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Abstract

A numerical scheme is proposed to identify low energy configurations of a Föppl-von

Kármánmodel for bilayer plates. The dependency of the corresponding elastic energy on the

in-plane displacement u and the out-of-plane deflection w leads to a practical minimization

of the functional via a decoupled gradient flow. In particular, the energies of the resulting

iterates are shown to be monotonically decreasing. The discretization of the model relies on

P1 finite elements for the horizontal part u and utilizes the discrete Kirchhoff triangle for

the vertical componentw. The model allows for analysing various different problem settings

via numerical simulation: (i) stable low-energy configurations are detected dependent on

a specified prestrain described by elastic material properties, (ii) curvature inversions of

spherical and cylindrical configurations are investigated, (iii) elastic responses of foldable

cardboards for different spontaneous curvatures and crease geometries are compared.

1 Introduction

The rigorous justification and numerical treatment of bilayer plate models have recently received

considerable attention [5, 6], as they give rise to awide range of applications including heatedma-

terials with inhomogeneous expansion coefficients [30] and crystallizations on top of substrates

[19, 29]. Similar mechanics can be observed in natural systems, e.g., in biological materials with

internal misfit caused by swelling or growing tissue [24, 17]. Investigating such models can pro-

vide a deeper understanding of the elastic processes involved. A well-known model to describe

elastic deformations of thin objects including nonlinear effects is the Föppl–von Kármán model

[9]. The authors of [10, 11] recently derived such amodel for bilayer plates viaΓ-convergence, we
refer to the seminal contributions [16, 15] for underlying concepts. It includes a parameter θ > 0
that determines the strength of prestrain acting on the elastic body. Under the assumption that

the material is homogeneous with linear internal misfit, the deformation of a plate Ω ⊂ R2
can

be described by an in-plane displacement u : Ω → R2
and an out-of-plane deflection w : Ω → R

via minimization of the dimensionally reduced elastic energy

Eθ(u, w) = 1
2

∫
Ω

|D2w − αI|2 dx + θ

2

∫
Ω

|∇w ⊗ ∇w + ε̃(u)|2 dx −
∫

Ω
fw dx,

in a set of admissible pairs (u, w) ∈ H1(Ω,R2) × H2(Ω) subject to appropriate boundary con-

ditions and a vertical dead body load f : Ω → R. The first term in the energy captures bending

phenomena via deviations of the Hessian to the identity matrix scaled by some parameter α ∈ R
with respect to the squared Frobenius norm |A|2 :=

∑2
i=1

∑2
j=1 |aij |2, thereby leading to the

preference of a certain curvature in the out-of-plane deflection w. The second part of the en-

ergy includes shearing effects and involves twice the symmetric gradient ε̃(u) = ∇u + ∇u⊤

and the dyadic product x ⊗ y = xyT
, which introduces a coupling of the in- and out-of-plane
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components u and w, whose strength depends on the parameter choice θ ∈ (0, ∞). Extend-

ing previous results which considered limiting energy functionals within regimes in which the

typical energy per unit volume scales with powers of the film thickness γ (see, in particular,

[15, 21, 20]), the parameter θ introduces an additional fine scale in the von Kármán regime γ4
.

Indeed, for θ = 0, Eθ
reduces to the energy functional of a linear plate theory whereas, for

θ = ∞, the limiting energy Eθ
is that of a linearized Kirchhoff plate theory in which ∇w ⊗ ∇w

is constrained to be a symmetrized gradient or, equivalently (cf. [15]), w satisfies the linearized

isometry constraint det D2w = 0. Thus, the von Kármán functional augmented with the pa-

rameter θ provides a mathematical model that allows to discriminate ‘thick’ and ‘thin’ plates.

In particular, it is able to mathematically sustain a basic phenomenon observed in engineering

systems ([22, 25, 13, 14, 18, 12]: Large prestrains in very thin layers result in cylindrical shapes

whereas small prestrains in thick layers lead to spherical caps, see [10].

Furthermore, a piecewise minimization of the energy on two adjacent domains coupled with a

continuity condition along a given connecting crease line lead to simulations of foldable single-

and multilayer devices. Consequently, many interesting phenomena like the elastic response of

foldable cardboards, cf. Figure 1.1, or the actuation of bilayer mechanisms inspired by Venus

flytraps, can be numerically investigated.

Figure 1.1: Bistable mechanism of a foldable cardboard. After repeated actuation, a crack can be

observed (left picture) which emerges from the boundary and spreads along the given crease.

The nonconvex structure of the elastic energy complicates the computation of global minimizers.

An effective method to numerically detect stationary configurations with low elastic energy has

been proposed in [3]. It includes a gradient flow for the energy with respect to both variables u
and w. In our case, this results in the coupled system of nonlinear evolution equations(

∂tw, v
)
ver

= − ∂wEθ(u, w)[v]

= −
(
D2w − αI, D2v

)
− 2θ

(
|∇w|2∇w + ε̃(u)∇w, ∇v

)
+

(
f, v

)
,(

∂tu, z
)
hor

= − ∂uEθ(u, w)[z]

= − θ
(
ε̃(u), ε̃(z)

)
− θ

(
∇w ⊗ ∇w, ε̃(z)

)
,

with the Fréchet derivatives ∂wE, ∂uE and inner products (· , ·), (· , ·)ver and (· , ·)hor on L2(Ω),
H2(Ω) and H1(Ω,R2), respectively. The identities |a ⊗ a|2 = |a|4 and S : (a ⊗ b) = (Sa) · b =
(Sb) ·a for symmetric matrices S ∈ R2×2

and vectors a, b ∈ R2
have been used in the derivation

of the above system of equations.

To specify a discrete version of the evolution equations, time derivatives are replaced by the

backward difference quotients

dtu
k = 1

τk

(
uk − uk−1)

, dtw
k = 1

τk

(
wk − wk−1)

,

2
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where (τk)k≥1 denotes a sequence of positive step sizes. A decoupling of the evolution equations

is employed to combine practical stability properties of an implicit discretization with amenable

solvability of an explicit treatment. In the same manner, we make use of the delay effect of the

discrete product rule and define the average wk−1/2
as

wk−1/2 = 1
2

(
wk + wk−1)

,

to arrive at the following iterative scheme: Given (uk−1, wk−1) compute (uk, wk) such that(
dtw

k, v
)
ver

= −
(
D2wk − αI, D2v

)
− 2θ

(
|∇wk|2∇wk + ε̃(uk−1)∇wk−1/2, ∇v

)
+

(
f, v

)
,(

dtu
k, z

)
hor

= − θ
(
ε̃(uk), ε̃(z)

)
− θ

(
∇wk ⊗ ∇wk, ε̃(z)

)
,

for all (v, z) satisfying homogeneous boundary conditions. We show that the scheme is un-

conditionally stable and energy decreasing which implies convergence of a sequence (uk, wk)
to a stationary configuration (u, w). To ensure well-posedness of the equations we employ the

following adaptive time stepping scheme that includes an appropriate parameter τmax > 0 to

prevent numerical overflow:

• decrease τk until the Newton scheme terminates within N > 0 iterations

• set τk+1 = min
{
2τk, τmax

}
for the next gradient flow step

The dependence of the Föppl–von Kármán model on the in-plane and out-of-plane components

allows for different spatial discretizations of the two respective variables. In particular, the dis-

placement u is discretized using P1 finite elements whereas the deflection w is discretized via the

discrete Kirchhoff triangle [1]. The latter allows for a practical realization of bending elements

since the discrete gradient values ∇hwh belong to degrees of freedom of the finite element space.

