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Abstract

In this paper, we propose a general approach for explicit a posteriori error representation
for convex minimization problems using basic convex duality relations. Exploiting discrete
orthogonality relations in the space of element-wise constant vector fields as well as a discrete
integration-by-parts formula between the Crouzeix–Raviart and the Raviart–Thomas element,
all convex duality relations are transferred to a discrete level, making the explicit a posteriori
error representation –initially based on continuous arguments only– practicable from a
numerical point of view. In addition, we provide a generalized Marini formula for the primal
solution that determines a discrete primal solution in terms of a given discrete dual solution.
We benchmark all these concepts via the Rudin–Osher–Fatemi model. This leads to an
adaptive algorithm that yields a (quasi-optimal) linear convergence rate.
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1. Introduction

The numerical analysis of the approximation of variational problems is challenging when these
are non-differentiable, degenerate, or involve constraints. In particular, following established
concepts for linear elliptic partial differential equations often leads to sub-optimal results only.
The framework of convex duality provides an attractive concept to reveal hidden information
and structures to obtain quasi-optimal error representation formulas under meaningful regularity
conditions. Similar to [44, 43], we first exploit this idea to derive explicit computable a posteriori
error estimates for a natural error measure. Then, this general result is transferred to a non-
differentiable model problem with discontinuous solutions. As a whole, our results, similar to
[44, 43], show that the question of developing asymptotically exact a posteriori error estimators is
rather a question of identifying optimal error quantities. However, different from [44, 43], we also
propose a general approach for making our results practicable from a numerical point of view.

Given a domain Ω ⊆ Rd, d ∈ N, a convex energy density ϕ : R → R∪{+∞}, a (Lebesgue) mea-
surable energy density ψ : Ω×R → R∪{+∞} that is convex with respect to the second argument,
and a Banach space X consisting of functions defined in Ω, we denote by the minimization of
the energy functional I : X → R ∪ {+∞}, for every v ∈ X defined by

I(v) :=

ˆ
Ω

ϕ(∇v) dx+

ˆ
Ω

ψ(·, v) dx , (1.1)

the primal problem.
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Its (Fenchel) dual problem consists in the maximization of the functional D : Y → R∪ {−∞},
where Y is a Banach space consisting of vector fields defined in Ω, for every y ∈ Y is defined by

D(y) := −
ˆ
Ω

ϕ∗(y) dx−
ˆ
Ω

ψ∗(·,div y) dx . (1.2)

Here, ϕ∗ : Rd → R ∪ {+∞} and ψ∗ : Ω× R → R ∪ {+∞} (with respect to the second argument)
denote the (Fenchel) conjugates of ϕ : R → R ∪ {+∞} and ψ : Ω× R → R ∪ {+∞}, respectively.
Under rather general conditions, cf. [49, 31], we have the well-posedness of the primal problem
and the dual problem, i.e., the existence of a minimizer u ∈ X of (1.1), i.e., a primal solution,
and of a maximizer z ∈ Y of (1.2), i.e., a dual solution, and the strong duality relation

min
v∈X

I(v) = I(u) = D(z) = max
y∈Y

D(y) . (1.3)

Since u∈X and z ∈ Y are optimal for (1.1) and (1.2), respectively, it holds 0∈ ∂I(u) and 0∈ ∂D(z).
In particular, for every v ∈ X and y ∈ Y , the quantities

ρ2I(v, u) := I(v)− I(u) , (1.4)

ρ2−D(y, z) := D(z)−D(y) , (1.5)

are non-negative. They define distances, if (1.1) and (1.2), respectively, are strictly convex, and
are called coercivity functionals or optimal convexity measures.

For accessible and admissible approximations v ∈X and y ∈ Y of the solutions u∈X and z ∈ Y ,
given the definitions (1.4) and (1.5), the strong duality relation (1.3) implies the error identity

ρ2I(v, u) + ρ2−D(y, z) = I(v)−D(z) =: η2(v, y) . (1.6)

Hence, the fully computable error estimator η2 : X×Y → R∪{+∞}, cf. (1.6), exactly represents
the sum of the primal and dual approximation errors, i.e., of (1.4) and (1.5).

The error representation (1.6) can be seen as a generalization of the Prager–Synge result, cf. [41,
19, 18], which states that for the Poisson problem, i.e., ϕ := 1

2 |·|2 ∈C1(Rd), ψ := ((t, x)⊤ 7→−f(x)t) :
Ω×R → R∪{+∞}, where f ∈ L2(Ω),X :=W 1,2

D (Ω), and Y :=W 2
N (div; Ω), for every v ∈W 1,2

D (Ω)
and y ∈W 2

N (div; Ω) with −div y = f a.e. in Ω, we have that

1
2∥∇v −∇u∥2L2(Ω;Rd) +

1
2∥y − z∥2L2(Ω;Rd) =

1
2∥∇v − y∥2L2(Ω;Rd) . (1.7)

The equation (1.7) has been used by various authors to define error estimators; for a comprehensive
list of references, we refer the reader to [17]. Often, local procedures are devised to construct an ad-
missible vector field y ∈W 2

N (div; Ω) with −div y = f a.e. in Ω from a given function v ∈W 1,2
D (Ω).

While this leads to efficient procedures to obtain accurate error estimators, the arguments cannot
be expected to transfer to non-linear problems. Another alternative to computing approximations
for the primal and dual problems consists in using finite element methods for which reconstruction
formulas are available, e.g., using the discontinuous Crouzeix–Raviart finite element method and
the Marini formula in the case of the Poisson problem, cf. [37].

It has recently been found (cf. [25, 4]) that the discontinuous Crouzeix–Raviart finite element
method leads to quasi-optimal a priori error estimates for non-linear and non-differentiable prob-
lems, while continuous finite element methods provide only a sub-optimal convergence behavior.
In the derivation of those results, a general discrete convex duality theory with Raviart–Thomas
vector fields has emerged that also leads to reconstruction formulas in rather general settings.
As a consequence, given an approximation v ∈ X or y ∈ Y , respectively, the missing one can be
obtained via a simple post-processing procedure. Then, the pair leads to the error representation
formula (1.6). It should also be noted that neither v ∈ X nor y ∈ Y needs to be optimal in a
subspace of X or Y . By introducing appropriate residuals, any pair of admissible approximations
of u ∈ X and z ∈ Y can be used. This is particularly important for non-linear problems, i.e., non-
quadratic functionals, where an exact solution of discrete problems is neither possible nor rational.

A difficulty in the application of the explicit a posteriori error representation formula (1.6) arises
from the condition that v ∈ X and y ∈ Y need to be admissible for the functionals (1.1) and (1.2).
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In the case of the Poisson problem, this arises, e.g., via element-wise constant approximations of
f ∈ L2(Ω) that are the images of Raviart–Thomas vector fields under the divergence operator.
While data terms can be controlled by introducing appropriate data oscillation terms, structural
peculiarities of the energy densities ϕ : Rd → R ∪ {+∞} and ψ : Ω× R → R ∪ {+∞} and their
(Fenchel) conjugates ϕ∗ : Rd → R∪{+∞} and ψ∗ : Ω×R → R∪{+∞} are often more challenging.
We illustrate this by analyzing a non-differentiable problem which leads to a new error analysis
and an adaptive refinement procedure for the computationally challenging minimization problem.

With ϕ = | · | ∈ C0(Rd) and ψ = ((x, t)⊤ 7→ α
2 (t− g(x))2) : Ω× R → R for a given function

g ∈ L2(Ω), i.e., the noisy image, and a given parameter α > 0, i.e., the fidelity parameter, the
Rudin–Osher–Fatemi (ROF) model, cf. [45], seeks a minimizing function u ∈ BV (Ω) ∩ L2(Ω),
i.e., the de-noised image, where BV (Ω) denotes the space of functions with bounded variation,
for the functional I : BV (Ω) ∩ L2(Ω) → R, for every v ∈ BV (Ω) ∩ L2(Ω) defined by

I(v) := |Dv|(Ω) + α
2 ∥v − g∥2L2(Ω) , (1.8)

where |D(·)|(Ω) : BV (Ω)→ [0,+∞] denotes the total variation functional. The (Fenchel) (pre-)dual
problem to the minimization of the functional (1.8) consists in the maximization of the functional
D : W 2

N (div; Ω) ∩ L∞(Ω;Rd) → R ∪ {−∞}, for every y ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd) defined by

D(y) := −IK1(0)(y)− 1
2α∥div y + αg∥2L2(Ω) +

α
2 ∥g∥2L2(Ω) , (1.9)

where IK1(0)(y) := 0 if |y| ≤ 1 a.e. in Ω and IK1(0)(y) := +∞ else. The primal solution u ∈ BV (Ω)

∩L2(Ω), i.e., the unique minimizer of (1.8), and a dual solution z ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd), i.e.,

a (possibly non-unique) maximizer of (1.9), are (formally) related via, cf. [24, p. 284],

z ∈
{{ ∇u

|∇u|
}

if |∇u| > 0

K1(0) if |∇u| = 0

}
a.e. in Ω ,

div z = α (u− g) a.e. in Ω .

(1.10)

The relations (1.10) determine z ∈W 2
N (div; Ω)∩L∞(Ω;Rd) via u ∈ BV (Ω)∩L2(Ω) and vice versa.

A Crouzeix–Raviart finite element approximation of (1.1) is given by the minimization of the
regularized, discrete functional Icrh,ε : S1,cr(Th) → R, h, ε > 0, for every vh ∈ S1,cr(Th) defined by

Icrh,ε(vh) := ∥fε(|∇hvh|)∥L1(Ω) +
α
2 ∥Πh(vh − g)∥2L2(Ω) .

Here, ∇h is the element-wise application of the gradient operator and fε∈C1(R) is a regularization
of the modulus | · |, and Πh denotes the (local) L2-projection onto element-wise constant functions.
A quasi-optimal dual Raviart–Thomas vector field zrth,ε ∈ RT 0

N (Th) can be associated with a

minimizing function ucrh,ε ∈ S1,cr(Th) of Icrh,ε : S1,cr(Th) → R via the reconstruction formula

zrth,ε =
f ′
ε(|∇hu

cr
h,ε|)

|∇hucr
h,ε|

∇hu
cr
h,ε + α

Πh(u
cr
h,ε−g)

d

(
idRd −ΠhidRd

)
in RT 0

N (Th) . (1.11)

For canonical choices of fε ∈ C1(R), e.g., fε = | · |ε = ((·)2+ε2)1/2, it holds |Πhz
rt
h,ε| ≤ 1 a.e. in Ω,

but not |zrth,ε| ≤ 1 a.e. in Ω. Thus, we employ fε = (1− ε) | · |ε, so that |f ′ε(t)| ≤ 1− ε for all t ∈ R.
The choice ε ∼ h2 in (1.11) and an additional projection step onto K1(0) lead to an accurate
approximation zrth,ε ∈ RT 0

N (Th) of z ∈W 2
N (div; Ω)∩L∞(Ω;Rd), which satisfies |zrth,ε| ≤ 1 a.e. in Ω

and, thus, represents an admissible test function that leads to the definition of an error estimator.
The resulting adaptive mesh-refinement procedure leads to significantly improved experimental
convergence rates compared to recent related contributions, cf. [12, 8, 10]. More precisely, we
report quasi-optimal linear convergence rates which have been obtained only for meshes with
quadratic grading towards a sufficiently simple jump set of a piece-wise regular g in [10].

This article is organized as follows: In Section 2, we introduce the employed notation and the
relevant finite element spaces. In Section 3, we propose a general approach for explicit a posteriori
error representation for convex minimization problems based on (discrete) convex duality relations.
In Section 4, we transfer the concepts of Section 3 to the Rudin–Osher–Fatemi model and propose a
regularization scheme. In Section 5, we review our theoretical findings via numerical experiments.
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2. Preliminaries

2.1 Convex analysis

For a (real) Banach space X, which is equipped with the norm ∥·∥X : X → R≥0, we denote its
corresponding (continuous) dual space by X∗ equipped with the dual norm ∥ · ∥X∗ : X∗ → R≥0,
defined by ∥x∗∥X∗ := sup∥x∥X≤1 ⟨x∗, x⟩X for every x∗ ∈ X∗, where ⟨·, ·⟩X : X∗×X → R, defined
by ⟨x∗, x⟩X := x∗(x) for every x∗ ∈ X∗ and x ∈ X, denotes the duality pairing. A functional
F : X → R∪{+∞} is called sub-differentiable in x ∈ X, if F (x) <∞ and if there exists x∗ ∈ X∗,
called sub-gradient, such that for every y ∈ X, it holds

⟨x∗, y − x⟩X ≤ F (y)− F (x) . (2.1)

The sub-differential ∂F : X → 2X
∗
of a functional F : X → R∪{+∞} for every x ∈ X is defined by

(∂F )(x) := {x∗ ∈ X∗ | (2.1) holds for x∗} if F (x) <∞ and (∂F )(x) := ∅ else.
For a given functional F : X → R∪{±∞}, we denote its corresponding (Fenchel) conjugate by

F ∗ : X∗ → R ∪ {±∞}, which for every x∗ ∈ X∗ is defined by

F ∗(x∗) := sup
x∈X

⟨x∗, x⟩X − F (x) . (2.2)

If F : X → R∪{+∞} is a proper, convex, and lower semi-continuous functional, then also its (Fen-
chel) conjugate F ∗ : X∗ → R ∪ {+∞} is a proper, convex, and lower semi-continuous functional,
cf. [31, p. 17]. Furthermore, for every x∗ ∈ X∗ and x ∈ X such that F ∗(x∗)+F (x) is well-defined,
i.e., the critical case ∞−∞ does not occur, the Fenchel–Young inequality

⟨x∗, x⟩X ≤ F ∗(x∗) + F (x) (2.3)

applies. In particular, for every x∗ ∈ X∗ and x ∈ X, it holds the Fenchel–Young identity

x∗ ∈ (∂F )(x) ⇔ ⟨x∗, x⟩X = F ∗(x∗) + F (x) . (2.4)

The following convexity measures for functionals play an important role in the derivation of
an explicit a posteriori error representation for convex minimization problems in Section 3; for
further information, please refer to [21, 39, 40, 12].

