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Abstract

In the present paper, we study a Crouzeix—Raviart approximation of the obstacle problem,
which imposes the obstacle constraint in the midpoints (i.e., barycenters) of the elements of a
triangulation. We establish a priori error estimates imposing natural regularity assumptions,
which are optimal, and the reliability and efficiency of a primal-dual type a posteriori error
estimator for general obstacles and involving data oscillation terms stemming only from the
right-hand side. The theoretical findings are supported by numerical experiments.
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1. INTRODUCTION

The obstacle problem is a prototypical example of a non-smooth convex minimization problem
with an inequality constraint that leads to a variational inequality. It has countless applications, e.g.,
in the contexts of fluid filtration in porous media, constrained heating, elasto-plasticity, optimal
control, and financial mathematics, cf. [14, 29]. Tt is deeply related to models in free boundary
value problems, the study of minimal surfaces, and the capactity of a set in potential theory, cf. [14].
The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed
and which is constrained to lie above a given obstacle.

More precisely, given an external force f € L?(£2) and an obstacle y € W12(Q) withtr y<0onTp,
where I'p C 0f) denotes the Dirichlet part of the topological boundary 0f2, the obstacle problem
secks for a minimizer u € W5(Q) == {v € W2(Q) [ trv = 0 in Tp} of the energy functional
I: W5(Q) = RU {400}, for every v € WS*(Q) defined by

I(v) = 3l[Voll§ = (f,v)e + Ik (v), (1.1)
where
K={ve WEHQ) |v> x ae. in Q},
and Ig: WS () — RU {+o0} is defined by I (v) =0 if v € K and I (v) := 400 else.
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1.1 Related contributions

The finite element approximation of (1.1) has been intensively analyzed by numerous authors:
First contributions addressing the a priori and a posteriori error analysis of approximations of (1.1)
using the conforming Lagrange finite element can be found in [26, 1, 32, 37, 38, 13,43, 17, 42, 10, 11,
9, 48, 27], imposing the obstacle constraint in the nodes of a triangulation, and in [34, 28], enforcing
the obstacle constraint in the limit via a penalization approach. We refer to [17] for a short review.
Contributions addressing the a priori and a posteriori error analysis of an approximation of (1.1)
deploying Discontinuous Galerkin (DG) type methods can be found in [30, 18, 5], equally imposing
the obstacle constraint in the nodes of a triangulation. The first contribution addressing the a pri-
ori error analysis of an approximation of (1.1) in two dimensions deploying the Crouzeix—Raviart
element can be found in [47] and imposes the obstacle constraint in the midpoints (i.e., barycenters)
of elements of a triangulation. In [6], for homogeneous Dirichlet boundary data and zero obstacle,
this result was extended to arbitrary dimensions. In [15], an a priori and a posterior error analysis
of an approximation of (1.1) deploying the Crouzeix-Raviart element which imposes the obstacle
constraint in the integral mean values of element sides of a triangulation was carried out.

1.2 New contributions

Inspired by [47] as well as recent contributions [5, 6, 7], different from the contribution [15], we
treat an approximation of the obstacle problem (1.1) deploying the Crouzeix—Raviart element that
imposes the obstacle constraint in the midpoints (i.e., barycenters) of elements of a triangulation.
More precisely, given a family of regular triangulations 7y, h > 0, setting f;, == II, f € L°(T;) and
for x5 € L°(T;,) approximating x € W12(Q), our discrete obstacle problem seeks for a minimizer
uf™ € S5 (Th) of the functional If": S5 (Tr,) — RU {+o0}, for every v;, € S5 (7T5) defined by

17 (vn) = $IVhvnlly = (fas ava)a + Trcer(vn) (1.2)
where
Kfm = {on, € S57(Th) | My > xp, ace. in QF,

and Igcer: S5 (Th) — RU {400} is defined by I er(vp) = 0if v, € K" and Igeer(vp) = +o0 else.
Here, £°(T}) denotes the space of element-wise constant functions, S}‘j “"(Ts) the Crouzeix—Raviart
finite element space, i.e., the space of element-wise affine functions that are continuous in the mid-
points (i.e., barycenters) of inner element sides and that vanish in the midpoints of element sides
that belong to Tp, Vi: S5 (T) — LO(T5) the element-wise gradient and TIj, : L2(Q) — £°(7T5)
the (local) L2-projection operator onto element-wise constant functions. Imposing the obstacle
constraint in the midpoints of elements follows a systematic approximation procedure for general
convex minimization problems deploying the Crouzeix—Raviart element introduced in [6, 7] and
has the advantage that the resulting discrete convex minimization problem generates discrete con-
vex duality relations that are analogous to those in the continuous setting —up to non-conforming
modifications— and that enable a systematic a priori error analysis and a posteriori error analysis:

e In [6], a systematic procedure for the derivation of a priori error estimates for convex minimi-
zation problems deploying the Crouzeix—Raviart element based on (discrete) convex duality
relations was proposed. Following this systematic procedure, with comparably little effort,
we derive a priori error estimates, which are optimal for natural regularity assumptions
and also apply in arbitrary dimensions. More precisely, our a priori error estimates exploit
that the discrete primal-dual gap controls the convexity measure of (1.2) and the concavity
measure of its dual functional, i.e., that for every v, € K™ and yj, € RTY(Tr), it holds

311V on = Vau I + (= A5 T (o —ui"))e + 5 Thyn — a2y (16 < 157 (vn) = Dif(yn) » (1.3)

where RTY (7T5) denotes the Raviart-Thomas finite element space, i.e., the space of element-
wise affine vector fields that have continuous constant normal components on element sides
that vanish on I'y, zJ" € RTY(75) the unique discrete dual solution, i.e., the maximizer of
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the discrete dual energy functional Df": RTR (Tn) — RU{—oo}, and Af" € 0, (S5 (Th))
the unique discrete Lagrange multiplier satisfying A;” < 0 a.e. in 2 and for all vj, € SBCT(Th)

A Mpon)a = (fas Oavn)o — (Vaug”, Vivp)a -

If xp, == p1ex € LO(Tr), where I.,.: W12(Q) — S4¢7(2) denotes the Crouzeix—Raviart
quasi-interpolation operator, then I.,u € K;". Thus, under natural regularity assumptions,
ie., u,x € W2(Q), the choices vy, = I,u € Ki™ and yj, = Iwz € RT%(T), where z =
Vu € WH2(Q; RY) N W2 (div; Q) denotes the dual solution, i.e., the maximizer of the dual
energy functional D: L2(Q; R?) — RU{—oc0}, and I,,: WH2(Q; RY)NWZ (div; Q) — RTY (Tr)
the Raviart—-Thomas quasi-interpolation operator, are admissible in (1.3) and lead to quasi-
optimal a priori error estimates.

e In [7], a systematic procedure for the derivation of reliable, quasi-constant-free a posteriori er-
ror estimates for convex minimization problems deploying the Crouzeix—Raviart element ba-
sed on (discrete) convex duality relations was proposed. Following this systematic procedure,
we derive a posteriori error estimates, which, by definition, are reliable and constant-free.
Apart from that, we establish the efficiency of these a posteriori error estimates for general
obstacles xy € WH2(€). More precisely, our a posteriori error estimates exploit that the
primal-dual gap controls the convexity measure of (1.1) and the concavity measure of its
dual functional, i.e., that for every v € K and y € L?(Q2;R?), it holds

3lIVo = Vullgy + (=A, v —u)q + 3lly — 2[5, < I(v) = D(y) (1.4)

where A € (WE’Q(Q))* is the unique Lagrange multiplier satisfying A < 0 in (WBQ(Q))*
and for all v € WS*(Q)
<A7 U>Q = (f7 U)Q - (VU, VU)Q .

For the a posteriori error estimate (1.4) being practicable it is necessary to have a sufficiently
accurate and computationally cheap procedure to obtain an approximation y € L%(Q;R?)
of the dual solution z = Vu € L?(Q; R?) at hand. In the case f = f;, € L°(7,), the discrete
dual solution z]* € RTR(Ty) is admissible in (1.4) and leads to a constant-free reliable and
efficient a posteriori error estimator 7 :== I — D(z}"): Wé’2 () — R, which has similarities
to the residual type a posteriori estimator derived in [42] but is simper and avoids jump
terms of the obstacle that arise in the efficiency analysis in [42]. In particular, note that
the discrete dual solution can cheaply be computed via the generalized Marini formula

A=
d

A typical choice of v € K is obtained via nodal averaging us” € S5 (75,) and truncating
to enforce the continuous obstacle constraint. Moreover, any conforming approximation
up, € K can be used such as a continuous Lagrange approximation uj € Kj := KHSB “(Tn),
so that our analysis also implies the full reliability and efficiency error analysis for continuous
Lagrange approximations, even for general obstacles and oscillation terms only stemming
from the right-hand side since lumping is not needed in our analysis.

2t = Vhu” + (idga — Mpidga)  in RTw(Tr) - (1.5)

As awhole, our approach brings together and extends ideas and concepts from [13, 43, 42, 10, 11, 15],
and leads to a full error analysis.

1.3  OQutline

This article is organized as follows: In Section 2, we introduce the employed notation and the
relevant finite element spaces. In Section 3, we give a brief review of the continuous and the
discrete obstacle problem. In Section 4, we derive a priori error estimates for the Crouzeix—Raviart
approximation (1.2) of (1.1), which are optimal for natural regularity assumptions. In Section 5,
we establish the reliability and efficiency of a so-called primal-dual a posteriori error estimator.
In Section 6, we confirm our theoretical findings via numerical experiments. In the Appendix A,
we derive local efficiency estimates for a Crouzeix—Raviart approximation of (1.1).
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2. PRELIMINARIES

Throughout the entire article, if not otherwise specified, we always denote by Q C R%, d € N,
a bounded polyhedral Lipschitz domain, whose topological boundary 0f) is disjointly divided into a
closed Dirichlet part I'p, for which we always assume that |I'p| > 0', and a Neumann part I'y, i.e.,
0N =TpUTl'yand ® =TpNTy. Weuse ¢,C > 0 to denote generic constants, that may change
from line to line, but are not depending on the crucial quantities. For (Lebesgue) measurable
functions w,v:  — R and a (Lebesgue) measurable set M C Q, we employ the product

(u,v) p ::/ uvde,
M

whenever the right-hand side is well-defined. Analogously, for (Lebesgue) measurable vector fields
z,y: Q— R? and a (Lebesgue) measurable set M C 2, we write (z,y)n = [, z - y dz.

2.1 Standard function spaces
For | € N, we employ the standard notations?
W52 (G RY = {v e L2 (U RY) | Vv € LA R ), trv =0in L*(Tp;RY)},
W3 (div; Q) = {y € L*(Q;RY) | divy € L*(Q), try-n=0in W 22(Ty)},

WL RY) = W5 (QRY if T'p = 0, and W2(div; Q) == W3 (div; Q) if Ty = 0, where we denote

by tr: WH2(Q; RY) — L2(0Q; R!) and by tr(-)-n: W2(div; Q) — W~ 2-2(Q), the trace and normal

trace operator, resp. In particular, we predominantly omit tr(-) in this context. In addition, we em-
ploy the abbreviations L(Q) == L2(; RY), Wh2(Q) = WH2(Q; RY), and W52(Q) == W5 (Q; RY),
as well as || - [lo = [| - |2t |- [« = [ lwi2@zh s and (- )a = () wh @z, [ € N.