The discrete elastic energy functional reads

Eθ
h(uh, wh) = 1

2

∫
Ω

|∇∇hwh − αI|2 dx

+ θ

2

∫
Ω

Îh

[
|∇wh ⊗ ∇wh + ε̃(uh)|2

]
dx −

∫
Ω

Îh

[
fwh

]
dx,

where Îh is the elementwise nodal interpolation operator introduced in Section 2.3 and ∇h de-

notes the discrete gradient operator defined in Section 2.4. Under appropriate boundary condi-

tions the discrete elastic energyEh Γ-converges to the continuous elastic energyE inH1(Ω,R2)×
W 1,4(Ω) for a sequence of regular triangulations (Th)h>0 as h → 0.
The practical realization of the model based on rigorously justified numerical methods is mo-

tivated by results from [10]. The authors quantify configurations of spherical and cylindrical

shape as energy minimizing configurations of the continuous limit models as θ → 0 and θ → ∞,

respectively. We investigate stationary low energy configurations of the discrete model for inter-

mediate values θ ∈ (0, ∞) via numerical experiments. The aim is to possibly identify a critical

range of values θ at which a rapid transition from spherical to cylindrical shape takes place.

Such a stark change of material response in a critical parameter region has been indicated by

first experiments in [10], which were based on an ad-hoc projected gradient descent using non-

conforming P1 elements on the out-of-plane strain and enforcing this quantity to be curl-free

eventually by a penalization. Our present numerical analysis and implementation detailed above

substantiates these observations. Moreover, we perform numerical experiments on the curva-

ture inversion of the resulting spherical and cylindrical configurations and investigate the elastic

responses of foldable cardboards for different spontaneous curvatures and crease geometries.
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The outline of this article is as follows. Section 2 is devoted to the derivation of the continuous

Föppl–von Kármán model along with discretization aspects. In Section 3 we show the energy

decreasing property of the discrete gradient flow. The Γ-convergence of the discrete energy

Eh to the continuous energy E is derived in Section 4. Section 5 contains various numerical

experiments.

2 Preliminaries

2.1 Model Derivation

A rigorous derivation of the Föppl–von Kármánmodel for prestrained plates has been established

in [11] via Γ-convergence. For a thin plate Ωγ = Ω × (−γ/2, γ/2) of thickness γ > 0 with

Ω ⊂ R2
a bounded Lipschitz domain and some elastic energy density Wγ : R3×3 → R, the

corresponding three-dimensional scaled hyperelastic energy reads

E3d(y) = 1
γ4

∫
Ω1

Wγ(x3, ∂1y, ∂2y, γ−1∂3y) dx,

where y ∈ H1(Ω1,R3) is defined via rescaling to the plate Ω1 of thickness γ = 1. In contrast

to general singlelayer models, the energy considered here explicitly depends on the out-of-plane

variable x3 ∈ (−1/2, 1/2). The elastic energy density Wγ reads

Wγ(x3, F ) = W0(x3, F (I + γ2√
θBγ(x3))), F ∈ R3×3,

and is described by the stored energy density W0 of the reference configuration that depends

on some internal misfit Bγ : (−1/2, 1/2) → R3×3
weighted by γ2√

θ with a parameter θ ∈
(0, ∞). The energy density W0 is assumed to satisfy the classical, physically motivated require-

ments such as smoothness in a neighbourhood of SO(3), frame indifference, non-degeneracy, and
quadratic growth, so that it is minimal (with value 0) precisely on SO(3). As the strength of the

misfit scales with γ2
, typical deformation gradients deviate from SO(3) by a comparable amount

and the effect of the prestrain is suitably described within the von Kármán energy scaling γ4
. The

variable θ specifies the amount of misfit on that scale and serves as an interpolation between the

linearized von Kármán (θ → 0) and the linearized Kirchhoff (θ → ∞) models as γ → 0. By
frame invariance, rigid body motions do not store elastic energy so that for each deformation y
and R ∈ SO(3), c ∈ R3

one has

E3d(y) = E3d(Ry + c).

Considering the asymptotic behavior of a sequence of rescaled deformations as γ → 0 we may

and will thus renormalize by tacitly applying a rigid body motion to the plate so as to guarantee

that

∥y − idγ∥L2 = min
{
∥Ry + c − idγ∥L2 : R ∈ SO(3), c ∈ R3}

, (2.1)

where idγ(x) = (x1, x2, γx3). In the von Kármán regime one then considers the rescaled in-

plane and out-of-plane displacements

ûi(x1, x2) = 1
θγ2 (yi(x) − xi) (i = 1, 2) and ŵ(x1, x2) = 1√

θγ
y3(x) (2.2)

and their averages along the small plate height

ui(x1, x2) =
∫ 1/2

−1/2
û(x) dx3 (i = 1, 2) and w(x1, x2) =

∫ 1/2

−1/2
ŵ(x) dx3

4
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as γ → 0. The Γ-limit of E3d together with a suitable compactness results for bounded energy

sequences has been obtained in [11] with respect to convergence of the averaged displacement

variable (u, w). Since the corresponding deformation gradients are close to rotations, the result-

ing energy functional (u, w) 7→ Eθ(u, w) only depends on the infinitesimal elastic moduli and is

explicitly computable from D2
F W0(t, I). Omitting the forcing term, for the prototypical exam-

ple of an isotropic homogeneous material with W0(t, F ) = dist2(F, SO(3)) and linear internal

misfit B(t) = tI we arrive at the following energy functional

Eθ(u, w) = 1
2

∫
Ω

|D2w − I|2 dx + θ

2

∫
Ω

|∇w ⊗ ∇w + ε̃(u)|2 dx,

which is a rescaled version of the general Föppl–von Kármán functional. The corresponding set

of admissible pairs (u, w) ∈ A is defined as

A = A0 + (uD, wD) ⊂ H1(Ω,R2) × H2(Ω).

Here, A and A0 are affine and linear subspaces of H1(Ω,R2) × H2(Ω), respectively, such that

the following Korn–Poincaré inequality holds, i.e.,

||u0||H1(Ω) + ||w0||H2(Ω) ≤ cP

(
||ε̃(u0)|| + ||D2w0||

)
(2.3)

for all (u0, w0) ∈ A0. For instance, this is the case if we have

u0|γD = 0, w0|γD = 0, ∇w0|γD = 0,

on a subset γD ⊂ ∂Ω of positive surface measure or

u0|∂Ω = 0, w0|∂Ω = 0,

on the whole boundary ∂Ω of Ω. To guarantee well-posedness of the iterative scheme, we note

that the Sobolev inequality

||∇w0||L4(Ω) ≤ cS ||D2w0|| (2.4)

holds for all w0 ∈ A0 due to the Sobolev embedding H2(Ω) ↪→ W 1,4(Ω).
Our results on the minimizers of Eθ

yields a very precise asymptotic analysis of low energy

configurations for the original three dimensional functional, which for definiteness we formulate

here for the prototypical case

Eγ
3d(y) = 12

γ4

∫
Ω1

dist2(
(1 + γ2(θ/3)1/2 x3)(∂1y, ∂2y, γ−1∂3y), SO(3)

)
dx.

(We introduced irrelevant constants so as to arrive at the simplest limiting functional.)

A first consequence of the Γ-convergence of E3d to Eθ
is that for a sequence of (almost) minimiz-

ers yγ of E3d one has subsequential convergence of the rescaled averaged dispacements uγ → u
andwγ → w, where (u, w) is a minimizer ofEθ

. Indeed, combining the Γ-convergence and com-

pactness results in [11, Theorem 3.1 and Lemma 4.1] with the observation in [8, Proposition 2]

yields a slightly stronger result for the limiting behavior of the full displacements in (2.2) with

limiting plate functional

Eθ(u, w) = 1
2

∫
Ω

|D2w − I|2 dx + θ

2

∫
Ω

|∇w ⊗ ∇w + ε̃(u)|2 dx.

5
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Theorem 2.1. Suppose (yγ) ⊂ H1(Ω1,R3) is a sequence of almost minimizers for E3d, i.e.,

lim
γ→0

(
Eγ

3d(yγ) − min
{
E3d(y) : y ∈ H1(Ω1,R3)

})
= 0,

such that (2.1) is satisfied for every yγ . Then there exists a subsequence (not relabeled) such that the
corresponding displacements (ûγ , ŵγ) given in (2.2) satisfy

ûγ ⇀ û in H1(Ω1,R2) and ŵγ ⇀ ŵ in H1(Ω1),

where the limiting (û, ŵ) is given by

û(x) = u(x1, x2) − 1√
θ

x3
(
∂1w(x1, x2), ∂2w(x1, x2)

)
,

ŵ(x) = w(x1, x2) + 1√
θ

x3

and (u, w) is a minimizer of Eθ .

