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Abstract

We are interested in the optimization of convex domains under a PDE constraint. Due to the
difficulties of approximating convex domains in R3, the restriction to rotationally symmetric
domains is used to reduce shape optimization problems to a two-dimensional setting. For the
optimization of an eigenvalue arising in a problem of optimal insulation, the existence of an
optimal domain is proven. An algorithm is proposed that can be applied to general shape opti-
mization problems under the geometric constraints of convexity and rotational symmetry. The
approximated optimal domains for the eigenvalue problem in optimal insulation are discussed.

1. Introduction

Solvability of shape optimization problems relies, among other factors, on strong constraints on
the geometry of the admissible domains. Since we minimize over shapes, no topology is readily
available. The restriction to classes of convex domains appears attractive, since the compactness
results available for convex domains let us avoid more general topological frameworks. For
corresponding analytical details we refer to (Bucur and Buttazzo 2004), (Henrot and Pierre
2006), (Van Goethem 2004), (Yang 2009), (Bucur 2003) and (Bucur and Giacomini 2016).
Therefore, we restrict the shape optimization to open, convex and bounded domains.

However, numerical approximation of convex domains is difficult in higher dimensions. In-
deed, for conformal P1 finite elements we can not guarantee that a convex function can be
approximated consistently (c.f. Choné and Le Meur 2001), and with simple examples we can
show, that the nodal interpolant of a convex function is not necessarily convex itself, for such an
example see (Aguilera and Morin 2009, Figure 2.1). To approximate convex functions, we need
for example higher order conforming finite elements (c.f. Wachsmuth 2017), a weaker definition
for convexity tailored to finite elements (c.f. Aguilera and Morin 2009), a geometric approach
as in (Lachand-Robert and Oudet 2005) or spherical harmonic decomposition (c.f. Antunes and
Bogosel 2018). Since the approximation of convex domains in R3 has certain similarities to the
approximation of convex functions in R2, we expect related difficulties. Therefore, we restrict
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2 Rotationally Symmetric Domains and Dimensional Reduction 2

our domains to a class of rotationally symmetric domains, which allows us to reduce the prob-
lem to a two-dimensional setting, for which the boundary is a convex curve. The dimensional
reduction also allows for a higher resolution in the numerical approximation.

We are interested in the optimization under a PDE constraint, in particular in optimizing
an eigenvalue occurring in a problem of optimal insulation. For more details in PDE constraint
optimization we refer to (Hinze et al. 2009).

A heat conducting body is to be coated by an insulating material in such a way to get the
best insulating properties. This translates to the non-linear eigenvalue problem

λm = min

{
Jm(u) :=

∫
Ω
|∇u|2 dx+

1

m

(∫
∂Ω
|u|ds

)2

:

∫
Ω
|u|2 dx = 1

}
.

From (Bucur, Buttazzo, and Nitsch 2017) we expect that in general the distribution of insulating
material is asymmetric and that the ball is not optimal, in contrast to what we might expect
from isoparametric inequalities for eigenvalues of the Laplacian.

The numerical framework for the approximation of the eigenvalue from (Bartels and Buttazzo
2019) confirmed the expected asymmetry in two dimensions. Our goal is to perform the shape
optimization for convex, rotationally symmetric domains in R3. The numerical experiments in
Section 6 confirm, that the constraint to rotational symmetric domains and eigenfunctions still
allows for a break in symmetry.

We focus on the existence of an optimal domain and the meaningful numerical approxima-
tions provided by the proposed algorithm. We will discuss the stability of the numerical scheme
shortly, but a detailed examination lies beyond the scope of this work. In the proof of existence
the geometric constraints, especially the convexity, play key roles.

First, in Section 2 we describe the dimensional reduction obtained from the rotational sym-
metry. Then we consider the shape optimization for the eigenvalue problem arising in the
problem of optimal insulation. We prove existence of an optimal domain in Section 3 and derive
the two-dimensional problem and its numerical approximation and comment on the stability of
the numerical scheme in Section 4. In Section 5 we establish a framework for the numerical
approximation of optimal convex domains described in (Bartels and Wachsmuth 2020) but ad-
justed for rotational symmetry, which can be applied to different shape optimization problems
as well. The numerical experiments are evaluated in Section 6.

2. Rotationally Symmetric Domains and Dimensional Reduction

We consider a shape optimization problem that, for a given open and bounded domain Q̂, density
function j, volume M and state equation ϕ̃, seeks a domain Ω which solves

Minimize

∫
Ω
j(x, u(x),∇u(x)) dx

w.r.t Ω ⊂ Q̂ ⊂ R3 open, convex and rotationally symmetric and

∫
Ω

dx = M (P)

s.t. u ∈ H1(Ω) solves a certain state equation ϕ̃(u) = 0.

Here, the rotational symmetry is to be understood w.r.t. the x3-axis. We assume that Q̂ and
j are rotationally symmetric as well. Furthermore, we assume, that the solution u ∈ H1(Ω) of
the state equation is rotationally symmetric, based on analytic properties or results of numer-
ical experiments of the problems under consideration. For example, in the eigenvalue problem
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considered in Section 3, previous experiments suggests that the eigenfunctions of the ball are
rotationally symmetric, c.f. (Bartels and Buttazzo 2019).

We use the rotational symmetry to reduce the problem to a two-dimensional setting. For
this, we first use a transformation to cylindrical coordinates and then neglect the angle due to it
being constant because of the rotational symmetry. For one half of the cross section Q ⊂ R2 of
Q̂ we define Φ : Q× [0, 2π)→ Q̂ as the transformation from cylindrical coordinates to Cartesian
coordinates Φ(r, z, φ) = (r cosφ, r sinφ, z) = (x1, x2, x3).

From now on, we only consider rotationally symmetric functions, i.e. functions from the
space

H1
sym(Q̂) := {û ∈ H1(Q̂) : ∂φû = 0}.

Since the set of rotationally symmetric functions is closed under L1-convergence, H1
sym(Q̂) with

the H1-norm is also a Hilbert space. For a function û ∈ H1
sym(Q̂) we then associate the dimen-

sionally reduced function as

u(r, z) =
1

2π

∫ 2π

0
û ◦ Φ(r, φ, z) dφ for (r, z) ∈ Q.

We show that u is also weakly differentiable with regard to the variables (r, z). For a test
function ϕ ∈ C∞c (Q,R2) we have

−
∫
Q
u divϕdx = −

∫
Q

1

2π

∫ 2π

0
(û ◦ Φ)(r, φ, z) divϕdφd(r, z)

=

∫
Q

1

2π

∫ 2π

0
DΦr,z(r, φ, z)

>∇û(Φ(r, φ, z)) · ϕdφ d(r, z) =

∫
Q
∇u · ϕd(r, z)

with DΦr,z(r, φ, z) the Jacobi matrix with respect to r and z and the weak derivative

∇u =
1

2π

∫ 2π

0
DΦr,z(r, φ, z)

>∇û(Φ(r, φ, z)) dφ.