2.2 Triangulations and standard finite element spaces

Throughout the entire paper, we denote by 73, h > 0, a family of regular, i.e., uniformly shape
regular and conforming, triangulations of 2 C R%, d € N, cf.[25]. Here, h > 0 refers to the average
mesh-size, i.e., if we set hp = diam(T) for all T' € Ty, then, we have that h = m ZTeTh hr.
For every element T' € T}, we denote by pr > 0, the supremum of diameters of inscribed balls. We
assume that there exists a constant wy > 0, independent of A > 0, such that maxrer, hr p;l < wyp.
The smallest such constant is called the chunkiness of (77,)n>0. Also note that, in what follows, all
constants may depend on the chunkiness, but are independent of h > 0. For every T' € Ty, let wr
denote the patch of T', i.e., the union of all elements of 7, touching T'. We assume that int(wr) is
connected for all T' € 7. Under these assumptions, |T'| ~ |wrp| uniformly in T € 75 and k > 0, and
the number of elements in wr and patches to which an element 7" belongs to are uniformly bounded
with respect to T € T, and h > 0. We define the sides of 7, in the following way: an interior side is
the closure of the non-empty relative interior of 9T NAT’, where T, T € T}, are adjacent elements.
For an interior side S := 9T NIT’ € Sy, where T, T’ € Ty, we employ the notation wg == TUT’. A
boundary side is the closure of the non-empty relative interior of 0T’ NOSY, where T' € T}, denotes a
boundary element of 7. For a boundary side S := 97 N 9N, we employ the notation wg :=T. By
S} and Sy, we denote the sets of all interior sides and the set of all sides, respectively. Finally, we
define the maximum mesh-size hpyay := maxrer, hr and for every S € Sp,, we define hg := diam(5).
For (Lebesgue) measurable functions u,v: S, — R and M;, C Sj, we employ the product

(u, V) pm,, = Z (u,v)s, where (u,v)g = / uvds,
SeMy o

whenever all integrals are well-defined. Analogously, for (Lebesgue) measurable vector fields
2,y: Sp = RY and My, C Sy, we write (z,y) 1, = Y sem, (#:9)s, where (z,9)s = [¢z-yds.

IFor a (Lebesgue) measurable set M C R%, d € N, we denote by |M| its d-dimensional Lebesgue measure. For
a (d— 1)-dimerllsional subman}fold MCR? de N, we denote by1|M| its (d — 1)-dimensional Hausdorff measure.
2Here, W~ 2-2(0Q) == (W2:2(0Q))* and W~ 32(Ty) == (W2:2(Tn))*.
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For k € NU{0} and T € Ty, let Py (T) denote the set of polynomials of maximal degree k on T
Then, for k € NU {0} and I € N, the sets of continuous and element-wise polynomial functions
or vector fields, respectively, are defined by

SH(Th)t = {vn € CO(URY) | vplr € Pp(T) for all T € Ty, },

LH(TR)" = {vn € L¥(UGRY) | vp|p € Py(T) for all T € Ty } -
The element-wise constant mesh-size function hy € L9(7y,) is defined by hy|r := hr for all T € Ty,
The side-wise constant mesh-size function hs € £°(Sy) is defined by hs|s == hg for all S € Sj,.
Denoting by NV, the set of all vertices (or nodes) of Ty, for every T' € T, and S € Sy, we denote by
T = d—il > cen,nr 2 and xg = i > .eN,ns #» the midpoints (i.e., barycenters) of 7" and S, res-
pectively. The (local) L%-projection operator onto element-wise constant functions or vector fields,
respectively, is denoted by

I, LY RN — L2(Th)

For each v;, € L(T3,)!, it holds I, v, |7 = v (1) in T for all T € T;,. There exists a constant crp > 0,
depending only on the chunkiness wg > 0, such that for every v € L2(Q;R)), I € N, and T € Ty,
cf. [25, Theorem 18.16], it holds

(L0-1) |Mpollr < foflz,

(L0.2) ||v —Tpv||7 < e hr |Vo|r if v € WH2(T;RY).
The element-wise gradient operator V,: L(7,)! — L£°(T,)*?, 1 € N, for every vy, € L1(Ty)!,
is defined by Vyup|r = V(vp|7) in T for all T € T

2.2.1 Crouzeix—Raviart element

The Crouzeix—Raviart finite element space, introduced in [19], consists of element-wise affine
functions that are continuous in the midpoints of inner element sides, i.e.,?

SY(T) = {vn € LYTh) | [vn]s(zs) =0 for all S € S} }.

Crouzeix—Raviart finite element functions that vanish in the midpoints of boundary element sides
that correspond to the Dirichlet boundary I'p are contained in the space

S5 (Th) = {vn, € SH"(Tn) | vn(zs) =0 forall S€ S, NTp}.

In particular, we have that S5 (75) = S"(Ty,) if Tp = 0. A basis of ST¢"(7},) is given by func-
tions g € S(Ty), S € Sh, satisfying the Kronecker property pg(xs/) = dg.s/ for all S,8" € Sp,.
A basis of S (Ty) is given by ¢s € S5 (Th), S € Sy \ T'p. There exists a constant ¢& > 0,
depending only on the chunkiness wy > 0, such that for every v, € S»¢"(T3), it holds

[vnlle < ¢B [[Vavnlla - (2.1)

The quasi-interpolation operator I.,: Wé’z(Q) — S})’CT(E), for every v € Wé’2(ﬂ) defined by

Iov = Z vs ps, where vg = ][ vds, (2.2)
SeSy s
preserves averages of gradients, i.c., Vi (Iev) = I, (Vo) in LO(T;)? for every v € WS5*(9).
There exists a constant c., > 0, depending only on the chunkiness wy > 0, such that for every
vE WII)’Q(Q) and T € Ty, cf. [22, Remark 4.4 & Theorem 4.6], it holds

(CR.1) ||[Vilevllr < [[V|7,
(CR.2) ||[v—Iv|1 < cephr || VU],
(CR.3) |lv— Il + hr||V(v — L) |7 < cor b2 || D?0]| . if v € W2H(T).

3Here, for every S € S;Lw [vrls = Uh\T+ —vp|r_ on S, where Ty, T_ € Ty, satisfy 0Ty N 9T—- = S, and for
every S € S NI, [vp]ls = vu|r on S, where T' € T}, satisfies S C 9T
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2.2.2  Raviart—-Thomas element

The lowest order Raviart—Thomas finite element space, introduced in [41], consists of element-
wise affine vector fields that have continuous constant normal components on inner elements sides, i.e.

RT(T) = {yn € L*(Tn)* | yn|r - nr = const on OT for all T € Ty, ,
[yn -nls =0on S forall S €S} }.

Raviart-Thomas finite element functions that have vanishing normal components on the Neumann
boundary I'y are contained in the space

RTx(Th) = {yn € RT*(Th) |yn-n=00nTn}.
In particular, we have that RTY(7,) = RT%(T5) if Ty = 0. A basis of RT?(7},) is given by vector
fields s € RT°(Ty), S € Sh, satisfying the Kronecker property 1g|s -ng: =dg s on S’ for all S’ € Sy,
where ng for all S € Sy, is the unit normal vector on S pointing from 7_ to Ty if T, NT_ = S € Sp,.

A basis of RTY(Ty) is given by ¢s € RTY(Tr), S € Si \ I'n. The quasi-interpolation operator
Lg: WH2(Q;RY) N W2 (div; Q) — RTY(Tr), for every y € WH2(Q;RY) N W2 (div; Q) defined by

Iy = Z ysvs, where ys = ][ y-ngds, (2.3)
SeSy s

preserves averages of divergences, i.e., div(I,4y) = II;(divy) in LO(Ty) for every y € W12(Q;R9)
ﬂW]%(div; ). There exists a constant ¢,+ > 0, depending only on the chunkiness wy > 0, such that
for every y € WL2(Q;RY) N W2 (div; Q) and T € Ty, cf. [25, Theorem 16.4], it holds

(RT.1) [ Lnyllr < v ([ Lyl + hr [[Vyl7)

(RT.2) |ly = Iyllw < crhr [[Vylr,

(RT.3) ||div (y — Iwy) |7 < cpehr ||divyl|r .

2.2.3 Discrete integration-by-parts formula

An element-wise integration-by-parts implies that for every v, € SV¢"(Ty) and y;, € RT°(Th),
we have the discrete integration-by-parts formula

(Vhon, pyn)o + (Mpon, divyn)o = (vh, yn - n)oq - (2.4)

Here, we used that y, € RT°(7T;,) has continuous constant normal components on inner element sides,
i.e., yn|r - n = const on IT for every T € Ty, and [yp, - n]s =0 on S for every S € S}'N as well as
that the jumps of v, € SL°"(T;,) across inner element sides have vanishing integral mean, i.e.,
[s Ivn]s ds=[va]s(zs) =0 for all S € S;. In particular, for any v, € S;“"(75) and ys, € RTY(Tr),
(2.4) reads

(Vh’l)h,thh)Q = —(Hhvh, divyh)Q . (2.5)

In[16, 5, 6, 7], the discrete integration-by-parts formula (2.5) formed a cornerstone in the derivation
of a discrete convex duality theory and, as such, also plays a central role in the hereinafter analysis.
For instance, cf. [6, Lemma 2.1], for every v € WE’Q(Q) and y € WH2(Q; RY) N W3 (div; Q), (2.5)
enables to exchange quasi-interpolation operators via

(divyv v = thcrv)Q = _(VU7 Yy— HhITty)Q : (26)
In addition, cf. [8, Section 2.4], there holds the orthogonal decomposition
L(Tn)? = ker(div|rz9 (7)) @ V(S5 (Th)) - (2.7)

4For every S ES;LL, lyn -nls = yh|TJr ‘nr, + yplr_ - mr_ on S, where T, T— € Ty, satisfy 0T NIT— =S, and
for every T € Tp,, ny: 0T — S~ ! denotes the outward unit normal vector field to T, and for every S € S, N 9,
lyn - nlls = yn|r - n on S, where T € T}, satisfies S C T and n: 0Q — S9-1 denotes the outward unit normal
vector field to Q.
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3. OBSTACLE PROBLEM
In this section, we discuss the continuous and the discrete obstacle problem.

3.1 Continuous obstacle problem

Primal problem. Given a force f € L%(2) and an obstacle y € W2(Q) with y < 0 on I'p,
the (continuous) obstacle problem is defined via the minimization of I: W5*(Q) — R U {400},
for every v € WIIJ’Q(Q) defined by

I(v) = 5[ Voll§, = (f;v)e + I (v) | (3.1)
where
K:={ve WII)’Q(Q) |v >y ae. in Q},

and I : WH*(Q) = RU{+00} is given via I (v) =0 if v € K and I (v) = 400 else. In what follows,
we refer to the minimization of the functional (3.1) as the primal problem. Since the functional
(3.1) is proper, strictly convex, weakly coercive, and lower semi-continuous, cf. [3, Theorem 5.1], the
direct method in the calculus of variations, cf. [20], yields the existence of a unique minimizer u € K
called the primal solution. In what follows, we reserve the notation u € K for the primal solution.
Since the functional (3.1) is not Fréchet differentiable, the optimality conditions associated with
the primal problem are not given via a variational equality. Instead, they are given via a variational
inequality. In fact, cf. [3, Theorem 5.2], u € K is minimal for (3.1) if and only if for every v € K

(Vu,Vu — Vv)o < (f,u—v)q. (3.2)

Dual problem. Appealing to [24, Section 2.4, p. 84 ff.], the dual problem to the obstacle problem
is defined via the maximization of D: L?(€;R?) — RU{—o0}, for every y € L*(Q;R?) defined by

D(y) = —3llyll& — I (Div(y) + F), (3.3)
where I : (W52(Q))* — RU{+00} is defined by I (v*) = 0 if (v*, v)wi2(o) <0forallve K and
I (v*) =400 else, Div: L2(Q;RY) — (W52(9))* is defined by (Divy, v)q = —(y, Vu)q for all y €
L2(;R%) and v e W52(Q), and F e (W12 (Q))* is defined by (F,v)q = (f,v)q for all ve W5?(Q).
For every y € WZ%(div; ), there holds the representation

D(y) = —3llyll&, — (divy + f,x)e — I-(divy + f), (34)

where I_: L?(Q) — R U {400} is defined by I_(g) := 0 if g € L?(Q2) with g < 0 a.e. in Q and
I_(g) := 400 else. Moreover, in [24, Section 2.4, p. 84 ff.], it is shown that there exists a unique
maximizer z € L?(Q;R?) of (3.3), called the dual solution, and a strong duality relation, i.e.,

