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Abstract
A posteriori error estimates are an important tool to bound discretization errors in terms
of computable quantities avoiding regularity conditions that are often difficult to establish.
For non-linear and non-differentiable problems, problems involving jumping coefficients, and
finite element methods using anisotropic triangulations, such estimates often involve large
factors, leading to sub-optimal error estimates. By making use of convex duality arguments,
exact and explicit error representations are derived that avoid such effects.
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1. INTRODUCTION

1.1 Sharp error estimation

The derivation of sharp a posteriori error estimates has been an active area of research over
several decades. Typical concepts involve the precise characterization of generic constants occur-
ring in residual estimates (¢f. [10, 1, 83, 50, 88, 40, 52]), the approximation of local problems by
higher-order methods (cf. [64, 39]), the usage of convex duality relations (cf. [66, 84]), and the de-
velopment of post-processing procedures to obtain equilibrated fluxes (¢f. [61, 32, 31, 51, 26, 81]).
For general discussions of various aspects of a posteriori error estimation, we refer the reader,
e.g., to [11, 30, 73, 86, 42]. Recently, fully computable error representations for various convex
variational problems have been identified by deriving explicit representation formulas for solutions
of dual problems in terms of non-conforming primal approximations. The concept avoids the
occurrence of typical constants, applies to a large class of non-quadratic, non-differentiable, con-
strained, and degenerate problems, for which classical approaches lead to sub-optimal error control.
Closely related concepts have been used in the derivation of a posteriori error estimates for mixed
and non-conforming methods (cf. [8, 7, 4, 45, 2]).

1.2 Prager—Synge identity
A well-known error representation in the context of the homogeneous Poisson problem, i.e.,
—Au=f in Q,
Vu-n=0 on Iy, (1.1)
u=0 onI'p,

where I'p,I'y € 0Q with TpUl'y = 9Q and f € LQ(QQ, was pointed out in [71] and follows from
the celebrated Prager—-Synge identity, i.e., if u € Wé’ () is the (weak) solution of the Poisson
problem (1.1) and z = Vu € W3 (div; Q) the solution of the corresponding (Fenchel) dual problem,

then for every v € W5*(Q) and y € W3 (div; Q) with divy = —f a.e. in €, it holds that
3lIVo = Vull3 o + 3lly = 2ll3.0 = 31IVo — 430 (1.2)
The identity (1.2) is an immediate consequence of the L2-orthogonality of y — z and Vv — Vu and
has the interpretation that the squared L2-distance between the gradient of a primal approxima-
tion v € W},’Q (©2) and a dual approximation y € W3 (div; Q) with divy = —f a.e. in  yields an
explicit and computable way to determine the sum of the primal and dual approximation errors.
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A limitation of using this interpretation practically is that often merely a primal approximation is
given and determining an optimal or nearly optimal dual approximation typically is too expensive.
For special problems involving two-dimensional Poisson (cf. [30]) and obstacle problems (cf. [28]),
this difficulty has been overcome by constructing a nearly optimal discrete dual vector field via a
local post-processing procedure.

1.3 Continuous convex duality

The Prager—Synge identity (1.2) can be generalized to a larger class of convex minimization
problems following, e.g., the works [77, 73, 74, 75, 76, 78, 22, 24]: let ¢: Q x R? — RU{+o00} and
¥ QxR — RU{+0o0} be (Lebesgue) measurable functions such that for a.e. « € 2, the functions
é(z,-): RT = RU{+oc0} and 9(x,-): R—RU{+o00} are proper, convex, and lower semi-continuous.
Then, the minimization of the functional I: W (Q) — RU{+o0}, for every v € WP (2) defined by

:/¢(.,vv)dx+/w(.,v)dx, (1.3)

denotes the (Fenchel) primal problem. A corresponding (Fenchel) dual problem consists in the
maximization of the functional D: Wp (div; ) — RU{—o0}, for every y € Wp (div; 2) defined by

/¢ dx—/{lw*(-,divy)dx. (1.4)

Here, ¢*: Q@ x R? — RU{+oc} and 9*: Q@ x R — RU{+00} denote the Fenchel conjugates (with
respect to the second argument) to ¢: QxR? — RU{+oc} and 1: QxR — RU{+o0}, respectively.
Fenchel-Young inequalities (cf. (2.3)) in comblnatlon with an integration-by-parts formula imply
a weak duality relation, i.e., for every v € WD (Q) and y € Wp (div; ©2), it holds that

/Vquﬁ dx—l—/z/}

(1.5)
/qb dx—/ﬁdivyv—z/}(-,v)deD(y).

1.4 Continuous strong duality, convexr optimality relations, and flux reconstruction

In many cases, e.g., if both ¢: @ x R = R and ¢: Q x R — R are Carathéodory mappings’
and for every v € LP(Q) and y € LP(;R?), it holds that ¢(-,y), (-, v) € LY(Q) (cf [48,
Thm. 4.1, p. 59, Prop. 1.1, p. 77]), there even holds a strong duality relation, i.e., there exists
minimizer u € W;,’p(Q) of (1.3), called primal solution, and a maximizer z € we' (div; ) of
(1.4), called dual solution, such that

I(u) = D(2). (1.6)

The strong duality relation (1.6) is available for a large class of convex minimization problems, e.g.,
including non-linear Dirichlet problems, obstacle problems, certain non-differentiable problems, and
degenerate minimization problems. It is equivalent to convex optimality relations, i.e., it holds that

z-Vu=¢*(-,2) + ¢(-, Vu) a.e. in Q, (1.7)

divzu=¢*(-,divz) +¢(,u) a.e. in Q. (1.8)

The convex optimality relations (1.7), (1.8) characterize equality in the Fenchel-Young inequalities

(cf. (2.3)) used in the derivation of the dual problem (cf. (1.5)). By the Fenchel-Young identity
(cf. (2.4)), the convex optimality relations (1.7), (1.8) are each equivalent to the inclusions

z € 0pp(-,Vu) a.e.in Q, (1.9)

divz € 9,9 (-, u) a.e. in 2, (1.10)

where we denote with 9,¢: QxR?% — 28" and Op1h: QxR — 28 the corresponding sub-differentials
of ¢: O x R - RU {400} and 1: @ x R — RU {+00} (with respect to the second argument).

LA mapping ®: QxR — R, £ € N, is called Carathéodory mapping if for a.e. x € Q, the function ®(x, ): R 5 R
is continuous, and for every r € R, the function ®(-,7): Q — R is (Lebesgue) measurable.
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If p(z,-) € CH(RY) for a.e. x € Qor ¥(x,-) € CL(R) for a.e. z € Q, then (1.9), (1.10) each become
z=D¢(-,Vu) a.e. inf, (1.11)
divz = Dy(-,u) a.e. in Q, (1.12)

where the identity (1. 11) has an interpretation as reconstruction formula, in the sense that given a
primal solution u € W5P(), a dual solution 2z € Wp (div; Q) is immediately available via (1.11).

