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Abstract. Based on a quantitative version of the inverse function the-
orem and an appropriate saddle-point formulation we derive a quasi-
optimal error estimate for the finite element approximation of harmonic
maps into spheres with a nodal discretization of the unit-length con-
straint. The estimate holds under natural regularity requirements and
appropriate geometric stability conditions on solutions. Extensions to
other target manifolds including boundaries of ellipsoids are discussed.

1. Introduction

Harmonic maps into spheres are stationary configurations for the Dirichlet
energy

I(u) =
1

2

∫
Ω
|∇u|2 dx

among vector fields u : Ω → Rm, Ω ⊂ Rd, satisfying prescribed boundary
conditions u|ΓD

= uD and the pointwise sphere constraint

u(x) ∈ Sm−1 ⇐⇒ |u(x)|2 − 1 = 0

for almost every x ∈ Ω. The existence of global minimizers is an immediate
consequence of the direct method in the calculus of variations provided that
the admissible set is non-empty. More generally, stationary points satisfy
the Euler–Lagrange equations

(1) −∆u = |∇u|2u, u|ΓD
= uD, ∂nu|ΓN

= 0, |u|2 = 1,

where ΓN = ∂Ω \ ΓD. Since the right-hand side in the partial differential
equation may only belongs to L1(Ω;Rm) regularity of solutions cannot be
expected in general and in fact solutions that are everywhere discontinuous
exist, cf. [22, 20].

Motivated by related models and applications in micromagnetics, liquid
crystal devices, and nonlinear bending, cf., e.g., [16, 8, 6] and references
therein, the numerical approximation of pointwise constrained variational
problems has received considerable attention in the last decades. Various
discretizations and iterative schemes have been devised and analyzed in [18,
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1, 5, 3, 12]. To avoid unjustified regularity assumptions, the convergence of
numerical methods has often been based on weak compactness results for
the Euler–Lagrange equations which shows that weak accumulation points
of approximations are harmonic maps. To fully justify the methods it is im-
portant to prove their optimal convergence in the case of sufficiently regular
solutions, and only a few results in this direction are available, cf. [10, 13,
12].

An attractive and flexible approach to deriving error estimates for numeri-
cal schemes has been identified in [13] and it is our aim to address its validity
for three-dimensional domains Ω and higher-dimensional target manifolds.
Their approach is based on the Lagrange functional

L(u, λ) =
1

2

∫
Ω
|∇u|2 dx+

1

2

∫
Ω
λ(|u|2 − 1) dx

that imposes the constraint via a Lagrange multiplier λ. A suitable func-
tional analytical framework interprets the constraint term in a weaker sense
and seeks stationary pairs (u, λ) in the affine space

A = (uD, 0) +X,

with the product space

X = H1
D(Ω;Rm) ∩ L∞(Ω;Rm)×H−1(Ω),

where H−1(Ω) is the topological dual of the Sobolev space H1
D(Ω). To

derive error estimates in a neighborhood of a solution (u, λ) the mapping
properties of the second variation of L are releavant. Its stable invertibility
can be analyzed in terms of a saddle-point problem which seeks for a given
functional (f, g) ∈ X ′ a solution (v, µ) ∈ X such that

(∇v,∇w) + 〈λ, v · w〉+ 〈µ, u · w〉 = 〈f, w〉,
〈η, u · v〉 = 〈g, η〉,

for all (w, η) ∈ X. Well established theories for saddle-point problems assert
that the problem has a unique and stable solution if and only if the bilinar
form

bu(µ, v) = 〈µ, u · v〉
is bounded and satisfies an inf-sup condition, and the bilinear form

aλ(v, w) = (∇v,∇w) + (λ, v · w),

with λ = −|∇u|2, is bounded and defines an invertible operator on the kernel
of bu with respect to the second argument. The inf-sup condition is obtained
by choosing for given µ ∈ H−1(Ω) the function v = φu, where φ ∈ H1

D(Ω)
satisfies 〈µ, φ〉 = ‖µ‖H−1 . The kernel of bu consists of tangential vector fields
v ∈ Tu with

Tu =
{
v ∈ H1

D(Ω;Rm) ∩ L∞(Ω;Rm) : v · u = 0 a.e.
}
.

We say that u is a stable harmonic map, if aλ is H1 coercive on Tu. Besides
the special case |∇u| < c−1

P with the Poincaré constant cP > 0 a coercivity
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result holds if the one-dimensional sphere is considered as a target manifold,
i.e., m = 2 and u : Ω→ S1. In this case tangential vector fields are given by

v = αu⊥,

with α ∈ H1
D(Ω) and the rotation u⊥ of u by π/2. We then have the

coercivity property

aλ(v, v) =

∫
Ω
|∇α|2 dx ≥ (1 + ‖∇u‖2L∞c2

P )−1‖∇v‖2,

whenever the harmonic map u satisfies u ∈ W 1,∞(Ω;R2). Remarkably, this
stability property fails if the (same) harmonic map u is allowed to attain
values in the two-dimensional sphere. Indeed, by embedding the image of u
into S2 via ũ = [u, 0]T, and considering v = αe3 ∈ Tũ we find that

aλ(v, v) =

∫
Ω
|∇α|2 − |∇u|2α2 dx.