I(u) = D(z), (3.5)

applies. In addition, there hold the convex optimality relations
z=Vu in L*(Q;R%), (3.6)
(Divz+ F,u)q =I5 (Divz+ F). (3.7)

Augmented problem. Due to [3, Theorem 5.2], there exists a Lagrange multiplier A € (W}5%(Q))*
with A <0 in (WgQ(Q))*, ie, (Av)g <O0forallve Wé’Z(Q) with v > 0 for a.e. €, such that
for every v € W;,’Q(Q), it holds the augmented problem

(Vu, Vv)a + (A v)e = (f,v)a, (3.8)
i.e., A=Divz+fin (WéQ(Q))* Then, cf.[3, Theorem 5.2], there holds the complementary condition
(A uyg = Ti(A). (3.9

If there exists A € L%(Q) such that (A, v)q = (), v)q for all v € WBQ(Q), cf. [36], then (3.9) reads
Mu—x)=0 ae inQ. (3.10)
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3.2 Discrete obstacle problem

Discrete primal problem. Given a force f € L?(Q) and an obstacle x € W12(Q) such that x <0
on I'p, with f, == II,f € £L°(T;,) and x5, € L°(T;,) approximating y, the discrete obstacle problem
is defined via the minimization of It": S5 (T5,) — R U {+00}, for every v;, € S5 (75) defined by

I (vn) = 5[ Vhonllé, = (Fns Taon)e + Iir (vn) (3.11)
where
K" = {vh 1= Sllj’cr(ﬂl) | pvn > xp aee. in Q},

and Iger: 811:,’”(771) — RU{+00} is given via I (v) = 0 if v, € K" and Ixeer(vp,) = +00 else. In
what follows, we refer to the minimization of the functional (3.11) as the discrete primal problem.
Since the functional (3.11) is proper, strictly convex, weakly coercive, and lower semi-continuous,
the direct method in the calculus of variations, cf. [20], yields the existence of a unique minimizer

up” € K7, called the discrete primal solution. In what follows, we reserve the notation u;"” € K"
for the dlscrete primal solution. In addition, uf" € K" is the unique minimizer of (3.11) if and only
if for every vy, € K", it holds

(thzr7 thzr - thh)Q S (fh, Hhuff - Hhvh)g . (312)

Discrete dual problem. Appealing to [6, Subsection 4.1], the discrete dual problem to the
discrete obstacle problem is defined via the maximization of Di': RT%(T) — RU{—oc}, for every
yn € RTY(Tr) defined by

Dit(yn) = —2Mpynll§ — (divyn + fa, xn)o — I-(divys + fi). (3.13)

Discrete augmented problem. The discrete augmented problem, similar to the augmented prob-
lem (3.8), seeks for a discrete Lagrange multiplier X" € T1;,(Sh 5" (Tn)) such that A\f" < 0 a.e. in ©
and for every v, € S3; 5 (Tn), it holds

AR Hpon)a = (fr Mavn)a — (Vhug', Vios)a - (3.14)
The following proposition establishes the well-posedness of the discrete augmented problem (3.14).

Proposition 3.1. The following statements apply:

(i) The discrete augmented problem is well-posed, i.e., there exists a unique discrete Lagrange
multiplier N;™ € T, (S5 (Tr)) that satisfies (3.14).

(ii) The discrete Lagrange multiplier Ni" € T, (S5 (Th)) satisfies Ai" < 0 a.e. in Q and the
discrete complementarity condition

X (Mg —xn) =0 in L2(Ts). (3.15)

Remark 3.2. The discrete complementarity condition (3.15) is a discrete analogue of the
(continuous) variational complementarity condition (3.9) and the (continuous) point-wise com-
plememtarity condition (3.10), respectively.

Proof (of Proposition 3.1). ad (i). We relax the obstacle constraint via a penalization scheme,
i.e., for every € > 0, we consider the minimization of /5. : S5 (Th) — R, for every vy, € S5 (Th)
defined by

cr e 2
I (vn) = 5IVhonlld = (fas Mavn)e + S5 | (Mavn — xa) -8 -

Since for any € > 0, I het S 1 5" (Tn) — Ris continuous, strictly convex, and weakly coercive, the di-

rect method in the calculus of variation yields the existence of a unique minimizer u;’, € S L 5 (Th),
which, for every vy, € S5 (T5), abbreviating AiT = e (TMpug”. — xn) - (Th) satlsﬁes
(thh e Vh’l)h)Q + ()‘h . Hhvh)g = (f}“ Hh’l}h)g . (316)

Due to the minimality of uj_ € S5 (Tr), we find that I (uf.) < If7_(uf") and, as a consequence,
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using that (IIpuf” — xn)— = 0 a.e. in Q, that
LIV 13 + S I < SIVAugT IR + (oo T (ufT. — uf")a (3.17)

Using the x-Young inequality ab < RaQ + kb2, valid for all @, b > 0 and x > 0, (L0.1), and the dis-
crete Poincaré inequality (2.1), for every € > 0, we find that

| T el < g 1nllé + 5 (cB) | Vaug 1 - (3.18)
Using (3.18) for k = e CT)Q > 0in (3.17), for every € > 0, we arrive at
TIVRu I + 2N < 5 IVRuf G — (oo i )e + (e8)? 1fnlld - (3.19)

Using the discrete Poincaré inequality (2.1) in (3.19), we find that (u§")e>0 C Sk CT('E) is bounded.
Hence, owing to the finite dimensionality of Sg “"(Tp), we deduce the existence of 4" € Sj 5 (Th)
such that, for a not re-labeled subsequence, it holds

ul. =g in SpT(Th) (e —0). (3.20)
Let Ef™: LO(Th) — (S5 (Th))* for every puy, € £L2(T5) and vy, € S5 (T5) be defined by
(B tns vn)s5e(m) = (s ITpvn)a - (3.21)
Then, from (3.16), also using (L0.1), for every € > 0, it follows that
IER ARl s5er s = sup (fr:non)o = (Vaugy's, Vavn)o
W €SE (Th)slvn o+ Vs o<1 (3.22)

< |lfnlle + [ Vhuiclla-

Using (3.19) in (3.22), we find that (Ef"Af". )e>0 C (S5 (Th))* is bounded. Thus, due to the finite
dimensionality of (S5"(75))* and the closedness of the range R(Ef"), there exists Aj, € £°(T;,) with

Ef"AS. = Ef" A, in (Sp7(Th))* (e —0). (3.23)
Next, using (3.19) once more and that, by definition, A\;". = e~*(ITu}”. — xn)—, we deduce that
I(@Thuf. = xn)-N1G = NG =0 (€= 0).

Because, on the other hand, due to (3.20), (ITpup’. — xn)— — (pag" — xn)- in L3(Q) (e = 0),
we conclude that (IT,af" — Xh) =0 a.e. in Q. In other words, we have that

up e Ki. (3.24)
As a consequence of (3.24), for every ¢ > 0 and v, € K", resorting to (3.20) and the minimality of
ug”. € S5 (Th) for It™.: S5 (Th) — R, we find that
(a7 = lim I (uf?,) < lim IE7(uf?) < i I§7 (0n) = I (0n)
Hence, due to the uniqueness of uj” € K;" as a minimizer of I . Sy 5 (Th) — R, we infer that

ag" =g in S (Tr). By passing for e—0in (3. 16) for every v, € S1 5 (Th), using (3.20), (3.23),
and the definition of Ef™: LO(Ts) — (S5 (Th))*, cf. (3.21), we conclude that

(Vauf!, Vivn)a + (A hon)a = (fa, Mavn)a - (3.25)
Owing to £2(T5) = I1,(S§ “(Th)) DIL(S57(Th))*, there exist unique Af" € TI,(S5"(77)) and
An € L (S5 (T)) ™ such that A, = X§" + Ap, in £°(T5). By the aid of the latter decomposition,
for every vy, € S1 "(Tn), we conclude from (3.25) that

(Vhug!, Vavn)o + (N Maon)a = (fa, Mhon)o
Next, let 75" € I, (S5 (T5)) be such that for every v, € S5 (T5), it holds

(Vhuy', Vion)a + (15", Iavn)o = (fa, Hpon)a -
Then, A" — 75" € (S5 (Th)) N L (S5 (Th)) " = {0} and, thus, \¢" = 75" in I, (S5 ().
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ad (ii). Let T," C Ty, be such that span({xr | T € T,*"}) = (S5 (T5)). For each T € T,¢",
there exists v} € SBCT(E) such that II,v{ = x7. Next, let ar € R be such that Il uf” + arll,vf
= Hpuf™+ arxr > xn a.e. in Q. Then, for v, = arv] € SBCT(E) in (3.14), in particular, using

(3.12) for vy, = ug” + apvfl € S5 (Th), we deduce that
ar [TIN = ar [(frn, Tvl)a — (Vaui™, Vil )o] <0 ae. in T. (3.26)

As T € T,¢" was arbitrary and X;™ € I, (S5 (T1)), we conclude from (3.26) that As™ < 0 a.e. in Q.
Eventually, for T' € 7,°" such that Il u;" > x) a.e. in T, there exists some ar < 0 such that
Hpul” + arllpvl = Mpuf™ + arxr > xn a.e. in Q. For this ar < 0 in (3.26), also using that
X,Cf < 0 a.e. in £, we arrive at

0 S aT |T| X;CLT = QT [(fh, Hhvg)g — (th}CLT‘, th;{)g] § 0 a.e. in T,

so that A{" = 0 a.e. in 7. In other words, it holds (3.15). O
Given a discrete Lagrange multiplier A" € L£O(7T},) satisfying (3.14), we define the discrete fluz
27 i= Vyul + Aﬁ%;fh(idw — Tyidga) € LY (T1), (3.27)

which, by definition, satisfies
M2yt = Vyug”  in £O(T5)9. (3.28)

The following proposition proves that the discrete flux is admissible in the discrete dual problem
and even a discrete dual solution.

Proposition 3.3. The following statements apply:
(i) The discrete fluz zJ* € LY(Ty)? satisfies 2t € RTY(Th) and
divzyt =N — . in LY(Tp). (3.29)
In particular, it holds divz;* + fr <0 a.e. in Q, i.e., I_(divz]'+ f) = 0.