1.5 Generalized Prager—Synge identity

The convex and concave functionals I': W57 () — RU{+00} and D: Wﬁ,/ (div; ) > R U {—o0}
give rise to the definition of the non-negative coercivity measures p?: W}D’p (Q) x ng (Q) - Rand
P W}f,, (div; ) x Wﬁ,, (div; Q) — R, for every v,5 € WHP(Q) and y,7 € W]’\}/ (div; ) defined by

Pi(v,0) = 1(v) = I1(0) = (31(D), v = D)wpr(e) »
P2 p(y.9) = ~D(y) + D@) + (6D@),y = Dw (@) ,

in case that I: WSP(€) — RU{+oo} and D: Wp (dlv Q) — RU{—o0} are Fréchet differentiable.
The quantities (1.13) for every v,v € W P(Q) and y,y € Wi (div; Q) measure the distance between
the functionals I and —D and their tangents at I(v) and —D(y) evaluated at v and y, respectively.
More generally, the variations 67 and D in (1.13) can be replaced by suitable sub-gradients. Since
0I(u) =0and 6D(z) =0 (or 0 € I(u) and 0 € 9D(z)), in case of a strong duality (1.6), we find
a generalized Prager-Synge zdentzty, i.e., given a primal solution u € WD (©) and dual solution
z € Wp (div; Q), for every v € WP () Wlth I(v) < +occand y € Wp (div; ) with D(y) > —o0,
it holds that

(1.13)

Prot(v:y) = p (v, 1) + 9% p(y, 2)
= I(v) = I(u) + D(z) — D(y)
= I(v) - D(y)
= N2 (v, 9)
i.e., the inaccessible total error p2., (v, y) equals the accessible primal-dual gap estimator ngap(v, ).
For the Poisson problem (1.1), we have that ¢( )= ¢*(r) = i|r* forall r € R, ¢(z,s) = — f(x)s
for a.e. z € Q and all s € R, and ¢*(z, s) —I{ f(o(8) forae. x € Qandall s € R, Wherethelat-

ter indicator functional enforces the constraint divy = — f a.e. in 2. Hence, for every v € W P(Q)
andy € WN (div; ) with divy = — f a.e. in Q, with an integration-by-parts formula, we ﬁnd that

(1.14)

2 2
Meap(0,9) = 5[ V0[3.0 = (4. Vo)a + 5llyll3 0
2
=3lVv-ylzq-
It is remarkable that the employed global relations lead to an error representation as an integral of a
non-negative function. Hence, the right-hand side can be decomposed using partitions and thereby
provides meaningful local refinement indicators. This observation can equally be generalized:

using the definitions (1.3), (1.4) and an integration-by-parts formula, for every v € WAP(Q) with
I(v) < 400 and y € WX (div; Q) with D(y) > —oo, we arrive at the general representation

(1.15)

ngap(vvy) = ¢(,VU) —y~Vv+¢*(-,y) dz

@ (1.16)

+/ P(,v) —divye +¢*(-,divy) dz
Q

Both integrands on the right-hand side of (1.16), by the Fenchel-Young inequality (cf. (2.3)), are
point-wise non-negative and vanish if and only if convex optimality relations (1.7), (1.8) are satisfied.
Hence, the primal dual-gap estimator measures the validity of the convex optimality relations
(1.7), (1.8). Note that the convex optimality relations (1.7), (1.8) do not require any regularity of
¢: QxR — RU{+oo} and ¢: Q x R — RU{+00}, which makes the primal-dual gap estimator
a predestined a posteriori error estimator for non-differentiable convex minimization problems.
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1.6 Discrete reconstruction formula

As in the case of the Poisson problem (1.1), dual problems typically involve constraints (e.g.,
divy = —f a.e. in Q (¢f. (1.2))) and are, thus, significantly harder to solve than primal problems,
which often lead to monotone operators for which efficient iterative numerical solution procedures
are available. It is, therefore, fundamental to avoid the explicit numerical solution of dual problems.

For a Crouzeix-Raviart approximation of the Poisson problem (1.1), seeking for ui" € S L 5 (Th)
such that for every vy, € S5 (Tr), it holds that
(Vau", Vivp)a = (fr, Dhvn)e (1.17)

where fj, € L°(7T},) is an element-wise constant approximation of f € L?(f), using elementary but
fundamental relations between the Crouzeix— Rav1art and the Raviart-Thomas element, a remark-
able relation, called Marini formula, between uj” € Sp; e (T1) and a Raviart—-Thomas solutlon z,TLt €
RTY(Ts) of the corresponding dual formulatlon to (1 17) has been established in [63, 9, 7], .

2t = Vhug ‘Zl(ide —Ipidge) ae. in Q. (1.18)

In (1.17), S5°"(T5) denotes the Crouzeiz-Raviart finite element space, RTS(Tr) the Raviart-
Thomas finite element space, Vj, the element-wise application of the gradient operator V, and IIj
the (local) L2-projection operator onto the space of element-wise constant functions £°(73,). Due
to RTw(Tn) € W2 (div; Q) and div 2! = —fj, a.e. in Q, if f = f, € L%(Th), 27 € RTY(Tr) given
via (1.18) is admissible in (1.2). In other words, in the case of the Poisson problem (1.1), the
discrete reconstruction formula (1.18) enables to approximate the primal and the dual problem
simultaneously using only approximation (1.17).

1.7 Discrete convexr duality

Tt is possible to construct a discrete primal problem that induces the same (discrete) convex
duality relations like the continuous primal problem (1.3), i.e., a corresponding discrete dual
problem, a discrete weak duality relation, the equivalence of a discrete strong duality relation to
discrete convex optimality relations and, most important, a discrete analogue of the reconstruction
formula (1.11) or generalization of the discrete reconstruction formula (1.18), respectively. To this
end, we need to perform three non-conforming modifications on the primal energy functional (1.3):

e we replace the energy densities by ¢ : Q x R? — RU {+00} and 9p,: Q x R — RU {+o0},

which are, again, are (Lebesgue) measurable functions such that for a.e. x € Q, the functions
én(x,+): RY — RU{+o00} and ¥ (z,-): R — RU{+o0} are proper, convex, and lower semi-
continuous. In addition, for every r € R% and s € R, the functions ¢p,(-,7): Q — RU {400}
and ¥y (-, 8): R = RU {+oco} are element-wise constant;

e we incorporate a (local) L?-projection II;, onto L£°(7}) into the lower-order term;

e we replace the weak gradient V with the element-wise gradient Vy,.

