 51 Mhyn — 2518 + (Vo Tayn — Mazi o + (25— yn -1, xa)on
= 3Mhyn — zp" 13
+ (div 2! = divys, Tpug o + (25" -1 = yn -1, xn — Thuf)oo
= 3IMhyn — Wz & + (yn - n mrus” — xn)re - O

Eventually, we have everything at our disposal to establish a discrete a posterior: error identity
that identifies the discrete primal-dual total error pfot’h: K" x K;;t’* — [0, 400), for every

vp € Ki7 and yy, € K" defined by

Prot,n(Vns Yn) = pTer (vn) + p2—D2t (Yn) s (6.4)
with the discrete primal-dual gap estimator néapﬁ: K™ x K3 — [0,400) (cf. (6.1)).
Theorem 6.5 (discrete primal-dual gap identity). For every v, € K;" and y, € K,Tlt’*, we have that

Dot (Vs Un) = Maap.n (Vhs Un) -
Proof. Using the definitions (6.1), (6.2), (6.3), (6.4), and the discrete strong duality relation (5.7),
for every vy, € K§" and y;, € K;"*, we find that

Protn(Vns Y1) = pier(vn) + P2 pre (yn)

= Ii (va) = I;7 (ui") + Dy (23") = Dy (yn)

= Ij (vn) — D} (yn)

= 77g2ap,h(vh7 Yn) - O

Inserting the (Fortin) quasi-interpolations (2.3) and (2.7) of the primal and the dual solution, re-

spectively, in the primal-dual gap identity (¢f. Theorem 6.5), we arrive at an a priori error identity,
in which the right-hand side represents the residual in the discrete formulation.
Theorem 6.6 (a priori error identity and error decay rates). If fn = I f € LO(Ta), gn ==
mhg € LO(S}N), where g € L*(Ty), uly = muup € LO(S}?), and xn = mpll5"x € LO(S} ),
then the following statements apply:

(i) If z € (LP(Q))?, where p > 2, then TI§"u € K§", Ttz € K;"*, and

Prov.n (I u, I 2) = 5|z — TRIG2)1G + (2 - ny m I (w0 — X) — (u = x))re -
(ii) If u,x € H'*3(Q2), where s € (1,1], and if Ax € L*() or d = 2, then

Protn (5w, I 2) < eh® ([ully o + X175 0) -
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Remark 6.7. The a priori error estimate in Theorem 6.6(ii) holds as soon as u € H*(09Q):
(i) According to [6, Cor. 3.7], the trace operator
Tr = (tr,tro V) |0 HA(Q) = {v € H3(Q) | Av e L*(Q)} — HY(8Q) x (L*(9Q))?,
s well-defined, linear, and continuous. Thus, if u € H%(Q), due to Au = divz = —f € L?(),
we have that u € Ha() and, thus, the traces u|po € HY(0Q) and (Vu)|aq € (L?(R))4.
(it) If QCR? is polygonal bounded Lipschitz domain and s € (5,1], then (cf. [28, Thm. 1.5.2.1])
Tri=(tr, troV) T: H5(Q) — H¥"2 (9Q)x (H*~2 (9Q))? is well-defined, linear and continuous.

Proof (of Theorem 6.6). ad (i). First, using (2.5), we observe that

h
= TpUp = U a.e.onI'p
05w = Thu b ’
> ThX = Xh a.e.on 'c,

i.e., it holds that II§"u € K{". Second, if z € (LP(2))¢, where p > 2, according to [24, Sec. 17.1],
Iz € RTY(Tr) is well-defined and using (2.8) and (2.9), we observe that
divIl}'z = Hdive = —f, a.e. in Q,
= = .e. r
HZtZ'n:ﬂ'h(Z'n) Thyg 9h a.e.onlyn,
>0 a.e.on I'c,
i.e., it holds that IT}'z € K;“*. Then, using Theorem 6.5 together with Lemma 6.1 and Lemma 6.3
as well as the convex optimality relation (3.9), (2.4), and (2.9), we find that
Protn (7w, 1T 2) = 5[ VAT w = TIG 218 + (T2 -, ma T w — xn)re
= Lz — TLIGE R + (oI (= ) — (0 — e (65)
= I +17.
ad (ii). We need to estimate I} and I7:

ad I }IL Using the L2-stability property of ITj, and the fractional approximation properties of I
(cf. (2.10)), we find that