Definition 2.1 (Brégman distance and symmetric Brégman distance). Let X be a (real) Banach
space and F : X → R ∪ {+∞} proper, i.e., D(F ) := {x ∈ X | F (x) <∞} ≠ ∅.
(i) The Brégman distance σ2

F : D(F )×X → [0,+∞] for every x ∈ D(F ) and y ∈ X is defined by

σ2
F (y, x) := F (y)− F (x)− sup

x∗∈(∂F )(x)

⟨x∗, y − x⟩X ,

where we use the convention sup(∅) := −∞.
(ii) The Brégman distance σ2

F : D(F )2 → [0,+∞] for every x, y ∈ D(F ) is defined by

σ2
F,s(y, x) := σ2

F (y, x) + σ2
F (x, y) = inf

x∗∈(∂F )(x);y∗∈(∂F )(y)
⟨x∗ − y∗, x− y⟩X ,

where we use the convention inf(∅) := +∞.

Definition 2.2 (Optimal convexity measure at a minimizer). Let X be a (real) Banach space and
F : X → R ∪ {+∞} proper. Moreover, let x ∈ X be minimal for F : X → R ∪ {+∞}. Then, the
optimal convexity measure ρ2F : X2 → [0,+∞] at x ∈ X for every y ∈ X is defined by

ρ2F (y, x) := F (y)− F (x) ≥ 0 .

Remark 2.3. Let X be a (real) Banach space and F : X → R ∪ {+∞} proper. Moreover, let
x ∈ X be minimal for F : X → R ∪ {+∞}. Then, due to 0 ∈ (∂F )(x), for every y ∈ X, it holds

σ2
F (y, x) ≤ ρ2F (y, x) .
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2.2 Function spaces

Throughout the article, we denote by Ω ⊆ Rd, d ∈ N, a bounded polyhedral Lipschitz domain,
whose (topological) boundary is disjointly divided into a closed Dirichlet part ΓD and an open
Neumann part ΓN , i.e., ∂Ω = ΓD ∪ ΓN and ∅ = ΓD ∩ ΓN .

For p ∈ [1,∞] and l ∈ N, we employ the standard notations1

W 1,p
D (Ω;Rl) :=

{
v ∈ Lp(Ω;Rl) | ∇v ∈ Lp(Ω;Rl×d), tr v = 0 in Lp(ΓD;Rl)

}
,

W p
N (div; Ω) :=

{
y ∈ Lp(Ω;Rd) | div y ∈ Lp(Ω), trn y = 0 in W− 1

p ,p(ΓN )
}
,

W 1,p(Ω;Rl) :=W 1,p
D (Ω;Rl) if ΓD = ∅, andW p(div; Ω) :=W p

N (div; Ω) if ΓN = ∅, where we denote
by tr : W 1,p(Ω;Rl)→ Lp(∂Ω;Rl) and by trn(·) : W p(div; Ω)→W− 1

p ,p(∂Ω), the trace and normal
trace operator, respectively. In particular, we always omit tr(·) and trn(·). In addition, we employ
the abbreviations Lp(Ω) := Lp(Ω;R1), W 1,p(Ω) :=W 1,p(Ω;R1), and W 1,p

D (Ω) :=W 1,p
D (Ω;R1).

For (Lebesgue) measurable functions u, v : Ω→R and a (Lebesgue) measurable setM ⊆Ω, we write

(u, v)M :=

ˆ
M

u v dx ,

whenever the right-hand side is well-defined. Analogously, for (Lebesgue) measurable vector fields
z, y : Ω → Rd and a (Lebesgue) measurable setM ⊆ Ω, we write (z, y)M :=

´
M
z · y dx. Moreover,

let |D(·)|(Ω): L1
loc(Ω) → R ∪ {+∞}, for every v ∈ L1

loc(Ω) defined by2

|Dv|(Ω) := sup
{
− (v,divϕ)Ω | ϕ ∈ C∞

c (Ω;Rd); ∥ϕ∥L∞(Ω;Rd) ≤ 1
}
,

denote the total variation functional. Then, the space of functions with bounded variation is
defined by

BV (Ω) :=
{
v ∈ L1(Ω) | |Dv|(Ω) <∞

}
.

2.3 Triangulations

Throughout the entire paper, we denote by {Th}h>0, a family of regular, i.e., uniformly shape
regular and conforming, triangulations of Ω ⊆ Rd, d ∈ N, cf. [32]. Here, h > 0 refers to the average
mesh-size, i.e., if we set hT := diam(T ) for all T ∈ Th, then, we have that h = 1

card(Th)

∑
T∈Th

hT .

For every element T ∈ Th, we denote by ρT > 0, the supremum of diameters of inscribed balls. We
assume that there exists a constant ω0 > 0, independent of h > 0, such that maxT∈Th

hT ρ
−1
T ≤ ω0.

The smallest such constant is called the chunkiness of {Th}h>0. The sets Sh, Si
h, S∂

h , and Nh

contain the sides, interior sides, boundary sides, and vertices, respectively, of the elements of Th.
We have the following relation between the average mesh-size and the number of vertices:

h ∼ card(Nh)
−1/d .

For k ∈ N∪{0} and T ∈ Th, let Pk(T ) denote the set of polynomials of maximal degree k on T .
Then, for k ∈ N ∪ {0} and l ∈ N, the sets of continuous and element-wise polynomial functions
or vector fields, respectively, are defined by

Lk(Th)l :=
{
vh ∈ L∞(Ω;Rl) | vh|T ∈ Pk(T )

l for all T ∈ Th
}
,

Sk(Th)l := Lk(Th)l ∩ C0(Ω;Rl) .

For every T ∈ Th and S ∈ Sh, let xT := 1
d+1

∑
z∈Nh∩T z ∈ T and xS := 1

d

∑
z∈Nh∩S z ∈ S denote

the barycenters of T and S, respectively. The (local) L2-projection operator Πh : L
1(Ω;Rl) →

L0(Th)l onto element-wise constant functions or vector fields, respectively, for every v ∈ L1(Ω), is
defined by Πhv|T :=

ffl
T
v dx for all T ∈ Th. The element-wise gradient ∇h : L1(Th)l →L0(Th)l×d,

for every vh ∈L1(Th)l, is defined by ∇hvh|T :=∇(vh|T ) for all T ∈Th.
1Here, W− 1

p
,p(ΓN ) := (W 1− 1

p′ ,p
′
(ΓN ))∗ and W− 1

p
,p(∂Ω) := (W 1− 1

p′ ,p
′
(∂Ω))∗.

2Here, C∞
c (Ω;Rd) denotes the space of smooth and in Ω compactly supported vector fields.
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2.3.1 Crouzeix–Raviart element

The Crouzeix–Raviart finite element space, cf. [26], consists of element-wise affine functions
that are continuous at the barycenters of inner element sides, i.e.,3

S1,cr(Th) :=
{
vh ∈ L1(Th) | JvhKS(xS) = 0 for all S ∈ Si

h

}
.

Note that S1,cr(Th) ⊆ BV (Ω). More precisely, for every vh ∈ S1,cr(Th), cf. [20, Theorem 1.63],
we have that Dvh = ∇hvh ⊗ dx+ JvhK ⊗ ds|Sh

with ∇hvh ⊗ dx ⊥ JvhK ⊗ ds|Sh
, so that, cf. [14],

|Dvh|(Ω) = ∥∇hvh∥L1(Ω;Rd) + ∥JvhK∥L1(Sh) . (2.5)

The Crouzeix–Raviart finite element space with homogeneous Dirichlet boundary condition on ΓD

is defined by

S1,cr
D (Th) :=

{
vh ∈ S1,cr(Th) | vh(xS) = 0 for all S ∈ Sh ∩ ΓD

}
.

A basis for S1,cr(Th) is given by functions φS ∈S1,cr(Th), S ∈Sh, satisfying the Kronecker property
φS(xS′) = δS,S′ for all S, S′ ∈ Sh. A basis for S1,cr

D (Th) is given by φS ∈ S1,cr
D (Th), S ∈ Sh \ ΓD.

2.3.2 Raviart–Thomas element

The Raviart–Thomas finite element space, cf. [42], consists of element-wise affine vector fields
that have continuous constant normal components on inner element sides, i.e.,4

RT 0(Th) :=
{
yh ∈ L1(Th)d | yh|T · nT = const on ∂T for all T ∈ Th ,

Jyh · nKS = 0 on S for all S ∈ Si
h

}
.

Note that RT 0
N (Th) ⊆W∞

N (div; Ω). The Raviart–Thomas finite element space with homogeneous
normal component boundary condition on ΓN is defined by

RT 0
N (Th) :=

{
yh ∈ RT 0(Th) | yh · n = 0 on ΓN

}
.

A basis for RT 0(Th) is given by vector fields ψS ∈RT 0(Th), S ∈Sh, satisfying Kronecker property
ψS |S′ · nS′ = δS,S′ on S′ for all S′ ∈ Sh, where nS is the unit normal vector on S pointing from
T− to T+ if T+ ∩ T− = S ∈ Sh. A basis for RT 0

N (Th) is given by ψS ∈ RT 0
N (Th), S ∈ Sh \ ΓN .

2.3.3 Discrete integration-by-parts formula

For every vh ∈ S1,cr
D (Th) and yh ∈ RT 0

N (Th), it holds the discrete integration-by-parts formula

(∇hvh,Πhyh)Ω = −(Πhvh, div yh)Ω . (2.6)

In addition, cf. [11, Section 2.4], if a vector field yh ∈ L0(Th)d satisfies for every vh ∈ S1,cr
D (Th)

(yh,∇hvh)Ω = 0 ,

then, choosing vh = φS ∈ S1,cr
D (Th) for all S ∈ Sh \ ΓD, one finds that yh ∈ RT 0

N (Th). Similarly,
if a function vh ∈ L0(Th) satisfies for every yh ∈ RT 0

N (Th)
(vh,div yh)Ω = 0 ,

then, choosing yh =ψS ∈RT 0
N (Th) for all S ∈Sh\ΓN , one finds that vh ∈S1,cr

D (Th). In other words,
we have the orthogonal (with respect to the inner product (·, ·)Ω) decompositions

L0(Th)d = ker(div|RT 0
N (Th))⊕∇h(S1,cr

D (Th)) , (2.7)

L0(Th) = ker(∇h|S1,cr
D (Th))⊕ div (RT 0

N (Th)) . (2.8)

3Here, for every inner side S ∈ Si
h, JvhKS := vh|T+

− vh|T− on S, where T+, T− ∈ Th satisfy ∂T+ ∩ ∂T− = S,

and for every boundary S ∈ S∂
h , JvhKS := vh|T on S, where T ∈ Th satisfies S ⊆ ∂T .

4Here, for every inner side S ∈ Si
h, Jyh · nKS := yh|T+

· nT+
+ yh|T− · nT− on S, where T+, T− ∈ Th satisfy

∂T+ ∩ ∂T− = S and for every T ∈ Th, nT : ∂T → Sd−1 denotes the outward unit normal vector field to T , and
for every boundary side S ∈ S∂

h , Jyh · nKS := yh|T · n on S, where T ∈ Th satisfies S ⊆ ∂T and n : ∂Ω → Sd−1

denotes the outward unit normal vector field to Ω.
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3. Exact a posteriori error estimation for convex minimization problems

3.1 Continuous convex minimization problem and continuous convex duality

Let ϕ : Rd → R ∪ {+∞} be a proper, convex, and lower semi-continuous function and let
ψ : Ω×R → R∪{+∞} be a (Lebesgue) measurable function such that for a.e. x ∈ Ω, the function
ψ(x, ·) : Ω×R → R∪{+∞} is proper, convex, and lower semi-continuous. We examine the convex
minimization problem that seeks for a function u ∈W 1,p

D (Ω), p ∈ (1,∞), that is minimal for the

functional I : W 1,p
D (Ω) → R ∪ {+∞}, for every v ∈W 1,p

D (Ω) defined by

I(v) :=

ˆ
Ω

ϕ(∇v) dx+

ˆ
Ω

ψ(·, v) dx . (3.1)

In what follows, we refer to the minimization of I : W 1,p
D (Ω) → R∪{+∞} as the primal problem. A

(Fenchel) dual problem to the minimization of (3.1) consists in the maximization of the functional
D : Lp′

(Ω;Rd) → R ∪ {−∞}, for every y ∈ Lp′
(Ω;Rd) defined by

D(y) := −
ˆ
Ω

ϕ∗(y) dx− F ∗(Div y) , (3.2)

where the distributional divergence Div: Lp′
(Ω;Rd) → (W 1,p

D (Ω))∗ for every y ∈ Lp′
(Ω;Rd) and

v ∈W 1,p
D (Ω) is defined by ⟨Div y, v⟩W 1,p

D (Ω) :=−(y,∇v)Ω and F ∗ : Lp′
(Ω)→R∪{±∞} denotes the

Fenchel conjugate to F : Lp(Ω) → R ∪ {+∞}, defined by F (v) :=
´
Ω
ψ(·, v) dx for all v ∈ Lp(Ω).