With these three non-conforming modifications the discrete primal problem is given via the
minimization of the functional Iy": S5 (Tn) — R U {400}, for every v, € S5 (Ts) defined by

Iﬁr(’uh) ::/Q¢h(~,vhvh)dx+/Qz/Jh(-,Hhvh)dx. (1.19)

A corresponding discrete dual problem to the minimization of (1.19) consists in the maximization
of the functional D}': RTR(Tn) — R U {—o0}, for every y, € RTN(T;) defined by

Dt (yn) /(bh M yn) dx—i—/wh ,divyy) dx. (1.20)

Note that the three non-conforming modifications (more precisely, the first two modifications), in
particular, ensure that the integrands in (1.19) and (1.20), respectively, are element-wise constant.
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This is crucial for establishing a strong duality relation between the discrete primal problem (1.19)
and the discrete dual problem (1.20). As above, Fenchel-Young inequalities imply that a discrete
weak duality relation applies, i.e., for every v, € S5 (Th) and ys € RTY(Tr), it holds that

I (vp) > / Vo - Upyn — &5, (-, Mpyn) do +/ i (-, Hpop) da
@ @ (1.21)

—/ &5 (-, Mpyn) do — / divynvn — ¥n(- vn) dz > Dif(yn) -
Q Q

In (1.21), we used a discrete integration-by-parts formula without contributions from element sides,
i.e., for every vy, € S}D’CT(E) and y, € RTY(Tr), it holds that

(Vhon, pyn)a = —(divyp, pvp)a - (1.22)

The use of the (local) L2-projection in (1.22) is optional, but crucial or establishing a strong
duality relation between the discrete primal problem (1.19) and the discrete dual problem (1.20).
There holds a discrete strong duality relation, i.e., it holds that

I (u§") = Dt (2p1), (1.23)

if and only if there hold discrete convexr optimality relations, i.e., it holds that
Myzp' - Vaug” = o5 (5 pzpt) 4+ ¢n(-, Vaug')  ace. in (1.24)
div 2t Mpus™ = (-, div 2pt) + (4, Mpuf™)  ace. in Q. (1.25)

By the Fenchel-Young identity (cf. (2.4)), the discrete convex optimality relations (1.24), (1.25)
are each equivalent to the inclusions

Uz;" € 0rdn(-, Viuy') ae. in Q, (1.26)
div 2t € Oy (-, Hpus™)  ae. in Q. (1.27)
If ¢p(z, ) € CL(RY) for ae. z € Q or ¢y, -) € CH(R) for a.e. x €, then (1.26), (1.27) each become
2" = Dép(-, Vyus)  ae. in Q, (1.28)
div 2}t = Dy, (-, uf) a.e. in Q. (1.29)

Note that, different from the continuous reconstruction formula (1.11), the discrete convex opti-
mality relation (1.28) does not give full information about a discrete dual solution 25' € RTw(Tp).
However, using the additional information provided by the discrete convex optimality relatlon (1 29),
the surjectivity of the divergence operator div: RTY(75) — LO(Ty) if Tp # 0 (and surjectivity
of div: RTY(Tn) — L°(Tr)/R if Tp = ), and the discrete Helmholtz decomposition

(L2(Tn)? = div (ketlgrg, (73,) © Va(Sp (Th) (1.30)

if ¢p(x,) € CH(R?) and 9y, (z,-) € CY(R) for a.e. x € Q, it is possible to establish a discrete
strong duality relation (1.23) and a generalized Marini formula (cf. [16, 38, 59]), i.e., it holds that
Dy (-, g
zit = Do (-, Viui) + Do iy 7d W)
Similar to the equivalence of (1.10) to u € d,9(-,div z) a.e. in , that is u = Dy(-,div z) a.e. in Q
if Y(z,-) € CY(R) for a.e. z € Q, if instead ¢} (x,-) € CH(RY) and ¥} (z,-) € CL(R) for a.e. x € Q,
there exists an inversion of the reconstruction formula (1.31) (cf. [24]), i.e., it holds that

uf” = Dy (-, div 2;") + Doy (-, I 27") - (idga — Ipidga) — ace. in Q. (1.32)

In many cases, we have that ¢, = v, e.g., if ¥(z,s) = — f(x)s for a.e. z € Q and all s € R with an
element-wise constant function f € £°(73), and, in this case, by Jensen’s inequality, we have that
—Djt(z;t) < —D(z;'). Hence, in general, an inconsistent or non-conforming discretization of the
primal problem is necessary to ensure strong discrete duality and to obtain a reconstruction formula.

(idga — Mpidga) a.e. in Q. (1.31)
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1.8 A priori error estimates

The continuous strong duality relation (1.6) and the discrete strong duality relation (1.23) are
useful in deriving a priori error estimates for the primal problem (1.3) and the dual problem (1.4).
Letting vy, == II{"u € S5 (T5) and yj, == 1T}z € RTY(Th) be the Crouzeix Raviart and Raviart—
Thomas quasi-interpolants of a primal solution u € Wll,’p (©2) and a dual solution z € W¥ (div; ),
respectively, if a strong duality relation (i.e., (1.6)) applies, due to the discrete weak duality
relation (1.21), we have that

() = P (0,57 + 2 e 25)
= (17 (on) — I (ug)] + (D5 (21) — Dy (yn)]
< I (vn) — Dy (yn)
= 177 (vn) = I(u)] + [D(2) — D (23,")],

(1.33)

i.e., the primal approximation error between the discrete primal solution u§" € SBCT(E) and the
interpolant of the primal solution u € W}D’p (©) plus the dual approximation error between the
discrete dual solution 27 € RTY(Ty,) and the interpolant of the dual solution z € W& (div; ) is
bounded in terms of primal and dual interpolation errors. For the Poisson problem (1.1), from (1.33),
using that Vv, = I1,Vu a.e. in Q together with Jensen’s inequality, div y, = II,div z a.e. in Q to-
gether with div z = — f a.e. in (1, an integration-by-parts formula, and the second binomial formula,
it follows that
3IIVion = Vi3 .0 + 3llyn — 21150 < 51Vavnll3o — 31 Vullsq
— (foon —wa = 3lz13.0 + 3wl 0
<(z,z=yn)a — 3llzl3.0 + 3l

%HZ - yh”gn .
Ifu € Wis2(Q) (ie., 2 € W*2(Q;R?)), s € (0,1), the right-hand side in (1.34) is of order O(h?*).
This short proof can be generalized to a large class of variational problems (¢f. [16, 58, 18]) and
avoids the usage of Strang lemmas to control the effect of the non-conformity of the discretization.

It has recently been observed that Crouzeix—Raviart discretizations lead to higher convergence
rates than classical conforming methods for certain non-differentiable problems (cf. [41, 17]).