1< s = T B < eh® 2 < e JulR, g (6.6)
ad I}. Abbreviating @ = u — y € H'7%(Q2), we find that
(z-n,mp 1154 — @), = (2 n, 1070 — @), + (2 - n, 7105 0 — 15 @),
= It
ad I'". Using that TI§"a — @ L £9(Sy) (cf. (2.5)), that m,(z-n) = (142) -1 a.e. in US, a local

trace inequality (cf. [24, Rem. 12.19, (12.17)]), and the fractional approximation properties of 7,
and IIf" (cf. (2.6)), we obtain

I,QL’1 =(z-n—mp(z-n), 70— @),
TN N 1 N
<|lz = mnzlre (A2 [|a — 17 dllo + R2 [|[Va — V1T d]|q)

(6.7)

6.8
< el Hale g oo b il s (68)
<ch®(Jullfyon + Xl e) -
ad 12’2. We decompose IE’Q into local contributions, i.e., we define
2= oamlya-Tas = Y I3°. (6.9)

Sesyc Sesyo
Next, we distinguish the cases |[S\ ({& > 0} NT¢)| = 0 (i.e., no contact), |S\ ({¢ =0}NTc)| =0
(i.e., contact), and |S'\ ({& =0} NT¢)| > 0 (i.e., both contact and no contact) (equivalent to
[S\ ({& >0} NT¢)| > 0): In doing so, we use the identity
176 — mp 1870 = VSIS - (idga — mpidga)  in S, (6.10)
where, for each v € H'(S), we denote by Vsv € (L%(5))? the tangential gradient, which, for every
v€ HA(Ts)NH*(Ts), where T € Ty, is such that S C 9Ty, satisfies (cf. [24, Rem. 12.19, (12.17)])

IVsolls < 1(Vo)lslls < e (hg? [Vollzs + b 2 Volors). (6.11)
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In particular, from (6.11) together with the fractional approximation properties of II§" (cf. (2.6))
and |VIIf als g = 0 since VII{ u|rg = const, it follows that
_1
IVsii = VsTIgil|s < (hg? | Vi — VI iz, + b2 Vil 1)
Sl (6.12)
< hS 2 |u|8+%,Ts :

ad |S\({& > 0}NL'¢)| = 0 (i.e., no contact). In this case, due to the convex optimality relation
(3.9), we have that z-n =0 a.e. on S and, thus,

12*=0. (6.13)

ad |S\ {a =0} NT¢)| =0 (i.e, contact). In this case, we have that & = 0 a.e. on S,
which implies that Vs@ = 0 a.e. on S. Therefore, using that m, 115" % — I1¢"a L £9(Sy), (6.10),
the fractional approximation properties of 7, (¢f. [24, Rem. 18.17]), and (6.12), we obtain

]3’2 =(z-n—mp(z-n), 71070 -1 4)s
=(z-n—mp(z-n), (Vs — VsIIj @) - (idge — mpidga))s
< hs ||z — mnzl|s|| Vst — VeIl a||s (6.14)
<chs h§_§|2|sf%,5 hg 2 mler%’Ts
< chg (lullysze + X 1omy) -

ad |S\ {a=0}NT¢)| >0 (i.e., both contact and no contact). On the one hand, we have
that @ = 0 a.e. on SN {a = 0}, which implies that Vs = 0 a.e. on SN {& = 0}. Using that
mpllsra — 10 L £09(Sy), (6.10), [20, Lem. 8.2.3], the fractional approximation properties of 7y,
that 7, VgII§™a = VsII§ G, the L?-stability of 7, and (6.12), we obtain

I3 = (z-n —m(2 - n), (Vsi)sna—oy — VsIIEa) - (idge — mpidga))s
< |lz = mnzlls hs ([ Vst — Vsl alls + [|(Vst) snga=o0y — Vsills)
<cllz = mnzlls hs ([ Vst — VsTIF s + rgefasgy I (Vi) — Vsills)
< cllz = mnzlls hs (| Vsa — VsIIi )l s