The right-hand side can only be positive for all α ∈ H1
D(Ω) if |∇u| is suffi-

ciently small.
Only a few results are available concerning the uniqueness and stability

of harmonic maps into higher-dimensional spheres, cf., e.g., [15, 14]. In
particular, if a cut-locus condition is satisfied, e.g., if the image of a harmonic
map is strictly contained in a hemisphere, then [15, Theorem B] states that
the only Jacobi field along a harmonic map u, i.e., a field v ∈ Tu with
aλ(v, v) = 0, is the trivial one. If u ∈ A is an absolute minimizer for I then
we have that aλ is semi-definite and if, e.g., u ∈W 1,∞(Ω;Rm) a contradiction
argument implies that aλ is coercive on Tu. In view of limited regularity
properties, cf. [21, 17, 20] and nonuniqueness properties, cf., e.g., [4], a more
general theory cannot be expected.

Provided that the harmonic map u is regular, i.e., we have that u ∈
H2(Ω;Rm) ∩W 1,∞(Ω;Rm), and stable, i.e., the bilinear form aλ is H1 co-
ercive on Tu, we derive the quasi-optimal error estimate

‖∇(u− uh)‖+ ‖λ− λh‖H−1 ≤ cuh,

for a canonical discretization of the Lagrange functional and the unique finite
element solution (uh, λh) ∈ S1(Th)m × S1

D(Th) in an appropriate neighbor-
hood of u. Our analysis thus shows that the arguments of [13] also apply to
higher-dimensional domains and targets under appropriate and meaningful
conditions. Some restrictions arise from the simpler functional analytical
framework in the discrete setting and the resulting use of inverse estimates
to control L∞ norms.

The outline of the article is as follows. Some preliminaries are stated in
Section 2. The main error estimate is derived in Section 3 by verifying the
conditions of the inverse function theorem. The application of the analysis
to other target manifolds is addressed in Section 4. Numerical experiments
that confirm the theoretical results are reported in Section 5.
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2. Preliminaries

We use standard notation to denote Lebesgue and Sobolev spaces. The
integration domain is often omitted in norms and we abbreviate the inner
product and norm in L2(Ω;R`) by (·, ·) and ‖ · ‖, respectively. Throughout
the article c > 0 denotes a factor that may depend on regularity properties of
a fixed solution u but not on the mesh-sizes of a sequence of triangulations;
the dependence on u is occasionally indicated via a subindex. We let cP > 0
denote the smallest positive number with ‖v‖ ≤ cP ‖∇v‖ for all v ∈ H1

D(Ω);
we remark that cP ≤ dΩ/π if ΓD = ∂Ω and Ω is a convex domain with
diameter dΩ, cf. [19].

2.1. Finite element functions. For a regular and quasi-uniform triangu-
lation Th of the simplicial domain Ω ⊂ Rd with mesh-size h > 0 we denote
the C0 conforming finite element space by S1(Th) of elementwise linear func-
tions. We denote the subspace of functions vanishing on ΓD by

S1
D(Th) = S1(Th) ∩H1

D(Ω).

We let Nh be the set of vertices of elements and denote the nodal interpo-
lation operator applied to scalar or vector-valued functions by

Ih : C(Ω;R`)→ S1(Th)`, Ihv =
∑
z∈Nh

v(z)ϕz,

where (ϕz : z ∈ Nh) is the scalar nodal basis for S1(Th). We note that we
have the nodal interpolation estimate for v ∈ H1

D(Ω;R`) with v|T ∈ H2(T )
for all T ∈ Th that

‖v − Ihv‖+ h‖∇(v − Ihv)‖ ≤ ch2‖D2
hv‖,

where D2
h denotes the elementwise application of the Hessian. For an ele-

mentwise poynomial function φh ∈ H1(Ω) we have

‖φh − Ihφh‖L1 ≤ ch2‖D2
hφh‖L1 .

We make repeated use of inverse estimates, which read for vh ∈ S1
D(Th)

(2) ‖∇vh‖Lp ≤ ch−1‖vh‖Lp

and, using Sobelev inequalities, with γinv(h) = 1, 1 + | log h|, h−1/2 for d =
1, 2, 3, respectively, we moreover have that

(3) ‖vh‖L∞ ≤ cγinv(h)‖∇vh‖.

The estimate can be deduced from elementary local norm equivalences and
Sobolev inequalities, i.e.,

‖vh‖L∞ ≤ ch−d/p‖vh‖Lp ≤ ch−d/p‖∇vh‖

with p ≤ ∞, p < ∞, and p ≤ 2d, for d = 1, 2, 3, respectivly. A precise
characterization of the Sobolev embedding is needed if d = 2, cf. [4], a
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weaker result for d = 2 is obtained with p = d/ε for fixed ε > 0. A discrete
inner product is for v, w ∈ C(Ω) defined via

(v, w)h =

∫
Ω
Ih(v · w) dx =

∑
z∈Nh

βzv(z) · w(z),

where βz =
∫

Ω ϕz dx is positive. For vh ∈ S1(Th) we have ‖vh‖h ≤ ‖vh‖ ≤
c‖vh‖h. We frequently use the following estimate.

Lemma 2.1 (Quadrature control). For ψh ∈ S1
D(Th) and φ ∈ C(Ω) with

φ|T ∈ H2(T ) for all T ∈ Th we have∣∣(ψh, φ)h − (ψh, φ)
∣∣ ≤ ch2

(
‖∇ψh‖‖∇Ihφ‖+ ‖ψh‖‖D2

hφ‖
)
.

In case of an elementwise polynomial function φh ∈ C(Ω) we have∣∣(ψh, φh)h − (ψh, φh)
∣∣ ≤ ch‖ψh‖‖∇φh‖.