(1.34)

1.9 Data approximation and inezxact solution
1.9.1 Data approzimation

In the case of a linear lower-order term ¢: Q x R = R, i.e., ¥(z,s) = —f(z)s for a.e. z € Q
and all s € R for some f € L? (), the discrete dual solution z* € RT(75) given via (1.31) is
admissible in the continuous dual problem, i.e., satisfies D(z}!) > —o0, if and only if divy, = —f
a.e. in Q, i.e., if and only if f = f;, € L(T) is element-wise constant. If this is not the case, then
we introduce a modified functional (") : WP () — RU{+00}, for every v € W5P(Q) defined by

IM (v) ::A¢h(~,Vv)dw+Awh(~7Hhv) dz . (1.35)

Then, for a minimizer u™ € WSP(2) of (1.35), due to I™ (u™) < 1™ (u), we have that
p(u™ u) = I(u™) — I(u)
< T(u™) — 1M (™) 4 1) (u) — I(u)
< N6, Va™) = 6n (-, Vu") g + [0 u™) = n (- Tu™) 10
+0n(, Vu) = o( Vu)ll,a + [¥n( ) = (s u)fa -
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For autonomous higher-order term ¢: R — RU{+oc} and linear lower-order term ¢: QxR — R,
i.e., (x,s) = —f(x)s fora.e. z € Qand all s € R for some f € L (Q), with discretization iy, : Qx
R — R, given via ¥y (z,s) = —fr(x)s for a.e. x € Q and all s € R, where f;, ==, f € £L°(T),
due to f — f L II,(u —u™) in L?(Q), using element-wise Poincaré‘s inequality, we find that

P%(U(h)ﬂ) =(f— fo,u— uh) — Iy (u — U(h)))ﬂ
<cp [hr(f = f)lly 2l Vi = Vul [0
Then, the arguments explained above apply to the modified functional (1.35).

1.9.2 Inezxact solution

In the case ¢, (z,-) € C*(R?) and 1y, (z,-) € C*(R) for a.e. € 2, we can incorporate errors
resulting from the inexact iterative solution of the discrete primal problem via discrete residuals.
More precisely, if 75" € S5 (75) is an inexact approximation of the discrete primal problem,
i.e., quasi-minimizer of (1.19), we represent the residual in the discrete W'2-semi-norm. More
precisely, we choose 7, € S5 (T5) such that for every v, € S5 (Ts), it holds that

(ViTh, Vion)a = (Don(-, Vaug'), Vivn)a + (DYn (-, ug”), hon)a -

Then, 75" € S5 (75) is a minimizer of the functional I¢": S5 (75) — R, for every vy, € S5 (Th)
defined by

ﬁ%mzﬁ&vawm+Aﬁwwwm.

where ¢p, : QxR% — R is defined by ¢y, (, ) = ¢p(z,7)—Vu7y(z) -7 for a.e. € Qand all r € RY.
The identities and estimates derived above now hold with ¢, replaced with ¢y,.

1.10 Properties of the primal-dual gap estimator

In general, the discrete primal solution u§" € 8},’07'(771) is not admissible in the continuous pri-
mal problem since u§" ¢ Wé’p (Q) and, thus, cannot be inserted in the primal-dual gap estimator,
while the discrete dual solution 2t € RTY(Ts) € WX (div; Q), up to data approximation terms, is
admissible in the continuous dual problem. An admissible approximation @} € W})’p (Q), e.g., can
be obtained via a cheap node-averaging procedure. The generalized Prager—Synge identity (1.14)
imposes no restrictions about optimality of the arguments, so that with admissible approximations
uy’ € W}J’p(Q) with I(u§") < +oo and z}* € W}\),/ (div; Q) with D(z}") > —oo, we still have that

Pron (T Z11) = g (@5, Z5) - (1.36)
The primal-dual gap error estimator has some remarkable features:
It is obtained by a simple post-processing procedure of the discrete primal problem (¢f. (1.31));
It is reliable and efficient with constants one (cf. (1.14));
It does not require an exact solution of the possibly non-linear primal problem (cf. (1.36));
It is globally equivalent to residual type estimators for many model problems;
Its integrands are point-wise non-negative and, thus, it is suitable for local mesh-refinement;

It applies to non-linear, non-differentiable, degenerate, scalar, and vectorial problems and
does not require the development of a particular error analysis.

Besides these positive features, some relevant properties are desirable but are not yet established:

e Is it possible to prove optimal convergence of adaptive methods based on the local mesh
refinement indicators given by the local contributions to the primal-dual gap estimator?

e Can one devise a general strategy to ensure admissibility of the reconstructed flux in the
dual problem?
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The second aspect arises in model problems with non-differentiable function ¢:  x R? —RU{+oc0}
and some remedies have been proposed (cf. [41, 21, 24]). The first aspect primarily relates to
the lack of local efficiency estimates. Due to the global equivalence of primal-dual gap estimators
to residual type estimators, for which convergence theories are available, convergence is expected.
The verification of this equivalence follows closely the derivation of estimators of that type. In fact,
the discrete primal solution uj" € Sj; L (Th) acts as a substitute of the prlmal solution u € W1 Q).
In the case of the Poisson problem (1 1), the conforming P1-approximation u} lest b(Th), and f fhs
due to I, z}* = Vjug” ae. in Q and Vuh ~Vypus" L L fr(idgpa—IT4idga) in L (9 ]Rd) we have that

1
néap(UZ azh = %HVuﬁ — Vhuy' ||2,Q + ﬁ”fh(lde - thde)||2,Q~

Letting 0, := vl — uf” € S5 (Tr,) and 118", € Sh(Th) be its node-averaging quasi-interpolant,
so that, due to V,d, L V5 (ShH(Tr)) in L2(£; RY), via element-wise integration-by-parts, we obtain

IVul! = VauT 3.0 = (Vadn, Vadn — VaIT§ 0n)a
= ([Vu}' - n], {6n — 01 D)s, + (o b = 50
< Cav nres h(uh ) ||VU vhuzr

The converse estimate uses typical bubble function arguments (cf. [36, 58]).

1.11 Recent related results and open problems

The concepts described above can be generalized to other pairs of finite element methods:

e In [21], a discrete convex duality theory for a first-order Discontinuous Galerkin (DG) method
was derived. More precisely, in [21], a discrete primal problem is given via the minimization
of the functional Iffg: LY(Tr) — RU{+o0}, for every vy, € L1(Ty) defined by

I (vy) ::/Qd)h('avhvh)der/Qﬂ}h(',ﬂhvh)d:z:
+ ) Ellvnls@s)lzs + Y El{vn}s(@s)l3s,

SESh SEeSh

and a corresponding (Fenchel) dual problem is given via the maximization of the functional
DZQ (RTY(Ty) = (L2(Th))+ (idga —1Tpidga ) LO(Tr) — RU{ —oc}, for every yn, € RT*49(Ty)
defined by

qu (yn) /¢h (-, pyn) dx—/wh ,divyy) da
= 2 sl sl + 3 g lion sl

SESy, SeESy

A discrete strong duality applies, i.e., I1¢(u{?) = D} (2) for some u{? € £L1(Ty,) and 2}
RT%99(Ty,), provided that the parameters ag, 85 > 0, S € S, are appropriately chosen;

e In [82], a discrete convex duality theory for a Hybrid High-Order (HHO) method was derived,
thus, representing the first step towards higher-order element methods.