We note that the in-plane scale θγ2
is negligible with respect to the deflection scale

√
θγ. Thus,

the descaled original displacement is to leading order determined by the limiting deflection w:

yγ(x) =
(
x1 + θγ2û1(x) + o(γ2), x2 + θγ2û2(x) + o(γ2),

√
θγŵ(x) + o(γ)

)
= (x1, x2, γx3) +

√
θγ w(x1, x2)(0, 0, 1)T + o(γ). (2.5)

More precisely, in terms of the scaled identity idγ(x) = (x1, x2, γx3) we have:

Corollary 2.1. Suppose (yγ) ⊂ H1(Ω1,R3) is a sequence of almost minimizers for E3d such that
(2.1) is satisfied for every yγ . Then for a subsequence (not relabeled) we have

1√
θγ

(yγ − idγ) ⇀ w (0, 0, 1)T in H1(Ω1,R3),

where w ∈ H1(Ω) is such that (u, w) is a minimizer of Eθ for a suitable u, i.e., a minimizer for
min{Eθ(u, ·) : u ∈ H1(Ω,R2)}.

2.2 Remarks on plates with folds

While the above results apply to elastic plates, in Section 5.4 below we will also report on numer-

ical experiments for plates which can be folded along some special curves. From an analytical

point of view, the derivation of suitable effective plate theories for such foldable plates is rather

challenging. We include here a short discussion of the difficulties that occur when modeling

infinitesimal deflections in foldable thin structures.

For homogeneous Kirchhoff plates which are subject to finite (nonlinear) bending and whose

energy scales like γ2
, folds and even cracks and voids have been sucessfully analyzed in [4, 26].

Following the approach in [4] one may consider a plate whose stored energy function is weak-

ened in a tubular neighborhood of some crease line. More precisely, let Σ ⊂ Ω be a Jordan arc

with both endpoints on the same connected component of ∂Ω and such that the two connected

components of Ω \ Σ are themselves Lipschitz domains. Let Σr = {x ∈ R : dist(x, Σ) < r} and

introduce the damage indicator fγ : Ω1 → [0, 1] by

fγ(x) = εγχΣγ (x1, x2) + 1 − χΣγ (x1, x2), where γ2 ≲ εγ ≪ γ.

6
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(More general models can be considered.) The main result of [4] implies that, as γ → 0 the

prototypical energy functionals

y 7→ 1
γ2

∫
Ω1

fγ dist2(
(∂1y, ∂2y, γ−1∂3y), SO(3)) dx,

Γ-converge to the limiting functional

Ehom
K (y) =

{ 1
24

∫
Ω\Σ |A|2 dx if y ∈ A,

+∞ otherwise.

Here the admissible class A consists of piecewise isometric immersions:

A =
{
y ∈ H1(Ω;R3) ∩ H2(Ω \ Σ;R3) : ∇yT∇y = I a.e. on Ω

}
,

and A is the second fundamental form of the surface y(Ω). A straightforward combination of

these results with the analysis of multilayer Kirchhoff plates, cf. [27, 28, 23], then shows that the

functionals

y 7→ 1
γ2

∫
Ω1

fγ dist2(
(1 + γ(a + oγ(1)) x3)(∂1y, ∂2y, γ−1∂3y), SO(3)

)
dx

for given a ∈ R Γ-converge to

EK(y) =
{ 1

24
∫

Ω\Σ |A − aI|2 dx if y ∈ A,

+∞ otherwise.

Moreover, bounded energy sequences are precompact. We remark that the scaling assumption

γ2 ≲ εγ ≪ γ for the degradation strength guarantees that near the crease the material is so weak

that arbitrarily large folding angles are possible at zero energy while still being strong enough

not to break.

In the von Kármán regime, the interplay of possible folding angles and their energetic costs is

more complicated. One natural choice is to consider a very weak regime where the damage

indicator now satsifies

fγ = εγχΣγ + 1 − χΣγ with γ4 ≲ εγ ≪ γ3.

Then still arbitrarily large folding angles are possible at zero energy. If we adapt the energy

functional of the previous section by setting

Eγ
3d(y) = 12

γ4

∫
Ω1

fγ dist2(
(1 + γ2(θ/3)1/2 x3)(∂1y, ∂2y, γ−1∂3y), SO(3)

)
dx,

we can apply the above results for Kirchhoff plates (with a = 0) to the functionals γ2Eγ
3d to

see that any sequence (yγ) with Eγ
3d(yγ) ≤ C and hence γ2Eγ

3d(yγ) → 0 converges – up to

subsequences – to a limiting deformation y whose second fundamental form vanishes on the two

components Ω1, Ω2 of Ω \ Σ. But then y is a rigid motion on these sets, so there are R1, R2 ∈
SO(3) and c1, c2 ∈ R3

such that

y(x) =
{

R1x + c1 if x ∈ Ω1,

R2x + c2 if x ∈ Ω2.
(2.6)

7
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Moreover, as y ∈ H1(Ω,R3) cannot jump along Σ, R1 and R2 are rank-1-connected and Σ must

be a straight line unless R1 = R2 and c1 = c2 in which cases there is no fold at all. If R1 ̸= R2
with R2 − R1 = a ⊗ n, then n is a normal to Σ.

With these observation one is led to consider renormalizations by substracting from yγ limiting

deformations of the form (2.6) rather than a single rigidmotion as in (2.1). Since there is no energy

cost caused by the crease, the problem completely decouples and one can apply the results above

on both components separately. After descaling (cf. (2.5) in the homogenous case) we see that

deformations yγ are to leading order of the form

yγ(x) = Ri

(
(x1, x2, γx3) +

√
θγ w(x1, x2)(0, 0, 1)T

)
+ ci + o(γ) for x ∈ Ωi, i = 1, 2.

In particular, there is no energetical coupling between w|Ω1 and w|Ω2 .

Other natural scaling regimes for the damage parameter are obtained by choosing larger values

for εγ such as in the bending regime above, i.e., γ2 ≲ εγ ≪ γ. While we expect that a Γ-
convergence result can be proved under the assumption that there is a unique rigid body motion

as in (2.1) such that the rescaled relative in-plane and out-of-plane displacements (2.2) are con-

vergent, we must observe now that such an assumption cannot be inferred from energy bounds.

Indeed, exploratory computations indicate that if Ri ∈ SO(3) and ci ∈ R3
are optimal choices

in (2.1) on Ωi i = 1, 2, for y = yγ , a bounded energy sequence, then

|R2 − R1|2 ≲ ε−1
γ γ3

and that configuartionswith a folding angle scalingwith ε
−1/2
γ γ3/2

are possible but will lead to an

extra ‘folding energy’ contribution in the limit. A full analysis of this regime appears challenging

and is beyond the scope of this contribution.

2.3 P1-Finite Elements

In this section we introduce the finite element space used for the discretization of the in-plane

component u. For a regular triangulation Th of the polygonal domain Ω ⊂ R2
, the standard P1

finite element space is defined as

S1(Th) =
{

vh ∈ C(Ω)
∣∣∣ vh|T affine for all T ∈ Th

}
.

IfNh denotes the set of nodes of the triangulation, the nodal basis functions (φz)z∈Nh
associated

with S1(Th) satisfy the Kronecker delta property φz(y) = δzy for all z, y ∈ Nh. We introduce

the space of discontinuous P1 functions which is defined as

Ŝ1(Th) =
{

vh ∈ L∞(Ω)
∣∣∣ vh|T affine for all T ∈ Th

}
,

along with the elementwise nodal interpolant Îhv ∈ Ŝ1(Th) of piecewise continuous functions
v ∈ L∞(Ω) to account for gradient jumps of discrete functions across element sides S ∈ Sh. In

particular, if φT
z ∈ L∞(Ω) is the discontinuous function such that φT

z (x) = χT (x)φz(x) for all
x ∈ Ω, we define

Îhv =
∑

T ∈Th

∑
z∈Nh∩ T

v|T (z)φT
z .