Proof. We have that

(ψh, φ)h − (ψh, φ) =

∫
Ω
Ih(ψhφ)− ψhIhφ dx+

∫
Ω
ψh(Ihφ− φ) dx,

and the two terms on the right-hand side are controlled with the L1 and
L2 nodal interpolation estimates stated above. The second estimate follows
from the first one by using the inverse estimate (2) (generalized to element-
wise polynomial functions) twice and the H1 stability of Ih on elementwise
polynomial functions. �

We let Πh : L2(Ω) → S1
D(Th) denote the L2 projection onto S1

D(Th) and

by Π̃h : L2(Ω)→ S1
D(Th) the modified version given by

(Π̃hv, φh)h = (v, φh)

for all φh ∈ S1
D(Th). We note that Πh is H1 stable on quasi-uniform trian-

gulations. The modified projection has similar properties as Πh.

Lemma 2.2 (Modified L2 projection). The projection Π̃h satisfies for all
v ∈ H1

D(Ω)

‖∇Π̃v‖+ h−1‖Π̃v − v‖ ≤ c‖∇v‖.

Proof. With the standard L2 projection Πh onto Vh, define δh = Π̃v −Πhv.
We then have

‖δh‖2 ≤ ‖δh‖2h = (δh, Π̃v −Πhv)h = (δh,Πhv)− (δh,Πhv)h.

Therefore, using Lemma 2.1, estimate (2), and the H1-stability of Πh we
find that

‖δh‖2 ≤ ch2‖D2
h(δh ·Πhv)‖L1 = ch2‖∇δh‖‖∇Πhv‖ ≤ ch‖δh‖‖∇v‖.

Hence ‖δh‖ ≤ ch‖∇v‖ and another application of an inverse estimate yields
‖∇δh‖ ≤ c‖∇v‖. We therefore get

‖∇Π̃v‖ ≤ ‖∇Πhv‖+ ‖∇δh‖ ≤ c‖∇v‖.
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The error estimate follows from a related estimate for Πh. �

We often use the dual space H−1(Ω) = (H1
D(Ω))′ which is equipped with

the operator norm

‖µ‖H−1 = sup
φ∈H1

D(Ω)\{0}

〈µ, φ〉
‖∇φ‖

.

We have the inverse estimate

‖µh‖ ≤ ch−1‖µh‖H−1

for all µh ∈ S1
D(Th). The Clément quasi-interpolation operator Jh : L1(Ω)→

S1(Th) is with the sets ωz = suppϕz, z ∈ Nh, defined via

Jhα =
∑
z∈Nh

αzϕz, αz = |ωz|−1

∫
ωz

α dx.

The variant Jh,D : L1(Ω) → S1
D(Th) is obtained by setting αz = 0 for all

z ∈ Nh ∩ ΓD. We remark that we have

(Jh,Dα, v)h = (Jhα, v)h

for v ∈ C(Ω) with v|ΓD
= 0. For α ∈ H1(Ω) we have

‖α− Jhα‖ ≤ ch‖∇α‖.

A similar estimate holds for α ∈ H1
D(Ω) and Jh,Dα, cf., e.g., [4].

2.2. Inverse function theorem. As in [11, 13] we use the following quanti-
tative version of the inverse function theorem to derive a local error estimate.

Theorem 2.3 (Inverse function theorem). Suppose that F : X → X ′ is
continuous and assume that x̃ ∈ X satisfies ‖F (x̃)‖X′ ≤ κ. If there exist
c′L, cinv, ε > 0 such that F is Fréchet differentiable in Bε(x̃), with DF (x̃)
invertible, and

‖DF (x̃)−1‖L(X′,X) ≤ cinv,

‖DF (x1)−DF (x2)‖L(X,X′) ≤ c′L‖x1 − x2‖X

for all x1, x2 ∈ Bε(x̃) with ε > 0 so that c′Lcinvε ≤ 1/2 and κ ≤ ε/(2cinv),
then there exists a unique x ∈ Bε(x̃) such that F (x) = 0.

Proof. The result is an immediate conseqence of the proof of [7, Thm. 3.1.5,
p. 113]. �

We remark that if F is defined on an affine space A = xD + X then

the theorem can be applied to F̃ (x) = F (xD + x). The theorem also
implies the superlinear convergence of the Newton-type iteration xk+1 =
xk −DF (x̃)−1F (xk) and of the classical Newton iteration if a bound on the
the inverse of the Jacobian holds in Bε(x̃). For quadratic convergence, a
bound on the second variation of F is required.
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3. Error estimate

We recall that harmonic maps into spheres are defined as stationary pairs
(u, λ) ∈ A for the functional

L(u, λ) =
1

2

∫
Ω
|∇u|2 dx+

1

2
〈λ, |u|2 − 1〉

An optimal pair satisfies the Euler–Lagrange equations (1) with

λ = −|∇u|2.
A finite element approximation is sought in the space of admissible pairs

Ah = (uD,h, 0) +Xh,

with uD,h = IhũD for a continuous extension ũD of uD and the homogeneous
space Xh defined via

Xh = S1
D(Th)m × S1

D(Th) ⊂ H1
D(Ω;Rm)×H−1(Ω).

Here, no uniform bounds are included in the definition of Xh in order to
have a Hilbert space structure. Discrete harmonic maps are stationary con-
figurations for the functional

Lh(uh, λh) =
1

2

∫
Ω
|∇uh|2 dx+

1

2

∫
Ω
Ih
[
λh(|uh|2 − 1)

]
dx.