We take a closer look at the relation between the functions û of H1
sym(Q̂) and their cor-

responding dimensionally reduced functions u : Q → R. To this end, we define the image of
H1

sym(Q̂) under the dimensional reduction as V .
Due to the coordinate transformation it is natural to endow V with the pullback norm. This

leads to the weighted inner product defined by (v, w)r =
∫
ω vwr d(r, z) and the induced norm

‖v‖L2
r(Q) =

√
(v, v)r. With this norm, we now define the space

H1
r (Q) = {u : Q→ R is weakly differentiable and ‖u‖H1

r
<∞} (1)

with the norm ‖v‖2H1
r (Q) = ‖v‖2L2

r(Q) + ‖∇v‖2
L2
r(Q,Rd)

. Due to the weak differentiability of the

reduced functions and the definition of the weighted norm, we have V ⊂ H1
r (Q). Our goal now

is to show that we can identify this space with H1
sym(Q̂), i.e. that V = H1

r (Q). For this we
show, that for every function u ∈ H1

r (Q) its rotational extension û defined by

û(x1, x2, x3) = u(|(x1, x2)|, x3) for (x1, x2, x3) ∈ Q̂ (2)

belongs to H1(Q̂). Due to the construction of the weighted norm it is only left to show that û
is also weakly differentiable.
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We define Q̂ε = Q̂ ∩ {x ∈ Q̂ :
√
x1 + x2 > ε}. For ε > 0 the coordinate transformation Φ

restricted to Φ−1(Q̂ε) is differentiable, therefore û is weakly differentiable on Q̂ε. We have for a
test function ϕ̂ ∈ C∞c (Q̂,R3)∫

Q̂
û divϕ̂dx =

∫
Q̂\Q̂ε

û divϕ̂dx−
∫
Q̂ε

∇ûε · ϕ̂dx+

∫
Γε

ûϕ̂ · n ds,

with Γε = ∂Q̂ε\∂Q̂ and ∇ûε the weak gradient of the û restricted to Q̂ε. Since û ∈ L2(Q̂) and
ϕ̂ ∈ C∞c (Q̂,R3) the first term vanishes as ε→ 0. We then define ∇û as the weak limit of ∇ûε.
We claim that ∇û is the weak derivative of û. This is the case if the boundary term vanishes as
ε→ 0.

To show this we use that Γε is a surface of revolution to deduce that for a function ψ̂ ∈
H1

sym(Q̂) we have
∫

Γε
ψ̂ · n ds = 0. We can then derive the following estimate:(∫

Γε

ûϕ̂ · n ds

)2

=

(∫
Γε

û(ϕ̂− ϕ̂(0, z)) · n ds

)2

≤
∫

Γε

û2 ds

∫
Γε

((ϕ̂− ϕ̂(0, z)) · n)2 ds

≤
∫

Γε

û2 ds

∫
Γε

(ε‖∇ϕ̂‖
L∞(Q̂)

)2 ds ≤ c(ϕ̂)ε2

∫
Γε

1 ds

∫
Γε

û2 ds

≤ c(ϕ̂, Q̂)ε3

∫
Γε

û2 ds

(3)

since ϕ̂ ∈ C∞(Q̂,R3).
It can be checked that the constants appearing in the trace inequality for the boundary Γε

depend on the parameter ε−1, i.e.

‖û‖2L2(Γε) ≤ cε
−1‖û‖2

H1(Q̂\Q̂ε)
.

This follows by deriving the trace estimates with regard to the weighted norms, which involves
a derivative of the factor r, so that an upper bound for r−1 needs to be estimated.

With this, we deduce from the estimate (3) that the boundary term
(∫

Γε
ûϕ̂ · n ds

)2
vanishes

as ε→ 0.
This means, that for every function u ∈ H1

r (Q) the corresponding rotated function û : Q̂→ R
satisfies û ∈ H1

sym(Q̂), such that

‖û‖2
H1(Q̂)

= 2π‖u‖2H1
r (Q).

For rotationally symmetric sub-domains Ω ⊂ Q̂ we denote the transformed and dimensionally
reduced domain with ω ⊂ Q, which is one half of the cross section. The domain ω now has
the boundary ∂ω = Γaxis ∪ Γout, where Γaxis corresponds to the axis of rotation and Γout to the
transformed boundary of the initial domain. In reverse, for a domain ω ⊂ Q, we will denote its
corresponding rotated three dimensional domain by R(ω) ⊂ Q̂.

Lastly we shortly comment on the weak formulations of the reduced state equations. In
particular for the Poisson problem

−∆û = f in Ω, û = 0 on ∂Ω (4)

the reduced formulation is given by

− div(r∇u) = rf in ω, u = 0 on Γout. (5)
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This leads to the weak formulation for which a rotationally symmetric solution u ∈ H1
r (ω) solves∫

ω
∇u · ∇φr d(r, z) = −

∫
ω

div(r∇u)φ d(r, z) =

∫
ω
fφr d(r, z)

for all test functions φ ∈ C1
Γout

(ω). In particular, no boundary condition arises on Γaxis.

3. Existence and Numerical Approximation of Optimal Domains

For an eigenvalue problem arising in a model of optimal insulation, we now discuss how to
establish existence of an optimal domain.

We look at the non-linear eigenvalue problem arising in optimal insulation and follow (Bucur,
Buttazzo, and Nitsch 2017) closely for this section. We try to surround a heat conducting body
with an insulating material to get the best insulating properties, i.e. to minimize the heat decay
rate, which is given for the thickness of the insulating layer ` : ∂Ω → R+ by the principal
eigenvalue of the corresponding differential operator

λ` = inf

{∫
Ω
|∇u|2 dx+

∫
∂Ω
`−1u2 ds :

∫
Ω
u2 dx = 1

}
. (6)

The boundary term corresponds to Robin-type boundary conditions which result from a model
reduction in which the thickness ` with total mass m is proportional to the heat flux through the
boundary. With Hölder’s inequality we can see that for a fixed u ∈ H1(Ω) the optimal thickness
` is given by

`(z) =
m|u(z)|∫
∂Ω |u|ds

.

Thus, the optimal insulation can be obtained from a solution of the eigenvalue problem

λm = min

{
Jm(u) =

∫
Ω
|∇u|2 dx+

1

m
‖u‖2L1(∂Ω) :

∫
Ω
|u|2 dx = 1

}
. (7)

We note, that the eigenfunction u can be chosen to be non-negative. The existence of this
eigenfunction follows with the direct method of the calculus of variations.

Remark 3.1. With the transformation formula we can infer the following scaling property for
the eigenvalue. For t > 0

t−2λm(Ω) = λmtd(tΩ).

This is the same scaling property as known from the eigenvalues of the Dirichlet Laplacian or
the Neumann Laplacian (c.f. Henrot 2017), as long as the mass of insulating material is scaled
accordingly.

Before proving existence and deriving the dimensionally reduced problem, we remark on the
rotational symmetry of the eigenfunction u. In (Bucur, Buttazzo, and Nitsch 2017) it was proven,
that for a ball and for m small enough, the eigenfunction is not radial. However, experiments in
(Bartels and Buttazzo 2019) indicate that a rotationally symmetric solution exists. We adapt
the optimization problem to only search for an eigenfunction among rotationally symmetric
functions, i.e. we look at the minimization problem

λsym
m = min

{
Jm(u) =

∫
Ω
|∇u|2 dx+

1

m
‖u‖2L1(∂Ω) :

∫
Ω
|u|2 dx = 1, u rotationally symmetric

}
.
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This restriction may lead to larger eigenvalues and therefore to a larger optimal value for the
shape optimization problem. However, even with the additional constraint, the numerical results
of the dimensionally reduced problem have been consistent with the results we expect from the
three-dimensional shape optimization problem, see Section 6.