+ rartasey (I (Vs — VsTIy i) ||s + | Vst — Vs iil|s))

S E
< ¢ rartaboy P2 (1l s s + (X1 ms)

On the other hand, we have that z-n = 0 a.e. in SN{@ > 0}. Using that m, 115" — II§"a L £9(Sy),
that (z-n)sn{a>0} = (2)sn{a>o0}-n a.e.in S, (6.10), [20, Lem. 8.2.3], the fractional approximation
properties of 7, and (6.12), we obtain
I;’Q = (z - n, (Vsﬂ, — VSHE’"Q) . (ide — Whide))s
= (Z n— <Z . n>sr‘|{ﬁ>0}, (Vsﬂ - Vsnffﬂ) : (id]Rd - Whide))S
< ||z = (2)sn{a>o0y lls hs [[ Vst — Vsl s (6.16)
S ~ cr~
< ¢ rartasoy 12 — mzlls b || Vst — Vs i) s

S
< ¢ rartason P8 (el s + X1 4sre)

(6.15)

Since S = (SN{a > 0})U(SN{& = 0}), we have that [SN{a > 0}| > %|S|or [S N {a = 0}| > 1|9|.
Using in the first case (6.15) and in the second case (6.16), we arrive at

Ig* < eh (Jullfyam, + IxIisam) - (6.17)
Combining (6.13), (6.14), and (6.17) in (6.9), we deduce that
L < eh® (Jullf oo + X1 1a0) - (6.18)
Using (6.8) and (6.18) in (6.7), we infer that
Iy < ch® (lullfiso + X e0) - (6.19)

Eventually, using (6.19) and (6.6) in (6.5), we conclude the claimed a priori error estimate. O
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7. NUMERICAL EXPERIMENTS

In this section, we review the theoretical findings of Section 4 and Section 6 via numerical ex-
periments. All experiments were carried out using the finite element software package FEniCS (ver-
sion 2019.1.0, ¢f. [36]). All graphics are created using the Matplotlib library (version 3.5.1, ¢f. [33]).

7.1  Implementation details

We compute the discrete primal solution uj" € 8113’”(72) and the associated discrete Lagrange
multiplier A" € £° (S,Ec) jointly satisfying the discrete augmented problem (5.16) via the primal-
dual active set strategy interpreted as a semi-smooth Newton method. For sake of completeness, in
the case up = 0, we will briefly outline important implementation details related with this strategy.

We fix an ordering of the sides (S;)i=1,... Ny~ and an ordering of the elements (75),=1, . no,
where N = card(Sy, \ S}, ”), N"*¢ = card(S; ©) and N := card(7y,) such that”

Span({SOSi | i=1,..., N}ir}) = Sll)’cr(ﬂb) ;
span({xs, |i=1,.. .,N,‘.;’T’C}) = EO(S};C),
span({xz, |i=1,...,Ny"°}) = (S5 (Tw)) ,

where N0 = dim(IT, (S5 (75))) € {N?, N?—1} because of codimﬁo(ﬂl)(ﬂh(SB”(ﬂl))) €{0,1}
(cf. [5, Cor. 3.2]). Then, if we define the matrices

Si7 = (Vaps., Vaps;)a)ij=1,. ngr € RNNT,

CT,O o Nc'r‘ XNCT‘,O
Ph — ((HhSOS“XTJ-)9)1:1,...,N;T,j:L,__,Nﬁmo € R™n b
cr,C NETXNE™C
Py = ((nps,, Xs;)Te )i=1,...,Nerj=1,...,.Nerne € RV XTn,

and, assuming for the entire section that xp, = ;115" x € L°(S)), the vectors

Xs = ((Xhy X8,)re)i=t,....nem € RN
cr,0

F% = ((fn, XT,)02)i=1,... Ner0 € RM
G?LT = ((gh7XSi)FN)’L':l,...,N}CLT S RN;;T 3

the same argumentation as in [3, Lem. 5.3] shows that ‘phg discrete augmented problem (5.16) is
equivalent to finding vectors (U§", A¢")T € RV x RVi"" such that

STUT 4+ py YAy = PR 4 G in RNﬁTé 1)
G (U5, Ay) = OpNin© in RV

where for given o > 0, the mapping 6, : RV RN SRV for every (Up, Ap) TeRVA" % RN
is defined by?