Discrete harmonic maps (uh, λh) ∈ Ah satisfy, cf. [13, 4],

(∇uh,∇vh) + (λh, uh · vh)h = 0,

(µh, |uh|2 − 1)h = 0,

for all (vh, µh) ∈ Xh. The saddle-point system can be formulated as a
nonlinear equation with a mapping Fh : Ah → X ′h via

Fh(uh, λh)[(vh, µh)] = (∇uh,∇vh) + (λh, uh · vh)h + (µh, |uh|2 − 1)h.

The variational derivative of Fh is given by

DFh(uh, λh)[(vh, µh),(wh, ηh)] = (∇vh,∇wh)

+ (λh, wh · vh)h + (µh, uh · wh)h + (ηh, uh · vh).

To investigate the invertibility of the linear operator DFh(ũh, λ̃h) : Xh → X ′h
we resort to established theories for linear saddle-point problems on Hilbert

spaces and define for a given pair (ũh, λ̃h) the bilinear forms

a
λ̃h

(vh, wh) = (∇vh,∇wh) + (λ̃h, wh · vh)h,

bũh(µh, vh) = (µh, ũh · vh)h,
(4)

for all vh, wh ∈ S1
D(Th)m and µh ∈ S1

D(Th). The invertibility is equivalent
to the existence of a unique solution (vh, µh) ∈ Xh for every right-hand side
(fh, gh) ∈ X ′h such that

a
λ̃h

(vh, wh) + bũh(µh, wh) = (fh, wh),

bũh(ηh, vh) = (gh, ηh),
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for all (wh, ηh) ∈ Xh. Sufficient for this is that a
λ̃h

is coercive on the kernel

of bũh and that bũh satisfies an inf-sup condition, cf. [2, 9].

Lemma 3.1 (Invertibility). (i) For every ũh ∈ S1(Th)m the bilinear form
bũh satisfies the inf-sup condition

sup
vh∈S1D(Th)m\{0}

bũh(µh, vh)

‖∇vh‖
≥ c‖ũh‖−1

W 1,∞‖µh‖H−1

for all µh ∈ S1
D(Th). Moreover bũh is continuous with bound c‖ũh‖W 1,∞.

(ii) Assume that the the pair (u, λ) ∈ A satisfies

(5) u ∈ H2(Ω;Rm) ∩W 1,∞(Ω;Rm), λ ∈ H1(Ω) ∩ L∞(Ω),

and that there exists ca > 0 such that

(6) aλ(v, v) ≥ ca‖∇v‖2 for all v ∈ Tu.

Define (ũh, λ̃h) ∈ Ah via

ũh = Ihu, λ̃h = Jh,Dλ.
Then for h sufficiently small we have

a
λ̃h

(vh, vh) ≥ (ca/2)‖∇vh‖2

for all vh ∈ S1
D(Th)m) with Ih(vh · ũh) = 0. Moreover, a

λ̃h
is continuous

with bound c‖λ̃h‖.
(iii) Under the conditions of (ii) the operator DFh(ũh, λ̃h) is invertible

with ‖DFh(ũh, λ̃h)‖L(X′h,Xh) ≤ cinv for a constant cinv > 0 that depends on

‖u‖W 1,∞, ‖λ‖, and ca. The smallness condition on h additionally depends
on ‖∇λ‖ and ‖D2u‖.

Proof. (i) To verify the inf-sup condition for b
λ̃h

we follow [13] and note that

the Hahn–Banach theorem implies that for given µh ∈ S1
D(Th) there exists

φ ∈ H1
D(Ω) with ‖∇φ‖ = 1 and

(µh, φ) = ‖µh‖H−1 .

With the modified L2 projection Π̃h we define

vh = Ih((Π̃hφ)ũh).

Since |ũh(z)|2 = 1 for all z ∈ Nh this choice implies that we have

bũh(µh, vh) = (µh, (Π̃hφ)ũh · ũh)h = (µh, Π̃hφ)h = (µh, φ) = ‖µh‖H−1 .

Using the H1-stability of Ih on elementwise polynomials and the H1 stability

of Π̃h on quasi-uniform meshes, we find that

‖∇vh‖ ≤ c‖∇((Π̃hφ)ũh)‖ ≤ c‖∇Π̃hφ‖‖ũh‖W 1,∞ ≤ c‖∇φ‖‖ũh‖W 1,∞ ,

i.e., ‖∇vh‖‖ũh‖−1
W 1,∞ ≤ c. Combining the last two estimates leads to

bũh(µh, vh) ≥ c‖ũh‖−1
W 1,∞‖∇vh‖‖µh‖H−1 ,
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which is the asserted inf-sup property. Using Lemma 2.1 and an inverse
estimate, we verify the boundedness of bũh , i.e.,

|bũh(µh, vh)| ≤ |(µh, ũh · vh)|+ ch‖µh‖‖∇(ũh · vh)‖
≤ ‖µh‖H−1‖ũh‖W 1,∞‖∇vh‖,

(ii) Given vh ∈ S1
D(Th)m with Ih(vh · ũh) = 0 the function

ṽh = vh − (vh · u)u

satisfies ṽh ∈ Tu and hence we have aλ(ṽh, ṽh) ≥ ca‖∇ṽh‖2. Using that we

may replace λ̃h by Jhλ in a
λ̃h

, Lemma 2.1 and (3) lead to∣∣(λ̃h, |vh|2)h − (Jhλ, |vh|2)
∣∣ ≤ chγinv(h)‖Jhλ‖‖∇vh‖2.