8
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The interpolator is used to approximate the L2
inner product of piecewise continuous functions

or vector fields v, w ∈ L∞(Ω,Rℓ) for ℓ = 1, 2 and coefficients βT
z =

∫
T φz dx via

(
v, w

)
h

=
∫

Ω
Îh

[
v · w

]
dx =

∑
T ∈Th

∑
z∈Nh∩ T

βT
z v|T (z) · w|T (z). (2.7)

Furthermore, we denote by Vh = S1(Th) × S1(Th) the set of continuous P1 vector fields.

2.4 Discrete Kirchhoff Elements

To approximate the vertical component w of the Föppl-von Kármán model we employ an H2
-

nonconforming finite element discretization. For a given regular triangulation Th of Ω the H1
-

conforming finite element spaces Wh ⊆ H1(Ω) and Θh ⊆ H1(Ω,R2) are defined as

Wh :=
{

wh ∈ C(Ω)
∣∣∣ wh|T ∈ P red

3 (T ) ∀T ∈ Th, ∇wh is continuous at all z ∈ Nh

}
,

Θh :=
{

θh ∈ C(Ω,R2)
∣∣∣ θh|T ∈ P2(T )2 ∀T ∈ Th

}
.

The space Pk(T ) denotes the set of polynomials with total degree smaller than or equal to k ≥ 0
restricted to the element T ∈ Th. Furthermore, in the definition of

P red

3 (T ) :=
{

p ∈ P3(T )
∣∣∣ p(xT ) = 1

3
∑

z∈Nh∩ T

(
p(z) + ∇p(z) · (xT − z)

)}
,

the degree of freedom in the center of mass xT = (1/3)
∑

z∈Nh∩ T z of the triangle T is elimi-

nated. The remaining degrees of freedom of the space Wh are given by the function values and

the two partial derivatives at each vertex of the elements T ∈ Th. This property is especially

useful for the practical realization of the discrete model.

To relate the finite element spaces Wh and Θh we introduce the operator ∇h : Wh → Θh which

defines a discretization of the deformation gradient. The property ∇hwh ∈ Θh ⊆ H1(Ω,R2) for
functions wh ∈ Wh ensures that second order derivatives can be discretized via the operation

∇∇hwh.

Definition 2.1 (See [2, Def. 8.6]). For every wh ∈ Wh the discrete gradient operator ∇h : Wh →
Θh is the uniquely defined function θh = ∇hwh such that

θh(z) = ∇wh(z) ∀z ∈ Nh,

θh(zS) · nS = 1
2

(
∇wh(z1

S) + ∇wh(z2
S)

)
· nS ∀S ∈ Sh,

θh(zS) · tS = ∇wh(zS) · tS ∀S ∈ Sh.

For every side S ∈ Sh we denote by z1
S , z2

S ∈ Nh its endpoints, by zS = (z1
S + z2

S)/2 its midpoint
and by nS , tS ∈ R2 the orthonormal vectors such that nS is normal to S.

Remark 2.1. The discrete gradient operator can be applied to functions w ∈ H3(Ω) by defining a
nodal interpolant Idkt

h w ∈ Wh via the conditions Idkt
h w(z) = w(z) and ∇Idkt

h w(z) = ∇w(z) for
every node z ∈ Nh. In particular, we have that ∇hw = ∇hIdkt

h w.

9
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As a direct consequence of the above definition we have for every S ∈ Sh that

∇hwh(zS) =
(
∇hwh(zS) · nS

)
nS +

(
∇hwh(zS) · tS

)
tS

=
(
θh(zS) · nS

)
nS +

(
θh(zS) · tS

)
tS

= 1
2

(
(∇wh(z1

S) + ∇wh(z2
S)) · nS

)
nS +

(
∇wh(zS) · tS

)
tS ,

(2.8)

where we split ∇hwh(zS) in its orthogonal parts, namely the parts in the directions nS and tS .

The discrete gradient operator possesses the following useful properties, cf. [2, 7].

Lemma 2.1 (See [2, Lem. 8.1]). (i) There exists a constant c > 0 such that for every wh ∈ Wh and
T ∈ Th we have for ℓ = 0, 1 with ∇0 = I that

c−1 ||∇ℓ+1wh||L2(T ) ≤ ||∇ℓ∇hwh||L2(T ) ≤ c ||∇ℓ+1wh||L2(T ).

(ii) There exists a constant c > 0 such that for every w ∈ H3(Ω) and T ∈ Th we have

||∇hw − ∇w||L2(T ) + hT ||∇∇hw − D2w||L2(T ) ≤ ch2
T ||D3w||L2(T ).

(iii) There exists a constant c > 0 such that for wh ∈ Wh and 2 ≤ p ≤ ∞ there holds

||∇hwh − ∇wh||Lp (T ) ≤ chT ||D2wh||Lp (T ),

for every T ∈ Th with hT := diam(T ).
(iv) The mapping wh → ||∇∇hwh|| defines a norm on the sets

W clamped
0,h :=

{
wh ∈ Wh

∣∣∣ wh(z) = 0 and ∇wh(z) = 0 ∀z ∈ Nh ∩ γD

}
,

W simple
0,h :=

{
wh ∈ Wh

∣∣∣ wh(z) = 0 ∀z ∈ Nh ∩ ∂Ω
}

.

For wh ∈ W clamped
0,h we have wh|γD = ∇wh|γD = 0 and w̃h ∈ W simple

0,h satisfies w̃h|∂Ω = 0.

3 Energy Decreasing Iteration

This section deals with the analysis of the discrete gradient flow with regard to well-posedness,

unconditional stability and monotone energy decay of the resulting iterates.

Algorithm 3.1 (Decoupled gradient flow). Specify an initial configuration (u0, w0) ∈ A, an
initial step size τ1 > 0, a stopping tolerance εstop > 0 and set k = 1.
(1) Compute (uk, wk) ∈ A such that(

dtw
k, v

)
ver = −

(
D2wk − αI, D2v

)
− 2θ

(
|∇wk|2∇wk + ε̃(uk−1)∇wk−1/2, ∇v

)
+

(
f, v

)
,(

dtu
k, z

)
hor = − θ

(
ε̃(uk), ε̃(z)

)
− θ

(
∇wk ⊗ ∇wk, ε̃(z)

)
,

for all (z, v) ∈ A0.

(2) Terminate the algorithm if ||dtu
k||hor + ||dtw

k||ver ≤ εstop min{1, τk}. Otherwise, define τk+1,
set k → k + 1 and continue with Step (1).

The algorithm admits a sequence (uk, wk)k≥0 ⊂ A that decreases the elastic energy. For sim-

plicity we assume from now on that f = 0.

10
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Lemma 3.1 (Energy decay). Iterates (uk, wk)k≥0 ⊂ A of Algorithm 3.1 satisfy

Eθ(uk, wk) +
K∑

k=1
τk

(
||dtw

k||2ver + ||dtu
k||2hor

)
≤ Eθ(u0, w0).

This implies that the updates dtu
k and dtw

k vanish as k → ∞. Cluster points of the sequence
(uk, wk) thus become stationary configurations for the elastic energy Eθ .

Proof. Testing the first and second equation of the iterative scheme of Algorithm 3.1 with v =
dtw

k
and z = dtu

k
, respectively, shows that

||dtw
k||2

ver
= −

(
D2wk − αI, D2dtw

k)
− 2θ

(
|∇wk|2∇wk + ε̃(uk−1)∇wk−1/2, ∇dtw

k)
,

||dtu
k||2

hor
= − θ

(
ε̃(uk), ε̃(dtu

k)
)

− θ
(
∇wk ⊗ ∇wk, ε̃(dtu

k)
)
.