6n(Up, Ap) == Aj — min {ORN{;’"’C JAp + o (prT’O)T(Uh - X‘ff)} in RVa™

More precisely, the discrete primal solution u§" € Sg”(’rh) and the associated discrete Lagrange
multiplier Xﬁ’;e L0 (S}I;C) jointly satcisfying the discrete augmented problem (5.16) as well as the
vectors (U, A¢")T € RV:" x RN:"™ satisfying (7.1), respectively, are related by*

)

N;iT N;;T’C
uf =S (UF -eps, €SET(Th), A7 = (B -eis, € L2SEC).
i=1 =1

2In practice, the element Te Th for which Rx4 L Hh(Sllj’”(Th)) is found via searching and erasing a zero col-
umn (if existent) in the matrix ((HhﬁosivXT)Q)i:l,..A,N,T‘,TeTh € RNiT XN}, leading to PZT’O e RNITXNFTO

3Here, for a = (a;)i=1,....n,b = (bi)i=1,....n € R?, n € N, we define min{a, b} = (min{a;,b;})i=1,. ..

4Here, for each i = 1,..., N, N € N, we denote by e; = (0i5)j=1,...,.N € R, the i-th unit vector.
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Next, define the mapping .%j, : RVe x RN SRV <RV for every (Up, Ap) TERNA x RN by

S¢r U + py " Ap — PyOF) — G
Gn(Up, Ap)

cr,C

yh(Uh,Kh) = in RV»" x RVA

Then, the non-linear system (7.1) is equivalent to finding (U§", A¢")T € RN 7 x RN such that
Fu(UFT KT) = 0pvir wmvin® i RV x RN

By analogy with [3, Thm. 5.11], one finds that the mapping %h: RN x RN&™C 5 RVE x RN:™
is Newton-differentiable at every (Up, Az)T € RV x RNi™" and with the (active) set

oy =ty (Up, Ap) = {i € {1,... NSO} | (An + a9 T (Uy = X§) - e; < 0},

for every (Up,Ap)"T € RV x RN we have that

Ser PCT’C NET4NemC NET+NEme
— o h h . cr cr, cT cr,
D.Z,(Up, Ap) = I er,C\T ] in RV» BT RN AN
(P ) e
cr,C cr,C ..
where 1o, , Loye = Ineroxnerc — 1oy, € RN x RN for every i,j € {1,..., N} are de-

fined by (Lo, )ij = 11ifi = j € &, and (I, )ij = (gelse.
For a given iterate (Ui_l, A’,i_l)T e RV2" xRN:"" | one step of the semi-smooth Newton method
determines a direction (§Uy 1 §AF~1)T € RV:" x RN such that
D.Z, (UF—1 RE-D(SUE-L 6REDT = —2, (UKL RE-Y) in RN < RNT . (7.2)
Setting the update (US, A¥)T == (UF =1 4-gUF1 AF1 L 6AF 1T € RV x RN and the active
set 1 = o, (U1 AF™1), the linear system (7.2) can equivalently be re-written as

ST UL + iR, = POF n RN
T(arp=1ye A} = OpNi™® in RV (7.3)
Lo 037 TUE = Lot (o) X in RV

The semi-smooth Newton method (7.2) can, thus, equivalently be formulated in the following
form, which is a version of a primal-dual active set strategy.

Algorithm 7.1 (Brimal—dual active sgt strategy). Choose parameters a > 0 and esrop > 0.
Moreover, let (U%, Ag)—r e RV:" xRN be an initial quess and set k = 1. Then, for every k € N:
(i) Define the most recent active set

A= ey (UF LR = i e {1, NEOY | (RF  ra(p™ ) T(UF 1 =X57)) e < 0}
i) Compute the iterate (UF A¥)T € RV x RN such that
hy**h

O R R
T A - cr,C cr .
L= (P )T Tiap—1)e LA Los=1 (p©) TXy

(iii) Stop if [UF — UF™| < egrop; otherwise, increase k — k + 1 and continue with step (i).