With this estimate we find that∣∣a
λ̃h

(vh,vh)− aλ(ṽh, ṽh)
∣∣

≤ ‖∇(vh − ṽh)‖
(
‖∇vh‖+ ‖∇ṽh‖

)
+ chγinv(h)‖Jhλ‖‖∇vh‖2

+ ‖Jhλ‖‖vh − ṽh‖L4

(
‖vh‖L4 + ‖ṽh‖L4 + ‖Jhλ− λ‖‖ṽh‖2L4

)
.

To bound the terms on the right-hand side we note that Ih((vh · u)u) = 0
and hence

‖∇(vh − ṽh)‖ ≤ ch‖D2
h((vh · u)u)‖

≤ ch
(
‖∇vh‖‖∇u‖L∞ + ‖vh‖L∞(‖D2u‖+ ‖∇u‖2L∞)

)
≤ chγinv(h)‖∇vh‖.

A Sobolev embedding and a Poincaré inequality show that the same bound
applies to ‖vh − ṽh‖L4 . Moreover, we have that

‖ṽh‖+ ‖∇ṽh‖+ ‖ṽh‖L4 + ‖vh‖L4 ≤ c‖∇vh‖.

Noting stability and approximation properties of the Clément quasi-interpolant,
the combination of the estimates implies that

a
λ̃h

(vh, vh) ≥ aλ(ṽh, ṽh)− chγinv(h)‖∇vh‖2,

which is the asserted coercivity property. Finally, as a consequence of
Lemma 2.1 and inverse estimates, a

λ̃h
satisfies the bound

|a
λ̃h

(vh, wh)| ≤ ‖∇vh‖‖∇wh‖+ |(λ̃h, vh · wh)|+ ch‖λ̃h‖‖∇(vh · wh)‖

≤ (1 + chγinv(h))‖λ̃h‖‖∇vh‖‖∇wh‖.

(iii) The inf-sup condition for bũh and the coercivity of a
λ̃h

on the kernel of

bũh , which is given by ker bũh = {vh ∈ S1
D(Th)m : Ih(vh · ũh) = 0} imply the

invertibility of DF (ũh, λ̃h), cf. [2, 9]. The W 1,∞ stability of Ih and the L2

stability of Jh imply that the bounds on DF (ũh, λ̃h) depend on ‖u‖W 1,∞

and ‖λ‖. �
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The second auxiliary result bounds the operator norm of F (ũh, λ̃h) for
interpolants of a regular harmonic map (u, λ).

Lemma 3.2 (Residual of interpolants). Assume that a harmonic map (u, λ) ∈
A satisfies (5) and define (ũh, λ̃h) ∈ Ah via ũh = Ihu and λ̃h = Jh,Dλ. We
then have that ∣∣Fh(ũh, λ̃h)[(vh, µh)]

∣∣ ≤ ch‖(vh, µh)‖Xh ,

where c depends on ‖D2u‖ and ‖u‖W 1,∞.

Proof. The pair (u, λ) satisfies for all (v, µ) ∈ X the identity F (u, λ)[(v, µ)] =
0, where

F (u, λ)[(v, µ)] = (∇u,∇v) + (λ, u · v) + (µ, |u|2 − 1).

Since Xh ⊂ X we thus have that∣∣Fh(ũh, λ̃h)[(vh, µh)]
∣∣ =

∣∣Fh(ũh, λ̃h)[(vh, µh)]− F (u, λ)[(vh, µh)]
∣∣

≤
∣∣(∇[ũh − u],∇vh)

∣∣+
∣∣(λ̃h, ũh · vh)h − (λ, u · vh)

∣∣ = I + II,

where we used that |u|2 = Ih|ũh|2 = 1, so that contributions involving µh
vanish. For the first term we deduce with nodal interpolation estimates that

I ≤ ch‖D2u‖‖∇vh‖.

To bound the second term we first note that ũh · vh|ΓD
= 0 so that we may

replace λ̃h by Jhλ. With Lemma 2.1, inverse estimates, and ũh = Ihu, we
find that

II ≤
∣∣(Jhλ, ũh · vh)h − (Jhλ, u · vh)

∣∣+
∣∣(Jhλ, u · vh))− (λ, u · vh)

∣∣
≤ ch2

(
‖∇Jhλ‖‖∇Ih(u · vh)‖+ ‖Jhλ‖‖D2

h(u · vh)‖
)

+ ch‖∇λ‖‖u · vh‖
≤ ch‖∇vh‖‖λ‖H1

(
‖u‖W 1,∞ + ‖D2u‖

)
.

The combination of the estimates implies the result. �

To derive an error estimate using the inverse function theorem a local
Lipschitz continuity property for DFh is required.

Lemma 3.3 (Lipschitz estimate). For all (uh, λh), (ũh, λ̃h) ∈ Ah we have∣∣DFh(uh, λh)[(vh, µh), (wh, ηh)]−DFh(ũh, λ̃h)[(vh, µh), (wh, ηh)]
∣∣

≤ cγinv(h)‖(uh − ũh, λh − λ̃h)‖Xh‖(vh, µh)‖Xh‖(wh, ηh)‖Xh .