(ii) The discrete flux z' € RTY(Tr) is a mazimizer of (3.13) and discrete strong duality, i.e.,
I (ug™) = Dyt(2)"), applies. In addition, there holds the discrete complementary condition

(div 2"+ f) (Myus” —xn) =0 in L2(T5). (3.30)

Proof. ad (i). Since, due to [Ip| > 0, div: RTR (Tn) — L°(Ty) is surjective, there exists some
yn € RTY(Tr) such that divy, = A¢"— fy, in £°(75). Then, using the discrete integration-by-parts
formula (2.5) and (3.14), for every v, € S5 (Tr), we find that

(thh, Vh'l}h)Q = 7(diV Yh, HhUh)Q = (fh - X;CLT, Hh’t}h)g = (thzr, thh)Q . (331)
Using (3.28) in (3.31), for every vy, € S5 (Th), we arrive at
(yn — 25", Vion ) = (n(yn — 24"), Vion)o = 0. (3.32)

On the other hand, we have that div(y,—25t) = 0 a.e. in T for all T € Ty, so that y, — 2]t € LO(Ty)%.
Hence, by (3.32) and the orthogonal decomposition (2.7), we conclude that yj, — 25 € Vi (S5 (Th))
C RTY(Tn) and, thus, z;' € RTY(Ts), since already y, € RTN(Th).

ad (ii). The discrete optimality relation (3.30) follows from (3.29) and (3.15). In consequence,
it remains to establish the strong duality relation. Using (3.30), the discrete integration-by-parts
formula (2.5), (3.28), and I_(div z}' + f) = 0, we observe that

I (uf) = $IVhup g — (frs Maug e
= L|Tu2; "1 + (div 2 pus e — (div 2 + fr xn)e
= L2118 — (a2’ Vi o — (div z)' + fr, xa)eo

= — 2233 — (div 2 + fr, xn)o = Dy (). =
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4. A PRIORI ERROR ANALYSIS

In this section, we establish a priori error estimates for the discrete primal problem.
Theorem 4.1. Ifu,x € W?2(Q), i.e., z€ WH2(Q; RY) and A== f+div 2 € L3(Q), and x5, =11 rx
€ LO(Ty,), then there exists a constant ¢ > 0, depending only on the chunkiness wy > 0, such that

Vil eru — Viui |G + (=N Th (Lepu — uf"))e + | Malrez — Mazp|f
< chipax (I1D*ulléy + 1 D*X )1 + IXI[Z) -

Proof. Using that, owing to the discrete augmented problem (3.14), $a*—1b? = 1(a—b)?+b(a—b)

for all a,b € R, and the strong concavity of (3.13), for every v, € Kf" and y5, € RT°(Ty), it holds
3IVhvn = Vg ([& + (AR a (on — uf"))e = I57 (vn) — 15" (ug)
3y — Wz 1E < Dif(21) — Dif(yn)

that I.,u € Kf", as fs (u—x)ds > 0and pg(z7) = d—il forallT € T, and S € S, with S C 9T,

that I,4z € RTY(Ty) with div Ly z + fr, =1, (divz + f) =\ <0 a.e. in €, the discrete strong
duality relation I¢"(uf") = Di(z5?), cf. Proposition 3.3 (i), Vi Ieu = I, Vu in £9(75)%, (L0.1),
and the strong duality relation I(u) = D(z), cf. (3.5), we find that

sV Leru = Vgl |G + (=N Ta(Leru — ui"))a + 5[ Mnd ez — Muzp'(f3,
< If"(Ipu) — D1 2)
< I(w) + (f, 0~ o — DJ(T2) (4.1)
= _%HZH?) + (fsu—Mpleru)o + %”HhITtZ”?)
— (divz + f,x)a + (div Iz + fo, Hplerx)a -
Next, using in (4.1) the exchange of quasi-interpolation operators (2.6) and z = Vu, cf. (3.6), i.e.,
(div z,u — I pu)g = —(2,2 — Ople2)g = —||2||3 + (2,101 142)q
div I42+fr, =X in LO(Ty), and div z+f = X in L?(Q), abbreviating @ := u—x € W22(Q), we get
IV leru = Vil |§ + (=N T (Terw = ui"))o + 3Lz — 213
<\ -l a)0 + 218 — (2, 0aLe2)0 + S| Hn Lzl
=\ a— I+ N Lot — Oyl @)o + 3z — Mplyz]d
=1} +I}+1.

(4.2)

As a consequence, it remains to estimate the terms I}, I? and I3:
ad I}. Using (CR.3), we obtain

Iy < [Mlella = Iertlle < cer hpay [IN@ [|1D*@ll - (4.3)

ad I?. Using that I.,.@ — 1.4 = Vil - (idge — pidga) in £1(73)9, A = 0 in {@ > 0},
Vi =0 in {a = 0}, and (CR.3), we obtain

I < (AN, (ViIepit — Vi) - (idga — Mpidga))a < cep hiay Mo (D%l - (4.4)
ad I}. Using (L0.1), (L0.2), and (RT.2), we obtain
Iy <z = Wazll§ + (2 = Le2)[IE < (cft + €2) Ponax [ V2] - (4.5)
Combining (4.2)—(4.5), we arrive at the claimed a priori error estimate. O

Corollary 4.2. If u,x € W22(Q), then there exists a constant ¢ > 0, depending only on the
chunkiness wg > 0, such that

IVhui” = Vull§y < ehfa (1Dl + 1D XIIE + [AG) -
Proof. Resorting to (CR.2), the assertion follows from Theorem 4.1, exploiting that for all v, € K"
(—X;CLT, Hh(vh - ’U,,Cf))g == (thff, Vh’l)h - th}?)g - (f}“ Hh(’l}h - thzr))g Z 0. O
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5. A POSTERIORI ERROR ANALYSIS

In this section, we examine the primal-dual a posteriori error estimator 77,%: Wé’2 (Q) = R,
for every v € Wé,’g(Q) defined by

i (0) =04, (0) + 15, (0) + 18 4

o) = V0 = G -
nEx(0) = (=X, Mh(v = X)), '
b7 (fn = XD -

=
Qv
=

I

for reliability and efficiency.

Remark 5.1. (i) The estimator ni appeared in a similar form in [15] in a Crouzeiz—Raviart
approzimation of the obstacle problems, imposing the obstacle constraint at the barycenters
of element sides. However, imposing the obstacle constraint at the barycenters of elements
leads to a sz’mpliﬁed form compared to the estimator in [15].

(ii) The estimator 77A -, provides control over the flur relation (3.6).
(11i) The estimator 773 ,, measures the discrepancy in the complementary condition (3.9), cf. [11].
(iv) The estimator 770 ., measures the irreqularity of the dual solution, i.e., divz ¢ L?().

5.1 Reliability

In this subsection, we identify error quantities that are controlled by the a posteriori error
estimator 77 : W52(2) = R, cf. (5.1). In doing so, we combine two different but related approaches:
first, we resort to first-order relations based on (discrete) convex duality, leading to constant-free
estimates; second, we resort to second-order relations based on the (discrete) augmented problems,
leading to estimates for further error quantities that are not covered be the first approach.

5.1.1 Reliability based on (discrete) conver duality

In this subsection, we follow the procedure for the derivation of, by definition, reliable and con-
stant-free a posteriori error estimates based on (discrete) convex duality outlined in the introduction.

Lemma 5.2. For every v € K, we have that
31V = Vg + (=M v —w)o + g2 = 213 < 511V — 211G + 1B 4(0) + (o — f,v = X)e
< Wi,h(”) + U%,h(“) + Ué,h + (fn = f,v—=X)a

Proof. Using that, owing to the augmented problem (3.8), 2a? — 16 = £(a — b)® 4+ b(a — b) for

all a,b € R, and the strong concavity of (3.3), for every v € K and y € L2(Q;R?), it holds
31V = Vaulg + (=A 0 — u)o = I(v) = I(u), (5.2)
3lly =2l < D(2) = D(y), (5.3)

the strong duality relation I(u) = D(z), cf. (3.5), that zJ* € W% (div; Q) with leZ b fp =" <
0 a.e. in L(Tp), cf. (3.29), integration-by-parts, and 11 25" = Vyuf" in LO(T)9, cf. (3.28), we get

3lIVo = Vullgy + (=A v —u)o + 312" — 2l§ < I(v) — D(z)
= 3IVollg + (div 25 = X7 v)a + (fa — f,0)a
+ 523008 + (div 23! + fy X)a = (fa = £ )
=3IVl - (Zh,vv)QJrgHZI:tHQJF??Bh() + (fn — fiv—X)a
:%”VU—Z}L”Q‘*‘UBJL() (fn = fiv—X)a
Sni,h(v)Jrn%,h(v)Jrllz — Iz G + (fo — fro — X)o

Due to 2! — I 2]t = BY e 1 (idga — pidga) in £(T3)%, cf. (3.27), we conclude the assertion. [
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Remark 5.3. (i) For every v € K, due to (3.2), we have that
(=N, v —u)g = (Vu,Vv —Vu)g — (f,v—u)qg > 0.
(ii) Since \§™ < 0 a.e. in Q (cf. Proposition 3.1 (ii)) and (v —x) > 0 a.e. inQ for allv € K,
for every v € K, we have that n%,h(v) > 0 and, thus, ni(v) > 0, since, then,
(=\ (v —x) >0 ae in Q.
Remark 5.4. The reliability estimate in Lemma 5.2 is entirely constant-free.
Remark 5.5 (Improved reliability). If we have that v = vy, € SH(Tn) N K in Lemma 5.2, then,

given zt — Hpzrt L Yoy, — Viui"™ in L2(Q; R?), we arrive at the improved reliability estimate
31V on =Vl +(=A vn —wo + 3127 — 21§ < 5745 () + 154 (0n) + 3080 + (= fro—X)a-
Corollary 5.6. If f = f, € LO(T},), then the following statements apply:
(i) For every v € K, it holds
3lIVY = Vullg + (=7, v = uha + 5ll27" = 2lIE < 51Vo = 21 + 0 n(v) < i (v) -
(ii) For every vy, € S5(Tn) N K, it holds
3lIVon = Vullgy + (A, o0 — w)e + 31127 = 2lG < 5054 (n) + 0B 4 (on) + 502, -
Proof. For the claim (i), we refer to Lemma 5.2. For the claim (ii), we refer to Remark 5.5. O

The a posteriori error estimator 77 : W,é’Q(Q) — R, cf. (5.1), furthermore, controls the error
between the continuous Lagrange multiplier A € (W})’Q(Q))*, defined by (3.8), and the discrete
Lagrange multiplier ¢ € Hh(S}f’CT(Th)), defined by (3.14), measured in the Sobolev dual norm.
To this end, we introduce the (W55 (Q))*-representation As™ € (W52(Q))* of Xs™ € I, (S5 (Th)),
for every v € W5?(Q) defined by

<7]?LT7 ’U>Q = (X}clr7 Hhv)ﬂ :
Lemma 5.7. The following statements apply:
(i) If we set oscy(f) = ||hr(fn — F)|3, cf. Theorem A.1, then
AR = Allso < [Vhui” = Vaulla + e + en (osen(f))
(ii) If f = fn € L°(T1), then for every v € K, it holds
1A = AllZ o < 973 1 (v) + 6nF 4 (v) + 902 ), < 975 (v).- (5.5)
Proof. ad (i). For every v € W5*(Q) satisfying ||v]q+||Vo|q < 1, using (3.8), (3.29), integration-
by-parts, (3.27), f — frn L v in L?(Q), and (L0.2), it holds
(A;7 — A, vy = (fn +divzv)a — (f,v)a + (Vu, Vo)g
= (V’LL - Z;t7 VU)Q + (fh - f7 U)Q
= (Vu — Vpui", Vo)g + (é(fh — Xir)(ide — pidga), Vo)q (5.6)
+ (fn = fyv=pv)g
< IVhuy” = Vullg + ne,n + cn (osea(f))

Nl=

(5.4)

D=

Taking the supremum with respect to every v € W5*(Q) satistying [|v||lo + [|[Vollo < 1 in (5.6),
we conclude the assertion.
ad (ii). Due to (i) and f = f, € LO(Ty), for every v € W5*(Q), it holds

1A = Al < Vo = Vulla + 03 4(0) + 185 - (5.7)
Then, resorting in (5.7) to Lemma 5.2, for every v € K, we find that
IAF = AllZ o < 3[IVo = Vull§ + 02 4 (v) + 1 4]
<3Bninsw) +205, ) +308,] - O
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Remark 5.8. If v =, € SL(T) N K in Lemma 5.2, then, given Remark 5.6 (i), we arrive at
the improved reliability estimate

IAR = All2 o < 697 (v).

5.1.2  Reliability based on variational equations

Following an approach which resorts to the (discrete) augmented problems, i.e., (3.8) and (3.14),
it is possible to establish the following reliability result, which identifies additional quantities that
are controlled by the a posteriori error estimator 77 : W5*(Q) — R, cf. (5.1).

Lemma 5.9. For every v € Wé’Q(Q) and ,€ > 0, we have that

(3 e~ 2e) Vo — Vully + (~A v — wa + $[IVu — Ty + (<257 I (u — X))o

2
< %Wi,h(”) + U%,h(”) +< Wé,h + 2z oscu(f)

From Lemma 5.9 we can immediately deduce the following reliability results.