The corresponding shape optimization problem for a fixed mass m > 0 is defined as follows:

Minimize λsym
m (Ω) = Jm(u,Ω) =

∫
Ω
|∇u|2 dx+

1

m

(∫
∂Ω
|u|ds

)2

w.r.t Ω ⊂ Q̂ ⊂ R3 open, convex and rotationally symmetric and |Ω| = M (P̂m)

s.t. u ∈ H1
sym(Ω) is an eigenfunction to λsym

m (Ω) with ‖u‖L2(Ω) = 1

Here Q̂ ⊂ R3 is an open, rotationally symmetric and bounded hold-all domain. The condition
that u is an eigenfunction is equivalent to the minimality of u ∈ H1

sym(Ω) with ‖u‖L2(Ω) = 1 for
Jm( ·,Ω) for a fixed domain Ω.

To prove existence, we adapt the strategy from (Bartels and Wachsmuth 2020). However, due
to the lack of homogeneous Dirichlet boundary conditions, which allow for trivial extensions in
H1(Q̂), we need to incorporate a convergence result for special functions of bounded variations.
This approach is often used for eigenvalue problems with a Robin-type boundary condition (see
e.g. Bucur and Giacomini 2016), since the boundary term occurring in the eigenvalue problem
allows for the use of the compactness results of SBV .

Proposition 3.2. There exists an optimal pair (Ω, u) for (P̂m).

Proof: We can select a minimizing sequence (Ωn, un)n∈N of convex domains Ωn and eigenfunc-
tions un ∈ H1

sym(Ωn) with ‖un‖L2(Ωn) = 1 for n ∈ N. After passing to a subsequence we

find an open, convex and rotationally symmetric domain Ω ⊂ Q̂, such that χΩn → χΩ in
L1(Q̂), see (Buttazzo and Guasoni 1997, Lemma 3.1). Therefore we also maintain the volume
|Ω| = M . Furthermore, we use that we can chose un to be non-negative. After trivially extend-
ing un ∈ H1

sym(Ωn) to ũn ∈ SBV (Q̂), we have for all n, we can find a suitable bound C < ∞
such that

‖ũn‖L2(Q̂)
= 1,

‖∇ũn‖L2(Q̂,R3)
≤ C.

Here, ∇ũ refers to the piecewise weak gradient rather than the weak gradient. From (But-
tazzo and Guasoni 1997, Theorem 2.6) we can deduce that the measure |DχΩn | coincides with
HN−1x∂Ωn. Since the functions ũn are weakly differentiable on Ωn and Q̂\Ωn, we can therefore
identify the jump set of ũn with the boundary of Ωn. The eigenfunctions un are chosen to be
non-negative and ũn = 0 on Q̂\Ωn. Since un is a minimizing sequence of eigenfunction, we can
then bound the boundary terms∫

Jũn

ũ+
n ν

+ − ũ−n ν− ds =

∫
∂Ωn

ũn ds =

∫
∂Ωn

|ũn| ds ≤
√
mJm(un,Ωn) ≤ C

for the unit normals ν+, ν− along the jump sets Jũn , see e.g. (Attouch, Buttazzo, and Michaille
2014, Example 10.2.1).

Since Dv(Q̂) =
∫
Q̂
∇v dx+

∫
Jv∩Q̂ v

+ν+−v−ν− ds for all v ∈ SBV (Q̂), the sequence (ũn)n∈N

is bounded in SBV (Q̂), so that we can use the compactness theorem for special functions of
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bounded variations (Bucur and Giacomini 2016, Theorem 2.1) to find a function ũ ∈ SBV (Q̂),
s.t.

Dũn ⇀
? Dũ in the sense of measures (8)

ũnk
→ ũ strongly in L1(Q̂) (9)

∇ũnk
⇀ ∇ũ weakly in L2(Q̂,RN ) (10)

HN−1(Jũ) ≤ lim inf
n→∞

HN−1(Jũnk
). (11)

Due to the boundedness of ũn with respect to the L2-norm, we further have that

ũnk
⇀ ũ weakly in L2(Q̂). (12)

This implies with χΩn → χΩ in L1(Q̂) and (9), that ũ|
Q̂\Ω = 0.

Next we show, that u := ũ|Ω ∈ H1(Ω). Let φ be a test function from C∞c (Ω). Then for all
n ≥ N with N sufficiently large we have, due to the convexity, that φ ∈ C∞c (Ωn) (c.f. Buttazzo
and Guasoni 1997, Lemma 4.2) and∫

Ω
u divφ dx =

∫
Q̂
ũ divφ dx = lim

n→∞

∫
Q̂
ũn divφ dx = lim

n→∞

∫
Ωn

ũn divφ dx

= lim
n→∞

−
∫

Ωn

∇ũn · φ dx = lim
n→∞

−
∫
Q̂
∇ũn · φ dx = −

∫
Ω
∇u · φ dx,

i.e. the weak gradient coincides with the approximate gradient on Ω.
The rotational symmetry of the eigenfunctions (un)n∈N is preserved under L1-convergence,

and therefore u ∈ H1
sym(Ω).

Because u ∈ H1(Ω) and ũ|
Q̂\Ω = 0, we have that Jũ ⊂ ∂Ω. Because of ũ|

Q̂\Ω = 0, we have

for the trace on ∂Ω\Jũ that ũ = 0. This results in
∫
Jũ
ũdHd−1 =

∫
∂Ω udHd−1. Then (8) and

(10), and (Buttazzo and Guasoni 1997, Theorem 2.6) imply∫
∂Ωn

un ds =

∫
Jun

un dHd−1 →
∫
Ju

udHd−1.

By the assumption that the eigenfunctions un are non-negative this means that

‖un‖L1(∂Ωn) → ‖u‖L1(∂Ω). (13)

To show that u 6= 0, we follow an argument in (Bucur and Giacomini 2010, Proposition 1)
and show that un → u in L2(Q̂). We note that for the minimizing sequence (un)n∈N we have
that u2

n ∈ SBV (Q̂). This is due to ‖un‖L2(Q̂)
= 1 and the total variation

D(u2
n)(Q̂) =

∫
Q̂

2un∇un dx+

∫
Jun∩Q̂

u2
n ds ≤ c

(∫
Q̂
|∇un|2 dx+

∫
Q̂
u2 dx

)
+

∫
Jun∩Q̂

u2
n ds.