The discrete product rule dt(akbk) = (dta
k)bk + ak−1(dtb

k) implies that we have

θdt
(
ε̃(uk), ∇wk ⊗ ∇wk)

= θ
(
ε̃(dtu

k), ∇wk ⊗ ∇wk)
+ θ

(
ε̃(uk−1), dt(∇wk ⊗ ∇wk)

)
,

whereas the binomial formula dt|ak|2 = 2dta
k · ak−1/2

yields

θ
(
ε̃(uk−1), dt(∇wk ⊗ ∇wk)

)
= 2θ

(
ε̃(uk−1)∇wk−1/2, ∇dtw

k)
.

Combining the two equations, we arrive at

θdt
(
ε̃(uk), ∇wk ⊗ ∇wk)

= θ
(
ε̃(dtu

k), ∇wk ⊗ ∇wk)
+ 2θ

(
ε̃(uk−1)∇wk−1/2, ∇dtw

k)
.

Since the backwards difference quotient is invariant under additive constants, we may incorpo-

rate the scaled identity matrix αI into the sequence (D2dtw
k)k≥0, in the sense that

D2dtw
k = dtD

2wk = dt(D2wk − αI).

By combining the above equation with the binomial formula 2dta
k · ak = dt|ak|2 + τk|dta

k|2 we
find that (

D2wk − αI, D2dtw
k)

=
(
D2wk − αI, dt(D2wk − αI)

)
= 1

2
(
dt||D2wk − αI||2 + τk||dt(D2wk − αI)||2

)
.

A summation of the discrete evolution equations and the convexity of |∇w|4 show that

||dtw
k||2

ver
+ 1

2
(
dt||D2wk − αI||2 + τk||dt(D2wk − αI)||2

)
+ ||dtu

k||2
hor

+ θ

2
(
dt||ε̃(uk)||2 + τk||ε̃(dtu

k)||2
)

= −2θ
(
ε̃(uk−1)∇wk−1/2, ∇dtw

k)
− θ

(
ε̃(dtu

k), ∇wk ⊗ ∇wk)
− 2θ

(
|∇wk|2∇wk, ∇dtw

k)
≤ −θdt

(
ε̃(uk), ∇wk ⊗ ∇wk)

− θdt

2

∫
Ω

|∇wk|4 dx.

Using that τk||dt(D2wk − αI)||2 + τk||dtε̃(uk)||2 ≥ 0 and multiplying the above equation by τk,

a summation over k = 1, 2, . . . , K yields the desired estimate.

11
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The iteration is unconditionally stable, but chosing large step sizes might lead to non-uniqueness

of solutions. A mild condition on τk ensures well-posedness of Algorithm 3.1.

Proposition 3.1 (Uniqueness of minimizers). The iterates (uk, wk)k≥1 ⊂ A of Algorithm 3.1 are
unique, provided that ||D2 · || ≤ ceq|| · ||ver and

τk ≤ 1
2c0c2

eqc
2
S

for every k ≥ 1 with a constant c0 depening on θ, cS , wD and E0 = Eθ(u0, w0).

Proof. The linear equation defining uk
admits a unique solution by the Lax–Milgram lemma.

The nonlinear equation with respect to wk
defines an optimality condition for the minimization

problem minw∈W G(w), where the functional G is defined as

G(w) = 1
2τk

||w − wk−1||2
ver

+ 1
2 ||D2w − αI||2 + θ

2

∫
Ω

|∇w|4 dx

+ θ

2

∫
Ω

ε̃(uk−1) :
[
∇(w + wk−1) ⊗ ∇(w + wk−1)

]
dx.

The existence of a minimizer wk
follows by lower semicontinuity and coercivity on H2(Ω).

Lemma 3.1 implies that θ||ε̃(uk) + ∇wk ⊗ ∇wk||2 ≤ 2Eθ(uk, wk) ≤ 2E0. We show that

||ε̃(uk)|| ≤ c0 with a constant c0 defined below. Adding and subtracting ∇wk ⊗ ∇wk
and

∇wD , the Sobolev inequality (2.4) and the formula (x + y)2 ≤ 2x2 + 2y2
yield

||ε̃(uk)|| ≤ ||ε̃(uk) + ∇wk ⊗ ∇wk|| + ||∇wk||2L4(Ω)

≤
√

2E0/θ + 2||∇(wk − wD)||2L4(Ω) + 2||∇wD||2L4(Ω)

≤
√

2E0/θ + 2c2
S ||D2(wk − wD)||2 + 2||∇wD||2L4(Ω) =: c0.

Due to the above estimate we find with similar arguments and the Hölder inequality that

θ

2

∫
Ω

ε̃(uk−1) : ∇w ⊗ ∇w dx ≥ −θ

2 ||ε̃(uk−1)|| ||∇w||2L4(Ω)

≥ −||ε̃(uk−1)|| ||∇(w − wk−1)||2L4(Ω) − ||ε̃(uk−1)|| ||∇wk−1||2L4(Ω)

≥ −c0c2
S ||D2(w − wk−1)||2 − c0||∇wk−1||2L4(Ω).

The second term on the right-hand side is independent of w whereas the first term can be ab-

sorbed using ||D2 · || ≤ ceq|| · ||ver, provided that τk ≤ 1/(2c0c2
eqc2

S). In particular, the functional

G is strongly convex which shows the uniqueness of the minimizer wk
.

To deal with the nonlinear system of equations in Algorithm 3.1 we employ a Newton scheme.

In the following we assume for simplicity that || · ||ver = ||D2 · ||.

Proposition 3.2 (Newton scheme). Solving the first equation of Algorithm 3.1 is equivalent to
seeking wk ∈ W such that Fk(wk)[v] = 0 for all v ∈ W with

Fk(w)[v] =
(
D2[w − wk−1], D2v

)
+ τk

(
D2w − αI, D2v

)
+ τkθ

([
2|∇w|2 + ε̃(uk−1)

]
∇w + ε̃(uk−1)∇wk−1, ∇v

)
.

The Newton scheme converges quadratically for sufficiently small step sizes.

12
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Proof. The equivalence of the equation Fk(w)[v] = 0 to the first step of Algorithm 3.1 follows

by the definition of the average wk−1/2 = (wk + wk−1)/2. Proposition 3.1 implies that there

exists a unique solution wk ∈ W . The Fréchet derivative of Fk along z ∈ W reads

F ′
k(w)[v, z] = (1 + τk)

(
D2z, D2v

)
+ τkθ

(
[4∇w ⊗ ∇w + 2|∇w|2 + ε̃(uk−1)]∇z, ∇v

)
.

The coercivity of F ′
k(w) follows by noting that with Hölder’s inequality we arrive at

F ′
k(w)[v, v] ≥ (1 + τk)||D2v||2 − τkθ||4∇w ⊗ ∇w + 2|∇w|2I2 + ε̃(uk−1)|| ||∇v||2L4(Ω)

for every v ∈ W provided that τk is sufficiently small. The quadratic convergence of the Newton

scheme then follows by continuity properties of Fk and its derivatives.

4 Γ-Convergence

The validity of the discrete approximation of the dimensionally reduced elastic energy for the

singlelayer model has been rigorously justified in [3] by means of Γ-convergence. Additional
arguments are required to apply the results to the bilayer model considered in this work. We

omit dealing with the forcing term whose convergence analysis is standard and recap that the

discrete energy reads

Eθ
h(uh, wh) = 1

2

∫
Ω

|∇∇hwh − αI|2 dx + θ

2

∫
Ω

Îh

[
|∇wh ⊗ ∇wh + ε̃(uh)|2

]
dx

for functions (uh, wh) ∈ Vh × Wh. We start by introducing a compactness result that holds for

appropriate assumptions on the boundary conditions stated in Section 2.1.