Corollary 5.10. The following statements apply:
(i) For every v € W5*(Q), it holds

1V = Vaullg, + (=A v — w)a + 5| Vu = ViufT I3 + (=37, (v — x))a
< %77124,}1(“) + 77123,h(71) +2c,d° U%,h + 2¢fj osen(f) -
(ii) For every v € W5 (Q), it holds
(A, v —uwo + 5[ Vu— Viu |3 4+ (=X Hh(u — X))o
< $an() + 0 (0) + G d® 0, + cfosen(f).

Proof. The claim (i) follows from Lemma 5.9 for e = gl >0 and & = 8% > 0. The claim (ii)
1 4 I

follows from Lemma 5.9 for ¢ = ;7 >0 and € = ﬁ > 0. O
cr I

Having Corollary 5.10 (ii) at hand, by analogy with Lemma 5.7 (ii), we arrive at the following
reliability result for the error between the continuous and the discrete Lagrange multiplier
measured in the dual norm.

Corollary 5.11. For every v € K, we have that
A5 — A2 o <3073, (v) + 605, (V) +6(1+ c2.d*) né j, + 12 ¢y osca(f)
< 6(14c%.d*)ni(v) + 12 oscn(f) .
Proof. Appealing to Lemma 5.7 (5.4),
IA5 = Ao < [V = Viuf!llo + ne.n + e (osea())# (58)
Then, resorting in (5.8) to Corollary 5.10 (ii), for every v € K, we find that
[AF = Al o < 3[IVu — Viup"[|§ + 0., + crrosca(f)]
<3 [ni,h(v) + 2’7123,h(v) +2(1+c,.d% W?:,h + 4 cfposen(f)],
which is the claimed reliability estimate. O

Proof (of Lemma 5.9). Resorting to (3.8), for every v e W5(Q), since f — f5, LTI, (u—v) in L*(Q),
we find that

(Ayu—v)g + (Vu, Vu — Vou)g = (f,u—v)g
=(f = fru=v)a+ (fa,u—v)a (5.9)
=(f = foyu—v—Ip(u—2)o + (fr,u—v)a.
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Resorting to (3.14), for every v € WJ;’Q(Q), we find that
N M er(u = 0)e + (Vi Vied(w =)o = (fi, nler(u —v))a

= _(fh A u—v— ICT(U - 'U))Sl
+ ()\fczrv thcr(u - 'U) — (U — U))Q

+ (fha u— U)Q )
i.e., owing to Vi Ier(u—v) = II,V(u—v) in £L2(7;)? and Vyuf" € LO(T3)?, for every v € W5*(9)
(X}CLT’ u—v)a+ (Vug", Vu —Vov)g = —(fn — AT u— v — Top(u—v))g

+ (fr,u—v)g.

(5.10)

(5.11)

If we subtract (5.11) from (5.9), we arrive at
(A= A" u—v)g + (Vu — Vyuy", Vu — Vo)g = (f — fh,iL —v—Ip(u—v))a (5.12)
+(fn = A u—v—Ie(u—v))a.
The binomial theorem shows that
(Vu = Viuf”, Vu — Vo)g + 3|[Vo = Viui" [ = | Vu — ViugT[|g + 3| Vo = Vaullg . (5.13)
Resorting to (CR.2), (1.0.2) and the e-Young inequality ab < iaQ—l—st, valid for all a, 5> 0 and € >0,
for every €,€ > 0, we find that

(f = fryu—v—Tp(u—v))g| < 4% oscy (f) +Eck ||Vv — Va3, (5.14)
|(fr = A w = v = Tep(u = v))al < g2 |y (fn = MG + € co [ VU = Vulff, (5.15)
Therefore, combining (5.12)—(5.14), we conclude the claimed inequality. O

Given the findings of Lemma 5.2, Lemma 5.9, and Lemma 5.7, we introduce the error measure
p3: W5*(Q) — R, for every v € W5*(Q) defined by

() = 5[V = Vul[§ + (A0 —u)o
+ IV = Vg [[§ + (A W (u = X))o + [IA7 = AllZ g -

Theorem 5.12 (Reliability). There exist constants cre, Cosc > 0, depending only on the chunki-
ness wy > 0, such that for every v € K, we have that

(5.16)

pi(’U) < Crel TI%L(U) + Cosc OSCh(f) .

Proof. Immediate consequence of Lemma 5.2, Lemma 5.9, and Lemma 5.7. O

Remark 5.13 (Comments on the reliability constant c,.; > 0).
(i) Appealing to Corollary 5.11, for every v € K, we have that

IAR = AllZ o < 6 (1 + c2.d®) iy (v) + 12 ¢y osen(f).-
If f = fn € LY(Th), then Lemma 5.7 yields that for every v € K, we have that
IAR" = Al o < min{9,6 (14 cZ,.d?)} o5 (v) .-
(i) Appealing to Corollary 5.10, for every v € K, we have that
311V = Vaullg +2(=A,v — u)a + [[Vu = Viu |G + 2(=A7, i (u — X))o
<max{2,4c% d*} n?(v) + 2 oscn(f).
If f = fn € LY(Th), then Lemma 5.2 yields that for every v € K, we have that
3lIVo = Vullgy + (=A v —u)a + 3]z — 2[IE < 7i (v).-
(i1i) Combining (i) and (ii), we find that
Cret <max{2,4¢c? d*} +6(1 + 2. d?*), cose < 146F.
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5.2  Efficiency
In this subsection, we show the efficiency of the a posteriori error estimator 13 : W5*(Q) — R,
cf. (5.1), with respect to the error measure p? : W5*(Q) — R, cf. (5.16).

Theorem 5.14 (Efficiency). There exist constants ceg, Cosc > 0, depending on the chunkiness
wo > 0, such that for every v € W})’z (), we have that

77}21(1}) < Ceffp;%(’l}) + Cosc 0sch(f) -
Proof. Apparently, for every v € W},’Q (©2), we have that
Man(©) < 2[[Vo = Vullg + |Vu = Vaui"[[3],

In addition, appealing to Lemma A.3 (A.7), there exists a constant ¢ > 0, depending only on the
chunkiness wy > 0, such that

e < el Vaug = Vullg + |7 = A2 g + oscr(f)] -
Eventually, for every v € W}J’2 (Q), using Young’s and Poincaré’s inequality, we find that
M) = (=X My (u = X))o + (~A 0 — ) + (A = AfT v —u)o
< (=M M (u — X))o + (A, v — u)o
LIAer _ Al2 1+cp Vo — Vull?
+5lA = Al o + =52 Ve = Vullg,
where cp > 0 denotes the Poincaré constant. O

Remark 5.15. Since the discrete primal solution u;” € K" is neither an admissible approz-
imation of the primal solution uw € K in Theorem 5.12 nor in Theorem 5.1/, since, in general,

uf" ¢ WEAQ)  and  ufm # x ace. in Q,
it is necessary to post-process uy” € K. In the numerical experiments, cf. Section 6, we employ

the post-processed function v, = max{I"u", x}, where If": Sjlj,cr(Th) — SH(Tr) is a node-aver-
aging quasi-interpolation operator, cf. Subsection A.1, which, by the Sobolev chain rule, satisfies

vy € W},’Z(Q) and vp > X a.e. in €,

t.e., vy, € K. Note thattrvy, =0 inT'p due to If"u;” =0 onT'p and x < 0inT'p. In addition, us-
ing the best-approzimation property of I{: SE’CT(’T;L) — 85(Th), cf. Proposition A.4, we have that

IVon = Vil < VI = Vailla + [V IEug” = Yl s <a
< 2| VIR " = Vui o + [[Vuy” = Vx| (reug <xy
<elVui" = Vullo + [Vu = Vx|l grmugr <y

and, thus,
IVvn — Valla < el Vug” = Vulla + [Vu — Yl rsmuzr< -

In other words, the error between v, € K and uj” € Ki" (and u € K, respectively) is controlled by
the error between u;” € K" and u € K plus a contribution capturing the violation of the contin-
uous obstacle constraint by u;" € K;".

Remark 5.16. Appealing to Theorem A.1 and Lemma A.3 (A.7), there exists a constant ¢ > 0,
depending only on the chunkiness wg > 0, such that for every vy, € SBCT(’EL), we have that

IVhon — Vauf 1§ + Ihr (fa = ADIE < e lIVavn — Vullg + A5 — A2 o + oscn(f)] -

Thus, it is possible to establish efficiency estimates for parts of the primal-dual a posteriori error
estimator, which also apply for non-conforming functions, cf. Appendix A.
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6. NUMERICAL EXPERIMENTS

In this section, we confirm the theoretical findings of Section 4 and Section 5 via numerical
experiments. All experiments were conducted using the finite element software package FEniCS
(version 2019.1.0), cf. [39]. All graphics are generated using the Matplotlib (version 3.5.1) library,
cf. [33].

6.1 Implementation details

We approximate the discrete primal solution u;” € S L " (Tr) and the associated discrete La-
grange multiplier A\f" €11, (S L ;“"(Tr)) jointly satlsfymg the discrete augmented problem (3.14) via
the primal-dual actlve set strategy interpreted as a super-linear converging semi-smooth Newton
method, cf. [3, Subsection 5.3.1] or [31]. For sake of completeness, we will briefly outline important
implementation details related with this strategy

We fix an ordering of the element sides (.5;);=1,..., vy and an ordering of the elements (75 )=, 0,
where N¢" := card(Sy) and N} := card(Ty), such that?

span({xz, |i=1,..., N = (S5 (Th)) ,

where N¢™0 = dim(I1, (S5 (T5))) € {N?, N — 1} because of codim o, (IIy(S57(Tr))) =
cf. [8, Corollary 3.2]. Then, if we define the matrices

S}C]:T = ((VhSD.Sh ) Vh%on)Q)i,j:L...,Nf;r € RNKXN;T )

- 0
PZT,O = ((thsi7XT]')Q)i=1,-.47Nﬁr7j=1,“.7NﬁT’o c RN;i X Ny,

)

and, assuming for the entire section that yy, = I, 1. x € L°(T}), the vectors
X;:LT = ((ICTX7 9057) )'* SNET € RN’ZT 3

cr,0
F?L = ((fh?XTz)Q) SN0 e RV
the same argumentation as in [3, Lemma 5.3] shows that the discrete augmented problem (3.14)
is equivalent to finding vectors (U, L") T € RM: x RVA™ such that
geryyer PCHOLCT _ Pc'r,OFO . RN}L;
FUR+ Py m Nm; (6.1)
(fh(UZr, ) = Opnem° in RV

where for given o > 0, the mapping €, : RV» x RVA ? 5 RV for every (Up,, L) T € RV2 x RN
is defined by

cr,0

©n(Up,Ly) =Ly —min {0,Ly + a(P;"") T (U, — Xf)}  in RV

More precisely, the discrete primal solution uj" € S L 5" (Tr) and the associated discrete Lagrange
multlpher A e 1L (Sp L Cr('771)) jointly Satlsfymg the dlscrete augmented problem (3.14) as well as
( fL’”,L”) e RVx x RN2" | respectively, are related by®

Ny
uf =Y (Uf - ei)ps, € S57(Th).,
i=1
N
N = Y (LR exr € IL(SET(Th)-
i=1
Next, define the mapping .7, : RVi x RV — RNV < RV’ for every (Up,Lp) "€ RNV x RV by
S§7Us + P50 (L, — FY)
cgh(Uhv Lh)

cr,0

Fn(Up,Lp) = [ in RV: x RNk

5In practice, the element T € 7j, for which Rxs L I, (S sk 5 (Th)) is found via searching and erasing a zero col-
cr,0

o ATO
umn (if existent) in the matrix ((Hh‘PSiaXT)Q)i:l,...,NfLr,TeTh € RN& XNy leading to PZTO RNE X NG
SHere, for every i =1,...,N, N € {Ng, N;fr’o}7 we denote by e; = (8;5)j=1,....n € R¥, the i-th unit vector.
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Then, the non-linear system (6.1) is equivalent to finding (U¢™, Lér)T € RV x RN such that

cr,0

Fn(UST LET) = Opvir xgi®  in RN x RV
cr,0

By analogy with [4, Theorem 5.11], one finds that the mapping %, : RV x RV s RVI x RNA”
cr cr,0 .
is Newton-differentiable at every (U, L) " € RV x RN2™ and, with the (active) set

oy, =y (Up,Lp) = {i € {1,..., N} | (Ly, + a(P;°) T(Uy — X57)) - e; < 0},

we have that

DEUnLn) = | oS PR e N
) (P ZT,(])T I,dh’ Ig{}f )
where Iy, , Loze = INgroxNer0 — Loy, € e RV’ xRNV for every i, j € {1,..., N0} are defined by
(Ier,)ij =1 1fz =j € ) and (Ig{h)” =0 else.
For a given iterate (Uk ! Lk HT e RN xRNi , one step of the semi-smooth Newton method,

cf. [3, Subsection 5.3.1] or [31], determines a dlrectlon (SUFTL 0L 1T € RV x RM" such that
D.Z,(UE—1 LEY (UM 6LENT = —7,(UF-1 LE-Y) i RV xRN (6.2)

Setting (Uf, LE)T = (U 1 4+6UF 1, L~ +0LE 1) T € RN xRV and o7~ = o, (U1, LE),
the linear system (6.2) can equlvalently be re-written as

Sg"Uk + Py OLE = PO in RN,
I(ozt-1)cLE = Ogng® in RV&™ (6.3)
Ly—1Uf = L1 X7 in RV

The semi-smooth Newton method can, thus, equivalently be formulated in the following form,
which is a version of a primal-dual active set strategy.