Note that for every y ∈W p′

N (div; Ω), we have that ⟨Div y, v⟩W 1,p
D (Ω) = (div y, v)Ω for all v ∈W 1,p

D (Ω)
and, thus, the representation

D(y) = −
ˆ
Ω

ϕ∗(y) dx−
ˆ
Ω

ψ∗(·,div y) dx . (3.3)

A weak duality relation applies, cf. [31, Proposition 1.1, p. 48], i.e.,

inf
v∈W 1,p

D (Ω)
I(v) ≥ sup

y∈Lp′ (Ω;Rd)

D(y) . (3.4)

In what follows, we always assume that ϕ : Rd → R∪{+∞} and ψ : Ω×R → R∪{+∞} are such
that (3.1) admits at least one minimizer u ∈W 1,p

D (Ω), called the primal solution, (3.2) at least one

maximizer z ∈ Lp′
(Ω;Rd), called the dual solution, and that a strong duality relation applies, i.e.,

I(u) = D(z) . (3.5)

By the Fenchel–Young inequality (cf. (2.3)), (3.5) is equivalent to the convex optimality relations

z · ∇u = ϕ∗(z) + ϕ(∇u) a.e. in Ω , (3.6)

Div z ∈ ∂F (u) . (3.7)

If z ∈W p′

N (div; Ω), then the convex optimality relation (3.7) is equivalent to

div z u = ψ∗(·,div z) + ψ(·, u) a.e. in Ω . (3.8)

If ϕ ∈ C1(Rd), then, by the Fenchel–Young identity (cf. (2.4)), (3.6) is equivalent to

z = Dϕ(∇u) in Lp′
(Ω;Rd) . (3.9)

Similarly, if z ∈W p′

N (div; Ω) and ψ(x, ·) ∈ C1(R) for a.e. x ∈ Ω, then (3.8) is equivalent to

div z = Dψ(·, u) in Lp′
(Ω) . (3.10)

The convex duality relations (3.4)–(3.10) motivate introducing the primal-dual error estimator
η2 : W 1,p

D (Ω)× Lp′
(Ω;Rd) → [0,+∞], for every v ∈W 1,p

D (Ω) and y ∈ Lp′
(Ω;Rd) defined by

η2(v, y) := I(v)−D(y) . (3.11)

Note that the sign of the estimator (3.11) is a consequence of the weak duality relation (3.4).



S. Bartels and A. Kaltenbach 8

Together with the optimal convexity measures (cf. Definition 2.2) ρ2I : W
1,p
D (Ω)2 → [0,+∞] of

(3.1) at a primal solution u ∈W 1,p
D (Ω) and ρ2−D : Lp′

(Ω;Rd) → [0,+∞] of the negative of (3.2) at
a dual solution z ∈ Lp′

(Ω;Rd), we arrive at the following explicit a posteriori error representation.

Theorem 3.1 (Explicit (a posteriori) error representation). The following statements apply:

(i) For every v ∈W 1,p
D (Ω) and y ∈ Lp′

(Ω;Rd), we have that

ρ2I(v, u) + ρ2−D(y, z) = η2(v, y) .

(ii) For every v ∈W 1,p
D (Ω) and y ∈W p′

N (div; Ω), we have that

η2(v, y) =

ˆ
Ω

ϕ(∇v)−∇v · y + ϕ∗(y) dx+

ˆ
Ω

ψ(·, v)− v div y + ψ∗(·,div y) dx . (3.12)

Remark 3.2. (i) By the Fenchel–Young inequality (2.3), the integrands in the representation
(3.12), are non-negative and, thus, suitable as local refinement indicators.

(ii) Appealing to Remark 2.3, from Theorem 3.1 (i), for every v ∈W 1,p
D (Ω) and y ∈ Lp′

(Ω;Rd),
it follows that σ2

I (v, u) + σ2
−D(y, z) ≤ η2(v, y).

Proof (of Theorem 3.1). ad (i). Due to I(u) = D(z), cf. (3.5), Definition 2.2, and (3.11), for
every v ∈W 1,p

D (Ω) and y ∈ Lp′
(Ω;Rd), we have that

ρ2I(v, u) + ρ2−D(y, z) = I(v)− I(u) +D(z)−D(y) = η2(v, y) .

ad (ii). Using (3.1), (3.3), and integration-by-parts, we conclude that (3.12) applies.

Remark 3.3 (Examples). (i) In the p-Dirichlet problem, cf. [29, 28], i.e., ϕ := 1
p | · |p ∈ C1(R),

p∈ (1,∞), and ψ := ((t, x)⊤ 7→ −f(x)t) : Ω×R→R, where f ∈Lp′
(Ω), cf. [46], we have that

ρ2I(v, u) ∼ ∥F (∇v)− F (∇u)∥2L2(Ω;Rd) , ρ2−D(y, z) ∼ ∥F ∗(y)− F ∗(z)∥2L2(Ω;Rd) ,

where F, F ∗ : Rd →Rd for every a∈Rd are defined by F (a) := |a| p−2
2 a and F ∗(a) := |a| p

′−2
2 a.

(ii) In the obstacle problem, cf. [7], i.e., ϕ := 1
2 | · |2 ∈ C1(R) and ψ := ((t, x)⊤ 7→ −f(x)t +

Iχ(x)(t)) : Ω×R → R∪{+∞}, where f ∈ L2(Ω) and χ ∈W 1,2(Ω) with χ ≤ 0 on ΓD, cf. [7],
where Iχ(x)(t) := 0 if t ≥ 0 and Iχ(x)(t) := +∞ else, we have that

ρ2I(v, u) =
1
2∥∇v −∇u∥2L2(Ω;Rd) + ⟨−Λ, v − u⟩W 1,2

D (Ω) , ρ2−D(y, z) ≥ 1
2∥y − z∥2L2(Ω;Rd) ,

where Λ ∈ (W 1,2
D (Ω))∗ is defined by ⟨Λ, v⟩W 1,2

D (Ω)
:= (f, v)Ω−(∇u,∇v)Ω for all v ∈W 1,2

D (Ω).

(iii) In an optimal design problem, cf. [22], i.e., ϕ := ζ ◦ | · | ∈ C1(R), where ζ(0) := 0,
ζ ′(t) := µ2t if t ∈ [0, t1], ζ

′(t) := µ2t1 if t ∈ [t1, t2], and ζ
′(t) := µ1t if t ∈ [t2,+∞) for some

0 < t1 < t2 and 0 < µ1 < µ2 with t1µ2 = t2µ1, and ψ := ((t, x)⊤ 7→ −f(x)t) : Ω× R → R,
where f ∈ L2(Ω), cf. [22, Lemma 3.4], we have that

ρ2I(v, u) ≥ 1
2µ∥Dϕ(∇v)−Dϕ(∇u)∥2L2(Ω;Rd) , ρ2−D(y, z) ≥ 1

2µ∥y − z∥2L2(Ω;Rd) .

(iv) In the Rudin–Osher–Fatemi (ROF) problem, cf. [45], i.e., ϕ := | · | ∈ C0(R) and ψ :=
((t, x)⊤ 7→ α

2 (t− g(x))2) : Ω× R → R, where g ∈ L2(Ω), cf. [3, Lemma 10.2], we have that

ρ2I(v, u) ≥ α
2 ∥v − u∥2L2(Ω) , ρ2−D(y, z) ≥ 1

2α∥div y − div z∥2L2(Ω) .

Since the dual problem to the minimization of the negative of (3.2), in turn, consists in the
maximization of the negative of (3.1), the roles of the primal problem and the dual problem may
be interchanged. An advantage of Theorem 3.1 consists in the fact that it yields reliable and
efficient a posteriori error estimators for both the primal problem and the dual problem, i.e.,

Remark 3.4 (Reliability and efficiency). Theorem 3.1 also shows that for each y ∈ Lp′
(Ω;Rd),

the estimator η2I,y := (v 7→ η2(v, y)) : W 1,p
D (Ω) → [0,+∞] satisfies

ρ2I(v, u) + ρ2−D(y, z) = η2I,y(v) , (3.13)

and for each v ∈W 1,p
D (Ω), the estimator η2−D,v := (y 7→ η2(v, y)) : Lp′

(Ω;Rd) → [0,+∞] satisfies

ρ2I(v, u) + ρ2−D(y, z) = η2−D,v(y) . (3.14)
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For the a posteriori error estimators (3.13) and (3.14) for being numerically practicable, it is
necessary to have a computationally cheap way to obtain sufficiently accurate approximation of
the dual solution (for (3.13)) and/or of the primal solution (for (3.14)), respectively. In Section 3.2,
resorting to (discrete) convex duality relations between a non-conforming Crouzeix–Raviart
approximation of the primal problem and a Raviart–Thomas approximation of the dual problem,
we arrive at discrete reconstruction formulas, called generalized Marini formula, cf. [37, 4].

3.2 Discrete convex minimization problem and discrete convex duality

Let ψh : Ω × R → R ∪ {+∞} denote a suitable approximation5 of ψ : Ω × R → R ∪ {+∞}
such that ψh(·, t) ∈ L0(Th) for all t ∈ R and for a.e. x ∈ Ω, ψh(x, ·) : Ω × R → R ∪ {+∞} is a
proper, convex, and lower semi-continuous functional. Then, we examine the (discrete) convex
minimization problem that seeks for a function ucrh ∈ S1,cr

D (Th) that is minimal for the functional
Icrh : S1,cr

D (Th) → R ∪ {+∞}, for every vh ∈ S1,cr
D (Th) defined by

Icrh (vh) :=

ˆ
Ω

ϕ(∇hvh) dx+

ˆ
Ω

ψh(·,Πhvh) dx . (3.15)

In what follows, we refer the minimization of Icrh : S1,cr
D (Th) → R∪{+∞} to as the discrete primal

problem. In [4, 11], it is shown that the corresponding (Fenchel) dual problem to the minimization
of (3.15) consists in the maximization of Drt

h : RT 0
N (Th) → R ∪ {−∞}, for every yh ∈ RT 0

N (Th)
defined by

Drt
h (yh) := −

ˆ
Ω

ϕ∗(Πhyh) dx−
ˆ
Ω

ψ∗
h(·,div yh) dx . (3.16)

A discrete weak duality relation, cf. [4, Proposition 3.1], applies

inf
vh∈S1,cr

D (Th)
Icrh (vh) ≥ sup

yh∈RT 0
N (Th)

Drt
h (yh) . (3.17)

We will always assume that ϕ : Rd → R∪{+∞} and ψh : Ω×R → R∪{+∞} are such that (3.15)
admits at least one minimizer ucrh ∈ S1,cr

D (Th), called the discrete primal solution, (3.16) admits
at least one maximizer zrth ∈ RT 0

N (Th), called the discrete dual solution, and that a discrete strong
duality relation applies, i.e.,

Icrh (ucrh ) = Drt
h (z

rt
h ) . (3.18)

By the Fenchel–Young identity (cf. (2.4)), (3.18) is equivalent to the discrete convex optimality
relations

Πhz
rt
h · ∇hu

cr
h = ϕ∗(Πhz

rt
h ) + ϕ(∇hu

cr
h ) a.e. in Ω , (3.19)

div zrth Πhu
cr
h = ψ∗

h(·,div zrth ) + ψh(·,Πhu
cr
h ) a.e. in Ω . (3.20)

If ϕ ∈ C1(Rd), then, by the Fenchel–Young identity (cf. (2.4)), (3.19) is equivalent to

Πhz
rt
h = Dϕ(∇hu

cr
h ) in L0(Th)d , (3.21)

and if ϕ∗ ∈ C1(Rd), then, by the Fenchel–Young identity (cf. (2.4)), (3.20) is equivalent to

∇hu
cr
h = Dϕ∗(Πhz

rt
h ) in L0(Th)d . (3.22)

Similarly, if ψh(x, ·) ∈ C1(R) for a.e. x ∈ Ω, then (3.20) is equivalent to

div zrth = Dψh(·,Πhu
cr
h ) in L0(Th) , (3.23)

and if ψ∗
h(x, ·) ∈ C1(R) for a.e. x ∈ Ω, then (3.20) is equivalent to

Πhu
cr
h = Dψ∗

h(·,div zrth ) in L0(Th) . (3.24)

5We refrain from being too precise concerning what we mean with approximation to allow for more flexibility.
Assumptions on both ϕ : Rd → R ∪ {+∞} and ψh : Ω× R → R ∪ {+∞}, h > 0, that imply, e.g., Γ-convergence
results can be found in [4, Proposition 3.3].
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The relations (3.21)–(3.24) motivate the following discrete recontruction formulas for a discrete
dual solution zrth ∈ RT 0

N (Th) from a discrete primal solution ucrh ∈ S1,cr
D (Th) and vice versa,

called generalized Marini formulas, cf. [37, 4].

Proposition 3.5 (Generalized Marini formulas). The following statements apply:

(i) If ϕ ∈ C1(Rd) and ψh(x, ·) ∈ C1(R) for a.e. x ∈ Ω, then, given a minimizer ucrh ∈ S1,cr
D (Th) of

(3.15), a maximizer zrth ∈ RT 0
N (Th) of (3.16) is given via

zrth = Dϕ(∇hu
cr
h ) +

Dψh(·,Πhu
cr
h )

d

(
idRd −ΠhidRd

)
in RT 0

N (Th) , (3.25)

a discrete strong duality relation applies, i.e., (3.18).
(ii) If ϕ∗ ∈ C1(Rd) and ψ∗

h(x, ·) ∈ C1(R) for a.e. x ∈ Ω, then, given a maximizer zrth ∈ RT 0
N (Th)

of (3.16), a minimizer ucrh ∈ S1,cr
D (Th) of (3.15) is given via

ucrh = Dψ∗
h(·,div zrth ) +Dϕ∗(Πhz

rt
h ) ·

(
idRd −ΠhidRd

)
in S1,cr

D (Th) , (3.26)

a discrete strong duality relation applies, i.e., (3.18).