Using results from (Payne and Weinberger 1960, Equations (1.5) and (1.6)), we can bound
the constant of the trace inequality for the functions (un)n∈N independently of Ωn, so that∫

∂Ωn

u2
n ds ≤ C(Q̂)‖un‖2H1(Q̂)

. (14)
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Due to geometric constraints of the domains the constant C(Q̂) can indeed be chosen indepen-
dently of Ωn: In (Payne and Weinberger 1960) the divergence theorem is used for a fixed convex
domain Ω′ with the vector field fΩ′(x) = x − xΩ′ for a point xΩ′ ∈ Ω′. For this vector field we
have fΩ′ .ν ≥ k(Ω′) > 0 a.e. on ∂Ω′, where ν is the outer unit normal vector on ∂Ω′. Using
the convexity, boundedness and fixed volume of the admissible domains, we can find uniform
bounds on the radius of an incircle and the diameter, c.f. the Steinhagen inequality, (Steinhagen
1922), and (Eggleston 1958, Theorem 50). Thus, we can choose xΩ′ as a center of an incircle.
Consequently, the mentioned bounds can be used to get a lower bound for k(Ω′) which is inde-
pendent of Ω′ and this leads to the constant C(Q̂).
With this trace estimates, since since (un)n∈N is a minimizing sequence, the sequence (u2

n)n∈N is
bounded in BV (Q̂) and admits a subsequence, which converges weakly to a function v in BV (Q̂).
Especially, since Q̂ is bounded, due to the compact embedding of BV (Q̂) into L1(Q̂), we have
u2
n → v in L1(Q̂). Due to the assumed non-negativity of u, this results in un →

√
v strongly

in L2(Q̂). With (12) and the uniqueness of the limit, this results in the strong convergence of
un → u in L2(Q̂).

We can now use (10), (12) and (13) to show, that u satisfies the variational eigenvalue
equation for the eigenvalue

λsym
m (Ω) = lim inf

n→∞
λsym
m (Ωn), (15)

which proves, that (Ω, u) is an admissible pair. The optimality of the pair follows from (15),
since (Ωn, un)n∈N was chosen as an infimizing sequence.

4. Discretized Reduced Problem

Next, we derive the dimensionally reduced problem and define the numerical scheme and point
out technical difficulties in stability. Lastly, we address how this scheme can be applied to other
optimization problems

4.1. Dimensionally Reduced Problem

After transformation and dimensional reduction, we obtain the equivalent minimization problem

Minimize λrm(ω) = Jrm(u, ω) =

∫
ω
|∇u|2r d(r, z) +

2π

m

(∫
Γout

|u|r ds

)2

w.r.t ω ⊂ Q ⊂ R+ × R open and convex and 2π|ω|r = 2π

∫
ω
r d(r, z) = M (Pm)

s.t. u ∈ H1
r (ω) is an eigenfunction to λrm with

∫
ω
|u|2r d(r, z) = 1

and the rotated domain R(ω) ⊂ R3 is also convex.

We note, that for the distribution ` of insulating material we now have

2π

∫
Γout

`r ds = m and `(z) =
m|u|

2π
∫

Γout
|u|r ds

.

We introduce a regularization for numerical treatment, c.f. Bartels and Buttazzo 2019, and for
ε > 0 we look for a minimizer u ∈ H1

r (ω) with ‖u‖L2
r(ω) = 1 of the differentiable functional

Jrm,ε(u) = ‖∇u‖2r +
2π

m
‖u‖2r,L1

ε(Γout)
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with the regularized norm

‖u‖r,L1
ε(Γout) =

∫
Γout

|u|εr ds with |u|ε =
√
u2 + ε2.

A minimizer satisfies for all v ∈ H1
r (ω) the variational formulation

(∇u,∇v)r +
2π

m
‖u‖r,L1

ε(Γout)

∫
Γout

uv

|u|ε
r ds = λr,εm (ω) (u, v)r . (16)

As ε→ 0 the eigenvalue λrm is approximated using a gradientflow to find a function u ∈ H1
r (ω)

solving (16).
This leads to a regularized version of the shape optimization problem (Pm) depending on

ε > 0, which will be discretized in the next section. The effect of the regularization can be
controlled by using the unconditional uniform estimate 0 ≤ |u|ε − |u| ≤ ε. For more details
on the iterative minimization and discretization we refer to (Bartels and Buttazzo 2019), since
the results carry over to the reduced problem. We will not go into further detail here and only
mention what is necessary to define the discrete shape optimization scheme and discuss aspects
of stability of the discretization and the iterative approximation of the optimal domain.

4.2. Spatial Discretization

Following (Bartels and Buttazzo 2019) we approximate ω with a polyhedral domain ωh and,
given a regular triangulation Th, we define the finite element space

S1(Th) = {vh ∈ C(ωh) : vh|T ∈ P1(T ) for all T ∈ Th} .

Including a quadrature formula we consider the functional

Jrm,ε,h(uh) = ‖∇uh‖2L2
r(ωh) +

2π

m
‖uh‖2r,L1

ε,h(Γout,h)

with the discretized and regularized L1-norm

‖uh‖r,L1
ε,h(Γout,h) =

∫
Γout,h

Ih|uh|εr ds =
∑

z∈Nh∩Γout,h

βz|uh(z)|ε

with the nodal interpolation operator Ih : C(ωh) → S1(Th) corresponding to the nodal basis
functions ϕz ∈ S1(Th) and βz :=

∫
Γout,h

ϕzr ds. The corresponding variational formulation is

given by

(∇uh,∇vh)r +
2π

m
‖uh‖r,L1

ε,h(Γout,h)

∫
Γout,h

uhvh
|uh|ε

r ds = λr,ε,hm (ωh) (uh, vh)r (17)

for all vh, uh ∈ S1(Th).
We can now define the discretized shape optimization problem:

Minimize λr,ε,hm (ωh)

w.r.t. ωh ⊂ R+ × R, Th ∈ Tcusr triangulation of ωh (Pm,h,ε)

s.t. uh ∈ S1(Th) solves (17) and ‖uh‖L2
r(Q) = 1

ωh ⊂ Q is convex and open and 2π|ωh|r = M

and the rotated domain R(ωh) ⊂ R3 is also convex.
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Here, Tcusr is the class of conforming, uniformly shape regular triangulations Th of polyhedral
subsets of R2 with hT /%T ≤ cusr for all elements T ∈ Th with diameter hT ≤ h and inner radius
%T for a universal constant cusr > 0.

We adapt the numerical approximation of the eigenvalue arising in optimal insulation from
(Bartels and Buttazzo 2019) to the dimensional reduced eigenvalue problem. However, the
dimensional reduction makes it difficult to infer the consistency and stability results for the
dimensionally reduced eigenvalue problem and the shape optimization problem.
While we are able to estimate the interpolation error in the weighted norm with the interpolation
error regarding the H1-norm, see e.g. (Bartels 2016, Theorem 3.2) for functions in H1(ω), this
does not provide a sufficient result for functions in H1

r (ω).
The lack of an error estimate using the weighted norm, which is needed for the Γ-convergence
of the discrete functionals, c.f. (Bartels and Buttazzo 2019, Corollary 4.2), poses additional
difficulties for the convergence analysis here.

There are some results for interpolation estimates regarding weighted norms, such as (El
Hatri 1987),(Atamni, El Hatri, and Popivanov 2001),(Nochetto, Otárola, and Salgado 2016) or
(Antil, Otárola, and Salgado 2018). From (El Hatri 1987, Theorem 4.1) for example we can
derive for a uniformly shape regular family of triangulations Th the estimate

|v − Ihv|Hm
r (K) ≤ Ch2−m|v|H2

r (K)

for all v ∈ H2
r (K), and a triangle K in Th of ωh and the nodal interpolation operator Ih.

However, this estimate is not sufficient to get the corresponding results with respect to the
weighted norm, since it provides no estimates for the interpolation for the trace with respect to
the weighted norm.