Algorithm 6.1 (Primal-dual active set strategy). Choose parameters o > 0 and estop > 0.
Moreover, let (UY,L9)T € RV x RNV and set k = 1. Then, for every k € N:

(i) Define the most recent active set

ﬂk 1 Mh(Uk 1 Lk 1 _ {’L c {1 cr,O} ‘ (Lk 1 a(P}CIT,O)T(szl_X}CIT)).eZ_ < 0} .
(i) Compute the iterate (UZ,LZ) € RV x RN such, that
Sy Ryt J[UE]_[ PeE
(P o= Teegg=ye JL L | [ L X ]

(iii) Stop if |UF — UF™1| < esrop; otherwise, increase k — k + 1 and continue with step (i).

Remark 6.2 (Important implementation details). (i) Algorithm 6.1 converges super-linearly
if (U, LT € RNW x RN is sufficiently close to the solution (U, L") T € RV x RN
cf. [31, Theorem 3.1]. Since the Newton-differentiability only holds in finite-dimensional sit-
uations and deteriorates as the dimension increases, the condition on the initial guess
becomes more critical for increasing dimensions.

(ii) The degrees of freedom related to the entries L’,ﬂ(,ﬁz{:fl)c can be eliminated from the linear
system of equations in Algorithm 6.1, step (i) (see also (6.3)).

(iii) Since only a finite number of active sets are possible, the algorithm termmates within a finite
number of iterations at the exact solution (U, L”) € RN x RN&™ . For this reason, in
practice, the stopping criterion in step (iii) is reached with |Uﬁ —Uﬁ 1| =0 for some k* €N,
in which case, one has that Uﬁ* = Uj", provided estop > 0 is sufficiently small.

(iv) The linear system emerging in each semi-smooth Newton step (cf. Algorithm 6.1, step (ii))
is solved using a sparse direct solver from SciPy (version 1.8.1), cf. [46].

(v) Global convergence of the algorithm and monotonicity, i.e., U’,fb > Uffl > Xi" fork >3
can be proved if S§T € RNV XN is an M -Matriz, cf. [31, Theorem 3.2].

(vi) Classical active set strategies define /¥~ = {i € {1,...,N&"O} | Ly~! - e; < 0}, which

corresponds to the formal limit o — oco.
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6.2 Numerical experiments for a priori error analysis

In this subsection, we confirm the theoretical findings of Section 4.

For our numerical experiments, we choose ) := (—%, %)2, I'p=0Q,f=-2€L*Q),x=0¢

W12(Q), and as a manufactured solution, the function u € W12(Q), for every = € Q defined by

w(a) = {g —In(jz)) -1 ifx € Q\ B(0)

0 else ’
As a result, appealing to Theorem 4.1, we can expect the convergence rate 1.

We construct an initial triangulation 7y, , where hy = %, by subdividing a rectangular Carte-
sian grid into regular triangles with different orientations. Finer triangulations 7, , k=1,...,7,
where hiy1 = % for all k =1,...,7, are obtained by regular subdivision of the previous grid:
each triangle is subdivided into four equal triangles by connecting the midpoints of the edges, i.e.,
applying the red-refinement rule, cf. [45].

For the resulting series of triangulations 7y = Tp,, k =1,...,7, we apply the primal-dual ac-
tive set strategy (cf. Algorithm 6.1) to compute the discrete primal solution uf = uf” € S5 (Th),
k=1,...,7, the discrete Lagrange multiplier \{" := Af" € Iy, (S5 (Tx)), and, subsequently,
resorting to (3.27), the discrete dual solution zj* == 2! € RT{(Tx), k =1,...,7. Afterwards,
we compute the error quantities

euk = || Vhup" — Vulla,
erouk = |V ui — Vi Lerulla,
eae = 5 = 2lla k=1,...,7 (6.4)
€rzg = Mn,zp — p, ezl
exur = (=M Ty, (v —uf"))a,
extouk = (=N Oy, (L — uf))q,

As estimation of the convergence rates, the experimental order of convergence (EOC)

log(er/ex—1)

EOCy (e : tos U hs) k=2,...,7,
where for every k = 1,...,7, we denote by ey, either ¥, e’fm_u, ek e’}ﬂz, e’f\m, ei,lc,,-u’ ioik =
e’/{)u + ek or ef\oﬁfcu = e’i Lou Tt e’}?wu, respectively, is recorded. 7
For a series of triangulations 7, k = 1,...,7, obtained by uniform mesh refinement as de-
scribed above, the EOC is computed and presented in Table 1 and Table 2. In each case, except
for ey, € {exu.k»€x 1,k }> We report a convergence ratio of about E0Cx(ey) ~ 1, k =2,...,7, con-
firming the optimality of the a priori error estimates established in Theorem 4.1 and Corollary 4.2.
For e € {exuk,€x Iu,k}, We report a convergence ratio of about EOCx(ex) =~ 1.5, k=2,...,7.
] k | e [ EoCy | ef , | EOC, | eF [ EOCy | €} . | EOC: |
1 1.359 — 0.732 — 1.094 0.656 —
2 0.787 | 0.788 | 0.664 | 0.141 | 0.533 | 1.038 | 0.453 | 0.535
3 0.380 | 1.048 | 0.324 | 1.034 | 0.260 | 1.033 | 0.212 | 1.097
4 0.197 | 0.948 | 0.166 | 0.968 | 0.131 | 0.993 | 0.116 | 0.872
5 0.099 | 0.996 | 0.082 | 1.008 | 0.067 | 0.974 | 0.059 | 0.967
6 0.050 | 0.989 | 0.042 | 0.986 | 0.033 | 1.010 | 0.030 | 0.968
7 0.025 | 0.998 | 0.021 | 1.001 | 0.017 | 0.980 | 0.015 | 0.993
‘ expected H — ‘ 1.00 ‘ ‘ 1.00 ‘ — ‘ 1.00 ‘ — ‘ 1.00 ‘
Table 1: For e, € {efj, e’jwu, e’; e’}rtz}, k=2,...,7: error e, and experimental order of conver-

gence EOCg(ex).
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k|| e, | Eoce | ek, | Eock | eS| Eocy | %", | EOC, |
1 0262 | — | 0490 | — | 1.849 | — | 1.223 | —
2 0.144 | 0.866 0.199 1.300 | 0.986 | 0.907 0.863 0.502
3 0.044 | 1.706 | 0.072 | 1.461 | 0.453 | 1.123 | 0.397 | 1.122
4 0.020 | 1.133 0.029 1.308 | 0.226 | 0.999 0.195 1.024
5 0.006 | 1.732 | 0.009 | 1.636 | 0.108 | 1.064 | 0.092 | 1.086
6 0.002 | 1.363 0.003 1.447 | 0.053 | 1.024 0.045 1.027
7 0.001 | 1.618 | 0.001 | 1.535 | 0.026 | 1.027 | 0.022 | 1.036
expected H ‘ 1.00 — ‘ 1.00 ‘ — 1.00 ‘ — ‘ 1.00 ‘

Table 2: For e; € {e} ,, ek ; e f\ozk, ioﬁku} k=
convergence EOCy(eg).

., 7: error eg and experimental order of

6.3 Numerical experiments for a posteriori error analysis

In this subsection, we confirm the theoretical findings of Section 5. More precisely, we apply the
S5°"(Tr)-approximation (3.11) of the obstacle problem (3.1) in an adaptive mesh refinement
algorlthm based on local refinement indicators (nh T)TET;L associated with the a posteriori error
estimator 7%, cf. (5.1). More precisely, for every v € W)*(Q) and T € T, we define

Manr(©) = Vo = Viug |7,
77]23,h,T(U) = (_)\}clr7 p (v — X))T7
ngi',h,T : d%\\hT(fh - )\fclr)”%?
ni,T(U) = 77,24,h,T(U) + 77123,h,T(U) + n%’,h,T .
Before we present numerical experiments, we briefly outline the details of the implementations.
In general, we follow the adaptive algorithm, cf. [21]:
Algorithm 6.3 (AFEM). Let estop >0, 6€(0,1) and Ty a conforming initial triangulation of Q.
Then, for every k € NU{0}:
("Solve’) Compute the discrete primal solution ug :=wuy" € K™= Ky and the discrete Lagrange
multiplier A{™ = X" € Hhk_( IECT( k)) jointly solvmg the discrete augmented problem
(3.14). Post-process ui” € S (Ty) to obtain a conforming appmmmatzon v € K
of the primal solution u € K and a discrete dual solution zj' = zh € RTY(Tx).
(’Estimate’) Compute the local refinement indicators (n? 7WK))Te = (nhk T(Ulc))TeTk If

Ni(vr) =, (vr) < estop, then STOP; otherwise, continue with step ("Mark’).
(’Mark’) Choose a minimal (in terms of cardmalzty) subset My, C Ty such that

Z U%,T(Uk) > 67 Z U%,T(Uk)~

TeMy TETk

(’Refine’)  Perform a conforming refinement of Ty to obtain Trpi1 such that each T € My, is
refined in Tr11. Increase k— k + 1 and continue with step (*Solve’).

Remark 6.4. (i) The discrete primal solution ui” € K" and the discrete Lagrange multiplier
A€ My, (SBCT(E)) in step ("Solve’) are computed using the primal-dual active set strategy
(cf. Algorithm 6.1) for the parameter o = 1.

(ii) The reconstruction of the discrete dual solution z' € RT%(Ty) in step ("Solve’) is based on
the generalized Marini formula (3.27) and does not entazl further computational costs.

(iii) In accordance with Remark 5.15, as a conforming approxzimation vy € K of the primal solu-
tion u € K in step ("Solve’), we employ vj, = max{[,‘f:u" x} € K.

(iv) If not otherwise specified, we employ the parameter = = in ("Mark’).

(v) To find the set My, C Ty in step ("Mark’), we deploy the Do'rﬂer marking strategy, cf. [23].

(vi) The (minimal) conforming refinement of Ty, with respect to My, in step ("Refine’) is obtained by
deploying the red-green-blue-refinement algorithm, cf. [45].
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6.3.1 Fxample with corner singularity

We examine an example from [9]. In this example, we let == (—2,2)%\ ([0,2] x [-2,0]),
Ip =090, Tn =0, f € L?(Q2), in polar coordinates, for every (r,¢)" € Rsg x (0,27) defined by

F(ry0) = —r sin(Z2) () 14 (r)) — 47750 (1) sin(Z2) — (1),

where v1,72: Rso — R for every r € R.g, abbreviating 7 := 2(r — %), are defined by

1 ifr<0 0 ifFr<?
Yi(r) =6/ + 157 =10/ +1 f0<7<1, 7r):= {1 .f,—;t ;
0 if 7> 1 =

and x =0 € Wll)’z(Q). Then, the primal solution v € K, in polar coordinates, for every (r, )"
R X (0,27) defined by u(r, ) = riy(r )bm( £), has a singularity at the origin and, therefore
satisfies u ¢ W22(Q), so that we cannot expect uniform mesh refinement to yield the quasi-
optimal linear convergence rate.