Lemma 4.1 (Compactness). Let (uh, wh)h>0 ⊂ Vh × Wh be a sequence such that

uh = uD,h + u0,h, wh = wD,h + w0,h,

where (uD,h, wD,h) ∈ Vh × Wh satisfy uD,h → uD in H1(Ω;R2) and wD,h → wD in W 1,4(Ω)
as h → 0, and (u0,h, w0,h) ∈ Vh × Wh admit homogeneous boundary conditions, i.e.,

u0,h|γD = 0, w0,h|γD = 0, ∇w0,h|γD = 0,

on a subset γD ⊂ ∂Ω of positive surface measure or

u0,h|∂Ω = 0, w0,h|∂Ω = 0,

on the whole boundary ∂Ω of Ω. If Eθ
h(uh, wh) ≤ cE for all h > 0 we have that

||uh||H1(Ω;R2) + ||wh||W 1,4(Ω) ≤ c.

Proof. From the bound on the discrete energy and a binomial formula we find that ∇hwh is

bounded in H1(Ω;R2). Lemma 2.1 implies that the mapping wh → ||∇∇hwh|| defines a norm
on the set of functions wh ∈ Wh that satisfy the assumed boundary conditions. In particular,

the sequence (wh)h>0 is bounded in W 1,4(Ω). Since ε̃(uh) is bounded in L2(Ω,R2), Korn’s
inequality (2.3) implies that the sequence (uh)h>0 is bounded in H1(Ω;R2).

The compactness result ensures Γ-convergence of the discrete energy functionals Eθ
h to the con-

tinuous energy Eθ
as h → 0.

13
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Theorem 4.1 (Γ-convergence). (i) Let (uh, wh)h>0 ⊂ Vh × Wh be a sequence of functions with
bounded energy, i.e., Eθ

h(uh, wh) ≤ cE for all h > 0. Then there exists a pair (u, w) ∈ H1(Ω;R2)×
W 1,4(Ω) with w ∈ H2(Ω) and a subsequence (not relabeled) such that

(uh, wh) → (u, w) in H1(Ω;R2) × W 1,4(Ω)

as h → 0 and
Eθ(u, w) ≤ lim inf

h→0
Eθ

h(uh, wh).

(ii) For every (u, w) ∈ H1(Ω;R2)×H2(Ω) there exists a recovery sequence (uh, wh)h>0 ⊂ Vh×Wh

such that
(uh, wh) → (u, w) in H1(Ω;R2) × W 1,4(Ω)

as h → 0 and
lim
h→0

Eθ
h(uh, wh) = Eθ(u, w).

Proof. We show that the error of numerical integration vanishes as h → 0, i.e.,∫
Ω

Îh

[
|∇wh ⊗ ∇wh + ε̃(uh)|2

]
dx →

∫
Ω

|∇wh ⊗ ∇wh + ε̃(uh)|2 dx.

Upon defining φh = ∇wh ⊗ ∇wh + ε̃(uh) and applying an elementwise interpolation estimate,

the chain rule, Hölder’s inequality and the triangle inequality, we find that∣∣∣∣∫
Ω

Îh|φh|2 − |φh|2 dx

∣∣∣∣ ≤ c
∑

T ∈Th

hT

∣∣∣∣∣∣D|φh|2
∣∣∣∣∣∣

L1(T )

≤ 2c
∑

T ∈Th

h
1/2
T ||φh||L2(T ) h2

T ||Dφh||L2(T )

≤ 2ch1/2 ||φh||
∑

T ∈Th

h2
T ||Dφh||L2(T )

≤ 4ch1/2 ||φh||
( ∑

T ∈Th

hT ||∇wh||2L∞(T )||D
2wh||2L2(T )

)1/2
.

We used the fact that uh ∈ S1(Th)2
implies ||D2uh||L2(T ) = 0 on every T ∈ Th. The bound

Eθ
h(uh, wh) ≤ cE for all h > 0 yields that the terms including φh and D2wh are uniformly

bounded by a constant. In addition, we are able to apply Lemma 4.1 which gives

||uh||H1(Ω;R2) + ||wh||W 1,4(Ω) ≤ c.

Hence, a final application of the inverse estimates ||∇wh||L∞(T ) ≤ ch
−1/2
T ||∇wh||L4(T ) and

||D2uh||L2(T ) ≤ ch−1
T ||∇uh||L2(T ) shows that the right-hand side tends to zero as h → 0.

(i) Let (uh, wh)h>0 ⊂ Vh × Wh be a sequence of functions satisfying Eθ
h(uh, wh) ≤ cE for

all h > 0. Lemma 4.1 implies that ||uh||H1(Ω;R2) + ||wh||W 1,4(Ω) ≤ c. In particular, for some

Y ∈ H1(Ω;R2) and w ∈ W 1,4(Ω) we have for a subsequence (not relabeled) that

∇hwh ⇀ Y in H1(Ω;R2),

wh ⇀ w in W 1,4(Ω),

∇hwh → ∇wh in L4(Ω;R2).
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We used items (i) and (iii) of Lemma 2.1 and an inverse estimate to find that

||∇hwh − ∇wh||L4(Ω) ≤ ch1/2||∇∇hwh||L2(Ω) → 0

as h → 0. The uniqueness of weak limits implies that ∇w = Y , hence w ∈ H2(Ω). Since

∇hwh → Y = ∇w inL4(Ω;R2)we also have that∇wh → ∇w inL4(Ω;R2). Similar arguments

show that there exists u ∈ H1(Ω;R2) such that uh → u in H1(Ω;R2). Since the error of

numerical integration vanishes, strong convergence of ∇wh → ∇w in L4(Ω;R2) and uh → u
in H1(Ω;R2) together with weak lower semicontinuity of the convex terms shows the desired

estimate.

(ii) We argue by density of smooth functions to assume that (u, w) ∈ H2(Ω;R2) × H3(Ω) and
construct a recovery sequence (uh, wh)h>0 via interpolation of (u, w) by defining uh = Ihu ∈
Vh and wh = Idkt

h w ∈ Wh. Here, Ih denotes the standard nodal interpolation operator while

Idkt

h is defined in Remark 2.1. Lemma 2.1 implies the interpolation estimate

||∇hw − ∇w||L2(T ) + hT ||∇∇hw − D2w||L2(T ) ≤ ch2
T ||D3w||L2(T ).

Upon recalling that ∇hw = ∇hIdkt

h w for w ∈ H3(Ω), a summation over all elements T ∈ Th

yields that ∇∇hwh → D2w in L2(Ω) as h → 0. In particular, this shows that∫
Ω

|∇∇hwh − αI|2 dx →
∫

Ω
|D2w − αI|2 dx

as h → 0. From standard interpolation estimates for wh and uh we also obtain that∫
Ω

|∇wh ⊗ ∇wh + ε̃(uh)|2 dx →
∫

Ω
|∇w ⊗ ∇w + ε̃(u)|2 dx

as h → 0. Combining the above results shows the asserted convergence property.

5 Numerical Experiments

5.1 Implementation

In this section we introduce the discrete version of the proposed gradient flow and analyse the

performance of the corresponding Matlab implementation. If D2
h = ∇∇h denotes the discrete

Hessian, the iterative scheme is defined via inner products

(wh, vh)ver =
(
D2

hwh, D2
hvh

)
, (uh, zh)hor =

(
ε̃(uh), ε̃(zh)

)
for discrete functions wh, vh ∈ Wh and uh, zh ∈ Vh and the L2

inner product (·, ·)h specified

in (2.7). For approximations uD,h ∈ Vh and wD,h ∈ Wh of some boundary data, we define the

discrete set of admissible functions as

Ah = A0,h + (uD,h, wD,h),

where A0,h = V0,h × W0,h is a linear subspace subject to homogeneous boundary conditions.

This leads to the following scheme for the discrete decoupled gradient flow.