4.3. Application to other shape optimization problems

The shape optimization problem as described in the previous sections can be applied to other
suitably posed problems of the form (P). For a minimizing sequence (Ωn, un), the sequence of
trivially extended functions un should be bounded in SBV (Q̂) or H1

0 (Ωn). In order to use the
compactness results of SBV , the jumps of the minimizing functions need to be controlled. In
the eigenvalue problem for optimal insulation this condition is satisfied due to the boundary
term occurring in the eigenvalue which we want to minimize. However, the results from (Payne
and Weinberger 1960) as used to obtain the bound on the trace (14), also guarantee that the
BV -norm is bounded. This means, rather than just using it to prove the strong L2-convergence,
it also allows us to obtain a convergent subsequence for shape optimization problems in which
we have neither a boundary term in the objective value nor a homogeneous Dirichlet boundary
condition.

Furthermore, to guarantee existence of an optimal domain, we need suitable continuity of
the state operator, such that an accumulation pair (Ω, u) of a minimizing sequence, u ∈ H1(Ω)
also solves the state equation in Ω.

The objective functional has to be (weakly) lower semi-continuous (depending on the mode
of convergence of un → u) to guarantee optimality of the limit. Lastly, the consistency and
numerical stability of the discrete scheme has to be guaranteed, for example via strong continuity
properties and density results.

We will see in the next section that the shape optimization algorithm works independently
of the optimization problem itself, i.e. only the objective value and the state equation need to
be implemented specific to the optimization problem.
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5. Iterative Computation of Optimal Domains

We next address the iterative numerical approximation of optimal domains. After dimensional
reduction and spatial discretization, we obtain the following class of shape optimization prob-
lems.

Minimize

∫
ωh

jh((r, z), uh(r, z),∇uh(r, z))r d(r, z)

w.r.t. ωh ⊂ R+ × R, Th ∈ Tcusr triangulation of ωh (Ph)

s.t. uh ∈ S1(Th) solves the respective discrete state equation

ωh ⊂ Q is convex and open and 2π|ωh|r = M

and the rotated domain R(ωh) ⊂ R3 is also convex,

where jh now denotes the discrete transformed density function of (P) and with Tcusr the
class of conforming, uniformly shape regular triangulations Th of polyhedral subsets of R2 with
hT /%T ≤ cusr for all T ∈ Th for a universal constant cusr > 0.

We adopt an approach similar to (Bartels and Wachsmuth 2020), where the admissible
domains are obtained from a discrete deformation of a given convex reference domain. A convex
polygonal domain ωh with a regular triangulation Th is optimized by moving the vertices of the
triangulation. For a piecewise linear deformation field Vh ∈ S1(Th)2 the triangulation of the
updated domain is obtained by a piecewise linear perturbation Tt = I + tVh of the domain. The
vertices of the updated triangulation are given by xi + tVh(xi), i = 1, . . . , N .

Rather than deforming the entire triangulation, we deform the boundary Γout of ωh, and
then generate a triangulation of ωh, to calculate the objective values or to find the deformation
field. Equivalently, we could also say that we add remeshing of the domain to the deformed
triangulations of (Bartels and Wachsmuth 2020). So rather than trying to solve (Ph), we
instead solve the problem as follows.

Minimize

∫
ωh

jh((r, z), uh(r, z),∇uh(r, z))r d(r, z)

w.r.t. Φh ∈ S1(Th(ω̂))2, Th(ωh) ∈ Tcusr a triangulation of ωh

s.t. ‖DΦh‖L∞(ω̂) + ‖[DΦh]−1‖L∞(ω̂) ≤ c
ωh = Φh(ω̂) ⊂ Q is convex and open and 2π|ωh|r = M

the rotated domain R(ωh) ⊂ R3 is also convex

and uh ∈ S1(Th(ωh)) solves the respective discrete state equation.

Here, Th(ωh) and Th(ω̂) are regular triangulations generated to approximate ω and ω̂. The
triangulation Th(ω̂) remains fixed during the optimization. This comes with a higher compu-
tational cost, due to the regular generation of the triangulation. Since the deformation of the
entire triangulation (as in Bartels and Wachsmuth 2020) has often led to a degeneration of the
triangulation and the boundary nodes in the conducted experiments, a frequent generation of a
new triangulation was often necessary in either versions.

The triangulation Th(ωh) was generated by deforming a triangulation of the half-disk, since
it allows for a good approximation of the boundary.

Since the approximation of the optimal domains with the described triangulation seemed
sufficient for the problems for which the optimal domain was already known, only this approach
was used. Whether this causes a geometric bias for the approximated optimal domains was also
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not further investigated. The solvability of the discretized shape optimization with deformed
triangulations is discussed in (Bartels and Wachsmuth 2020).

Furthermore, the boundedness of the admissible domains was also not included as a con-
straint in the implemented code and we did not observe degeneration in the examples under
consideration.

In the following sections we look at the details of the optimization algorithm. In Section 5.1
we shortly introduce the notion of shape gradients. After considering the convexity constraint
in Section 5.2, we look at how to find a suitable deformation field in Section 5.3. In Section
5.4 we state the necessary conditions which determine the step size τ with which to update the
domain.

The implemented code was adapted from the algorithm described in (Bartels and Wachsmuth
2020) and the code used in (Bartels and Buttazzo 2019) for numerical experiments. An imple-
mentable pseudo code is listed in Section 5.5.

5.1. Shape Gradients

In order to find a suitable deformation field which leads to an optimized domain, we first give a
short summary of shape derivatives for the PDE constrained shape optimization problems.

The objective value of the minimization problem is given by the shape functional

J(Ω) =

∫
Ω
j(x, u(x),∇u(x)) dx

for a suitable cost function j and the solution of the state equation u ∈ H1(Ω).
Let Ω ⊂ Q̂ be a fixed open and convex domain. Perturbations of identity Tt = I + tV with

V ∈ C0,1
c (Q̂) lead to the Eulerian derivative of the shape functional

J ′(Ω, V ) = lim
t→0

J(Ωt)− J(Ω)

t

with the deformed domain Ωt = Tt(Ω) and

J(Ωt) =

∫
Ωt

j(x, ut(x),∇ut(x)) dx

where ut ∈ H1(Ωt) is the solution of the state equation in Ωt. The shape derivative can also be
formulated in Hadamard form, i.e. as a function on the boundary of the domain

J ′(Ω, V ) =

∫
∂Ω
gV.n ds

for an appropriate function g. The Hadamard derivative relies on certain regularity properties,
but for finding a suitable descent direction for our optimization problem this is neglected in our
case. For more details on shape derivatives and shape sensitivity analysis we refer to (Henrot
and Pierre 2006) and (Soko lowski and Zolésio 1992).

Both for the representation of the shape derivative on the volume and on the boundary, the
shape derivative is problem-specific. Therefore, we opt to only approximate the shape gradient
on the boundary points of Γout with a difference quotient. This involves a high computational
cost, but allows for different optimization problems to be approximated without having to adapt
the shape derivative. In some numerical experiments for the shape optimzation algorithm this



5 Iterative Computation of Optimal Domains 13

approach has also led to better results in optimization even for most of those problems, in
which the Hadamard derivative was beforehand known and could be approximated directly on
the boundary. The experiments documented in Section 6 were also implemented so that the
shape gradient was approximated using forward algorithmic differentiation, however without
any notable difference in the approximated optimal domains.