The coarsest triangulation 7y of Figure 2 (and starting triagulation of Algorithm 6.3) consists of
48 halved squares. More precisely, Figure 2 displays the triangulations T, k € {0, 4, 8,12, 16,20},
generated by the adaptive Algorithm 6.3. The approximate contact zones Cf" = {II, uf" = 0} =
{A¢m < 0}, k € {0,4,8,12,16,20}, are plotted in white Figure 2 while its complement is shaded”.
Algorithm 6.3 refines in the complement of the contact zone C :== QN {|-| > 2}. A refinement
towards the origin, where the solution has a singularity in the gradient, and in {i <1< %},
where the solution has large gradients is reported. This behavior can also be seen in Figure 3,
where the discrete primal solution u{y € S L 5 (Ti0), the node-averaged discrete primal solution
I ufp € 81 5 (T10), the discrete Lagrange multiplier A5 € T, (S5 (Tio)), and the discrete dual
solutlon 2h € RT%(Tio) are plotted on the trlangulatlon T10, which has 1858 degrees of freedom.
Figure 1 demonstrates that the adaptive Algorithm 6.3 improves the experimental convergence
rate of about % for uniform mesh-refinement to the optimal value 1. For uniform mesh-refinement,
we expect an asymptotic convergence rate % due to the corner singularity. Since not all quantities
in the error measure pﬁk (vg) are computable, in Figure 1, we employ the reduced error measure

pr(ve) = uf |G+ (A Iy (w = X))a

where we exploit for the computation of the first two terms the identity (5.2).

IV, = Vaullgy + (—A,vp — uw)o + [|[Vu — Vi,

0.1

Q & I(vg) (adaptive)
1 007y % D(z}) (adaptive)
1004 — —0.1 | . — I(u) ~ —0.691486
0.425 ~©- I(vy) (uniform)
: ) —%= D(z) (uniform)
&5 [
—&- n(vg) (adaptive)
1071 e pr(vr) (adaptive)
=0 n(vg) (uniform) ]
%= prp(vg) (uniform) s 2
102 108 103 10*

Number of degrees of freedom

Number of degrees of freedom

Figure 1: LEFT: Plots of 7 (vx) and 5} (vg) for v = max{I"u;", x} € K using adaptive mesh

refinement for k =

of I(vg), cf. (3.1), for v = max{[‘“’u

refinement for k£ =

=0,...,20 and using uniform mesh reﬁnement for k=0,...,
,x} € K and D(z},

4. RIGHT: Plots

%), cf. (3.3), using adaptive mesh

=0,...,20 and using uniform mesh reﬁnement for k=0,...,4.

“we chose this color as in most of the examples the complement of the contact zone is refined and appears darker.
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To Ts Ts

Figure 2: Adaptively refined meshes Ty, k € {0,4,8,12,16,20}, with approximate contact zones
Cir = {Il,uf" = 0} = {A\7 < 0}, k € {0,4,8,12,16, 20}, shown in white.

u§h € S5 (Tho) vip € Sh(Tho)

M, 216 € £(Tho)?

—0.4 0.5

~1.0 —0.51 \ I

-20 -15 —-1.0 -05 0.0 0.5 1.0 1.5 2.0

Figure 3: Discrete primal solution u{j € S5 (710) (upper left), node-averaged discrete primal
solution I u§ € Sh(Tio) (upper right), discrete Lagrange multiplier A € T, (S5 (T10))

10

(lower left), and discrete dual solution 275 € RTY(T10) (lower right) on Tig.
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6.3.2 FExample with unknown exact solution

We examine an example from [9]. In this example, we let Q := (—1,1)2, I'p := 9Q, 'y = 0,
f=1¢€L*Q), and x = dist(-,dQ) € W5*(Q). The primal solution u € K is not known and
cannot be expected to satisfy u € W22(€2) inasmuch as x ¢ W22(£), so that uniform mesh refine-
ment is expected to yield a reduced error decay rate compared to the optimal linear error decay rate.

The coarsest triangulation 7y in Figure 5 (and starting triangulation in Algorithm 6.3) consists
of 64 elements. More precisely, Figure 5 displays the triangulations Ty, k € {0, 5, 10, 15, 20, 25},
generated by the adaptive Algorithm 6.3. The approximate contact zones Cf" = {II;, uf" = xx} =
{A¢m < 0}, k € {0,5,10,15,20,25}, where yy, == II,, x € L(Ty) for every k € {0,5,10,15,20,25},
are plotted in white in Figure 5 while their complements are shaded. Note that for every k € N,
we have that x = I..x € SL(Tx) and f = fn, € L2(Tx).

This example is different from the previous examples; in the sense that the solution and the
obstacle are non-smooth along the lines C := {(z,y)" € Q |z =y or 2 =1 — y}. Algorithm 6.3
refines the mesh towards these lines as can be seen in Figure 5. In addition, the approximate
contact zones Cf", k € {0,...,25}, reduces to C. This behavior can also be observed in Figure 3,
where the discrete primal solution u{f € 8113’”(7]5), the node-averaged discrete primal solution
I#ust € S5 (Tis), the discrete Lagrange multiplier A% € TTj,,. (S5 (Tis)), and the discrete dual
solution 2]t € RTY(T15) are plotted on the triangulation 715, which has 3769 degrees of freedom.
Algorithm 6.3 improves the experimental convergence rate of about % for uniform mesh-refinement
to the quasi-optimal value 1. Since not all quantities in the error measure p,%k (vk) are computable,
in Figure 4, we employ the reduced error measure

Pr(vk) = 5lIVoe = Vull§, + (=A, v, — u)a

where we exploit for the computation of 52 (vy) the identity (5.2) and approximate the value I(u)
via Aitken’s §2-process, cf. [2]. More precisely, we always employ the approximation I(u) ~ a7,
where the sequence (ex)ken;k>2, for every k € N with k& > 2, is defined by

I(Uk)f(vk_z) - I('Ulc—l)2
I(vg) — 2T (vk—1) + I(vk_2)

However, it remains unclear whether this is a sufficiently accurate approximation of the exact
errors pj (vx), k=0,...,25.

€ =

.y
1094 @éa L

5
2 X.
= Do SEESI . /
= ORISRy ¥
fs 2 /,X ~&- I(v;) (adaptive)
10714 e~ ng(vr) (adaptive) X % D(zy) (adaptive)
< pr(ug) (adaptive) ; =0 I(vp) (uniform)
~©- n(vg) (uniform) —*= D(z) (uniform)
—%- fp(vr) (uniform) >< —— I(u) ~ 0.614861
102 10° 101 102 10° 101
Number of degrees of freedom Number of degrees of freedom

Figure 4: LEFT: Plots of 7 (vx) and 5} (vg) for vy = max{I"u;", x} € K using adaptive mesh
refinement for k = 0,...,25 and using uniform mesh refinement for £ = 0,...,4. RIGHT: Plots
of I(vg), cf. (3.1), for vy = max{I"ug", x} € K and D(z{"), cf. (3.3), using adaptive mesh
refinement for £ =0, ...,25 and using uniform mesh refinement for k =0, ..., 4.
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Figure 5: Adaptively refined meshes 7y, k € {0, 5,10, 15,20, 25}, with approximate contact zones
Cir = {Ilp,uf =1p, xn, } = {\F" <0}, k € {0,5,10,15, 20,25}, shown in white.

AT € (S5 (Tis)) EOCRN 25 € £2(Ths)?

1S N INO N 5
NN AN A

)

50 - ..‘\ KN ,' 'v % KA

—100 0.25

—150 N SR
0.00 = 8
—200

=250 —0.25

B L I O e i e e R A

~1.0 X 0754 K T NANTA SN

AD e

0.5 —1.00 4

T T T T T T T T T
—1.00 -0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Figure 6: Discrete primal solution u{f € 8;”(7'15) (upper left), node-averaged discrete primal
solution I u§s € Sp(Tis) (upper right), discrete Lagrange multiplier Nt € T, (S5 (Tis))
(lower left), and discrete dual solution 27t € RT%(T15) (lower right) on 7Tis.
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A. APPENDIX

In this appendix, we derive local efficiency estimates for the Crouzeix—Raviart approximation
(3.11) of (3.1), which, in turn, imply the following non-conforming efficiency result.

Theorem A.1. There exists a constant ¢ > 0, depending on the chunkiness wg > 0, such that
IVhon = Viu [ < e[l Vhon — Vallg + [AFT = A2 o + osen(f)]

where for every My, C Tp, we define oscy(f, Mp) = 3 rcpq, 0scn(f,T), where oscy(f,T) =
\hr(f — fu)l|% for every T € Ty, and oscy(f) = oscn(f, Tn)-

Before we prove Theorem A.1, we will first introduce some technical tools.

A.1 Node-averaging quasi-interpolation operator

The first tool is the node-averaging quasi-interpolation operator and its uniform approximation
and stability properties, cf. [40, 12, 25].
The node-averaging quasi-interpolation operator I2V: £!(T,) — S}(7r), denoting for z € Ny,
by Tn(z) == {T € T, | 2 € T}, the set of elements sharing z, for every v, € L1(T}), is defined by
1 .
I;lU”Uh = Z <’Uh>z¢z ) <Uh>z = {(Erd(Th(Z)) ZTeTh(Z) (/Uh|T)(Z) lf EOUly ,
2ENG 0 ifzel'p

where we denote by (¢.) e, , the nodal basis of S*(73,). If p € [1, 00), then, there exists a constant
¢ > 0, depending on p € [1,00) and the chunkiness wg > 0, such that for every v, € S5 (Th),
T € Ty, and m € {0,1}, cf. [7, Appx. A.2], we have that

(AV-1) \lon = Ii"on|l7 < cavhr [[Vavnllwr

(AV.2) |VIgonllr < Cav [|Vavnlwr -

A.2  Local efficiency estimates

The second tool involves the following local efficiency estimates based on standard bubble
function techniques, cf. [44].

Lemma A.2. There exists a constant ¢ > 0, depending only the chunkiness wg > 0, such that
for every v, € LY(Ty), T € T, and S € Sj, respectively, it holds

Ihr (fr = NDIT < ellVon = VullZ + cl[A7" = A2 7 + cosen(£,T), (A1)
hs |[[Vhon - nlslE < ellVaon = VullZg + cllAFT = AllZ oy + cosen(f,ws) , (A.2)

where |A;"— Allvar = |A; — Al (w2 any)= for every open set M C Q.