Proof. We have∣∣DFh(uh, λh)[(vh, µh), (wh, ηh)]−DFh(ũh, λ̃h)[(vh, µh), (wh, ηh)]
∣∣

≤
∣∣(λh − λ̃h, wh · vh)h

∣∣+
∣∣(µh, [uh − ũh] · wh)h

∣∣+
∣∣(ηh, [uh − ũh] · vh)h

∣∣.
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To estimate the terms on the right-hand side we consider the first term and
use Lemma 2.1 and inverse estimates to deduce that∣∣(λh − λ̃h, wh · vh)h

∣∣ ≤ ∣∣(λh − λ̃h, wh · vh)
∣∣+ ch‖(λh − λ̃h)‖‖∇(wh · vh)‖

≤ c‖λh − λ̃h‖H−1‖∇(wh · vh)‖

≤ cγinv(h)‖λh − λ̃h‖H−1‖∇wh‖‖∇vh‖.

The other terms are estimated analogously. �

The quasi-optimal error estimate results from an application of the inverse
function theorem, cf. Theorem 2.3.

Theorem 3.4 (Error estimate). Let u ∈ H1(Ω;Rm) be a harmonic map
such that with λ = −|∇u|2 the pair (u, λ) ∈ A satisfies (5) and (6). Then,
for h sufficiently small, there exists a unique solution (uh, λh) ∈ Ah for
Fh(uh, λh) = 0 in a neighborhood Bε(u, λ) with ε = cγinv(h)−1 that satisfies

‖∇(u− uh)‖+ ‖λ− λh‖H−1 ≤ cuh.

Proof. (i) We verify the conditions of the inverse function theorem. Letting

(ũh, λ̃h) = (Ihu,Jh,Dλ) we have the smallness result from Lemma 3.2 with
κ = cuh, the Lipschitz estimate from Lemma 3.3 with cL = cuγinv(h), the

invertibility result from Lemma 3.1 with cinv = cu. Hence, within Bε(ũh, λ̃h)
for every ε > 0 with cuh ≤ ε ≤ c′uγinv(h)−1 there exists a unique solution
(uh, λh) ∈ Xh with Fh(uh, λh) = 0.
(ii) To derive the error estimate we first note that we may choose ε = chh
so that

‖∇(uh − ũh)‖+ ‖λh − λ̃h‖H−1 ≤ ch.

We have ‖∇(u − ũh)‖ ≤ ch. To bound the quasi-interpolation error ‖λ −
λ̃h‖H−1 we define δh = Jh,Dλ− Jhλ and note that

(δh, φ) = (δh, φ− Jh,Dφ) + (δh,Jh,Dφ)− (δh,Jh,Dφ)h,

where we used that the last term vanishes. With estimates for the Clément
quasi-interpolant and Lemma 2.1 we deduce that

|(δh, φ)| ≤ ch‖δh‖‖∇φ‖+ ch‖δh‖‖∇Jh,Dφ‖.

Inverse estimates and H1 and L2 stability properties of the Clément quasi-
interpolant Jh,D thus imply that

‖δh‖−1 ≤ ch‖δh‖ ≤ ch‖λ‖.

Noting ‖λ − Jhλ‖ ≤ ch‖∇λ‖ we find that ‖λ − Jh,Dλ‖H−1 ≤ ch, which
implies the error estimate. �
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4. Other target manifolds

To discuss the validity of the theory in case of other target manifolds
we consider a hypersurface M ⊂ Rm given as the zero level set of a twice
continuously differentiable function g : Rm → R, i.e.,

M = {s ∈ Rm : g(s) = 0}.

We assume that Dg is nonvanishing on M; the kernel of Dg defines the
tangent space ofM. Harmonic maps intoM are then defined as stationary
configurations (u, λ) ∈ A for the Lagrange functional

L(u, λ) =
1

2

∫
Ω
|∇u|2 dx+

∫
Ω
λ g(u) dx,

where the last term is interpreted as the application of λ to g(u). Stationary
points (u, λ) satisfy F (u, λ) = 0, where

F (u, λ)[(v, µ)] = (∇u,∇v) + (λ,Dg(u) · v) + 〈µ, g(u)〉.

Crucial for the application of the inverse function theorem are the invert-
ibility and continuity properties of the second variation of I given by

DF (u, λ)[(v, µ), (w, η)] = (∇v,∇w) + (λ,D2g(u)[v, w])

+ 〈µ,Dg(u) · w〉+ 〈η,Dg(u) · v〉.

The invertibility of DF can be analyzed as in the case of the unit sphere

using vh = Ih((Π̃hφ)|Dg(u)|−2Dg(u)) to establish the inf-sup condition. A
local Lipschitz continuity property requires bounding the difference∣∣〈λ,D2g(u)[v, w]〉 − 〈λ̃, D2g(ũ)[v, w]〉

∣∣
≤ ‖λ− λ̃‖H−1‖∇(D2g(u)[v, w])‖

+ ‖λ̃‖H−1‖∇((D2g(u)−D2g(ũ))[v, w])‖.

(7)

We have, e.g.,

‖∇(D2g(u)[v, w])‖ ≤ ‖D3g(u)‖L∞‖∇u‖‖v‖L∞‖w‖L∞

+ c‖D2g(u)‖L∞‖∇v‖‖∇w‖.