1.12  Owutline of the article

The article is organized as follows. In Section 2, we introduce the employed notation and the
relevant function and finite element spaces. In Section 3, we propose a general approach for explicit
a posteriori error representation based on convex duality relations. In Section 4, we apply the
general concepts of Section 3 to typical model problems including the non-linear Dirichlet problem,
the obstacle problem, the Signorini problem, the Rudin-Osher—Fatemi image de-noising problem,
a minimization problem jumping coefficients, the Navier—Lamé problem, and the Stokes problem.
In Section 5, in the case of the non-linear Dirichlet problem, we establish the global equivalence
of the primal-dual gap estimator to a residual type estimator. In Section 6, we establish that
the node-averaging quasi-interpolation operator locally preserves approximation capabilities. In
Section 7, we review the practical relevance of the theoretical investigations of Section 4.
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2. PRELIMINARIES

2.1 Convex analysis

For a (real) Banach space X, which is equipped with the norm |- || x : X — R>¢, we denote its
corresponding (continuous) dual space by X* equipped with the dual norm || - || x+: X* — R>o,
defined by [|z* || x+ = sup), <1 (¥*, 7) x for every z* € X, where (,-)x: X" x X — R, defined
by (z*,2)x = x*(x) for every z* € X* and = € X, denotes the duality pairing. A functional
F: X — RU{+oo} is called sub-differentiable in x € X, if F(x) < oo and if there exists 2* € X*,
called sub-gradient, such that for every y € X, it holds that

(z*,y —z)x < F(y) — F(). (2.1)

The sub-differential 9F : X — 2% of a functional F': X — RU{+o0} for every 2 € X is defined by
(OF)(x) = {z* € X* | (2.1) holds for z*} if F(z) < oo and (OF)(z) = 0 else.
For a given functional F': X — RU{+o00}, we denote its corresponding (Fenchel) conjugate by
F*: X* —» RU{+£oo}, which for every z* € X* is defined by
F*(z*) == sup (z*,z)x — F(x). (2.2)
zeX
If F: X — RU{+o0} is a proper, convex, and lower semi-continuous functional, then also its (Fen-
chel) conjugate F*: X* — RU{+oc0} is a proper, convex, and lower semi-continuous functional (cf.
[48, p. 17]). Furthermore, for every z* € X* and « € X such that F*(«*) 4+ F(z) is well-defined,
i.e., critical cancellations oo — co do not occur, the Fenchel-Young inequality

(", 2y x < F*(2*) + F(x) (2.3)
applies. In particular, for every x* € X* and x € X, it holds the Fenchel-Young identity
z* € (0F)(z) & (2",2)x =F*(2")+ F(x). (2.4)

The following convexity measures for functionals play an important role in the derivation of
an explicit a posteriori error representation for convex minimization problems in Section 3; for
further information, we refer the reader to [33, 68, 69, 20].

Definition 2.1 (Brégman distance and symmetric Brégman distance). Let X be a (real) Banach
space and F: X — R U {+oc} proper, i.e., D(F) :={x € X | F(x) < 0o} # 0.
(i) The Brégman distance 0%: D(F)x X — [0, +oc] for every x € D(F) and y € X is defined by

op(y,x) =F(y)— F(z)— sup (a*,y—az)x,
z*€(0F)(x)

where we use the convention sup(f)) == —oo.
(i) The symmetric Brégman distance 0%75: D(F)? — [0, +00] for every z,y € D(F) is defined by

ops(y,x) = 0n(y,x) + op(z,y) = (" —y* 2 —y)x,

inf
x*€(OF) (x);y* €(OF)(y)

where we use the convention inf(() := 4oo.

Definition 2.2 (Optimal convexity measure at a minimizer). Let X be a (real) Banach space and
F: X — RU{+o0} proper. Moreover, let x € X be minimal for F': X — RU {+oc0}. Then, the
optimal convexity measure p%: X2 — [0,+oc] at x € X for every y € X is defined by

pF(y,z) = F(y) — F(z) > 0.

Remark 2.3. Let X be a (real) Banach space and F: X — RU {400} proper. Moreover, let x €
X be minimal for F: X — RU{4o00}. Then, due to 0 € (OF)(z), for every y € X, it holds that

o (y,x) < ph(y, ).
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2.2  Function spaces

Throughout the article, unless otherwise specified, we denote by Q € R¢, d € N, a bounded
polyhedral Lipschitz domain, whose (topological) boundary is disjointly divided into a closed
Dirichlet part I'p and an open Neumann part Iy, i.e., I'p,I'y € 0Q and I'pUl'y = 0.

For ¢ € N and p € [1,4+00), we employ the notation

UP(Q) = {ve LP(RY) | Vv € LP(Q R},
Z8(Q) = {y € LF'(R™?) | divy € L' (;RY)},
where the divergence needs to be understood row-wise , i.e., if y = (yi;)ic1,... 0y, jeq1,....ay € Z4 (),
then (divy); :== Zj Ojyi; for alli =1,...,¢. In the special case £ = 1, we employ the standard
notation LP(Q) = LP(Q RY), WhP(Q) = Uf(Q), and WP (div; Q) = Z7(Q).
For ¢ € N, a (Lebesgue) measurable set M C R%, d € N, and (Lebesgue) measurable functions,
vector or tensor fields u,v: M — R?, we employ the inner product

(u,v) pr ::/ u@uvde,
M

whenever the right-hand side is well-defined, where ®: Rf x R? — R either denotes scalar multi-
plication, the Euclidean inner product, or the Frobenius inner product. For ¢ € N, p € [1, +0o0],
and a (Lebesgue) measurable set M C R"™, n € N, we employ the notation |- ||, ar = || | o (ar;m¢)-

Denote by tr(-): UP(Q) — W'~ #?(9Q; RY) the trace and by tr(-)n: ZP(Q) — W=7 (9Q; RY)?
the normal trace operator. Then, for every v € U} (Q) and y € Z} (), it holds that

(V’U, y)Q + ('U, div y)Q = <tr(y)nv tr(”»@ﬂ ) (25)
where we abbreviate (tr(y)n,tr(v)), = (tr(y)n, tr(v))wi-L.r(yrey for all y € W= 72 (;RY),
v e W 5P(y;RY), and v € {Ty,0Q}. Then, for £ € Nand p € [1, +oo] we employ the notation

Uy p(Q) = {v e U7(Q) | tr(v) =0 a.e.on Tp},

72 () = {y € Z2(Q) | tr(y)n = 0 in W7 * Tz RY}
In what follows, we omit writing both tr(-) and tr(-)n in this context. For £ € N and p € [1, +00),
we employ the notation U,(2) = U} () if T'p = 9Q as well as 7y () = ZfN(Q) if T'y = 0.