Remark 3.6. It is possible to derive reconstructions formulas similar to (3.25) and (3.26)
under weak conditions, e.g., resorting to a regularization argument (cf. Proposition 4.5) or given
discrete Lagrange multipliers (cf. [7, Proposition 3.3]).

Proof. ad (i). See [4, Proposition 3.1].
ad (ii). By definition, it holds ucrh ∈ L1(Th) and the discrete convex optimality relation (3.24) is

satisfied. Since zrth ∈ RT 0
N (Th) is maximal for (3.16) as well as ϕ∗ ∈ C1(Rd) and ψ∗

h(x, ·) ∈ C1(R)
for a.e. x ∈ Ω, for every yh ∈ RT 0

N (Th), we have that

(Dϕ∗(Πhz
rt
h ),Πhyh)Ω + (Dψ∗

h(·,div zrth ),div yh)Ω = 0 . (3.27)

In particular, (3.27) implies thatDϕ∗(Πhz
rt
h )∈ (ker(div|RT 0

N (Th)))
⊥. Appealing to [25, Lemma 2.4],

it holds (ker(div|RT 0
N (Th)))

⊥ = ∇h(S1,cr
D (Th)). Therefore, there exists vh ∈ S1,cr

D (Th) such that

∇hvh = Dϕ∗(Πhz
rt
h ) in L0(Th)d . (3.28)

Hence, for every yh ∈ RT 0
N (Th), resorting to the discrete integration-by-parts formula (2.6),

(3.28), (3.27), and (3.24), we find that

(Πhvh −Πhu
cr
h ,div yh)Ω = −(Dϕ∗(Πhz

rt
h ),Πhyh)Ω − (Dψ∗

h(·,div zrth ),div yh)Ω = 0 .

In other words, for every yh ∈ RT 0
N (Th), we have that

(vh − ucrh ,div yh)Ω = (Πhvh −Πhu
cr
h ,div yh)Ω = 0 . (3.29)

On the other hand, we have that ∇h(vh − ucrh ) = 0 in L0(Th)d, i.e., vh − ucrh ∈ L0(Th). Therefore,
(3.29) in conjunction with (2.8) implies that vh − ucrh ∈ (div (RT 0

N (Th)))⊥ = ker(∇h|S1,cr
D (Th)

).

As a result, due to vh ∈ S1,cr
D (Th), we conclude that ucrh ∈ S1,cr

D (Th) with
∇hu

cr
h = Dϕ∗(Πhz

rt
h ) in L0(Th)d ,

Πhu
cr
h = Dψ∗

h(·,div zrth ) in L0(Th) .
(3.30)

By the Fenchel–Young identity, cf. (2.4), (3.30) is equivalent to

Πhz
rt
h · ∇hu

cr
h = ϕ∗(Πhz

rt
h ) + ϕ(∇hu

cr
h ) a.e. in Ω ,

div zrth Πhu
cr
h = ψ∗

h(·,div zrth ) + ψh(·,Πhu
cr
h ) a.e. in Ω .

(3.31)

Eventually, adding (3.31)1 and (3.31)2, subsequently, integration with respect to x ∈ Ω, resort-
ing to the discrete integration-by-parts formula (2.6), and using the definitions (3.15) and (3.16),
we arrive at Icrh (ucrh ) = Drt

h (z
rt
h ), which, appealing to the discrete weak duality relation (3.17),

implies that ucrh ∈ S1,cr
D (Th) is minimal for (3.15).
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4. Application to the Rudin–Osher–Fatemi (ROF) model

In this section, we transfer the concepts derived in Section 3 to the non-differentiable Rudin–
Osher–Fatemi (ROF) model, cf. [45]. The approximation of the ROF model has been investigated
by numerous authors: A priori error estimates has been derived in [9, 25, 4, 10, 6]. A posteriori
error estimates and adaptivity results can be found in [12, 33, 8, 10, 16].

4.1 The continuous Rudin–Osher–Fatemi (ROF) model

Given a function g ∈ L2(Ω), i.e., the noisy image, and a constant parameter α > 0, the fidelity
parameter the Rudin–Osher–Fatemi (ROF) model, cf. [45], consists in the minimization of the
functional I : BV (Ω) ∩ L2(Ω) → R, for every v ∈ BV (Ω) ∩ L2(Ω) defined by

I(v) := |Dv|(Ω) + α
2 ∥v − g∥2L2(Ω) . (4.1)

In [3, Theorem 10.5 & Theorem 10.6], it has been established that there exists a unique minimizer
u∈BV (Ω)∩L2(Ω) of (4.1). Appealing to [34, Theorem 2.2] or [3, Section 10.1.3], the corresponding
(Fenchel) dual problem to the minimization of (4.1) consists in the maximization of the functional
D : W 2

N (div; Ω) ∩ L∞(Ω;Rd) → R ∪ {−∞}, for every y ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd) defined by

D(y) := −IK1(0)(y)− 1
2α∥div y + α g∥2L2(Ω) +

α
2 ∥g∥2L2(Ω) , (4.2)

where IK1(0) : L
∞(Ω;Rd) → R∪{∞} is defined by IK1(0)(y) := 0 if y ∈ L∞(Ω;Rd) with |y| ≤ 1 a.e.

in Ω and IK1(0)(y) := ∞ else. Apart from that, in [34, Theorem 2.2], it is shown that (4.2) admits

a maximizer z ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd) and that a strong duality relation applies, i.e.,

I(u) = D(z) . (4.3)

Appealing to [3, Proposition 10.4], (4.3) is equivalent to the convex optimality relations

div z = α (u− g) in L2(Ω) , (4.4)

−(u,div z)Ω = |Du|(Ω) . (4.5)

Next, if we introduce, by analogy with Section 3, the primal-dual error estimator η2 : BV (Ω)×
(W 2

N (div; Ω) ∩ L∞(Ω;Rd)) → [0,+∞], for every v ∈ BV (Ω) and y ∈ W 2
N (div; Ω) ∩ L∞(Ω;Rd)

defined by

η2(v, y) := I(v)−D(y) , (4.6)

then the concepts of Section 3 can be transferred to the ROF model.

Theorem 4.1 (Explicit (a posteriori) error representation). The following statements apply:

(i) For every v ∈ BV (Ω) and y ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd), we have that

ρ2I(v, u) + ρ2−D(y, z) = η2(v, y) .

(ii) For every v ∈ BV (Ω) and y ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd), we have that

η2(v, y) = |Dv|(Ω) + (div y, v)Ω + 1
2α∥div y − α (v − g)∥2L2(Ω) + IK1(0)(y) . (4.7)

Proof. ad (i). Due to I(u) = D(z), cf. (4.3), Definition 2.2, and (4.6), for every v ∈ BV (Ω) and
y ∈W 2

N (div; Ω) ∩ L∞(Ω;Rd), we have that

ρ2I(v, u) + ρ2−D(y, z) = I(v)− I(u) +D(z)−D(y) = η2(v, y) .

ad (ii). For every v ∈ BV (Ω) and y ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd), we have that

η2(v, y) = |Dv|(Ω) + (div y, v)Ω + 1
2α∥α (v − g)∥2L2(Ω)

− 1
2α2(div y, α v)Ω + 1

2α∥div y + α g∥2L2(Ω) − α
2 ∥g∥2L2(Ω)2 + IK1(0)(y)

= |Dv|(Ω) + (div y, v)Ω + α
2 ∥v − g∥2L2(Ω)

− 1
2α∥div y − α (v − g)∥2L2(Ω) − α

2 ∥v − g∥2L2(Ω) + IK1(0)(y) ,

which yields the claimed representation.
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Restricting the estimator (4.6) to subclasses ofBV (Ω) andW 2
N (div; Ω)∩L∞(Ω;Rd), respectively,

for which an appropriate integration-by-parts formula apply, e.g., (2.6), it is possible to derive al-
ternative representations of the estimator (4.6), whose integrands are point-wise non-negative and,
thus, suitable as local refinement indicators.

Remark 4.2 (Alternative representations of (4.6) and local refinement indicators).

(i) For every v ∈W 1,1(Ω) and y ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd), by integration-by-parts, it holds

η2(v, y) = ∥∇v∥L1(Ω;Rd) − (∇v, y)Ω + 1
2α∥div y + α (v − g)∥2L2(Ω) + IK1(0)(y) ≥ 0 .

(ii) For every T ∈ Th, we define the local refinement indicator η2T : W 1,1(Ω) ×W 2
N (div; Ω) ∩

L∞(Ω;Rd) → [0,+∞] for every v ∈W 1,1(Ω) and y ∈W 2
N (div; Ω) ∩ L∞(Ω;Rd) by

η2T,W (v, y) := ∥∇v∥L1(T ;Rd) − (∇v, y)T + 1
2α∥div y + α (v − g)∥2L2(T ) + IK1(0)(y) ≥ 0 .

(iii) For every vh ∈ S1,cr(Ω) and yh ∈ RT 0
N (Th), by the representation of the total variation of

Crouzeix–Raviart functions (2.5) and the discrete integration-by-parts formula (2.6), it holds

η2(vh, yh) = ∥∇hvh∥L1(Ω;Rd) + ∥JvhK∥L1(Sh) − (∇hvh,Πhyh)Ω

+ 1
2α∥div yh + α (vh − g)∥2L2(Ω) + IK1(0)(yh) ≥ 0 .

(iv) For every T ∈ Th, we define the discrete local refinement indicator η2T,CR : S1,cr(Th)×RT 0
N (Th)

→ [0,+∞] for every vh ∈ S1,cr(Th) and yh ∈ RT 0
N (Th) by

η2T,CR(vh, yh) := ∥∇vh∥L1(T ;Rd) +
∑

S∈Sh;S⊆T

∥JvhK∥L1(S) − (∇hvh,Πhyh)T

+ 1
2α∥div yh + α (vh − g)∥2L2(T ) + IK1(0)(yh) ≥ 0 .

We emphasize that the primal-dual error estimator (4.6) and the representations (4.7) or in
Remark 4.2 (i) & (ii) are well-known, cf. [12, 8, 10]. However, the combination of (4.6) with
the representation of the total variation of Crouzeix–Raviart functions (2.5) and the discrete
integration-by-parts formula (2.6) in Remark 4.2 (iii) & (iv), to the best of the authors’ knowledge,
is new and leads to significantly improved experimental convergence rates of the corresponding
adaptive mesh-refinement procedure compared to the contributions [12, 8, 10], cf. Section 5.

4.2 The discretized Rudin–Osher–Fatemi (ROF) model

Given g ∈ L2(Ω) and α > 0, with gh := Πhg ∈ L0(Th), the discretized ROF model, proposed
in [25], consists in the minimization of Icrh : S1,cr(Th) → R, for every vh ∈ S1,cr(Th) defined by

Icrh (vh) := ∥∇hvh∥L1(Ω;Rd) +
α
2 ∥Πhvh − α gh∥2L2(Ω) . (4.8)

Note that the functional (4.8) defines a non-conforming approximation of the functional (4.1), as,
e.g., jump terms of across inner element sides are not included. This, however, turned out to be
essential in the derivation of optimal a priori error estimate in [25, 4]. Since the functional (4.8)
is proper, strictly convex, weakly coercive, and lower semi-continuous, the direct method in the
calculus of variations, cf. [27], yields the existence of a unique minimizer ucrh ∈ S1,cr(Th), called
the discrete primal solution. Appealing to [25, 4], the corresponding (Fenchel) dual problem to the
minimization of (4.8) consists in the maximization of the functional Drt

h : RT 0
N (Th) → R∪{−∞},

for every yh ∈ RT 0
N (Th) defined by

Drt
h (yh) := −IK1(0)(Πhyh)− 1

2α∥div yh + α gh∥2L2(Ω) +
α
2 ∥gh∥2L2(Ω) . (4.9)

Appealing to Theorem 4.8 (below), there exists a maximizer zrth ∈RT 0
N (Th) of (4.9), which satisfies

|Πhz
rt
h | ≤ 1 a.e. in Ω, a discrete strong duality relation applies, i.e.,

Icrh (ucrh ) = Drt
h (zrth ) , (4.10)

and the discrete convex optimality relations

div zrth = α (Πhu
cr
h − gh) in L0(Th) , (4.11)

Πhz
rt
h · ∇hu

cr
h = |∇hu

cr
h | in L0(Th) . (4.12)



Explicit error representation and application to TV-minimization 13

4.3 The regularized, discretized Rudin–Osher–Fatemi model

To approximate a discrete minimizer ucrh ∈ S1,cr(Th) of (4.8), it is common to approximate
the modulus function by strictly convex regularizations. In this connection, for every ε ∈ (0, 1),
we define a special regularization fε : R → R≥0 of the modulus function, for every t ∈ R, via

fε(t) := (1− ε) |t|ε , |t|ε := (t2 + ε2)
1
2 , (4.13)

where | · |ε : R → R≥0 is commonly referred to as the standard regularization.
Let us collect the most important properties of the regularization (4.13).

Lemma 4.3. For every ε ∈ (0, 1), the following statements apply:

(i) fε ∈ C1(R) with f ′ε(0) = 0.
(ii) For every t ∈ R, it holds −ε |t| − ε2 ≤ fε(t)− |t| ≤ ε (1− |t|).
(iii) For every t ∈ R, it holds |f ′ε(t)| ≤ 1− ε.
(iv) For every s ∈ R, it holds

f∗ε (s) :=

{
−ε ((1− ε)2 − |s|2) 1

2 if |s| ≤ 1− ε

+∞ if |s| > 1− ε
.