Bounding the first term on the right-hand side in a discrete setting using
the H1

D norms of v and w requires applying the inverse estimate (3) twice,
which leads to c′L ≤ cγinv(h)2. If d = 1 or d = 2 this still allows us to apply
the inverse function theorem, cf. [13], while if d = 3 it is in general not
guaranteed that 2cinvκ ≤ 1/(2cinvc

′
L) as both, γinv(h)−2 and κ, are of order

O(h). A positive case corresponds to boundaries of ellipsoids for which g
can be chosen as a quadratic function so that D2g is constant and the right-
hand side in (7) simplifies. Slightly more general, it suffices to require that
D3g is sufficiently small and assuming that we have the additional regularity
property u ∈W 2,∞(Ω;Rm).
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5. Numerical experiments

In this section we experimentally investigate the validity of the error es-
timate and the related aspect of the convergence properties of the New-
ton scheme for nonsingular S2-valued harmonic maps in two- and three-
dimensional settings. The first example is obtained from the stereographic
projection.

Example 5.1 (Inverse stereographic projection). Let d = 2 and Ω =
(−1/2, 1/2)2, ΓD = ∂Ω, and uD = π−1

st |∂Ω with the inverse stereographic
projection π−1

st : Ω→ S2 given for x ∈ Ω by

π−1
st (x) = (|x|2 + 1)−1

[
2x

1− |x|2
]
.

Then u = π−1
st is a harmonic map with u|∂Ω = uD.

The second example considers the prototypical harmonic map x 7→ x/|x|,
x ∈ R3, away from the origin to avoid a singular solution.

Example 5.2 (Radial projection). Let d = 3, Ω = (−1/2, 1/2)3, ΓD = ∂Ω,
and for s = 0.9e3 and and x ∈ ∂Ω

uD(x) =
x− s
|x− s|

.

Then u(x) = (x− s)/|x− s| is a harmonic map with u|∂Ω = uD.

The sufficient condition for global H1 coercivity |∇u| < c−1
P ≤ π is sat-

isfied in the first and violated in the second example. Visualizations of
numerical solutions for the examples are displayed in Figure 1; they illus-
trate that the cut-locus condition is satisfied in both cases. To iteratively
compute discrete harmonic maps, we use the Newton scheme which com-
putes for an initial pair (u0

h, λ
0
h) ∈ Ah the iterates (ukh, λ

k
h) ∈ Ah via the

corrections (dkh, δ
k
h) ∈ Xh that solve

DFh(ukh, λ
k
h)[(vh, µh), (dkh, δ

k
h)] = −Fh(ukh, λ

k
h)[vh, µh]

for all (vh, µh) ∈ Xh and the update

(uk+1
h , λk+1

h ) = (ukh, λ
k
h) + (dkh, δ

k
h),

until ‖∇dkh‖ + ‖δkh‖ ≤ εstop. We always use εstop = 10−10 and denote the
final output by (uh, λh).

5.1. Experimental convergence rates. We use sequences of uniformly
refined triangulations of the domains Ω = (−1/2, 1/2)d into triangles or
tetrahedra obtained from ` uniform refinements and with maximal mesh
sizes h` comparable to 2−`. We refer to these triangulations and quantities
related to it via an index ` instead of h`. We computed approximate solutions
in Examples 5.1 and 5.2 and determined the discrete approximation errors

‖e`‖X = ‖∇(u` − I`u)‖+ ‖λ` − I`,Dλ‖H−1
h
,
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Figure 1. Numerical solutions in Examples 5.1 (left)
and 5.2 (right).

as well as the approximation errors of the Lagrange multiplier in L2 and
H−1 norms, i.e.,

‖eλ` ‖ = ‖λ` − I`,Dλ‖, ‖eλ` ‖H−1 = ‖λ` − I`,Dλ‖H−1
h
.

Here, I`,D denotes the nodal interpolant with vanishing nodal values on ΓD.
We approximated the H−1 norm of a finite element function µh ∈ S1

D(Th)
by the equivalent quantity ‖µh‖H−1

h
= ‖∇(−∆h,D)−1µh‖ with the finite

element approximation (−∆h,D)−1 of the inverse of the negative Laplace
operator subject to homogeneous Dirichlet boundary conditions on ΓD. Ex-
perimental convergence rates for an error quantity δ` were determined via
the logarithmic slopes given by

eoc(δ`) =
log
(
δ`/δ`−1

)
log(h`/h`−1)

.

For sequences of uniform triangulations in two dimensions obtained from
red refinements of the triangles we have h`/h`−1 = 1/2. Table 1 displays
the full approximation errors for a sequence of uniform triangulations with
nodes N` and the experimental convergence rates for different error quanti-
ties. We observe a superconvergence phenomenon in the form of a quadratic
rate for the full approximation error. The discrete Lagrange multipliers con-
verge with respect to the L2 norm with the suboptimal experimental rate
approximately 0.5. The same quantities were computed on a sequence of
uniformly refined triangulations with reduced symmetry properties. These
were obtained by randomly perturbing the midpoints of edges that define
the vertices of new triangles. The results shown in Table 2 reveal that
this eliminates the superconvergence phenomenon. Because of the higher
complexity of three-dimensional triangulations and the lack of symmetry
properties of the exact solution a larger preasymptotic range is expected
in the three-dimensional setting of Example 5.2. The results shown in Ta-
ble 3 indicate a tendency to a linear convergence behavior on the employed
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sequence of unperturbed uniform triangulations; the Lagrange multipliers
appear to converge at optimal rates in H−1 as well as in L2.