In the special case £ = 1, we employ the standard notation WEP(Q) = Ut p(Q), W, P(Q) = Ut (),
Wp (div; Q) = Z} 5 (Q ) and Wp (div; Q) = Z7,(Q).

2.8 Triangulations

Throughout the entire paper, we denote by {7, }r>0, a family of regular (i.e., uniformly shape
regular and conforming, triangulations of Q CR?, d € N, cf. [49]). Here, h > 0 refers to the average
mesh-size, i.e., if we set hy = diam(7") for all T' € T}, then, we have that h = m > rer, hr-
For every element T' € T, we denote by pr > 0, the supremum of diameters of inscribed balls. We
assume that there exists a constant wy > 0, independent of A > 0, such that maxre7;, th;l < wyp.
The smallest such constant is called the chunkiness of {7y, }n>0. We define

Sp =S uSP*,
S, =A{TNT"|T,T' € Ty ,dimy(TNT') =d—1},
SP={TNIQ|T €T, dimy(TNIN) =d—1},
S} ={S €S, |int(S) C~}forye{Tp,I'n},
where for every M C R?, we denote by dim (M) = inf{d’ > 0| s (M) = 0}, the Hausdorff
dimension. The set N}, contains the vertices of 7j,.

2Here, W= 377 (; RE) := (W= 5P (y; RE))* for all v € {T'y,9Q}.
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For k € NU{0} and T € Ty, let P*(T') denote the set of polynomials of maximal degree k on 7.
Then, for k € NU{0}, the sets of element-wise polynomial functions and continuous element-wise
polynomial functions, respectively, are defined by

LF(Tr) = {vn € L(Q) | vp|7 € PE(T) for all T € T},
SH(Th) = L¥(Th) N C°(Q) .
In addition, we set S (75,) = S*(T,)NW5P(Q) and SE(T5) = S*(Th) "Wy P (). The (local) L2-

projection IT;, : L (€ RY) — (L9(T3))" onto element-wise constant functions, vector or tensor fields,
respectively, for every v € L'(Q;R?) is defined by

Myv|r = ][ vdxr forall T € Ty.
T

The element-wise gradient Vj,: (£1(73))* — (£°(75))¢*? is given via the element-wise application of
the gradient operator, i.e., for every v, € (L*(T3))¢, we have that V vy |1 = V(vp|7) for all T € Tp,.

Moreover, for m € NU {0} and S € Sy, let P™(S) denote the set of polynomials of maximal
degree m on S. Then, for m € NU {0} and M, € {Sh,Si,S,?Q,S}ED,S,EN}, the set of side-wise
polynomial functions is defined by

L™(Mp) = {vp € L®(UMy,) | vp|r € P™(S) for all S € My} .
The (local) L2-projection 7y, : L' (USh; RY) — (£°(Sy))* onto side-wise constant functions, vector,

or tensor fields, respectively, for every v € L'(USy; RY) is defined by

TRU|g = ][ vds forall S €Sy
s

2.3.1 Crouzeix—Raviart element

The Crouzeiz—Raviart finite element space (cf. [44]) is defined as the space of element-wise
affine functions that are continuous in the barycenters of inner element sides, i.e.,?

S (Ty) = {vn € LYT) | maloa]s =0in S for all S € Sp } .

The Crouzeix—Raviart finite element space with homogeneous Dirichlet boundary condition
on I'p is defined as the space of Crouzeix—Raviart finite element functions that vanish in the
barycenters of boundary element sides that belong to I'p, i.e.,

S5 (Th) = {vn € S%"(Th) | mu[vn]s =0in S for all S € S} }.

We employ the notation Sg*™ (75,) = S5 (Tn) if T'p = 9. The functions g5 € S“"(T3), S € Sh,
that satisfy the Kronecker property pg(zs/) = dg.g for all S, 5" € Sy, form a basis of ST (7).
Then, the functions g € S5 (T1), S € Si\S;. , form a basis of S (T;,). For £ € N, we employ
the notation

US(Th) = (S (), Uep(Th) = S5 (T) . Ugh(Th) = (S (T)".
The (Fortin) quasi-interpolation operator IT§" : U} () — U§" (Ty,), for every v e U} (Q2) is defined by
= Z vs s, where vg == ][ vds, (2.6)
SES s

preserves averages of gradients and moments, i.e., for every v € U} (£2), it holds that
Vull§"y = M, Vo (£°(T))?, (2.7)
w15 v = o (LO(Sh))E. (2.8)
In particular, from (2.8), it follows that IT5" (U7 1,(2)) € U, (Ta) and 1157 (U7 () € UgG(Th).-

3Here, for every inner side S € S}il, the jump is defined by [vp]s == 'Uh‘T+ —vp|r_ on S, where T+, T_ € Tp,
satisfy 0T+ N9T- = S, and for every boundary side S € S, N 9, the jump is defined by [vp]s == vp|r on S,
where T' € T}, satisfies S C 0T
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2.8.2 Raviart—-Thomas element

The (lowest order) Raviart—Thomas finite element space (cf. [72]) is defined as the space
of element-wise affine vector fields that have continuous constant normal components on inner
elements sides, i.e.,*

RT°(Ty) = {yh e (LY(T)? | yn|r - nr = const on AT for all T € Ty, ,
[yn -nls =0on S forall S €S} }.

The Raviart-Thomas finite element space with homogeneous slip boundary condition on I'y is
defined as the space of Raviart—-Thomas vector fields whose normal components vanish on 'y, i.e.,

RIY(Th) = {yh € RT°(T1) | yn -n =0 on I‘N} )

We employ the notation RTY (75) == RTY(Tr) if Txy = 0. The vector fields s € RT°(T3), S € Sh,
that satisfy the Kronecker property ¥g|s/-ng: =ds, g on S’ for all S’ € S, where ng for all S € S, is
the unit normal vector on S pointing from T to T’y if Ty NT_ = S € Sy, form a basis of RTY(T3).
Then, the vector fields g € RTY(Tr), S € Sp \ 'y, form a basis of RTS(7x). For £ € N, we
employ the notations

YTh) = {y = Wij)ieqr,...ey.jett,ay | Wij)jeq,...ay € RT°(Ty) foralli=1,...,¢},
Z/ N(Th) = {y = Wij)ictt ey jettomay | Wi)jeqt,ay € RIN(Ty) forall i =1,...,¢},
00(Th) = {y = Wij)ieqr,..ey.jeft,ay | Wij)jeq,...ay € RIS (Tn) foralli=1,...,¢}.