Remark 4.4. The main reason to consider the regularization fε : R → R≥0 instead of the standard
regularization | · |ε : R → R≥0 consists in the property (iii) in Lemma 4.3. This additional slope
reduction enables us later to construct a sufficiently accurate, admissible approximation of the
dual solution using an additional projection step, cf. Remark 4.6 (below) and Section 5 (below).

Proof. ad (i). The claimed regularity fε ∈ C1(R) is evident. Since for every t ∈ R, it holds

f ′ε(t) = (1− ε) t

(t2+ε2)
1
2
, (4.14)

we have that f ′ε(0) = 0.
ad (ii). For every t ∈ R, due to 0 ≤ |t|ε − |t| ≤ ε, we have that

−ε |t| − ε2 ≤ −ε |t|ε ≤ fε(t)− |t| = ε− ε |t|ε ≤ ε (1− |t|) .
ad (iii). Immediate consequence of the representation (4.14).
ad (iv). Due to [15, Proposition 13.20 (i)], for every s ∈ R and ε ∈ (0, 1), we have that

f∗ε (s) = ((1− ε) | · |ε)∗(s) = (1− ε) (| · |ε)∗
(

s
1−ε

)
.

Since for every s ∈ R and ε ∈ (0, 1), it holds

(| · |ε)∗
(
s) =

{
−ε (1− |s|2) 1

2 if |s| ≤ 1

+∞ if |s| > 1
,

we conclude that the claimed representation of the Fenchel conjugate applies.

Given g ∈ L2(Ω), α > 0, and an element-wise constant regularization parameter εh ∈ L0(Th)
with 0 < εh < 1 a.e. in Ω, for gh := Πhg ∈ L0(Th), the regularized, discrete ROF model consists
in the minimization of the functional Icrh,εh : S1,cr(Th)→R, for every vh ∈ S1,cr(Th) defined by

Icrh,εh(vh) := ∥fεh(|∇hvh|)∥L1(Ω) +
α
2 ∥Πhvh − gh∥2L2(Ω) . (4.15)

Since the functional (4.15) is proper, strictly convex, weakly coercive, and lower semi-continuous,
the direct method in the calculus of variations, cf. [27], yields the existence of a unique minimizer
ucrh,εh ∈ S1,cr(Th), called the regularized, discrete primal solution. Appealing to (fεh◦|·|)∗ = f∗εh◦|·|,
cf. [15, Example 13.7], the corresponding (Fenchel) dual problem to the minimization of (4.8)
consists in the maximization of functional Drt

h,εh
: RT 0

N (Th) → R∪{−∞}, for every yh ∈ RT 0
N (Th)

defined by

Drt
h,εh

(yh) := −
ˆ
Ω

f∗εh(|Πhyh|) dx− 1
2α∥div yh + α gh∥2L2(Ω) +

α
2 ∥gh∥2L2(Ω) . (4.16)
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The following proposition clarifies the well-posedness of the dual regularized, discretized ROF
model, i.e., the existence of a maximizer of (4.16). It also yields a discrete reconstruction formula
for a maximizer of (4.16) from a minimizer of (4.15) and proves discrete strong duality.

Proposition 4.5. The following statements apply:

(i) A discrete weak duality relation applies, i.e.,

inf
vh∈S1,cr

D (Th)
Icrh,εh(vh) ≥ sup

yh∈RT 0
N (Th)

Drt
h,εh

(yh) . (4.17)

(ii) The discrete flux zrth ∈ L1(Th), defined via the generalized Marini formula

zrth,εh :=
f ′
εh

(|∇hu
cr
h,εh

|)
|∇hucr

h,εh
| ∇hu

cr
h,εh

+ α
Πhu

cr
h,εh

−gh

d

(
idRd −ΠhidRd

)
, (4.18)

satisfies zrth,εh ∈ RT 0
N (Th) and the discrete convex optimality relations

div zrth,εh = α (Πhu
cr
h,εh

− gh) in L0(Th) , (4.19)

Πhz
rt
h,εh

=
f ′
εh

(|∇hu
cr
h,εh

|)
|∇hucr

h,εh
| ∇hu

cr
h,εh

in L0(Th)d . (4.20)

(iii) The discrete flux zrth ∈ RT 0
N (Th) is a maximizer of (4.16) and discrete strong duality applies,

i.e.,

Icrh,εh(u
cr
h,εh

) = Drt
h,εh

(zrth,εh) .

Note that, by the Fenchel–Young identity, cf. [31, Proposition 5.1, p. 21], (4.20) is equivalent to

Πhz
rt
h,εh

· ∇hu
cr
h,εh

= f∗εh(|Πhz
rt
h,εh

|) + fε(|∇hu
cr
h,εh

|) in L0(Th) . (4.21)

Remark 4.6. Appealing to Lemma 4.3 (iii), we have that |Πhz
rt
h,εh

| ≤ 1−εh a.e. in Ω. Therefore,
if ∥Πhu

cr
h,εh

− gh∥L∞(Ω) ≤ c0 for some c0 > 0, which can be expected by discrete maximum prin-

ciples, then, choosing εh := αc0
d h, yields that ∥zrth,εh∥L∞(Ω;Rd) ≤ 1. However, choices like εh ∼ h

let us expect convergence rates not better than O(h1/2), cf. Proposition 4.7 (i) (below). In
order to allow for the convergence rate O(h), one needs to choose εh ∼ h2. But, in this case,
we cannot guarantee that ∥zrth,εh∥L∞(Ω;Rd) ≤ 1, so that we instead consider the scaled vector

field zrth,εh := zrth,εh(max{1, ∥zrth,εh∥L∞(Ω;Rd)})−1 ∈ RT 0
N (Th), which is still a sufficiently accurate

approximation of the dual solution, as indicated by the numerical experiments, cf. Section 5.

Proof. ad (i). Using element-wise that fεh = f∗∗εh , the definition of the convex conjugate, cf. (2.2),
and the discrete integration-by-parts formula (2.6), we find that

inf
vh∈S1,cr

D (Th)
Icrh,εh(vh) = inf

vh∈S1,cr
D (Th)

∥f∗∗εh (|∇hvh|)∥L1(Ω) +
α
2 ∥Πhvh − gh∥2L2(Ω)

= inf
vh∈S1,cr

D (Th)
sup

yh∈L0(Th)d
−
ˆ
Ω

f∗εh(|yh|) dx+ (yh,∇hvh)Ω + α
2 ∥Πhvh − gh∥2L2(Ω)

≥ inf
vh∈S1,cr

D (Th)
sup

yh∈RT 0
N (Th)

−
ˆ
Ω

f∗εh(|Πhyh|) dx− (div yh,Πhvh)Ω + α
2 ∥Πhvh − gh∥2L2(Ω)

≥ sup
yh∈RT 0

N (Th)

−
ˆ
Ω

f∗εh(|Πhyh|) dx− sup
vh∈L0(Th)

(div yh, vh)Ω − α
2 ∥vh − gh∥2L2(Ω)

= sup
yh∈RT 0

N (Th)

−
ˆ
Ω

f∗εh(|Πhyh|) dx− 1
2α∥div yh + α gh∥2L2(Ω) +

α
2 ∥gh∥2L2(Ω)

= sup
yh∈RT 0

N (Th)

Drt
h,εh

(yh) ,

which is the claimed discrete weak duality relation.
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ad (ii). By Lemma 4.3, the minimality of ucrh,εh ∈ S1,cr(Th) for (4.15), for every vh ∈ S1,cr(Th),
yields that (

f ′εh(|∇hu
cr
h,εh

|) ∇hu
cr
h,εh

|∇hucr
h,εh

| ,∇hvh

)
Ω
+ α (Πhu

cr
h,εh

− gh,Πhvh)Ω = 0 . (4.22)

By definition, the discrete flux zrth,εh ∈ L1(Th)d, defined by (4.18), satisfies the discrete convex

optimality condition (4.20) and div (zrth,εh |T ) = α (Πhu
cr
h,εh

− gh)|T in T for all T ∈ Th. Choosing
vh = 1 ∈ S1,cr(Th) in (4.22), we find that

´
Ω
α (Πhu

cr
h,εh

− gh) dx = 0. Hence, since for ΓD = ∅
the divergence operator div : RT 0

N (Th) → L0(Th)/R is surjective, there exists yh ∈ RT 0
N (Th)

such that div yh = α (Πhu
cr
h,εh

− gh) in L0(Th). Then, we have that div ((zrth,εh − yh)|T ) = 0 in T

for all T ∈ Th, i.e., zrth,εh − yh ∈ L0(Th)d. In addition, for every vh ∈ S1,cr(Th), it holds
(Πhyh,∇hvh)Ω = −(div yh,Πhvh)Ω

= −α (Πhu
cr
h,εh

− gh,Πhvh)Ω

=
(
f ′εh(|∇hu

cr
h,εh

|) ∇hu
cr
h,εh

|∇hucr
h,εh

| ,∇hvh

)
Ω

= (Πhz
rt
h,εh

,∇hvh)Ω .

In other words, for every vh ∈ S1,cr(Th), it holds
(yh − zrth,εh ,∇hvh)Ω = (Πhyh −Πhz

rt
h,εh

,∇hvh)Ω = 0 ,

i.e., yh − zrth,εh ∈ ∇h(S1,cr
D (Th))⊥. By the decomposition (2.7), we have that ∇h(S1,cr

D (Th))⊥ =

ker(div|RT 0
N (Th)) ⊆ RT 0

N (Th). As a result, it holds yh − zrth,εh ∈ RT 0
N (Th). Due to yh ∈ RT 0

N (Th),
we conclude that zrth,εh ∈ RT 0

N (Th). In particular, now from div (zrth,εh |T ) = α (Πhu
cr
h,εh

− gh)|T
in T for all T ∈ Th, it follows the discrete optimality condition (4.19).

ad (iii). Using (4.21), (4.19), and the discrete integration-by-parts formula (2.6), we find that

Icrh,εh(u
cr
h,εh

) = ∥fεh(|∇hu
cr
h,εh

|)∥L1(Ω) +
α
2 ∥Πhu

cr
h,εh

− gh∥2L2(Ω)

= −
ˆ
Ω

f∗εh(|Πhz
rt
h,εh

|) dx+ (Πhz
rt
h,εh

,∇hu
cr
h,εh

)Ω + 1
2α∥div zrth,εh∥2L2(Ω)

= −
ˆ
Ω

f∗εh(|Πhz
rt
h,εh

|) dx− (div zrth,εh ,Πhu
cr
h,εh

)Ω + 1
2α∥div zrth,εh∥2L2(Ω)

= −
ˆ
Ω

f∗εh(|Πhz
rt
h,εh

|) dx− 1
α (div z

rt
h,εh

,div zrth,εh + α gh)Ω + 1
2α∥div zrth,εh∥2L2(Ω)

= −
ˆ
Ω

f∗εh(|Πhz
rt
h,εh

|) dx− 1
2α∥div zrth,εh + α gh∥2L2(Ω)

= Drt
h,εh

(zrth,εh) ,

which is the claimed discrete strong duality relation and, thus, appealing to the discrete weak
duality relation (4.17), proves the maximality of zrth,εh ∈ RT 0

N (Th) for (4.16).

The following proposition describes the approximative behavior the regularized, discretized ROF
problem towards the (unregularized) discretized ROF problem, given uniform convergence (to zero)
of the element-wise constant regularization parameter εh ∈ L0(Th). In what follows, in the
convergence ∥εh∥L∞(Ω) → 0, the average mesh-size h > 0 is always fixed.

Proposition 4.7. If ∥εh∥L∞(Ω) < 1, then the following statements apply:

(i) It holds α
2 ∥Πhu

cr
h,εh

−Πhu
cr
h ∥2L2(Ω) ≤

∥εh∥L∞(Ω)

1−∥εh∥L∞(Ω)
(α2 ∥g∥2L2(Ω) + 2 |Ω|).

(ii) div zrth,εh → α (Πhu
cr
h − gh) in L0(Th) (∥εh∥L∞(Ω) → 0).

(iii) f∗εh(|Πhz
rt
h,εh

|) → 0 in L0(Th) (∥εh∥L∞(Ω) → 0).

(iv) fεh(|∇hu
cr
h,εh

|) → ∇hu
cr
h in L0(Th) (∥εh∥L∞(Ω) → 0).
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Proof. ad (i). Using both the strong convexity of Icrh : S1,cr(Th) → R∪{+∞} and Lemma 4.3 (ii),
we obtain

α
2 ∥Πhu

cr
h,εh

−Πhu
cr
h ∥2L2(Ω) ≤ Icrh (ucrh,εh)− Icrh (ucrh )

≤ 1
1−∥εh∥L∞(Ω)

Icrh,εh(u
cr
h,εh

) +
∥εh∥2

L∞(Ω)

1−∥εh∥L∞(Ω)
|Ω| − Icrh (ucrh )

≤ 1
1−∥εh∥L∞(Ω)

Icrh,εh(u
cr
h ) +

∥εh∥2
L∞(Ω)

1−∥εh∥L∞(Ω)
|Ω| − Icrh (ucrh )

≤ 1
1−∥εh∥L∞(Ω)

(Icrh (ucrh ) + 2 ∥εh∥L∞(Ω) |Ω|)− Icrh (ucrh )

=
∥εh∥L∞(Ω)

1−∥εh∥L∞(Ω)
(Icrh (ucrh ) + 2 |Ω|) .