` #N` ‖e`‖X eoc(‖eλ` ‖) eoc(‖eλ` ‖H−1
h

) eoc(‖e`‖X)

1 9 2.000e−1 0. 0. 0.
2 25 6.632e−2 4.150e−1 1.916 1.593
3 81 1.726e−2 4.643e−1 1.960 1.942
4 289 4.360e−3 4.840e−1 1.990 1.985
5 1089 1.093e−3 4.925e−1 1.997 1.996
6 4225 2.734e−4 4.964e−1 1.999 1.999
7 16641 6.835e−5 4.983e−1 2.000 2.000

Table 1. Approximation errors and experimental conver-
gence rates in Example 5.1 on a sequence of uniformly refined
triangulations consisting of right-angled triangles. A super-
convergence phenomenon is observed for the full approxima-
tion error, suboptimal convergence occurs for the Lagrange
multiplier in L2.

` #N` ‖e`‖X eoc(‖eλ` ‖) eoc(‖eλ` ‖H−1
h

) eoc(‖e`‖X)

1 9 2.242e−1 0. 0. 0.
2 25 5.963e−2 4.724e−1 3.057 2.228
3 81 2.498e−2 5.244e−1 1.151 1.392
4 289 1.068e−2 4.914e−1 1.361 1.319
5 1089 5.363e−3 5.333e−1 1.173 1.176
6 4225 2.967e−3 5.298e−1 9.452e−1 9.128e−1
7 16641 1.427e−3 5.178e−1 1.182 1.190

Table 2. Approximation errors and experimental conver-
gence rates in Example 5.1 on a sequence of uniformly refined
triangulations consisting of perturbed right-angled triangles.
No superconvergence phenomenon occurs and the theoreti-
cally predicted rates are confirmed, suboptimal convergence
occurs for the Lagrange multiplier in L2.

` #N` ‖e`‖X eoc(‖eλ` ‖) eoc(‖eλ` ‖H−1
h

) eoc(‖e`‖X)

1 27 1.241e−1 0. 0. 0.
2 125 1.424e−1 3.616e−1 −9.108e−1 −2.807e−1
3 729 1.452e−1 1.690e−1 2.700e−1 −4.193e−2
4 4913 1.095e−1 −6.774e−1 7.368e−1 8.583e−1
5 35937 7.788e−2 −7.586e−1 6.733e−1 7.197e−1

Table 3. Approximation errors and experimental conver-
gence rates in the three-dimensional setting of Example 5.2
on a sequence of uniformly refined triangulations.
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5.2. Iteration convergence. The conditions of the inverse function theo-
rem imply the superlinear convergence of Newton type iterations provided
that the starting value is sufficiently close to the solution. In order to ex-
perimentally determine the size of this neighborhood and to quantify the
convergence speed, we use oscillating perturbations of the nodal interpolants
of the exact solutions as starting values, i.e.,

u0
h = Ihu+ ξh, λ0

h = Ih,Dλ+ ζh.

The vectorial and scalar perturbations are given by

ξh = nf,%(x)[1, . . . , 1]T, ζh = nf,%(x),

where for a given frequency f and strength % ≥ 0 the noise function nf,% is
given by

nf,%(x) = % sin(2πfx1) . . . sin(2πfxd).

We experimentally investigated the experimental convergence behavior of
the Newton iteration by representing the residual Fh(ukh, λ

k
h) in the nodal

basis of the finite element spaces and computing its Euclidean norm. Ta-
ble 4 displays the decay of the residuals and indicates a superlinear but
non-quadratic convergence behavior in the two-dimensional settting of Ex-
ample 5.1 with a perturbed triangulation T7. The perturbation parameters
were chosen as f = 10 and % = h`.

step k time (s) resk−1 resk−2/resk−1

0 4.291e−1 1.000 0
1 1.153e2 8.128 8.128
2 1.337e3 1.448e−3 1.781e−4
3 1.500e3 1.897e−5 1.311e−2
4 3.470e3 5.329e−7 2.809e−2
5 5.463e3 9.428e−10 1.769e−3
6 7.513e3 3.867e−12 4.102e−3

Table 4. Iterations of the Newton iteration on the per-
turbed triangulation T7 in Example 5.1 with norms of resdi-
uals resk ' Fh(ukh, λ

k
h). Their quotients indicate a superlin-

ear, non-quadratic convergence behavior.

To experimentally determine the convergence area of the Newton iteration
as neighborhoods of the interpolants xh = (Ihu, Ih,Dλ) we used perturba-
tions of xh of increasing size, i.e.,

f = 10, % = h, h3/4, h1/2, h1/4, h0.

Tables 5 and 6 display the iteration numbers required to achieve the stopping
criterion on the fixed triangulations T7 and T5 for Examples 5.1 and 5.2, re-
spectively. A hyphen indicates that the criterion was not satisfied within 25
iterations.
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` % = 0 h h3/4 h1/2 h1/4 h0

1 2 2 3 3 2 3
2 2 4 2 5 5 5
3 2 5 5 8 8 —
4 2 4 5 6 — —
5 2 5 5 6 — —
6 2 5 5 6 — —
7 3 6 6 6 — —

Table 5. Iteration numbers for the Newton method in the
two-dimensional Example 5.1 for different perturbations of
strength % of the nodal interpolants as starting value.

` % = 0 h h3/4 h1/2 h1/4 h0

1 3 3 3 3 3 3
2 3 3 3 3 3 3
3 3 11 11 — — —
4 3 9 12 — — —
5 4 6 8 — — —

Table 6. Iteration numbers for the Newton method in the
three-dimensional Example 5.2 for different perturbations of
strength % of the nodal interpolants as starting value.
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