5.2. Convexity Constraint

To ensure that the deformed domain ωh is also convex, we need to incorporate a constraint
for the deformation field Vh. This approach follows again (Bartels and Wachsmuth 2020). Let
ωh ⊂ R+ × R be a simply connected polygon and let N be the number of boundary vertices of
ωh on Γout with coordinates xi ∈ R2, i = 1, . . . , N , in counter-clockwise order. It can be seen,
that ωh is convex if and only if the interior angles are less than or equal to π. By using the cross
product, this in turn is equivalent to

Ci(X) := (xi−1
1 − xi1)(xi+1

2 − xi2)− (xi−1
2 − xi2)(xi+1

1 − xi1) ≤ 0 (18)

for i = 2, . . . , N − 1. For the reduced optimization problems to be equivalent to the three-
dimensional problems, we further need to guarantee that the corresponding three-dimensional
rotated domain R(ωh) is also convex. Therefore the interior angles for the nodes on the axis of
rotation (i.e. where Γout and Γaxis intersect) have to be less than or equal to π/2. This leads to
the inequalities

C1(X) := −2x2
1(x2

2 − x1
2) ≤ 0

for i = 1 and for i = N
CN (X) := 2xN−1

1 (xN−1
2 − xN2 ) ≤ 0,

with the argument X representing the vector (x1, . . . , xN ).
The last two inequalities are derived from (18) by using the assumed symmetry of the

corresponding three-dimensional domain.
The convexity of the deformed domain (I + t0Vh)(ωh) is equivalent to Ci(X + t0Vh(X)) ≤ 0.

With a first-order expansion of this quadratic constraint we obtain the constraint

Ci(X) + t0DCi(X)Vh(X) ≤ 0, ∀i = 1, . . . , N.

The constraint on the convexity of the three-dimensional domain will be realized by having
gliding boundary conditions on the nodes lying on the axis of rotation, so that they are only
allowed to move along the axis of rotation and not away from it.
However, for simplicity, the constraint that R(ωh) is convex will be used in the definitions of
the optimization problems, even if the convexity of the three-dimensional domain itself is not
evaluated, only the conditions on the two-dimensional domain.

5.3. Finding the Deformation Field

We follow (Bartels and Buttazzo 2019) to compute the deformation field v from the linear
functional J ′(ω, ·). In order to satisfy a constraint on the volume of the three-dimensional
domain, we incorporate the constraint on the vector field, which relates to the transformed
divergence operator. So, rather than requiring div(v) = 0, we instead search for deformation
fields with r−1div(rv) = 0. In order to satisfy the convexity constraint we have gliding boundary
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condition, i.e. we search for deformation fields v ∈ H1
r,glide(ω)d := {v ∈ H1

r (ω)d : v1 = 0 on Γout}.
This means we find v ∈ H1

r,glide(ω)d and q ∈ L2
r(ω) such that∫

ω
v · w d(r, z) +

∫
ω
∇v : ∇w d(r, z)−

∫
ω
p div(rw) d(r, z) = −J ′(ω,w)∫
ω
q div(rv) d(r, z) = 0

for all (w, q) ∈ H1
r,glide(ω)d × L2

r(ω).
Here, only the bilinear form which pertains to the divergence was transformed, since it turned

out that using the untransformed bilinear form provided better numerical results.
We discretize the system with the Crouzeix–Raviart method, i.e. we discretize L2

r(ω) with
L0(Th), the elementwise constant functions, and H1

r,D(ω) with the non-conforming space

S1,cr
D (Th) = {vh ∈ L∞(ω) : vh|T ∈ P1(T ) for all T ∈ Th

vh continous in xS for all S ∈ Sh
and vh(xS) = 0 for all S ∈ Sh ∩ ΓD}

with the midpoint xS of side S ∈ Sh. This means we get the discrete system, where we search
for vh ∈ S1,cr

glide(Th)2 and ph ∈ L0(Th), s.t.∫
ω
vh · wh d(r, z) +

∫
ω
∇T vh : ∇T wh d(r, z)−

∫
ω
ph divT (rwh) d(r, z) = −J ′(ω,wh)∫
ω
qh divT (rvh) d(r, z) = 0

for all wh ∈ S1,cr
glide(Th)2 and qh ∈ L0(Th).

In practice we approximate the weighted integral with a midpoint scheme. This allows us
to use the general theory for the Fortin interpolant associated with the Stokes system, which
guarantees the well-posedness and stability of the discrete scheme (c.f. Boffi, Brezzi, and Fortin
2013).

The discretization of the Stokes system together with the convexity constraint leads to a
minimization problem of the following form

min
y∈Rn

1/2y>Ay − f>y s.t. By = g and Cy ≤ c (19)

for suitable A ∈ Rn×n, B ∈ Rm1×n, C ∈ Rm2×n and f ∈ Rn, g ∈ Rm1 , c ∈ Rm2 . This can be
formulated as a saddle point problem with an inequality constraint,

min
y∈Rn

max
z1∈Rm1

max
z2∈Rm2 ,z2≥0

1/2y>Ay − f>y + z>1 (By − g) + z>2 (Cy − c). (20)

This is implemented by including the inequality constraint via a Lagrange multiplier into an
Uzawa algorithm, c.f. (Glowinski, Lions, and Trémolières 1981, Chapter 2.4.3) and Algorithm 1.
How to select a suitable stepsize α and a termination criterion as well as extensions to conjugate
gradients or with a preconditioner can then be achieved similar to the Uzawa algortihm, c.f.
(Bartels 2016, Section 6.1.5) or (Braess 2013, Section IV.5).

We briefly note that the approach taken in (Bartels and Wachsmuth 2020), where no con-
straint on the volume was posed, and the deformation field was computed from a problem of
linear elasticity, did not work well in the problems under consideration, since it resulted in a
poor approximation near the axis, due to the weight r from the transformation. Because of the
preservation of volume, this effect occurred only moderately when using the Stokes equation to
compute the deformation field.
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Algorithm 1 Uzawa algorithm with an inequality constraint

Data: matrices A,B,C and vectors f, g, c given by the minimization problem
Parameters: stepsize α
Result: minimizer u

1: Set z1
0 = 0 ∈ Rm1 , z2

0 = 0 ∈ Rm2

2: for k = 1, 2, . . . do
3: Auk = f −B>z1

k−1 − C>z2
k−1

4: z1
k = z1

k−1 + α(Buk − g)
5: z2

k = [z2
k−1 + α(Cuk − c)]+

6: end for

5.4. Line Search

We now list the conditions imposed for the deformation field to find the step size τ > 0 used to
update the domain. We search for the smallest non-negative integer k such that for τ = τk0 the
following four conditions hold:

1. The boundary Γout avoids self-penetration, i.e. the convex curve describing the boundary
is injective.

2. The linearized convexity constraint is met.

3. The objective value does decrease.

4. The preservation of volume is met, up to a prior set tolerance. This was in part necessary,
since otherwise the volume was observed to change drastically, which makes it difficult to
find a suitable stopping criterion and to interpret the results. With this condition, the
algorithm showed better results, but needed more iterations in most cases.