(4.23)

Since, by the minimality of ucrh ∈ S1,cr(Th) for (4.8) and the L2-stability of Πh : L
2(Ω) → L0(Th),

it holds

Icrh (ucrh ) ≤ Icrh (0) = α
2 ∥gh∥2L2(Ω) ≤ α

2 ∥g∥2L2(Ω) , (4.24)

from (4.25) we conclude the claimed error estimate.

ad (ii). From claim (i), it follows that

Πhu
cr
h,εh

→ Πhu
cr
h in L0(Th) (∥εh∥L∞(Ω) → 0) . (4.25)

Thus, using (4.25), from div zrth,εh = α (Πhu
cr
h,εh

− gh) in L0(Th), cf. (4.19), we conclude that

div zrth,εh → α (Πhu
cr
h − gh) in L0(Th) (∥εh∥L∞(Ω) → 0) .

ad (iii). Due to Πhz
rt
h,εh

=
f ′
εh

(|∇hu
cr
h,εh

|)
|∇hucr

h,εh
| ∇hu

cr
h,εh

and Lemma 4.3 (iii), we have that

|Πhz
rt
h,εh

| = |f ′εh(|∇hu
cr
h,εh

|)| ≤ 1− εh a.e. in Ω . (4.26)

Therefore, using Lemma 4.3 (iv) together with (4.26), we conclude that

|f∗εh(|Πhz
rt
h,εh

|)| = εh ((1− εh)
2 − |Πhz

rt
h,εh

|2) 1
2

≤ εh (1− εh) ≤ εh

}
a.e. in Ω ,

which implies that f∗εh(|Πhz
rt
h,εh

|) → 0 in L0(Th) (∥εh∥L∞(Ω) → 0).

ad (iv). Due to (4.24), (ucrh,εh)∥εh∥L∞(Ω)→0 ⊆ S1,cr(Th) is bounded. The finite-dimensionality of

S1,cr(Th) and the Bolzano–Weierstraß theorem yield a subsequence (ucrh,ε′h
)∥ε′h∥L∞(Ω)→0 ⊆ S1,cr(Th)

and a function ũcrh ∈ S1,cr(Th) such that

ucrh,ε′h
→ ũcrh in S1,cr(Th) (∥ε′h∥L∞(Ω) → 0) . (4.27)

From (4.27) it is readily derived that

fε′h(|∇hu
cr
h,ε′h

|) → ∇hũ
cr
h in L0(Th) (∥ε′h∥L∞(Ω) → 0) .

Consequently, for every vh ∈ S1,cr(Th), we find that

Icrh (ũcrh ) = lim
∥ε′h∥L∞(Ω)→0

Icrh,ε′h
(ucrh,ε′h

)

≤ lim
∥ε′h∥L∞(Ω)→0

Icrh,ε′h
(vh)

= Icrh (vh) .

Thus, due to the uniqueness of ucrh ∈ S1,cr(Th) as a minimizer of (4.8), we get ũcrh = ucrh in S1,cr(Th).
Since this argumentation remains valid for each subsequence of (ucrh,εh)∥εh∥L∞(Ω)→0 ⊆ S1,cr(Th),
the standard subsequence principle implies that fεh(|∇hu

cr
h,εh

|)→∇hu
cr
h in L0(Th) (∥εh∥L∞(Ω) → 0).
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The approximation properties of the regularized, discrete ROF model (4.15) (and (4.16)) to-
wards the (unregularized) discrete ROF model (4.8) (and (4.16)) enable us to transfer the discrete
convex duality relations established in Proposition 4.5, which apply mainly due to the differen-
tiability of the regularized, discrete ROF model, to the non-differentiable discrete ROF model.
To the best of the authors’ knowledge, the following discrete convex duality relations for the
(unregularized) discrete ROF model (4.8) seem to be new.

Theorem 4.8. There exists a vector field zrth ∈ RT 0
N (Th) with |Πhz

rt
h | ≤ 1 a.e. in Ω and the

following properties:

(i) For a not relabeled subsequence, it holds

zrth,εh → zrth in RT 0
N (Th) (∥εh∥L∞(Ω) → 0) .

(ii) There hold the following discrete convex optimality relations:

div zrth = α (Πhu
cr
h − gh) in L0(Th) ,

Πhz
rt
h · ∇hu

cr
h = |∇hu

cr
h | in L0(Th) .

(iii) The discrete flux zrth ∈ RT 0
N (Th) is maximal for Drt

h : RT 0
N (Th) → R and discrete strong

duality applies, i.e.,

Icrh (ucrh ) = Drt
h (zrth ) .

Proof. ad (i). Due to Proposition 4.7 (ii) and (4.26), the sequence (zrth,εh)∥εh∥L∞(Ω)→0 ⊆ RT 0
N (Th)

is bounded. Thus, by the finite-dimensionality of RT 0
N (Th), the Bolzano–Weierstraß theorem

yields a not relabeled subsequence and a vector field zrth ∈ RT 0
N (Th) such that

zrth,εh → zrth in RT 0
N (Th) (∥εh∥L∞(Ω) → 0) . (4.28)

Due to the continuity of Πh : L
1(Ω) → L0(Th) and RT 0

N (Th) ↪→ L1(Ω), from (4.28), we obtain

Πhz
rt
h,εh

→ Πhz
rt
h in L0(Th) (∥εh∥L∞(Ω) → 0) . (4.29)

From |Πhz
rt
h,εh

| ≤ 1− εh a.e. in Ω, cf. (4.26), and (4.29), we obtain |Πhz
rt
h | ≤ 1 a.e. in Ω, i.e.,

IK1(0)(Πhz
rt
h ) = 0 . (4.30)

ad (ii). Using Proposition 4.7, (4.19), and (4.21), we find that

div zrth = lim
∥εh∥L∞(Ω)→0

div zrth,εh

= lim
∥εh∥L∞(Ω)→0

α (Πhu
cr
h,εh

− gh)

= α (Πhu
cr
h − gh)

 a.e. in Ω ,

as well as

Πhz
rt
h · ∇hu

cr
h = lim

∥εh∥L∞(Ω)→0
Πhz

rt
h,εh

· ∇hu
cr
h,εh

= lim
∥εh∥L∞(Ω)→0

f∗εh(|Πhz
rt
h,εh

|) + fεh(|∇hu
cr
h,εh

|)

= |∇hu
cr
h |

 a.e. in Ω ,

i.e., the claimed discrete convex optimality conditions.
ad (iii). Using Proposition 4.7 and (4.30), we find that

Icrh (ucrh ) = lim
∥εh∥L∞(Ω)→0

Icrh,εh(u
cr
h,εh

)

= lim
∥εh∥L∞(Ω)→0

Drt
h,εh

(zrth,εh)

= Drt
h (zrth ) ,

i.e., the claimed discrete strong duality relation.
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5. Numerical experiments

In this section, we review the theoretical findings of Section 4 via numerical experiments. To
compare approximations to an exact solution, we impose Dirichlet boundary conditions on ΓD=∂Ω,
though an existence theory is difficult to establish, in general. However, the concepts derived in
Section 4 carry over verbatimly with ΓN = ∅ provided that the existence of a minimizer is given.
All experiments were conducted deploying the finite element software package FEniCS (version
2019.1.0), cf. [36]. All graphics were generated using the Matplotlib library (version 3.5.1), cf. [35],
and the Vedo library (version 2023.4.4), cf. [38].

5.1 Implementation details regarding the optimization procedure

All computations are based on the regularized, discrete ROF problem (4.15). This is motivated
by the fact that appealing to Proposition 4.7 (i), in order to bound the error ∥u−Πhu

cr
h ∥L2(Ω), it

suffices to determine the error ∥u−Πhu
cr
h,εh

∥L2(Ω). The iterative minimization of (4.15) is realized

using a semi-implicit discretized L2-gradient flow from [5] (see also [4, Section 5]) modified with
a residual stopping criterion guaranteeing the necessary accuracy in the optimization procedure.

Algorithm 5.1 (Semi-implicit discretized L2-gradient flow). Let gh, εh ∈ L0(Th) be such that
εh > 0 a.e. in Ω and ∥εh∥L∞(Ω) < 1, and choose τ, εhstop > 0. Moreover, let u0h ∈ S1,cr

D (Th).
Then, for every k ∈ N:
(i) Compute the iterate ukh ∈ S1,cr

D (Th) such that for every vh ∈ S1,cr
D (Th), it holds

(dτu
k
h, vh)Ω +

(
f ′
εh

(|∇hu
k−1
h |)

|∇hu
k−1
h |

∇hu
k
h,∇hvh

)
Ω
+ α (Πhu

k
h − gh,Πhvh)Ω = 0 , (5.1)

where dτu
k
h := 1

τ (u
k
h − uk−1

h ) denotes the backward difference quotient.
(ii) Compute the residual rkh ∈ S1,cr

D (Th) such that for every vh ∈ S1,cr
D (Th), it holds

(rkh, vh)Ω =
(

f ′
εh

(|∇hu
k
h|)

|∇huk
h|

∇hu
k
h,∇hvh

)
Ω
+ α (Πhu

k
h − gh,Πhvh)Ω . (5.2)

Stop if ∥rkh∥L2(Ω) ≤ εhstop; otherwise, increase k→k + 1 and continue with step (i).

Appealing to [4, Remark 5.5], the iterates ukh ∈ S1,cr
D (Th), k ∈ N, the residuals rkh ∈ S1,cr

D (Th),
k ∈ N, generated by Algorithm 5.1, and the minimizer ucrh,εh ∈ S1,cr

D (Th) of (4.15) satisfy

∥ucrh,εh − ukh∥L2(Ω) ≤ 2 ∥rkh∥L2(Ω) . (5.3)

In consequence, if we choose as a stopping criterion that ∥rk∗

h ∥L2(Ω) ≤ εhstop := cstop h for k∗ ∈ N,
where cstop> 0 does not depend on h> 0, then, owing to Proposition 4.7 (i) and (5.3), we have that

∥Πh(u
cr
h − uk

∗

h )∥2L2(Ω) ≤
∥εh∥L∞(Ω)

1−∥εh∥L∞(Ω)
(2 ∥g∥2L2(Ω) +

8
α |Ω|) + 8 c2stop h

2 .

If ∥εh∥L∞(Ω) ≤ creg h
2, where creg ∈ (0, 1), then, we arrive at ∥Πh(u

cr
h −uk∗

h )∥L2(Ω) = O(h). Thus,
to bound the error ∥u−Πhu

cr
h ∥L2(Ω) experimentally, it is sufficient to compute ∥u−Πhu

k∗

h ∥L2(Ω).
The following proposition proves the well-posedness, stability, and convergence of Algorithm 5.1.

Proposition 5.2. Let the assumptions of Algorithm 5.1 be satisfied and let εh ∈ L0(Th) such
that εh > 0 a.e. in Ω and ∥εh∥L∞(Ω) < 1. Then, the following statements apply:

(i) Algorithm 5.1 is well-posed, i.e., for every k∈N, given the most-recent iterate uk−1
h ∈S1,cr

D (Th),
there exists a unique iterate ukh ∈ S1,cr

D (Th) solving (5.1).
(ii) Algorithm 5.1 is unconditionally strongly stable, i.e., for every L ∈ N, it holds

Icrh,εh(u
L
h ) + τ

L∑
k=1

∥dτukh∥2L2(Ω) ≤ Icrh,εh(u
0
h) .

(iii) Algorithm 5.1 terminates after a finite number of steps, i.e., there exists k∗ ∈ N such that
∥rk∗

h ∥L2(Ω) ≤ εhstop.
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The proof of Proposition 5.2 (ii) is essentially based on the following inequality.

Lemma 5.3. For every ε ∈ (0, 1) and a, b ∈ Rd, it holds

f ′
ε(|a|)
|a| b · (b− a) ≥ fε(|b|)− fε(|a|) + 1

2
f ′
ε(|a|)
|a| |b− a|2 .

Proof. Follows from [4, Appendix A.2], since fε ∈C1(R≥0) and (t 7→ f ′ε(t)/t)∈C0(R≥0) is positive
and non-decreasing for all ε ∈ (0, 1).