Remark 7.2 (Important implementation details). (i) Algorithm 7.1 converges super-linearl
if (U9, AT € RN xRN s sufficiently close to the solution (U™, A§")T € RN:" x RN&"
As the Newton-differentiability only holds in finite-dimensional situations and deteriorates as
NET+NfC — 00, the condition on the initial guess becomes more critical for NF™+Nf™¢ — 00.

(i) The degrees of freedom related to the entries K;ﬂ(gf’ffl)c can be eliminated from the linear
system of equations in Algorithm 7.1, step (i) (see also (7.3)2).

(iii) Since only a finite number of active sets are possible, the algorithm terminates within a finite
number of iterations at the ewact solution (U™, A§")T € RN x RN For this reason, in
practice, the stopping criterion in step (iii) is reached with U~ —Uﬁ*71| =0 for some k* € N,
in which case, one has that Uﬁ* = U§", provided estop > 0 is sufficiently small.



S. BARTELS, T. GUDI AND A. KALTENBACH 20

7.2 Numerical experiments concerning the a priori error analysis

In this subsection, we review the theoretical findings of Section 6.

For our numerical experiments, we choose a setup from [43, Sec. 7], [18, §6], or [2, Sec. 5.1].
More precisely, let  := (0,1)2, I'c == (0,1) x {0}, I'p = 9Q\ I'c (cf. Figure 1(left)), i.e.,
Iy =0, and y := 0 € H*(Q). Then, we compute f € L*(Q) such that the primal solution u € K,
in polar coordinates centered at (0.5,0)" € T'c, i.e., for every x = (w1, 22)" € (, setting

1
r(z) = ((z1 — §)*+23)2, )
for every x € (), is defined by

1
r1—35

r(z)

0(z) := arccos (

—109(r(z)) r(z)? sin(20(z)) .

Here, 1: [0,00) — R (¢f. Figure 1(right)) is the zero extension of a ninth-order spline with
respect to the single element partition of [0, 0.45] which satisfies ¢ (r) > 0 for all r € (0.05, 0.045),
(r) =0 for all r € [0.45, 00), and

1 —(0) = $(0.45) = ¥ (0) = ¥(0.45) = 0

u(x) =

foralli=1,...,4.

x10"

1 =

7/)// )

1.0 Ise 4 N\
0 NIERTA
SR /
- \.
0.8 I'p 73 \ S ——T 0
Lo Ay P
0.6 = 4 o B I ¥
Q 0 02 04 06 08 1.0 0 02 04 06 08 1.0
107 10°
0.4 2 \ ,[/)/// ‘ ] }3: w//// ‘ |
4 [ 0.5
u >0, u =0, 2 [
0.2 , , Y 0.0
z:n=0. z:-n>0. L [T —0.5
i iy HLW B —1.0-
T T T T -6 Y, v -15
0.2°°77°0.4° 0.6 080 V10 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Figure 1: left: O, Te,T'p, {u>0}NTc={z-n=0}NT¢,and {u =0}NTc ={z-n > 0}NT¢;
right: ¥, ' " " """ [0,1] = R.

In this example, we have that u € H?(Q), so that Theorem 6.6(ii) suggests an experimental
convergence rate of about O(h}) = O(Ny), where Ny = dim(S5" (Th,)) +dim(L2(S,€)), k €N,
for the discrete primal-dual total errors (c¢f. (6.4)), which are equal to the discrete primal-dual gap
estimators (cf. (6.1)), i.e., we expect (c¢f. Theorem 6.6(i))

p%,omhk (H;LT];U7 H;Ltkz) = pga}xhk( ;LT];U7 H;Ltkz) = O(hi) = O(Nk) .

An initial triangulation T, , ho = V/2, is constructed by subdividing the unit square § along its
diagonal from (0,0) " to (1,1)7 into two triangles. Refined triangulations Ty, , k = 1,...,7, where
hit1 = ’12—’“ for all k=1,...,7, are obtained by applying the red-refinement routine (cf. [44]).