Algorithm 5.1 (Discrete decoupled gradient flow). Specify an initial configuration (u0
h, w0

h) ∈
Ah, an initial step size τ1 > 0, stopping tolerances εNewton, εstop > 0 and set k = 1.
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(1a) Decrease τk until the Newton scheme computes wk
h ∈ [W0,h + wD,h] within a tolerance

||D2
hdtw

k
h|| ≤ εNewton and a maximum number N > 0 of iterations such that(
D2

hdtw
k
h, D2

hvh

)
= −

(
D2

hwk
h − αI, D2

hvh

)
− 2θ

(
|∇wk

h|2∇wk
h + ε̃(uk−1

h )∇w
k−1/2
h , ∇vh

)
h

+
(
f, vh

)
h

for all vh ∈ W0,h.

(1b) Compute uk
h ∈ [V0,h + uD,h] such that(
dtε̃(uk

h), ε̃(zh)
)

= −θ
(
ε̃(uk

h), ε̃(zh)
)

h
− θ

(
∇wk

h ⊗ ∇wk
h, ε̃(zh)

)
h

for all zh ∈ V0,h.

(2) Terminate the algorithm if ||dtε̃(uk
h)|| + ||dtD

2
hwk

h|| ≤ εstop min{1, τk}. Otherwise, define

τk+1 = min
{
2τk, τmax

}
,

set k → k + 1 and continue with Step (1a).

For the following numerical experiments we use a maximum number of Newton iterations of

N = 5, a maximum step size τmax = 105
, stopping tolerances εNewton = 10−5

, εstop = 10−12
and

α = 1.
We analyse the performance of the iterative scheme by running the discrete algorithm for an

initially flat configuration on a uniform grid of meshsize h = 0.05 and a prestrain parameter

θ = 1000. The left plot in Figure 5.1 shows the development of the energies Eθ
h(wk

h, uk
h) for

the first fifty iterations 1 ≤ k ≤ 50. We observe that the scheme effectively reduces the elastic

energy. On the right-hand side of Figure 5.1 the automatically chosen step sizes are visualized.

The adaptive time stepping scheme decreases the step size for the first iteration to τ1 = 0.125.
The step sizes then gradually increase until they reach the maximum value τmax = 105

after 23

iterations.

1 20 40
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Eθ
h(wk

h,uk
h)
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Figure 5.1: Energy development of the sequence (wk
h, uk

h)k≥1 and step sizes (τk)k≥1 of the itera-
tive scheme for the first fifty iterations with θ = 1000 and h = 0.05.

5.2 Controlled Sphere-Cylinder Transition

The amount of prestrain specified by the parameter θ dictates the shape of minimizers for the

elastic energy functional. In theory, minimizers approach spherical configurations as in the lin-

earized von Kármán model for small values of θ. On the other hand, energy optimal configu-

rations are expected to obtain cylindrical shapes as in the linearized Kirchhoff model for large
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values of θ. To investigate the various shapes an initially flat approximation of the unit disc

Ω = B1(0) is considered. It is defined by the initial configurations

u0(x) =
[
0
0

]
, w0(x) = 0, x ∈ B1(0).

We run the iterative scheme (Algorithm 5.1) for α = 1 without applying any body force or

boundary conditions, i.e., we set f = 0, γD = ∅, and uD = 0 and wD = 0. To ensure uniqueness
of discrete solutions an L2

-contribution is included in the discrete gradient flow. In particular,

we define

(wh, vh)ver =
(
D2

hwh, D2
hvh

)
+

(
wh, vh

)
, (uh, zh)hor =

(
ε̃(uh), ε̃(zh)

)
+

(
uh, zh

)
. (5.1)

The corresponding numerical solutions for a grid of meshsize h = 0.05 and different values

θ ∈ {1, 300, 350, 1000} are visualized in Figure 5.2.

Figure 5.2: Numerical solutions of Algorithm 5.1 for an initially flat disk with θ = 1 (top left),

θ = 300 (top right), θ = 350 (bottom left) and θ = 1000 (bottom right). The colors represent

the vertical magnitude from dark (lowest) to bright (highest). A transition from spherical to

cylindrical configurations for increasing values of θ can be observed.

As can be seen in Figure 5.2 we obtain a spherical shape for small values of θ which coincides with
the theoretical conjectures. The configuration flattens as θ increases until some critical range of

values θ ∈ [250, 350], at which a transition to a cylindrical shape takes place. The transformation

occurs abruptly and sooner than theoretical observations might suggest, as minimizers of the
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Figure 5.3: Development of the directional mean curvatures (left) and the quotient qsym, see (5.2),
of the directional in-plane deflections (right) of the final configurations for θ = 1, 2, ..., 400 and

θ = 400, 450, ..., 600. A critical regime at around θ = 300 appears from which on a stark break

of symmetry occurs.

Föppl–von Kármán model are known to approximate cylindrical minimizers of the linearized

Kirchhoff model only in the limit θ → ∞.

So far we identified low-energy solutions of the discrete model for some fixed values θ. The

remainder of this section is devoted to analyse the transition between the spherical and the

cylindrical shape for intermediate values of the parameter θ. We aim at identifying some critical

point θcrit at which a drastic deviation takes place. Our previous experiments suggest that θcrit ≈
300. The graphs in Figure 5.3 display the directional mean curvatures and the quotient

qsym = max u1 − min u1
max u2 − min u2

(5.2)

of the directional in-plane deflections of the final configurations for θ = 1, 2, . . . , 400. The value
qsym quantifies symmetric properties of the in-plane deformation u, where larger deviations from
the value one indicate more asymmetric, and in our case more cylindrical, states. We also include

results using larger increments θ = 400, 450, . . . , 600 to reduce the overall computation times.

We observe, that the directional curvatures remain nearly equal and the in-plane symmetry is

almost constant for θ ≲ 200. For intermediate values 200 ≲ θ ≲ 300 slight deviations appear,

whereas, for values greater than 300, the directional mean curvatures split apart and the sym-

metric properties decrease at a high rate. This is coherent with the observations from Figure 5.2,

in which the spherical deformations flatten and stay symmetric at first but rapidly switch to a

cylindrical shape at some point.

Similar experiments have been carried out in [10] with a different scaling of the elastic energy.

In particular, the authors considered the energy Ẽλ
defined by

Ẽλ(u, w) = 1
24

∫
Ω

|D2w − I|2 dx + λ

8

∫
Ω

|∇w ⊗ ∇w + ε̃(u)|2 dx.

To draw a comparison between our experiments and their numerical results, we note that rescal-

ing the elastic energy Ẽ by a constant C (in this case C = 12) has no effect on its minimizers.

Matching the parameters θ and λ of the membrane energies in E and Ẽ, respectively, yields

the relation θ = 3λ. The critical value the authors achieved, at which the transition between

spherical and cylindrical shape takes place, reads λcrit ≈ 86, hence 3λcrit ≈ 258. It is difficult to
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quantify such a critical value in our numerical experiments since the transition is much smoother

than the one observed in the first experiment of [10] for an initial flat configuration. However,

the results observed therein suggest a very similar range of critical values. The developments

of the directional mean curvatures and the symmetric properties agree with the results of the

authors’ second test in which an initial configuration with the shape of a potato chip is used

instead.

5.3 Curvature Inversion

The identity matrix I in the first part of the energy enforces a specific bending behaviour of

energy optimal configurations. The strength of the prescribed curvature can be modified by

scaling the matrix I by a factor α ∈ R. In particular, we consider the energy

Eα(u, w) = 1
2

∫
Ω

|D2w − αI|2 dx + θ

2

∫
Ω

|∇w ⊗ ∇w + ε̃(u)|2 dx

in which the forcing term is neglected. The sign of the factor α correlates to the sign of the spec-

ified surface curvature. The case α = 0 is related to the corresponding singlelayer model which

has been studied in [3]. We address in this section the inversion of the curvature which is mod-

eled by letting α = 1 go to α = −1. Similar to the previous experiment neither an external force

nor boundary conditions are applied, i.e., f = 0 and γD = ∅. In addition to the L2
-contribution

in the discrete gradient flow (5.1), we fix the vertical deflection of the midpoint x0 = [0, 0]T of

the mesh to zero by prescribing w(x0) = 0. Algorithm 5.1 is run with an initial flat configu-

ration and α = 1. Next, the parameter α is decreased by 0.05 and the algorithm is reapplied

to the resulting configuration of the previous step. This process is repeated until α = −1 is

reached. Figure 5.4 shows the numerical solutions for θ ∈ {0, 1000} and α ∈ {1, 0.7, 0.3, −1}.
It is apparent from Figure 5.4 that for θ = 0 and any α ∈ [−1, 1] the strain density is distributed

radially symmetric across the plate. The center always contains the least amount of strain while

the values progressively increase towards the boundary of the object. When α = 0 we obtain

a completely flat configuration. For θ = 1000 and α = 1 the algorithm produces a cylindrical

shaped object which is coherent with the observations of the previous experiments. For decreas-

ing α the configurations flatten along paths with the largest directional curvature until all corner

points of the plate reach an equal height for α ≈ 0.3. The numerical solutions then flatten evenly

to a planar state for α → 0. In both cases θ ∈ {0, 1000} the processes are reversed for negative

values of the parameter α with a change in the sign of the surface curvature.