Proof (of Proposition 5.2). ad (i). Since
f ′
ε(t)
t ≥ 0 for all ε ∈ (0, 1) and t ≥ 0, the well-posedness

of Algorithm 5.1 is a direct consequence of the Lax–Milgram lemma.
ad (ii). Let L∈N be arbitrary. Then, for every k ∈ {1, . . . , L}, choosing vh = dτu

k
h ∈S1,cr

D (Th)
in (5.1), we find that

∥dτukh∥2L2(Ω) +
(

f ′
h,εh

(|∇hu
k−1
h |)

|∇hu
k−1
h |

∇hu
k
h,∇hdτu

k
h

)
Ω
+ α (Πhu

k
h − gh,Πhdτu

k
h)Ω . (5.4)

Appealing to Lemma 5.3 with a = ∇hu
k−1
h |T ∈ Rd and b = ∇hu

k
h|T ∈ Rd applied for all T ∈ Th,

for every k ∈ {1, . . . , L}, we have that

f ′
h,εh

(|∇hu
k−1
h |)

|∇hu
k−1
h |

∇hu
k
h · ∇hdτu

k
h ≥ dτfh,εh(|∇hu

k
h|) a.e. in Ω . (5.5)

In addition, since dτgh = 0, for every k ∈ {1, . . . , L}, we have that

(Πhu
k
h − gh)Πhdτu

k
h = (Πhu

k
h − gh)dτ (Πhu

k
h − gh) =

dτ

2 |Πhu
k
h − gh|2 . (5.6)

Using (5.5) and (5.6) in (5.4), for every k ∈ {1, . . . , L}, we arrive at

∥dτukh∥2L2(Ω) + dτI
cr
h,εh

(ukh) ≤ 0 . (5.7)

Summation of (5.7) with respect to k ∈ {1, . . . , L}, using∑L
k=1dτI

cr
h,εh

(ukh) = Icrh,εh(u
L
h )−Icrh,εh(u0h),

yields the claimed stability estimate.
ad (iii). Due to (i), we have that ∥dτukh∥2L2(Ω) → 0 (k → ∞), i.e., by the finite-dimensionality

of S1,cr
D (Th) and the equivalence of norms, it holds

ukh − uk−1
h → 0 in S1,cr

D (Th) (k → ∞) . (5.8)

In addition, due to (i), we have that Icrh,εh(u
k
h) ≤ Icrh,εh(u

0
h), which, using Lemma 4.3, implies that

(ukh)k∈N ⊆ S1,cr
D (Th) is bounded. Due to the finite-dimensionality of S1,cr

D (Th), the Bolzano–Weier-

straß theorem yields a subsequence (ukl

h )l∈N ⊆ S1,cr
D (Th) and a function ũh ∈ S1,cr

D (Th) such that

ukl

h → ũh in S1,cr
D (Th) (l → ∞) . (5.9)

Due to (5.8), from (5.9), we deduce that

ukl−1
h → ũh in S1,cr

D (Th) (l → ∞) . (5.10)

As a result, using (5.8)–(5.10), by passing for l → ∞ in (5.1), for every vh ∈ S1,cr
D (Th), we obtain(

f ′
h,εh

(|∇hũh|)
|∇hũh| ∇hũh,∇hvh

)
Ω
+ α (Πhũh − gh,Πhvh)Ω = 0 , (5.11)

and, by uniqueness, ũh = ucrh,εh . Hence, using (5.8) and (5.11), for every vh ∈ S1,cr
D (Th), we obtain(

rkl

h , vh
)
Ω
=

(
f ′
h,εh

(|∇hu
kl
h |)

|∇hu
kl
h |

∇hu
kl

h ,∇hvh

)
Ω
+ α (Πhu

kl

h − gh,Πhvh)Ω

→
(

f ′
h,εh

(|∇hu
cr
h,εh

|)
|∇hucr

h,εh
| ∇hu

cr
h,εh

,∇hvh

)
Ω
+ α (Πhu

cr
h,εh

− gh,Πhvh)Ω = 0 (l → ∞) ,

i.e., rkl

h ⇀ 0 in S1,cr
D (Th) (l → ∞), and, thus, by the finite-dimensionality of S1,cr

D (Th), rkl

h → 0 in

S1,cr
D (Th) (l → ∞), which implies that rkl

h → 0 in L2(Ω) (l → ∞). As this argumentation remains

valid for each subsequence of (rkh)k∈N ⊆ S1,cr
D (Th), the standard convergence principle yields that

rkh → 0 in L2(Ω) (k → ∞). In particular, there exists k∗ ∈ N such that ∥rk∗

h ∥L2(Ω) ≤ εhstop.
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5.2 Implementation details regarding the adaptive mesh refinement procedure

Before we present numerical experiments, we briefly outline the details of the implementations
regarding the adaptive mesh refinement procedure. In general, we follow the adaptive algorithm,
cf. [1, 23, 48]:

Algorithm 5.4 (AFEM). Let εSTOP > 0, θ ∈ (0, 1], and T0 an initial triangulation of Ω, and
choose ε0 ∈ L0(T0) such that ε0 > 0 a.e. in Ω and ∥ε0∥L∞(Ω) < 1. Then, for every i ∈ N ∪ {0}:
(’Solve’) Approximate the regularized, discrete primal solution ucri := ucrhi,εi

∈ S1,cr
D (Ti) mini-

mizing (4.15). Post-process ucri ∈S1,cr
D (Ti) to obtain an approximation ucri ∈S1,cr

D (Ti)
with ucri = 0 on ∂Ω and a regularized, discrete dual solution zrti := zrthi,εi

∈ RT 0
N (Ti)

maximizing (4.16). Then, define

zrti :=
zrt
i

max{1,∥zrt
i ∥

L∞(Ω;Rd)
} ∈ RT 0

N (Ti) . (5.12)

(’Estimate’) Compute the local refinement indicators (η2T,CR(u
cr
i , z

rt
i ))T∈Ti , cf. Remark 4.2 (iv).

If η2(ucri , z
rt
i ) ≤ εSTOP, cf. Remark 4.2 (iii), then STOP; otherwise, continue with

step (’Mark’).
(’Mark’) Choose a minimal (in terms of cardinality) subset Mi ⊆ Ti such that∑

T∈Mi

η2T,CR(u
cr
i , z

rt
i ) ≥ θ2

∑
T∈Ti

η2T,CR(u
cr
i , z

rt
i ) .

(’Refine’) Perform a conforming refinement of Ti to obtain Ti+1 such that each T ∈ Mi is
refined in Ti+1. Then, construct εi+1 ∈ L0(Ti+1) such that εi+1 > 0 a.e. in Ω and
∥εi+1∥L∞(Ω) < ci h

2
i+1. Increase i 7→ i+ 1 and continue with step (’Solve’).

Remark 5.5. (i) The regularized, discrete primal solution ucri ∈ S1,cr
D (Ti) in step (’Solve’) is

computed using the semi-implicit discretized L2-gradient flow, cf. Algorithm 5.1, for fixed
step-size τ = 1.0, stopping criterion εhi

stop := hi√
20
, and initial condition u0i = 0 ∈ S1,cr

D (Ti).
Appealing to Proposition 5.2 (ii), Algorithm 5.1 is unconditionally strongly stable, so that em-
ploying the fixed step-size τ = 1.0 is a reasonable choice. The stopping criterion εhi

stop :=
hi√
20

ensures (cf. the argumentation below Algorithm 5.1) that the final iterate uk
∗

hi
∈ S1,cr

D (Ti) is
a sufficiently accurate approximation of the discrete primal solution, in the sense that its
accuracy does not violate the best possible linear convergence rate, cf. Remark 5.6 (below).

(ii) As an approximation ucri ∈ S1,cr
D (Ti) with ucri = 0 on ∂Ω, we employ

ucri :=

{
ucri if ucri = 0 on ∂Ω ,

I∂k u
cr
i else ,

(5.13)

where the operator I∂i : S1,cr(Ti) → S1,cr
D (Ti) for every vhi

∈ S1,cr(Ti) is defined by

I∂i vi :=
∑

S∈Shi
;S∩∂Ω=∅

vhi
(xS)φS . (5.14)

(iii) Note that the particular choices in (ii) are only due to the imposed homogeneous Dirichlet
boundary condition. In the case ΓD = ∅, the choice ucri := ucri ∈S1,cr(Ti) is always admissible.

(iv) If not otherwise specified, we employ the parameter θ = 1
2 in (’Mark’).

(v) To find the set Mi ⊆ Ti in step (’Mark’), we deploy the Dörfler marking strategy, cf. [30].
(vi) The (minimal) conforming refinement of Ti with respect toMi in step (’Refine’) is obtained by

deploying the red-green-blue-refinement algorithm, cf. [48].
(vii) For the construction of the adaptively modified regularization parameter εi ∈ L0(Ti) in step

(’Refine’), we employ separately the following two cases:

εi :=

{
α
d |Πhi−1u

cr
i−1 − ghi |h2i + h3i (local) ,

h2i (global) .
(5.15)
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5.3 Example with Lipschitz continuous dual solution

We examine an example from [10]. In this example, we let Ω = (−1, 1)d, ΓD = ∂Ω,
d ∈ {2, 3}, r = 1

2 , α = 10, and g = χBd
r (0)

∈ BV (Ω) ∩ L∞(Ω). Then, the primal solution

u ∈ BV (Ω)∩L∞(Ω) and a dual solution z ∈W 2(div; Ω)∩L∞(Ω;Rd), for a.e. x ∈ Ω are defined by

u(x) := (1− d
αr ) g(x) , z(x) :=

{
−x

r if |x| < r ,

− rx
|x|d if |x| ≥ r .

(5.16)

Note that z ∈W 1,∞(Ω;Rd), so that, appealing to [25, 4], uniform mesh-refinement (i.e., θ = 1 in

Algorithm 5.4) is expected to yield the quasi-optimal convergence rate O(h
1
2 ).

2D Case. The coarsest triangulation T0 of Figure 1 (initial triangulation of Algorithm 5.4) con-
sists of 16 halved squares. More precisely, Figure 1 displays the triangulations Ti, i ∈ {0, 15, 20, 25},
generated by Algorithm 5.4 using either the adaptively modified εi ∈ L0(Ti), cf. (local), or the
global choice εi := h2i , cf. (global). For both choices, a refinement towards the circle ∂B2

r (0), i.e.,
the jump set Ju of the exact solution u ∈ BV (Ω) ∩ L∞(Ω), cf. (5.16), is reported. This behavior
is also seen in Figure 2, where the regularized, discrete primal solution ucr15 ∈ S1,cr

D (T15), the
(local) L2-projection onto element-wise constant functions Πh15u

cr
15 ∈ L0(T15), and the (local)

L2-projections onto element-wise affine functions of the modulus of the regularized, discrete dual
solution zrt15 ∈ RT 0

N (T15) and of the projected regularized, discrete dual solution zrt15 ∈ RT 0
N (T15)

are plotted. Figure 1, in addition, shows that using the adaptively modified εi ∈ L0(Ti), cf. (local),
the refinement is more concentrated at the jump set Ju of the exact solution u ∈ BV (Ω)∩L∞(Ω),
cf. (5.16). However, in Figure 3 it is seen that (local) does not result in an improved error decay,
but an error decay comparable to (global). In addition, Figure 3 demonstrates that Algorithm 5.4

improves the experimental convergence rate of about O(h
1
2 ) predicted by [25, 4] for uniform

mesh-refinement to the quasi-optimal rate O(h), cf. Remark 5.6 (below). In addition, Figure 3
indicates the primal-dual error estimator is reliable and efficient with respect to the error quantity

ρ̃2(ucri , z
rt
i ) :=

α
2 ∥ucri − u∥2L2(Ω) +

1
2α∥div zrti − div z∥2L2(Ω) , i ∈ N , (5.17)

which, appealing to Remark 3.3 (iv), is a lower bound for sum of the optimal convexity measures.

T0 T15 T20 T25

T0 T15 T20 T25

Figure 1: Initial triangulation T0 and adaptively refined meshes Ti, i ∈ {0, 15, 20, 25}, generated
by the adaptive Algorithm 5.4 (TOP: obtained using (local); BOTTOM: obtained using (global)).



S. Bartels and A. Kaltenbach 22

−1.0

−0.5

0.0

0.5

1.0
−1.0

−0.5

0.0

0.5

1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

ucr15 ∈ S1,cr
D (T15)

−1.0

−0.5

0.0

0.5

1.0
−1.0

−0.5

0.0

0.5

1.0

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Πh15
ucr15 ∈ L0(T15)

−1.0

−0.5

0.0

0.5

1.0
−1.0

−0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Π1
h15
|zrt15| ∈ L1(T15)

−1.0

−0.5

0.0

0.5

1.0
−1.0

−0.5

0.0

0.5

1.0

0.0

0.2

0.4

0.6

0.8

Π1
h15
|zrt15| ∈ L1(T15)

Figure 2: UPPER LEFT: Plot of ucr15 ∈S1,cr
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3D Case. The initial triangulation T0 of Algorithm 5.4 consists of 27 cubes each divided into
six tetrahedrons. Using either the adaptively modified εi ∈ L0(Ti), cf. (local), or the global choice
εi := h2i , cf. (global), we report similar results to the 2D case: for both choices, a refinement towards
the sphere ∂B3

r (0), i.e., the jump set Ju of the exact solution u ∈ BV (Ω) ∩ L∞(Ω), cf. (5.16), is re-
ported, which can be seen in Figure 4, where the regularized, discrete primal solution ucr10∈S1,cr

D (T10)
and the (local) L2-projection onto element-wise affine functions of the modulus of the regularized,
discrete dual solution zrt10 ∈ RT 0

N (T10) are plotted. Figure 3 shows that the adaptive Algorithm 5.4
improves the experimental convergence rate of about O(h

1
2 ) predicted by [25, 4] for uniform

mesh-refinement to the quasi-optimal rate O(h), cf. Remark 5.6 (below).

Figure 4: LEFT: Plot of ucr10 ∈ S1,cr
D (T10); RIGHT: Plot of Π1

h10
|zrt10| ∈ L1(T10); each obtained

using (local).
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Figure 5: LEFT: Plots of η(ucri , z
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i ) and ρ̃(ucri , z

rt
i ) using adaptive mesh refinement for i =

0, . . . , 10 and uniform mesh refinement for i = 0, . . . , 3; RIGHT: Plots of ∥zrti ∥L∞(Ω;R3) using
adaptive mesh refinement for i = 0, . . . , 10 and uniform mesh refinement for i = 0, . . . , 3.