For the resulting series of triangulations 7, , k = 1,...,7, we apply the primal-dual active set
strategy (cf. Algorithm 7.1) to compute the discrete primal solution upt € Ki k=1,...,7, the
discrete Lagrange multiplier Xf]}; € EO(S,I;CC), k=1,...,7, and, subsequently, resorting to (5.17),

the discrete dual solution z,rli € K;Z’*, k=1,...,7. Then, we compute the error quantities
tot .__ 2 cr rt
€k = Ptot,hy (Hhkuv Hhkz) )
gap .__ 2 cr rt
ex = Paap hy M u, L 2) k=1,...,7. (7.4)
A.7|2 ( cr o TI0t )_ 2 ( cr o It )|
€k = |Prot,hy, Lp, Wy Ly, 2 Pgap,hy Lp, Ws Ly 215

For determining the convergence rates, the experimental order of convergence (EOC), i.e.,
_ log(ex) — log(ex—1)
log(hk) — log(hx—1)’

where, for every k =1,...,7, we denote by e, either ;"

EDCk(ek)

k=1,...,7,

tot A

, e, or ey, respectively, is recorded.
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In Figure 3, we report the expected optimal convergence rate of EOCy(ei°") ~ EOCk(e5™?) = 2,
k=1,...,7, i.e., an error decay of order O(h3) = O(Ny), k =1,...,7. In addition, we observe
that the a priori error identity in Theorem 6.6(i) is asymptotically satisfied. More precisely, for the
error between the discrete primal-dual total error (¢f. (6.4)) and the discrete primal-dual gap esti-

mator (cf. (6.1)), we report a convergence rate of about EOCk () ~ 3.7,k = 1,...,7, i.e., an error
decay of order O(h}7) = O(N®), k= 1,...,7, which is the quadrature error involved in the
computation of the quasi-interpolants 1" u € K", k=1,...,7, and IT}} 2 € K;Z’*, k=1,...,7.
v SR I35t € (£(Ti))?
0.81
0.6
0.4
02 _ 06
0.08
&
—0.2
Coa 04
—0.6
0.21
02 0.4 09 0.04 = - — ’ PP
Re, 06 08 ' 0.0 10

10 00

Figure 2: [eft: discrete primal solution uj. € K}, where red stars mark sides S € T, with
Thyuf” |5 > 0; right: (local) L?-projection (onto (£L°(Ty,))?) of discrete dual solution z} € K};Z*,
where red squares mark sides S € Ty, with 2}’ -n|s > 0. We find that 2}’ -n 7, uf” = 0 a.e.onTc.

107"
1
1072_
[ "\ Tl
= M \“\
£ 1077 == 1 T
= L \\\ \.
107: .\\\
[ 1.85
1075 - pog, (050,117 2) .-
@~ 1ap s, (7w, I} 2)
10-6L @ hapa, (5,0, T52) — o, (50 T 2) e
T 1 11 11 (N 11

Number of degrees of freedom — N}, = dim (S5 (Th,)) + dim(ﬁO(S,ff)))

Figure 3: Logarithmic plots of the experimental convergence rates of the error quantities (7.4).

We observe the experimental orders of convergence EOCk(ef°") ~ EOC,(ef™) ~ 2, k =1,...,7,

and EOCk(ef) ~ 3.7, k=1,...,7.
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7.3  Numerical experiments concerning a posteriori error analysis

In this subsection, we review the theoretical findings of Section 4.

More precisely, we employ the local refinement indicators ngap i KX K o L2(re) [0, 4+00),
T € Ty, where

ey =y e K [y-ne L*To)},

induced by the primal-dual gap estimator (¢f. (4.1)), foreveryv € K,y € K;;kr,LEL2(Fc)7 and T € Ty,
defined by

MNap.7(v,9) = 5[ Vo = ylI7 + (y - n,v = Xorare , (7.5)
in an adaptive mesh-refinement scheme. The definition of the local refinement indicators (cf. (7.5))
is motivated by the representation of the primal-dual gap estimator (cf. (4.1)) in Lemma 4.1.
The numerical experiments are based on the following adaptive algorithm:

Algorithm 7.3 (AFEM). Let estop > 0, 6 € (0,1), and To an initial triangulation of ). Then,

for every k € NU {0}

(*Solve’) Compute the discrete primal solutwn uy € K" and the discrete dual solution 27t K” *
Post- process uy € Ki° and 2 E K” * to obtain a conforming apprommatzons uy, € K
and z}! € K* of the pmmal solutzonu € K and the dual solution z € K*, respectwely,

(’Estimate’) C’ompute the resulting local refinement primal-dual indicators {nZ, T(uhk 2 Ve, -
If n2,, (@i, Z;t ) < esrop, then STOP; otherwise, continue with step ("Mark’);

(’Mark’) Choose a minimal (in terms of cardinality) subset My, C Tp, such that

E 2 —C 2 E
ngap,T(uhkﬂzhk) >0 ngap T(uhkazhk)
TEth TE'T;”C

(’Refine’)  Perform a conforming refinement of Tp, to obtain T, ., such that each element
T € My, is ‘refined” in Tp, . Increase k — k+1 and continue with step ("Solve’).

Remark 7.4 (Implementation details). (i) The discrete primal solution uj, € K" and the
discrete Lagrange multiplier chz:; € EO(S}:S) in step ("Solve’) are computed using the primal-
dual active set strategy (cf. Algorithm 7.1) for the parameter o = 1;

(i) The computation of the discrete dual solution in step ("Solve’) is based on the reconstruction
formula (5.17). Note that z;' € K* if and only if f = fn, € L0(Th,) and g = gn, € EO(S;:S);

(11) If X|r pure EEI(S,I;;J US,I;S), i.e., up EL‘l(S,I;kD) then as an admissible approzimation uj, € K
in step ("Solve’), we employ a contact boundary modified node-averaging quasi- mterpolant

i.e.,
Up, = Z {up, }v o € K,
uENhk
Wlhk(,,)) Yore, w) (Wi IT)(¥) ifreQUTy,
where {uj) }, = { max {X(V)» ST ) T, () (UZUT)(V)} fvele,
up(v) ifvelp,

where (u)vens, © S*(Thy,) denotes the shape basis of S'(Th,) = L (Th,) N H' () and, for
every v € Ny, , we denote by Ty, (v) :={T € Tp, | v € T} the set of elements containing v;
(iv) By the primal-dual gap identity (cf. Theorem J.5), the stopping criterion in step ('Estimate’)
guarantees accuracy of uy, € K and z” € K* in terms of the primal-dual total error (cf.
(4.4) with Lemma 6.3), i.e. ptot(u?,?ﬂ) = ngap(ﬂfﬁ,zhk) < estop n step ('Estimate’).
(i) If not otherwise specified, we employ the parameter 6 = = in step ("Mark’).
(ii) To find the set Mp, CTp,, in step ("Mark’), we resort to the Dérfler marking strategy (cf. [21]).
(i1i) The (minimal) conforming refinement of Tp, with respect to My, in step (‘Refine’) is
obtained by deploying the red-green-blue-refinement algorithm (cf. [15]).
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7.3.1  FExample with unknown primal and dual solution

In this example, let Q := (—1,1)%, T¢ = (—1,1) x {=1}, T'p == ((—1,1) x {1H U ({1} x (0,1))
(cf. Figure 4(left)), i.e., Ty :=0Q\(CpUT¢), f=-1€ L?(Q), g=0€ L*(T'x), and x € H}(2)
with x(z) :=min{1(|z1|—1),0} for all z = (21, 22) " €T¢. In this case, the primal solution u € K
is not known and since the Dirichlet part I'p and the Neumann part I'y touch in (1,0)7 with
interior angle 7 (cf. Figure 4(left)), it cannot be expected to satisfy u € H?(Q), so that uniform
mesh refinement is expected to yield a reduced error decay rate compared to the quasi-optimal

linear error decay rate.

Algorithm 7.3 refines the mesh towards the contact set I'c and (1,0)7 (¢f Figure 5),
where we expect a singularity. In Figure 4(right), one finds that uniform mesh refinement
(i.e., @ = 1 in Algorithm 7.3) yields the reduced convergence rate hy ~ Nk_%, k=20,...,4,
while adaptive mesh refinement (i.e., # = 3 in Algorithm 7.3) yields the optimal conver-

gence rate h2 ~ N, ', k=0,..., 20.