The objective value mentioned in condition 3 is evaluated on the newly generated triangulation,
rather than the deformed triangulation. Formally, this means that the line search might not
terminate. However in practice, this way the shape optimization algorithm needed less iterations
to find a stationary domain, since the potential increase of the objective value of the updated
domain due to the remeshing of the domain was avoided. No significant difference was observed
for the approximated optimal domains and optimal values, if the line search was performed on
the deformed triangulation.

The algorithm terminates if either |J ′(ωh, Vh)| < εstop or if τ < τmin. In practice, the latter
was usually the reason for termination, due to the second and third condition of the line search,
i.e. the objective value did no longer decrease under the convexity constraint. In general, this
was observed for either option for the comparison of the objective value in condition 3.

5.5. An Implementable Code

The following algorithm 2 illustrates the conceptual design of our code, based on (Bartels and
Wachsmuth 2020).
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Algorithm 2 Shape Optimization Algorithm

Data: boundary curve Γhout of initial domain, the objective functional J to minimize
Parameters: initial step size τ0 > 0, convergence tolerance εtol > 0, minimal step size τmin
Result: boundary curve Γhout of improved domain

1: Generate a triangulation Th of ωh to Γhout

2: for i = 1, 2, . . . do
3: Approximate shape gradient J ′(ωh, ·)
4: Calculate deformation field Vh under linearized convexity constraint
5: if |J ′h(ωh, Vh)| ≤ εtol then
6: STOP, the current iterate ωh is almost stationary;
7: end if
8: Set k = 0;
9: while Condition 1 to 4 are violated for τ = τk0 do

10: k = k + 1
11: end while
12: τ = τk0
13: if τ < τmin then
14: STOP, the line search failed;
15: end if
16: Move the boundary curve according to Γhout = (I + τVh)(Γhout)
17: Generate triangulation Th of ωh to updated boundary curve Γhout

18: end for

6. Numerical Experiments

6.1. First Eigenvalue of the Dirichlet Laplacian

For the first eigenvalue of the Dirichlet Laplacian, it is well known that the optimal domain
among open, convex shapes of a certain volume is the ball, see (Krahn 1925) and (Krahn 1926).
Therefore we will use this example to validate the shape optimization algorithm, by looking at
the results for different initial domains and mesh sizes.

Similar to the eigenvalue problem in Section 3 we can derive the rotationally reduced two-
dimensional eigenvalue problem:

Minimize λ1(ω) = J(u, ω) =

∫
ω
|∇u|2r d(r, z)

w.r.t ω ⊂ Q ⊂ R+ × R open and convex and 2π|ω|r = M (PD)

s.t. u ∈ H1
r (ω) with ‖u‖L2

r
= 1 is eigenfunction to the reduced problem{

−(∂ru+ r∂2
ru+ r∂2

hu) = λ1ru in ω

u = 0 on Γout

and the rotated domain R(ω) ⊂ R3 is also convex.

The shape optimization was executed for different mesh refinements and initial domains. Chosen
as initial domains were half-ellipsoids with radii (ai, ri) with a1 = 0.8, a2 = 1 and a3 = 1.2 and
ri so that |ωi0,h|r = 2/3 for i = 1, 2, 3, so that the volume of the corresponding three-dimensional
domain is the same as that of the unit ball. The approximated eigenvalues are listed in Tables
1, 2 and 3 and the initial and approximated optimal domains for h = 2−5 can be seen in
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Figure 1. For reference, λ1(B1(0)) = j2
3/2−1,1 = π2 ≈ 9.8696, c.f. (Henrot 2017, (1.13)), and

the approximated eigenvalue λh1(Th(B1(0)) ≈ 9.8753 for h = 2−5. The experimental results
show that the optimal value known from the Faber-Krahn inequality is approximated well, and
suggest a linear rate of convergence, see Tables 1 to 3. The error in the preservation of volume
for refinements of h ≤ 2−3 is below 10−2.

6.2. Eigenvalue Arising in a Problem of Optimal Insulation

The reduced variant of the problem of optimal insulation led to the following two-dimensional
discrete problem.

Minimize λr,ε,hm (ωh)

w.r.t. ωh ⊂ R+ × R, Th ∈ Tcusr triangulation of ωh (Pm,h,ε)

s.t. uh ∈ S1(Th) solves (17) and ‖uh‖L2
r(Q) = 1

ωh ⊂ Q is convex and open and 2π|ωh|r = M

and the rotated domain R(ωh) ⊂ R3 is also convex

for the class Tcusr of conforming, uniformly shape regular triangulations Th of polyhedral subsets
of R2 with hT /%T ≤ cusr for all elements T ∈ Th with diameter hT ≤ h and inner radius %T for
a universal constant cusr > 0.

We look at several values for the mass m. From (Bucur, Buttazzo, and Nitsch 2017) we
know, that for the ball symmetry breaking for the distribution of insulating material occurs if
m is below a critical value.

Theorem 6.1 (c.f. Bucur, Buttazzo, and Nitsch 2017, Theorem 3.1). Let Ω be a ball. Then
there exists m0 > 0 such that the eigenfunction to (7) is radial if m > m0, while the solu-
tion is not radial for 0 < m < m0. As a consequence, the optimal insulation thickness `opt is
not constant if m < m0.

In (Bucur, Buttazzo, and Nitsch 2017) it is further noted, that this threshold is given by the
unique positive m for which λm = µ2, the first non-zero eigenvalue of the Neumann problem.
Furthermore it is proven, that for m < m0 the ball is not a stationary domain for the shape
optimization problem. We can use the Neumann eigenvalue to approximate the value for the
threshold m0 of the dimensionally reduced problem for the ball, which is given by approximately
m0 ≈ 5.7963.

We next address numerical approximations for the values m = 2, 5, 6, 11, 12 and 13. The
experimental results displayed in Tables 4 and 5 and Figures 2, 3 and 4 were obtained on
triangulations Th with maximal mesh size h = 2−5 and regularization parameter ε = N−1/2/10,
where N is the number of nodes of Th. The numerical experiments confirm that for the two
values lower then the critical mass, the ball is no stationary domain. Only one asymmetric
optimal domain was found for each value of m, c.f. Figure 2 and Table 4. For the larger
values, in the numerical experiments the ball is also stationary, and for m = 11, 12 and 13 it
is experimentally optimal, see Figures 4 and Tables 5. As in Section 6.1 half-ellipsoids with
different ratios were chosen as initial domains. For values of m where more than one stationary
domain was approximated, the result of the optimization algorithm depended on the choice of the
ratios for the initial domains. In general, depending on the value m, when initial domains were
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λh1(ω1
0,h) |ω1

0,h|r λh1(ω1
h) |ω1

h|r |λh1(ω1
h)− λh1(Th(B1(0))|

h = 2−2 10.5403 0.6381 9.9777 0.6391 0.1081
h = 2−3 10.4308 0.6593 9.9624 0.6572 0.0928
h = 2−4 10.3785 0.6648 9.9231 0.6617 0.0535
h = 2−5 10.3634 0.6662 9.9052 0.6634 0.0356

Tab. 1: Discrete eigenvalues for initial domain ω1
0,h and resulting optimal domain ω1

h of (PD)
for different levels of refinement, with constraint |ω|r = 2/3 and absolute errors