Remark 5.6 (A Comment on the optimality of linear convergence rates). In one dimension, the
L2-best-approximation error of the sign function on quasi-uniform partitions is of order O(h

1
2 ),

cf. [3, Example 10.5]. More generally, using that the intersection BV (Ω)∩L∞(Ω) is contained in
fractional Sobolev spacesW s,2(Ω) for all s < 1/2, cf. [47, Lemma 38.1], one cannot expect a higher
convergence rate than O(h

1
2 ) for generic, essentially bounded functions of bounded variation. For

triangulations that are graded towards the jump sets of certain discontinuous functions with a
quadratic grading strength, i.e., the local mesh-size satisfies hT ∼ h2 for all elements T ∈ Th at the
discontinuity set, with the average mesh-size h ∼ card(Nh)

−1/d, a linear convergence rate O(h) has
been established in [10]. Since our error estimates not only bound squared L2-errors but also control
squares of Lp-norms of non-linear error quantities involving derivatives, cf. [10, Remark 5.4],
a higher convergence rate than linear cannot be expected. In view of these aspects, the linear
convergence rate O(h) for the devised adaptive strategy is quasi-optimal.
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5.4 Example without Lipschitz continuous dual solution

We examine an example from [10]. In this example, we let Ω = (−1.5, 1.5)2, ΓD = ∂Ω,
r = 1

2 , α = 10, and g = χB2
r(re1)

− χB2
r(−re1) ∈ BV (Ω) ∩ L∞(Ω). Then, the primal solution

u ∈ BV (Ω)∩L∞(Ω) and a dual solution z ∈W 2(div; Ω)∩L∞(Ω;R2), for a.e. x ∈ Ω are defined by

u(x) := (1− 2
αr ) g(x) , z(x) :=

{
∓x∓re1

r if |x∓ re1| < r ,

∓ r(x∓re1)
|x∓re1|2 if |x∓ re1| ≥ r .

(5.18)

Note that z /∈W 1,∞(Ω;R2), so that we cannot refer to [25, 4] in order to expect uniform mesh-

refinement to yield the convergence rate O(h
1
2 ). However, since z|Ω± ∈W 1,∞(Ω±;R2), where

Ω+ :=Ω∩ (R>0×R) and Ω− :=Ω∩ (R<0×R), and since the coarsest triangulation T0 of Figure 6
and, hence, also all resulting refinements Ti, i ∈ N, of T0 resolve Jz := Ω ∩ ({0} × R), i.e., the
jump set of z ∈W 2(div; Ω)∩L∞(Ω;R2), in the sense that Jz ⊆ ⋃

S∈Shi
S for all i ∈ N, referring

to [6, Theorem 4.5], we can expect uniform mesh-refinement to yield the convergence rate O(h
1
2 ).

The coarsest triangulation T0 of Figure 6 (initial triangulation of Algorithm 5.4) consists of 16
halved squares. More precisely, Figure 1 displays the triangulations Ti, i∈{0, 15, 20, 25}, generated
by Algorithm 5.4 using either the adaptively modified εi∈L0(Ti), cf. (local), or the global choice
εi := h2i , cf. (global). For both choices, a refinement towards ∂B2

r (re1) ∪ ∂B2
r (−re1), i.e., the

jump set Ju of the exact solution u ∈ BV (Ω)∩L∞(Ω), cf. (5.18), is reported. This behavior is also
seen in Figure 7, where the regularized, discrete primal solution ucr15 ∈ S1,cr

D (T15), the (local) L2-
projection onto element-wise constant functions Πh15

ucr15 ∈ L0(T15), and the (local) L2-projections
onto element-wise affine functions of the modulus of the regularized, discrete dual solution
zrt15 ∈ RT 0

N (T15) and of the scaled regularized, discrete dual solution zrt15 ∈ RT 0
N (T15) are plotted.

Figure 6, in addition, shows that employing the adaptively modified regularization parameter,
cf. (local), the refinement is more concentrated at the jump set Ju of the exact solution
u ∈ BV (Ω)∩L∞(Ω), cf. (5.18). However, in Figure 8 it can be seen that (local) does not result in
an improved error decay, but an error decay comparable to (global). In addition, Figure 8 demon-
strates that Algorithm 5.4 improves the experimental convergence rate of about O(h

1
2 ) predicted

by [6, Theorem 4.5] for uniform mesh-refinement to the quasi-optimal rate O(h), cf. Remark 5.6.
In addition, Figure 8 indicates the primal-dual error estimator is both reliable and efficient with re-
spect to the error quantity (5.17).

T0 T15 T20 T25

T0 T15 T20 T25

Figure 6: Initial triangulation T0 and adaptively refined meshes Ti, i ∈ {0, 10, 20, 25}, generated
by the adaptive Algorithm 5.4 (TOP: obtained using (local); BOTTOM: obtained using (global)).
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5.5 Example with Lipschitz continuous primal solution and Lipschitz continuous dual solution

We examine an example from [5]. In this example, we let Ω = (−1.5, 1.5)2, ΓD = ∂Ω, α = 10,
s(t) :=

√
3t and r(t) := 1

2

√
1− 4t for t = 0.1, and g ∈ BV (Ω)∩L∞(Ω) for a.e. x ∈ Ω, be defined by

g(x) :=


1 + 2−α(s(t)2+t)

s(t) if |x| ≤ s(t) ,

1 + 1−α(|x|2+t)
|x| if s(t) < |x| ≤ r(t) ,

0 else .

Then, the primal solution u ∈ BV (Ω) ∩ L∞(Ω) and a dual solution z ∈W 2(div; Ω) ∩ L∞(Ω;R2)
with |z| ≤ 1 a.e. in Ω, for a.e. x ∈ Ω are defined by

u(x) :=


1− s(t)2+t

s(t) if |x| ≤ s(t) ,

1− |x|2+t
|x| if s(t) < |x| ≤ r(t) ,

0 else ,

z(x) :=


− x

s(t) if |x| ≤ s(t) ,

− x
|x| if s(t) < |x| ≤ r(t) ,

−xr(t)
|x|2 else .

(5.19)

Note that z ∈W 1,∞(Ω;R2), so that, appealing to [25, 4], uniform mesh-refinement is expected
to yield the quasi-optimal convergence rate O(h

1
2 ).

The coarsest triangulation T0 of Figure 9 (initial triangulation of Algorithm 5.4) consists of 16
halved squares. More precisely, Figure 9 displays the triangulations Ti, i∈{0, 5, 10, 15}, generated
by Algorithm 5.4 employing either εi ∈ L0(Ti), cf. (local), or εi := h2i , cf. (global). For both
choices, a refinement mainly towards and on the set {|∇u| > 0} is reported. This is also seen
in Figure 10, where the regularized, discrete primal solution ucr15 ∈ S1,cr

D (T10), the (local) L2-
projection onto element-wise constant functions Πh10u

cr
10 ∈ L0(T10), and the (local) L2-projections

onto element-wise affine functions of the modulus of the regularized, discrete dual solution
zrt10 ∈ RT 0

N (T10) and of the scaled regularized, discrete dual solution zrt10 ∈ RT 0
N (T10) are plotted.

Figure 9 shows that employing the adaptively modified regularization parameter, cf. (local), the
refinement takes place at and on the set {|∇u| > 0}. However, in Figure 11, again, it can be seen
that (local) does not result in an improved error decay, but an error decay comparable to (global).
In addition, Figure 11 demonstrates that Algorithm 5.4 improves the experimental convergence
rate of about O(h

1
2 ) predicted by [25, 4] for uniform mesh-refinement to the quasi-optimal rate

O(h), cf. Remark 5.6. In addition, Figure 11 indicates the primal-dual error estimator is both
reliable and efficient with respect to the error quantity (5.17).

T0 T5 T10 T15

T0 T5 T10 T15

Figure 9: Initial triangulation T0 and adaptively refined meshes Ti, i ∈ {0, 5, 10, 15}, generated
by the adaptive Algorithm 5.4 (TOP: obtained using (local); BOTTOM: obtained using (global)).
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5.6 Example without Dirichlet boundary condition and without exact solution

We examine an example from [12, 8]. In this example, we let Ω = (−1, 1)2, r = 1
2 , ΓD = ∅,

α = 100, and g = χ[−r,r]2 ∈ BV (Ω)∩L∞(Ω). Then, the primal solution and the dual solutions are
not known. However, appealing to [25, Section 5.2], given the regularity of g ∈ BV (Ω) ∩ L∞(Ω),

we can expect the convergence rate O(h
1
4 ) using uniform mesh refinement.

The coarsest triangulation T0 of Figure 1 (initial triangulation of Algorithm 5.4) consists of
16 halved squares. More precisely, Figure 12 displays the triangulations Ti, i ∈ {0, 15, 20, 25},
generated by Algorithm 5.4 using either the adaptively modified εi ∈ L0(Ti), cf. (local), or the
global choice εi := h2i , cf. (global). For both choices, a refinement towards the square ∂[−r, r]2, i.e.,
the jump set Jg of the data g ∈ BV (Ω)∩L∞(Ω) is reported. This behavior is also seen in Figure 13,

where the regularized, discrete primal solution ucr15 ∈ S1,cr
D (T15), the (local) L2-projection onto

element-wise constant functions Πh15u
cr
15 ∈ L0(T15), and the (local) L2-projections onto element-

wise affine functions of the modulus of the regularized, discrete dual solution zrt15 ∈ RT 0
N (T15)

and of the projected regularized, discrete dual solution zrt15 ∈ RT 0
N (T15) are plotted. Figure 12, in

addition, shows that using the adaptively modified εi ∈ L0(Ti), cf. (local), the refinement is, again,
more concentrated at the jump set Jg of the data g ∈ BV (Ω) ∩ L∞(Ω). However, in Figure 3 it
can be seen that (local) does not result in an improved error decay, but an error decay comparable
to (global). In addition, Figure 14 demonstrates that Algorithm 5.4 improves the experimental
convergence rate of about O(h

1
4 ) predicted by [25, Section 5.2] for uniform mesh-refinement to

the value O(h
2
5 ). This, on the one hand, confirms the optimality of the a priori error estimates

established in [25, Section 5.2] and, on the other hand, appealing to [25, 4], let us expect that there
exists no Lipschitz continuous dual solution to the given data g = χ[−r,r]2 ∈ BV (Ω) ∩ L∞(Ω).
The reported reduced error decay of O(h

2
5 ) compared to [12], where an error decay of O(h

1
2 ) is

reported, might only be pre-asymptotic and due to slight accuracy losses resulting due to the
global scaling step. This might be due to potential singularities of a dual solution located at the
corners of the square ∂[−r, r]2, as indicated in Figure 13. Therefore, it is possible that the error
decay O(h

1
2 ) in [12] may be reported after surpassing a potential pre-asymptotic regime.

T0 T15 T20 T25

T0 T15 T20 T25

Figure 12: Initial triangulation T0 and adaptively refined meshes Ti, i ∈ {0, 15, 20, 25}, generated
by the adaptive Algorithm 5.4 (TOP: obtained using (local); BOTTOM: obtained using (global)).
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Figure 14: LEFT: Plots of η(ucri , z
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i = 0, . . . , 25 and uniform mesh refinement for i = 0, . . . , 5; RIGHT: Plots of ∥zrti ∥L∞(Ω;R2) using
adaptive mesh refinement for i = 0, . . . , 25 and uniform mesh refinement for i = 0, . . . , 5.
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5.7 Numerical experiments with application to image processing

In order to benchmark the performance of the proposed numerical scheme (cf. Algorithm 5.1
and Algorithm 5.4) in a problem related to image processing, we examine a standard example
from the field of image processing (cf. Section 5.7.1) and a new example (cf. Section 5.7.2).

5.7.1 The Cameraman image

We examine the cameraman image, which in a similar context has been considered in [12].
In this example, we let Ω := (0, 1)2, ΓD = ∅, α = 1e+4, and g ∈ BV (Ω) ∩ L∞(Ω) a piece-wise
constant function taking its values in the interval [0, 1], representing the cameraman image on a
uniform triangulation with 66.049 nodes, cf. Figure 15. The adaptive algorithm (cf. Algorithm 5.4),
employed as coarsening strategy, reduces the number of nodes within 30 iteration steps to 25.059
nodes which corresponds to 38.0% of the initial number of nodes, which results in a squared L2-
error of ∥ucr30−g∥2L2(Ω) ≈ 2.211e−3. The resulting coarsened image, represented by ucr30 ∈S1,cr(T30),
is shown in Figure 15. The underlying grid T30 shown in Figure 16 reveals the expected coarsening
of the triangulation away from the edges.
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Figure 15: LEFT: Plot of the cameraman image g ∈ BV (Ω)∩L∞(Ω) on a grid with 66.049 nodes;
RIGHT: Plot of coarsened image ucr30 ∈ S1,cr(T30) on T30 with 25.059 nodes, cf. Figure 16.

Figure 16: Triangulation T30 in the coarsened image ucr30 ∈ S1,cr(T30) on the right of Figure 15.
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5.7.2 The Merle image

We examine an image of Merle, the male cat of the second author. In this example, we let
Ω := (0, 1)2, ΓD = ∅, α = 1e+4, and g ∈ BV (Ω) ∩ L∞(Ω) a piece-wise constant function taking
its values in the interval [0, 1], representing the Merle image on a uniform triangulation with
140.625 nodes, cf. Figure 17. The adaptive algorithm (cf. Algorithm 5.4), employed as coarsening
strategy, reduces the number of nodes within 30 iteration steps to 41.749 nodes which is 30.0%
of the initial number of nodes, which results in a squared L2-error of ∥ucr30 − g∥2L2(Ω) ≈ 2.162e−3.

The resulting coarsened image, represented by ucr30 ∈ S1,cr(T30), is shown in Figure 17. The
underlying grid T30 shown in Figure 18 reveals the expected coarsening of the triangulation away
from the edges.
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Figure 17: LEFT: Plot of the Merle image g ∈ BV (Ω) ∩ L∞(Ω) on a grid with 140.625 nodes;
RIGHT: Plot of coarsened image ucr30 ∈ S1,cr(T30) on T30 with 41.749 nodes, cf. Figure 18.

Figure 18: Triangulation T30 in the coarsened image of ucr30 ∈ S1,cr(T30) on the right of Figure 17.
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[14] L. Baumgärtner, R. Bergmann, R. Herzog, S. Schmidt, and J. Vidal-Núnez, Total generalized
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