1.0 (uniform, § = 1)
10-! ‘\‘\“;\l‘ W ngap (Ui 25)
0.6 I'p l“
Iy e
—2
0.5 X E 10
0 ) (1,074
—0.29
1073
— 0.6 I (adaptive, § = %)
10-1- @ néap(ﬂ?ﬁ-,zﬁi)
EEEEEEEEN W i
0.6 0.2 0.2 0.6 1.0 Number of degrees of freedom — Ny, = dim(S5" (T, ) + dim(ﬁ“(S,I:;"))
Figure 4: left: Q, Tc, I'p, T'x, and (1,0)"; right: primal-dual gap estimator néap(ﬂﬁz,z};ﬁ) for
k=0,...,20, when employing adaptive mesh refinement (i.e., § = % in Algorithm 7.3), and for
k=0,...,4, when employing uniform mesh refinement (i.e., # =1 in Algorithm 7.3).
1.01 g
hy, 25, € (£9Thy))?
R
0.5
£ 0.0
—0.5
—1.01
—-1.0 =05 0.0 0.5 1.0
RCl

Figure 5: left: discrete primal solution uj’ € K" ; MIDDLE: discrete Lagrange multiplier

X7 e EO(S}I;CS); right: (local) L?-projection of the discrete dual solution z;’ € K|

rt,%
his *
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A. APPENDIX

In this appendix, we prove a lifting lemma that for a given element-wise constant vector
field, a given element-wise constant function, and a given side-wise constant function defined on
Neumann sides, jointly satisfying a compatibility condition, provides a Raviart—Thomas vector
field whose (local) L2-projection coincides with the element-wise constant vector field, whose
divergence coincides with the element-wise constant function, and whose normal traces coincide
with the side-wise constant function on Neumann sides.

Lemma A.1 (lifting). Let 7, € (L°(Tn))%, fn € L%(Th), and gn, € LO(S}~) be such that for
every vy € SBCT(Th) with wpvp, = 0 a.e. on I, there holds the compatibility condition

Un> Vavn)o — (fas non)a — (gn, mon)ry = 0. (A1)
Then, the vector field y, € (L1(Tx))? defined by
Yp =Ty — %('de —idgae)  a.e. in ), (A.2)
satisfies yn, € RT°(Ty) and
Myyn =75, a.e. in ), (A.3)
divy, = —fn  a.e. in ), (A.4)
Yn* N = gn a.e. on 'y . (A.5)

Proof. From the definition (A.2), it follows directly that (A.3) is satisfied. Since, due to |T'p| > 0,
div: RT°(Ty) — LO(Ty) is surjective, there exists g, € RT°(T;,) such that divyy, = —fy, a.e. in Q.
Then, using the discrete integration-by-parts formula (2.11) and (A.1), for every v, € S5 (Th)
with mpv, = 0 a.e. on I'y UL, we find that

(In¥n, Vion)o = —(divys, pon)o
= (fn, Ipvn)e (A.6)
= (Yn> Vavn)a -
Using (A.3) in (A.6), for every v, € S5 (Th) with 7,v, = 0 a.e. on Ty UT¢, we arrive at
(Yn — Un, Vivn)o = (Upyn — UpYn, Vavr)o = 0. (A7)

On the other hand, due to div(y, —Jx) = 0 in T for all T € Ty, we have that y;, — gn € (L°(7T5))<.
By (A.7) and the discrete Helmholtz—Weyl decomposition (cf. [5, Sec. 2.4]), we conclude that

Yn — @\h S ker(div|RTo(7—h)) s

and, thus, y, € RT(T5) with (A.4). In addition, for every vy, € S5 (T5,) with m,v), = 0 a.e. on T'c,
the discrete integration-by-parts formula (2.11) and (A.1) yield that

(yn - nymhon)ry = (pyn, Vior)a + (divyn, Hyon)o
= (Un> Vron)a — (o Iavn)a (A.8)

= (gn, ThUL)T y -

Thus, choosing v, = ¢g for all S € S}I:N in (A.8) and exploiting that 7w, pg = x g, for every S € S}:N,
we find that (A.5) is satisfied. O
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