λh1(ω2
0,h) |ω2

0,h|r λh1(ω2
h) |ω2

h|r |λh1(ω2
h)− λh1(Th(B1(0))|

h = 2−2 10.0218 0.6381 9.9054 0.6511 0.0358
h = 2−3 9.9422 0.6593 9.9358 0.6601 0.0662
h = 2−4 9.8913 0.6648 9.8913 0.6648 0.0217
h = 2−5 9.8753 0.6662 9.8753 0.6662 0.0057

Tab. 2: Discrete eigenvalues for initial domain ω2
0,h and resulting optimal domain ω2

h of (PD)
for different levels of refinement, with constraint |ω|r = 2/3 and absolute errors

λh1(ω3
0,h) |ω3

0,h|r λh1(ω3
h) |ω3

h|r |λh1(ω3
h)− λh1(Th(B1(0))|

h = 2−2 10.3186 0.6381 9.8799 0.6575 0.0103
h = 2−3 10.2321 0.6593 9.9332 0.6593 0.0636
h = 2−4 10.1732 0.6648 9.8990 0.6642 0.0294
h = 2−5 10.1578 0.6662 9.8917 0.6645 0.0221

Tab. 3: Discrete eigenvalues for initial domain ω3
0,h and resulting optimal domain ω3

h of (PD)
for different levels of refinement, with constraint |ω|r = 2/3 and absolute errors
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Fig. 1: Initial domains ωi0,h and resulting optimal domains ωih, i = 1, 2, 3 of (PD), approximately
a ball, with constraint |ω|r = 2/3
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chosen that are more prolate, an asymmetric domain was approximated, while oblate ellipsoids
and ellipsoids closer to the ball led to the ball being approximated.

The algorithm only detects local minima with the approximated domains depending on the
initial domains, so the stationary domains approximated might not be global solutions.
When comparing the approximated optimal domains with each other, we also observe that for
the non-radial solutions, a large portion of the insulating film concentrates in one area, which
creates a hotspot inside the domain, where the temperature is preserved better, while other
areas are neglected, having no insulating material on the boundary.

Remark 6.2. We briefly note, that even though we search for eigenfunctions among rotationally
symmetric functions, the numerical results are still consistent with the expectations we have from
(Bucur, Buttazzo, and Nitsch 2017) regarding the radial symmetry for the eigenfunctions for
the ball. We were able to observe that for m < m0, the critical value related to the Neumann
eigenvalue, c.f. Theorem 6.1, the eigenfunction is no longer positive or symmetric, c.f. Figure
3, but for values m > m0 it is. Further, the shape optimization problem showed, that for the
chosen values m < m0 the ball was no stationary domain, while for m > m0 it was stationary
and for the higher values even optimal. This consistency of the numerical results suggests, that
the restriction to rotationally symmetric functions is justified.
The critical value m0 relates to the symmetry of the eigenfunctions on the ball and whether
the ball is a stationary domain. Theorem 3.1 in (Bucur, Buttazzo, and Nitsch 2017) does not
consider the optimality of the ball under the shape optimization. However, the experimental
results of the shape optimization suggest that there might be another critical value of mass m1,
such that for m < m1 an asymmetric domain yields an optimal eigenvalue, while for m > m1

the ball is the optimal domain.

We want to take a closer look at the properties of the optimal domains for the eigenvalue
problem in optimal insulation. First we will look at the improvement of the eigenvalue the shape
optimization provides and afterward at the optimal domains themselves. The experiments in
this section were obtained with a triangulation with a maximal mesh size h = 2−4 and ε chosen
as in the previous experiments.

Comparing the eigenvalue of the ball to that of the respective stationary asymmetric domain
for different values of mass m, c.f. Figure 5, shows that the benefit of the shape optimization is
greatest around the critical value m0.

Next, we take a closer look at the optimal domains. For the masses m = 1, 2, .., 12 the
optimal domains with insulating film are displayed in Figure 6. As m decreases, the eigenvalue
is closer to the eigenvalue of the Dirichlet Laplacian. We notice, for m = 1, the approximated
optimal shape is closer to a ball, and as the values m increase the optimal domains become more
prolate, until, for m = 12, the ball is the approximated optimal domain.

We further notice that for the asymmetric domains a kink is formed around the surface
area where the eigenfunction is zero. For m = 2, ..., 9, this kink might even be non-smooth. By
taking a closer look at the values of the eigenfunction at the boundary nodes and the mean
curvature of the boundary Γout for the approximated optimal domains, c.f. Figure 7, we can see
that this kink is located around the surface, where no insulating material is placed, and that for
the values where the kink might be non-smooth, it is located where the eigenfunction vanishes.
The insulating material then focuses on one side of the kink. The corresponding domains are
those shown in Figure 6. In summary, the numerical experiments suggest, that the asymmetric
optimal domains tend to be non-smooth for lower values of m.
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λr,ε(ωh) |ωh|r
m = 2 6.819940118007397 0.6595
m = 5 4.554732496286795 0.6596

Tab. 4: Eigenvalues λr,εm of approximated optimal domains for different values of m < m0 c.f.
Figure 2, with constraint |ω|r = 2/3

Fig. 2: Optimal domains ωh of (Pm,h,ε) for m = 2 (left), m = 5 (right), with boundary film
(black, scaled with ε = 1/10) and eigenfunction (shaded), with constraint |ω|r = 2/3;
corresponding eigenvalues c.f. Table 4

Fig. 3: Non-radial eigenfunctions (shaded) with boundary film (black, scaled with ε = 1/10) for
m = 2 (left) and m = 5 (right) for the fixed ball
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λr,εm (ω1
h) |ω1

h|r λr,εm (ω2
h) |ω2

h|r
m = 6 4.112232986601394 0.6631 4.241084607303154 0.6662
m = 11 2.769366507533780 0.6633 2.744289963928029 0.6662
m = 12 2.606239519805330 0.6621 2.561023079370016 0.6662
m = 13 2.459976343090586 0.6633 2.400341990779929 0.6662

Tab. 5: Eigenvalues λr,εm of approximated stationary domains ω1
h (asymetric) and ω2

h (half-disk),
c.f. Figure 4 for different values of m, with constraint |ω|r = 2/3

Fig. 4: Approximated stationary domains ωih (i = 1 top, i = 2 bottom) of (Pm,h,ε) for m =
6, 11, 12 and 13 (left to right), with boundary film (black, scaled with ε = 1/10) and
eigenfunction (shaded), with constraint |ω|r = 2/3; corresponding eigenvalues c.f. Table
5. For m = 6, 11 the asymmetric domains (top) are optimal, for m = 12, 13 the half-disk
(bottom) is optimal. The other domains are stationary but not optimal under the shape
optimization.
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Fig. 5: Eigenvalues of the asymmetric stationary domain and the ball compared for different
values of m (left) and difference in eigenvalues δλr,εm = λr,εm (ωball)−λr,εm (ωasym) with peak
at the critical value m0 (right)

Fig. 6: Approximated stationary and optimal domains for λr,εm for m = 1 to 12 (left to right, top
to bottom) and insulating film (blue, scaled with ε = 1/10)
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Fig. 7: Values of eigenfunctions (left) and mean curvature (right) along the boundary curve (as
a function of z along the axis of rotation) of optimal domains for m = 3, 6, and 10 (top
to bottom), with approximate location z0 of the kink in the boundary on a triangulation
with maximal mesh size h = 2−4. The corresponding domains are shown in Figure 6.
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