Proof. ad (A.1). Let T € T, be fixed, but arbitrary. Then, there exists a bubble function by € Wy (T)
such that 0<br <¢, in T, |Vbr|<c¢p h;l in T, and fT br dx =1, where the constant ¢ >0 depends
only on the chunkiness wy > 0. Using (3.8) and integration-by-parts, taking into account that
Vion € LO(Th)? and by € Wy *(T) in doing so, for every u € R, we find that

(Vu — Vop, V(ubr))r + (AF7 — A, pbr)r = (f = N7, pbr)r - (A.3)

For the particular choice p = pr = hp( fh—X,Cf) € Rin (A.3) and applying the e-Young inequality
ab< iaQ—I—EbQ, valid for all a, b > 0 and & > 0, also using that |br| < ¢ in T and hy|Vbr| < ¢, in T,
we observe that
b (fn = NiOIF = (f = X7, hoprbr)r + (fa — f, hoprbr)r (A.4)
= (Vu = Vop, V(hpprbr))r + (A" = A, heprbr)r + (frn — f, heprbr)r
= IVor = VullZ + A7 = Al 7 + osen(f, T)] + 3 ¢ [|hr (fu — )7 -

For the particular choice € = ﬁ > 0 in (A.4), we conclude that (A.1) applies.
b

IN
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ad (A.2). Let S € 8! be fixed, but arbitrary. Then, there exists a bubble function bg € Wy ? (wg)
such that 0<bg <¢p in wg, |Vbs|<cp h;l in wg, and fs bgs ds=1, where the constant ¢>0 depends
only on the chunkiness wy > 0. Using (3.8) and integration-by-parts, taking into account that
Vion € LO(T)® and bs € WP (ws) in doing so, for every u € R, we find that

(Vu — Vi up, V(Mbs))ws + <K}CLT —A, :ub5>ws = (f - er’ :ubs)ws - |S|[[vvh : nﬂslu- (AB)

Let T € Ty, be with T C wg. Then, for the particular choice u = pug = %[[thh -n]s € Rin (A.5),
lws| < cuyl|S|hs for all S € Sp, where ¢, > 0 depends only on the chunkiness wy > 0, and
applying the e-Young inequality ab < ﬁaz + eb? valid for all a,b > 0 and & > 0, also using that
|bs| < ¢p in wg and hg|Vbg| < ¢ in wg, we observe that

hs|[[Vnon - nllslIE = =22 [(Vu = Viow, V(isbs))ws + (857 = A, pisbs)ws — (F = s psbs ws)
< G2 (IVhon = Vg + AR = A2 s + A7 (fn = A5 + oscn(f,ws)]
+ € Cuy Cl% hs|[[Vhon - n]]g”% . (A.6)
Using (A.6) and (A.1) in (A.5), for sufficiently small € > 0, conclude that (A.2) applies. O
From Lemma A.2 we can derive the following global efficiency result.

Lemma A.3. There exists a constant ¢ > 0, depending only the chunkiness wg > 0, such that
for every vy, € LY(T},), it holds

I (= X3 < e[ Whon — Vull + e[ K57 — Al o + cosen(f) (A7)
1082 [¥on - nll13, < el|Viwn — Vully + e [K7 — Al g + cosen(f) (A8)

Proof. ad (A.7). For urbr =3 o prbr € W% () in the proof of (A.1), from (A.4) we derive

A (fr = MDS = (Vu — Vop, V(hrurbr))a + (A" — A hrurbr)a + (fa — £, hrurbdr)a,

which together with the e-Young inequality and |b7| + hy|Vbr| < ¢ in © implies (A.7).
ad (A.8). For psbs = 2568; tsbs € W})’Q(Q) in the proof of (A.2), from (A.6) we derive

1hY*[Vhon - ]|

5 < (V= Vhon, V(usbs))a + (A7 = A, psbs)a = (f = A, psbs)el
which together with the e-Young inequality and |bs| 4+ hs|Vbs| < ¢p in € implies (A.8). O

A.3  Proof of Theorem A.1
Eventually, we have everything at our disposal to prove Theorem A.1.
Proof (of Theorem A.1). Let v, € S},’”('ﬁl) be arbitrary and introduce e, = v, — uj" €
S5 (Th). Then, resorting to (3.8), (3.14) and f — fy L Iyep, in L*(), we arrive at
IVhon — VautT13 = (Vaon — Vaut”, Vien)a
= (Vhon, Vi(en — I%en))a
—(fn = Ail en)o
+ (Vhop — Vu, VIFer)q
+ (f, Iien)a — (A, Ien)a
= (Vhvn, Vi(en — I"en))a (A.9)
—(f =N en— Iien)a
+ (Vhup — Vu, VIfen)q
+(f = fn,en —Ipen)a
— (A = A Ien)a
=+ B+ L+ +17.
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ad I}. Using that [Vvp -n(en — I2Vep)]s = [Vavn -n]s{en— I’”eh}s—i—{thh n}slen —Ifen]s
on S, fs [en, — Iep]sds = 0, and {Vjvp, - n}s = const on S for all S € S}, an element-wise
integration-by-parts, the discrete trace inequality [25, Lemma 12.8], (AV.1), the e-Young inequality,
and (A.2), for every £ > 0, we find that

I;lb = ( 1/2[[vh71h n]] h_1/2{6h — Iﬁveh})si
< Ctths [Vron - nllls; 17 (en = Iien) [l (A.10)
Vullg + oscn(f) + IIA; = All2 o] + ¢, [ Vaenld -

eﬁ@[

ad I}. Using the e-Young inequality, the approximation property of I/"*: S}jcr(ﬂl) — S5(Th),
cf. (AV.1), and (A.1), for every £ > 0, we obtain

I < gz W (F = NG + € 17 (en — Iien) I
< G2 [IVhvn = Vullg, + osen(f) + A7 = AllZ o] + e ez, [ Vaenld -

ad I}. Using the e-Young inequality, the W'2-stability of I#*: S5 (Tn) — Sh(Tn), cf
(AV.2), and (A.1), for every € > 0, we obtain

Ii < £ Vhow — Vullg + € [ VIFen 1§
< £ I Vhon — Vullg + e, | Varenlld -

(A.11)

(A.12)

ad I}t. Using the e-Young inequality and the approximation property of Il : £1(7) — L%(T5),
cf. (L0.1), for every € > 0, we obtain

I < Losen(f) +ellhr (en — Hpen)|d
< Losen(f) +ecfp | Vaenld -

ad I?. Using the e-Young inequality, the W'-2-stability of I#7: S5 (Tn) — SL(Tn), cf. (AV.1)
& (AV.2), and the discrete Poincare inequality (2.1), for every € > 0, we obtain

Iy < L 1A = Al o + e (7 enlld + V15 enl[3)
< g IAF = AlZ g + e (14 (8)%) [ Vnenll?, -
Combining (A.10), (A.11), (A.12), (A.13), and (A.14) in (A.9), for every € > 0, we conclude that
2 J—
[Von = Va1 < G ([ Vion — Fullfy + osen(f) + K7 = Al ]
+e(Bcan+ i+ 1+ (cB)?) [ Vaenld

sGenr ey > 0and ¢i= (Bea + cff + 14 (¢8)?) (B + cop (14 ¢3,)) > 0 in (A.15),
for every vy, € S (Th), we arrive at

Ve — ViusTI13 < e llIVhon — Vuld + osealf) + K5 — Al o], (A.16)

which is the claimed non-conforming efficiency estimate. O

(A.13)

(A.14)

(A.15)

For ¢ .=

Eventually, the node-averaging quasi-interpolation operator I;: 811)’ “(Tn) = St (Tr) satisfies
the following best-approximation result with respect to Sobolev functions.

Proposition A.4. There exists a constant ¢ > 0, depending only on the chunkiness wg > 0,
such that for every vy, € S}j’cr(ﬁ) and T € Ty, it holds

| Vhon — VI |15 < ¢ inf ~|[[Vyop — V|2, .
vEW 57 (2)

In particular, for every v, € S5 (Th), v € W},’Q(Q), and T € Ty, it holds
VI, — V|7 < c|| Vv, — Volf2, .

Essential tool in the verification of Proposition A.4 is the following lemma.
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Lemma A.5. There exists a constant ¢ > 0, depending only on the chunkiness wg > 0, such that
for every vy, € 3}3’”(7}) and T € Ty, it holds

IVhvn = VIfwl7 < e > hrllhp' [onlsll3
SESKH(T)I\I'N
where Sp(T) ={S €S, | SNT # 0}.
Proof. Appealing to the inverse inequality [25, Lemma 12.1] and the node-based norm equivalence

[25, Proposition 12.5], there exists a constant ¢ > 0, depending only on the chunkiness wy > 0,
such that

[Vhvr — VIP0s |13 < chpt o, — I |7
<chd2 ST [(onln)(z) — o) (2. (A17)
zeNL,NT

Next, for every z € N, NT, we need to distinguish the cases z ¢ T'p and z € I'p:
Case z ¢ T'p. If z ¢ T'p, then since each T” € T (z) can be reached from T via passing
through a finite number® of interior sides in Sj (T) :== S,(T) N S}, using [25, (22.6)], we find that

2 1 2
|[(vnlr)(2) = (I5"vn) (2)] S ¢ ard () Y wnlr)(z) = (vnlr)(2)]

T'€Th(2)

<e Y lvnls)P (A.18)

SeS;(T)
<c Y hpllvalsl-
SeS;(T)

Case z € I'p. If z € I'p, then we need to distinguish the case that z € int'p, i.e., z lies in
the relative interior of I'p, and z € O'p, i.e., z lies in the relative boundary of I'p:

Subcase z € intT'p. If z € int T'p, then there exists a boundary side S € Sp(T) \ I'y with
z € S and S C 9T. Thus, resorting to [25, (22.6)], we find that

[(val7)(2) = (I§vn) (2) > = |(vnl7) (2)?
= |[vn]s(2)[? (A.19)
< chp *|[onlsl%-

Subcase z € OT'p. If z € T p, then there exists a boundary side S € Sy (T) with z € .5, S CIT,
and either SCTp or S CT'n. If S C I'p, then we argue as in (A.19). If S C 'y, then there
exists boundary side S’ € Sy, (T)\T'y with z € S’ and an element 77 € T}, with z € T’and S' C T".
If 7" = T, then we argue as in (A.19). If 7" # T, then since T” can be reached from T via
passing through a finite number of interior sides in S} (T), resorting to [25, (22.6)], we find that

|(wnl7)(2) = (I5"vn) (2)* = [(vnl7) (=)
<o) @) +e Do lonls(2)P

SeS;(T)
Sclnls P +e 3o Ioals()P (4.20)
SeSi(T)
<ec Y by YlealslE
SeSy(T)\I'n
Eventually, combining (A.18)—(A.20) in (A.17), we conclude the claimed estimate. O

8uniformly bounded by a constant depending only on the chunkiness wg > 0.
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Proof (of Proposition A.4). Using that [|[un]s||z(s) <c¢ fg|[vn]s|dz (cf. [25, Lemma 12.1]) as
well as |T| ~ hr|S| for all T € Ty, and S € S,(T'), where the constant ¢ > 0 depends only on the
chunkiness wy > 0, for every T' € T, we infer from Lemma A.5 that

VI, = Vionll7 < ¢ Y by by [oa]s)%
SeSL(T)\I'n

<c Y AT ol slleics))? -

SeSL(T)\I'n

(A.21)

For every S € Sp, we denote by 73 : L1(S) — R, the side-wise (local) L2-projection operator onto
constant functions, for every w € L*(S) defined by mw := fg wds. Since for every w € WH1(T),
where T € T;, with T C wg, due to the L*(S)-stability of 7 : L*(S) — R and [35, Corollary A.19],
it holds
[w — 7w sy = lw—pw — ) (w — Huw)|| L1 s)

S 2 ||w - th||L1(S) (A22)

<c vaHLl(T;Rd) s
where ¢ > 0 depends only on the chunkiness wy > 0. Next, let v € W£’2(Q) be fixed, but arbitrary.
Using that 73 [vn]s = [v]s = 0 in L}(S) for all S € S,(T) \ Ty and T € Tj, and (A.22), we find
that

ITondsllzrcsy = [lvn = vls — 3 [on — v]sllLacs)
< ||V”Uh — V'UHLI(WS;Rd) .

Then, using in (A.21), (A.23), |T| ~ |wr| ~ |wg| for all T' € T, and S € S,(T'), where ¢ > 0
depends only on the chunkiness wg > 0, and Jensen’s inequality, for every T € Tj, we deduce that

IVIEon = VionlF < e > Jwsl (ws| ™ I Vor = Vol wgire))?
SESL(T)\I'n
<c Y Vew— Vo2, (A.24)
SESL(T)\I'n
< c||Vuy — V”HE;T .

(A.23)

Eventually, taking in (A.24) the infimum with respect to v € Wé’2(Q), we conclude the assertion.
O
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