5.4 Foldable Cardboard

Next, we aim at analyzing the behavior of the bottom part of a deployed cardboard (compare with

the right picture of Figure 1.1), when the bistable mechanism is initiated by application of a force

in a small radial area at the center of the plate. We consider a singlelayer plate, i.e. α = 0, whose
vertical component w is clamped in a cylindrical shape via simple support boundary conditions

on two opposing sides. No boundary conditions are enforced on the in-plane displacement u.
The initial deformation is described by the data

uD(x) =
[
0
0

]
, wD(x) = −1

2
(
x2

2 − 1
)

, x ∈ [−1, 1]2.

We set θ = 106
and induce a gradually increasing vertical force with a maximal value f =

−0.6 · 106
in the center B1/10(0) of the object. Algorithm 5.1 is applied to a regular cardboard
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Figure 5.4: Numerical solutions of Algorithm 5.1 for α ∈ {1, 0.7, 0.3, −1} (top to bottom) with

θ = 0 (left) and θ = 1000 (right). The colors represent the strain density from dark (lowest) to

bright (highest). The transition from α = 1 to α = −1 induces a curvature inversion, where the

value α = 0 leads to flat configurations for arbitrary θ.
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without containing a crease line. The same experiment is carried out to a cardboard that is

predamaged on a straight line C = {0} × [−1, 1] across its center. In the simulation this is

achieved by assigning to nodes z ∈ Nh ∩ Ch on the crease line two seperate gradient values

∇w1(z) and ∇w2(z) corresponding to each side Ω1, Ω2 of the crease. This is equivalent to solv-
ing the discrete decoupled gradient flow separately on each subdomain subject to the continuity

constraint w1(z) = w2(z) for all z ∈ Nh ∩ Ch. If DFi and Fi denote the respective system

matrices for the Newton scheme (Proposition 3.2) restricted to Ωi, the continuity condition is

enforced via Lagrange multipliers by solving the modified linear system of equationsDF1 0 IT
1

0 DF2 −IT
2

I1 −I2 0


w̃1

w̃2
Λ

 =

F1
F2
0

 .

Here, w̃i = wk
i − wk−1

i denotes the k-th update on each subdomain Ωi containing the values

w̃i(z) and ∇w̃i(z) for all z ∈ Nh ∩ Ωi, while the vector Λ includes the Lagrange multipliers.

The matrices I1, I2 contain the values 0 or 1, encoding the condition w̃1(z) = w̃2(z) for all

z ∈ Nh∩ Ch. If the previous iterateswk−1
1 andwk−1

2 are continuous on z ∈ Nh∩Ch the condition

guarantees the pointwise continuity wk
1(z) = wk

2(z) of the next iterates for z ∈ Nh ∩ Ch.

Numerical solutions for the cardboard with and without crease line are visualized in Figure 5.6.

The numerical simulations show that both plates are pushed downwards in the center. Initially,

the cardboards are indented in a radially symmetric area. The indented area of the undamaged

cardboard transforms to an oval shape and the natural formation of a crease line across the plate

center can be observed. In the deformation profile of the predamaged cardboard a rhombic shape

is visible instead. The indented areas are surrounded by lines of large curvature that emenate

from the endpoints of the middle crease to the boundary of the plate. This is especially apparent

from Figure 5.7 which contains top views of the numerical solutions shaded with respect to the

elementwise bending energy densities. Figure 5.5 shows the developments of the total elastic

energies of the respective numerical solutions.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

500

1,000

1,500

2,000

2,500

Indentation

Elastic energy crease

Elastic energy no crease

Figure 5.5: Energy development of the sequence (wk
h, uk

h)k≥0 with and without crease line. In

both cases we observe an energy barrier but the total elastic energy of the model with crease is

persistently lower.

In both cases we observe an energy barrier between the unindented, cylindrical initial config-

uration and the indented configurations that contain large flat areas. The energy barrier of the

plate without predamage is much larger due to an increased elastic resistance compared to the
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plate with crease. Interestingly, the distance of the wrinkles perpendicular to the formed line

match the length of a crack that appeared in a real cardboard after repeated actuation, cf. Figure

1.1. This suggests a connection between the two phenomena.

5.5 Bilayer Plate Folding

Finally, we combine elastic effects of bilayer plates with physical phenomena related to folding.

Themotivation stems from the fact that simulations ofmechanisms like Venus flytraps via bilayer

models are presumably more realistic than simulations obtained from singlelayer models which

depend on the artificial application of boundary conditions or forcing terms. For instance, bilayer

models are capable of describing swelling effects that enable the actuation of carnivorous plants.

We give a brief overview over different configurations for various parameters α1, α2 ∈ R cor-

responding to the subdomains Ω1, Ω2 when combined with different geometries of given crease

curves C that separate the two regions. The discrete crease is either assumed to be a straight line

Ch = {0} × [−1, 1] or a piecewise linear approximation of the arc

C(t) =
(1

6 sin(πt) + 1
3 , t

)
, t ∈ [−1, 1].

Figure 5.8 contains numerical solutions for straight and piecewise linear crease geometries paired

with various combinations of parameters α1, α2 ∈ {−1, 0, 1} and θ = 1. We observe drastic

differences in the deformation profiles between the two crease geometries. Interestingly, the

straight crease with α1, α2 = 1 leads to a kink while the curved crease leads to a nearly smooth

deformation without significant jumps in the deflection gradient. In the last two tests a sponta-

neous curvature is only applied on the left part of the plate. The curved crease geometry leads to

a snapping mechanism while the deflection on the right side remains nearly flat when a straight

crease is included.
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Figure 5.6: Numerical solutions for a cardboard without crease line (left) and with crease line

(right) for a radial force acting in the plate center after 20, 30, 40 and 50 iterations of the algorithm.

The deformation of the undamaged cardboard leads to an oval indentation profile whereas the

predamaged cardboard obtains a rhombic indentation profile.
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Figure 5.7: Top views of the numerical solutions for a cardboardwithout crease line (left) andwith

crease line (right) for a radial force acting in the plate center after 20, 30, 40 and 50 iterations of the

algorithmwith a shading of the bending energy densities |D2
hwh|. In the undamaged cardboard a

natural formation of a folding line across the plate center can be observed. In both the undamaged

and predamaged models, lines of large curvature appear across the (formed) folding line close

to the boundary of the plates. The distance between these creases and the boundary seems to

match the crack length observed in the left picture of Figure 1.1.
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Figure 5.8: Visualization of the numerical solutions for α1 = 1, 1, 1, −1, α2 = 1, −1, 0, 0 (from

top to bottom) combined with a straight (left) and a curved (right) crease. In the last two rows

simple support boundary conditions are imposed along the upper and lower edge of the left

subdomain. Drastic differences in the models with straight and curved crease geometries can be

observed. For instance, the straight crease only leads to minor deflections of the right subdomain

in the last two test, whereas the curved crease leads to significant deflections that appear in

snapping mechanisms of Venus flytraps.
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