The corresponding (Fortin) quasi-interpolation operator Iyt : Wh1(Q; R*) — ZI't(Ty,), for every
y € WHH(Q; R*4) is defined by

= Z ys s, where yg = ][ yng ds, (2.9)
SES S
preserves averages of divergences and normal traces, i.e., for every y € W11 (€Q; R**?) it holds that
divITyly = Mydivy  (£°(T5)), (2.10)
[ yln = [magln (£2(Sn))" - (2.11)
In particular, from (2.11), it follows that II;*(Z7 () € Z;'% (Tn) and I}/ (Z} () € Z7(Ta)-

2.8.3 Discrete integration-by-parts formula
For every vy, € U"(Ty,) and yp, € Z;*(Ty), there holds the discrete integration-by-parts formula

(Vior, Opyn)a + pop, div yh)Q = (TR, YnM)oq - (2.12)
which follows from the fact that for every y, € Z;*(7), it holds that y,|7rnr = const on 9T for all
T € T, and [ypn]s = 0on S for all S € Si, and for every vy, € US"(Ty), it holds that 7, [vs]s = 0
forall S € S;. In [38, 59, 41, 21, 16, 22], the discrete integration-by-parts formula (2.12) formed a
cornerstone in the derivation of a discrete convex duality theory and, as such, plays a central role
in the derivation of the results presented below. Appealing to [19, Sec. 2.4] and [24, Subsec. 2.3.3],
there hold the discrete Helmholtz decompositions

(L2(Tn)) ™! = ker(div]z;, (1)) © Va(UED(Th)) (2.13)
(L2(Th))" = ker(Valugr, (7)) @ div (Z;! (Th)) (2.14)

4For every inner side S € Sh, the normal jump is defined by [yn,n]s = yh‘T+ nr, + yrlr_nr_ on S, where
Ty, T_ € Ty satisfy 0T N 0T =S, and for every T € Ty, np: 0T — S9-1 denotes the outward unit normal
vector field to T, and for every boundary side S € Sy, N 912, the normal jump is defined by [ypn]s = yn|rn on S,
where T € T}, satisfies S C 9T.
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3. EXACT A POSTERIORI ERROR ESTIMATION FOR CONVEX MINIMIZATION PROBLEMS

3.1  Continuous convex duality

Primal problem. Let ¢: Q x R*? — RU {+00} and ¥: Q x R* — RU {+00} be (Lebesgue)
measurable functions such that for a.e. x € €, the functions ¢(z,-): R*% — RU {+oc} and
Y(z,-): R® — R U {+oo} are proper, convex, and lower semi-continuous such that for every
y € Lp (;R*4) and v € LP(Q;R?), the following integrals exist and are finite or infinity, i.e.,

/(b dx/¢ )dz € RU {+o0}.

Moreover, let ge W~ i (T ; RY) be given Neumann boundary data and let up € W'=5 4’(I‘D, R?)
be given Dirichlet boundary data. We examine the minimization problem of the functional
I:U}(Q) = RU {400}, for every v € U (2) defined by

I(v) /QS Vo) dx—|—/w Ydz — (g,v >FN+I{uD}() (3.1)

where Iﬂf’D}: W= 2(Tp;RY) — RU {+00} for every & € W'~ #?(I'p; RY) is defined by

r - 0 if v =up a.e.onI'p,
Lo (V) =
{up} +o0o  else.

In what follows, we refer to the minimization of I: U} (Q2) — R U {400} as the primal problem.

Dual problem. Let ¢*: Q x R4 — RU {+o0} and ¢*: Q x R® — RU {+oc} be the Fenchel
conjugates to ¢: Q x R4 — RU{+o0} and 1: Q x R — RU {+o0}, respectively, with respect
to the second argument and assume that for every y € Lp/(Q; R) and v € Lp/(Q), the following
integrals exist and are finite or infinity, i.e.,

/Qd)* dx/w v)de € RU{+o0}.

Then, a (Fenchel) dual problem to the minimization of (3.1) is given via the maximization of the
functional D: Z7 () — RU {—oo}, for every y € ZJ(2) defined by

D) =~ [ 6"Capde = [ 0 (odivg) o+ (omup)e, — I (om). (3.2
where ITN : W= 2 (Iy; RY) — RU {+00} for every § € W~ # (I'y; RY) is defined by

{9}"
r 0 ify=gin W~ ”p(FN,R),
Iy (9) =
9 400 else.

We always assume that ¢: Q x R*? - RU {+o0} and ¢: Q x R® — RU {+oc} are such that
(3.1) admits at least one minimizer u € U} (), called primal solution, and that (3.2) admits at
least one maximizer z € Z} (), called dual solution. The derivation of a weak duality relation
between of (3.1) and (3.2) can be found in the proof of the following results that also establishes
the equivalence of a strong duality relation and convex optimality relations.

Proposition 3.1 (Strong duality and convex duality relations). The following statements apply:
(i) A weak duality relation applies, i.e.,

inf I(v)> sup D(y). 3.3
e (v) o () (3.3)

(ii) A strong duality relation applies, i.e.,
I(u) = D(z), (3.4)

if and only if the convex optimality relations apply, i.e.,
z:Vu=¢*(-,2) + ¢(-, Vu) a.e. in ), (3.5)
divz-u=9¢*(,divz) + ¥(,u) ae. inQ. (3.6)
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Proof. ad (i). For every v € Uy () and y € Z7(12), by the Fenchel-Young inequality (cf. (2.3)),
we have that

o(, Vo) >y : Vo —¢*(-,y) a.e. in Q,

Y(,v) >divy - v — (-, divy) a.e. in Q.

Adding the two inequalities in (3.7), using the integration-by- parts formula (2 5), for every v €
UP(Q) with v = up a.e. on Ip and y € ZF(Q) with yn = g in W~ # (I'y; RY), we find that

/qﬁ Vvdx+/z/1 Ydz — {g,v)ry

- / &* () da — / (-, divy) dz + (yn, up)ry = D(y).
Q Q

On the other hand, for every v € Ué:(Q) such that IEfD (v) = 400, we have that I(v) = +oo,
and for every y € Z}(Q2) such that I 3 (yn) = +o0, we have that D(z) = —oo.
ad (i). The strong duality relation (3.4) is equivalent to

/¢*(-,z)—z:Vu+¢(~7Vu)dx+/w*(-,divz)—divz-u—i—w(-,u)dx:O.
Q Q

(3.7)

Therefore, due to (3.7), we find that the strong duality relation (3.4) is equivalent to the convex
optimality relations (3.5), (3.6). O

Remark 3.2 (Equivalent convex optimality relations ). (i) If ¢(x,-) € C*(R**) for a.e. x€Q,
by the Fenchel-Youny identity (cf. (2.4)), the convex optimality relation (3.5) is equivalent to

z=D¢(-,Vu) a..in Q; (3.8)
(ii) If ¢*(x,-) € CL(R*?) for a.e. x € Q, by the Fenchel-Young identity (cf. (2.4)), the convex
optimality relation (3.5) is equivalent to
Vu=D¢*(-,z) a.e.in; (3.9)
(iii) If (x,-) € CH(RY) for a.e. x € Q, then, by the Fenchel-Young identity (cf. (2.4)), by the
Fenchel-Young identity (cf. (2.4)), the convex optimality relation (3.6) is equivalent to
divz = Dy(-,u) ae. in Q; (3.10)
(iv) If *(z,-) € CH(RY) for a.e. x € Q, then, by the Fenchel-Young identity (cf. (2.4)), by the
Fenchel-Young identity (cf. (2.4)), the convex optimality relation (3.6) is equivalent to
u=Dy*(-,divz) a.e. in Q. (3.11)
The convex duality relations (3.5), (3.6) motivate introducing the primal-dual gap estimator
UP () x ZP(2) — [0, +0oc], for every (v,y)" € UF(Q) x ZF(Q) defined by
Maap (V,y) = 1(v) = D(y). (3.12)
Note that the sign of the estimator (3.12) is a consequence of the weak duality relation (3.3).
Together with the optimal convexity measures (cf. Definition 2.2) p?: UF(Q) — [0, +o0] of
(3.1) at a primal solution u € U} (Q2) and p? j,: Z7(£2) — [0, +o0] of the negative of (3.2) at a
dual solution z € Z7(2), we arrive at the following generalized Prager-Synge identity.

ngdp

Theorem 3.3 (Generalized Prager—Synge identity). If the strong duality relation (3.4) applies,
then the following statements apply:

(i) For every v € Uy () and y € Z (), for the total error, we have that

Prot(v:y) = p1 (v, 1) + P2 (Y, 2) = 15y (v,y) - (3.13)

(ii) For everyv € UP(Q) withv = up a.e. inTp andy € ZP(Q) with yn = g in W~ *' (Dn; RY),

we have that

Bap00) = [ 90, T0) = Vosy+0(0)ds

@ (3.14)

+ / Y(,v) —v-divy + ¢*(-,divy) dz.
Q
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Proof. ad (i). Due to (3.4), Definition 2.2, and (3.12), for every v € U () and y € Z] (), we
have that

Prot(0,9) = pi(v,u) + p2 p(y, 2) = I(v) = I(u) + D(2) — D(y) = 1305 (v,y)
ad (it). The identitiy (3.14) follows from (3.1), (3.2), the integration-by-parts formula (2.5),
and that for every v € U} () with v =up a.e.inI'p and y € Z} () with yn =g in W= (Dy; RY),
it holds that

<yn,v>3ﬂ = <g7U>FN + <yn,UD>FD : [

Remark 3.4. (i) By the Fenchel-Young inequality (cf. (2.3)), the integrands in the representa-
tion (3.14) are non-negative, i.e., for every v € U} (Q) and y € Z} (), we have that

¢, Vo) —Vo:y+ ¢ (,y) >0 a.e. in Q,
Y(,v) —v-divy +¢¥*(-,divy) > 0 a.e. in ).

and, thus, are suitable as local refinement indicators in an adaptive refinement procedure.

Apart from that, due to Proposition 3.1(ii), for every v € Uy () with v = up a.e. inTp
. . 1 /

and y € ZJ(Q) with yn = g in W= (T 5;RY), we have that

o, Vo) —Vo:y+ ¢ (,y) =0 a.e. in Q,
Y(,v) —v-divy +¢¥*(-,divy) =0 a.e. in €,
if and only if

I(v) = D(y),

i.e., if v € UJ(Q) is minimal for (3.1) and y € Z}(Q) is mazimal for (3.2). In other words,
given the strong duality relation (3.4), the primal-dual gap estimator measures how well
approzimations v € Uy (Q) and y € Z; (Q) satisfy the convex optimality relations (3.5), (3.6).
This is an advantage compared to residual type a posteriori error estimators which traditionally
measure how well an approzimation v € U} (Q) satisfies the strong formulation of optimality
conditions and, consequently, employ classical derivatives of the energy densities. The
conver optimality relations (3.5), (3.6), however, do not require any regularity of the energy
densities. This makes the primal-dual gap estimator a predestined a posteriori error estimator,
in particular, for non-differentiable conver minimization problems.

(it) Due to Remark 2.3, from Theorem 3.3(i), for everyv € UY(Q) and y € Z7 (), it follows that

J%(Uv u) + UzD(yv Z) < ngap(vv y) .

Since the dual problem to the minimization of the negative of (3.2), in turn, consists in the
maximization of the negative of (3.1), the roles of the primal problem and the dual problem may
be interchanged. An advantage of Theorem 3.3 consists in the fact that it yields reliable and
efficient a posteriori error estimators for both the primal problem and the dual problem.

Remark 3.5. Theorem 3.3 shows that for every y € Z}(S2), the estimator n%y = (v n2ap (v, 9):
UP(Q) — [0, 400] satisfies

Prot(v,y) =17y (v)  for allv € U(Q), (3.15)
and for each v € U} (), the estimator n%D,U = (y = nap(v,9)): Z7 () — [0, +00] satisfies
P2 (v, y) = n%D’U(y) forally € Z](Q). (3.16)

For the a posteriori error estimators (3.15) and (3.16) for being numerically practicable, it is
necessary to have a computationally cheap way to obtain sufficiently accurate approximations of
the dual solution (for (3.15)) and/or of the primal solution (for (3.16)), respectively. In Section 3.2,
resorting to (discrete) convex duality relations between a non-conforming Crouzeix—Raviart
approximation of the primal problem and a Raviart—Thomas approximation of the dual problem,
we arrive at discrete reconstruction formulas, called generalized Marini formula (cf. [62, 16]).
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3.2 Discrete convex minimization problem and discrete convex duality

Discrete primal problem. Let ¢p,: Q x R4 — RU {+o0} and v, : Q x R — RU {400} be
approximations of ¢: Q x R4 — RU{+oco} and 1: Q x RY — RU{+oc}, respectively, such that
for a.e. x € Q, the functions ¢, (z, -): R4 — RU{+oc} and ¢y, (x,-): R® — RU{+o0} are proper,
convex, and lower semi-continuous and ¢y, (-,7), (-, s) € LO(Ty,) for all » € R? and s € R. More-
over, let g; € (L2(S, V) and uy € (£°(S,”))! be approximations of the Neumann boundary
data g € W37 (I'y; RY) and the Dirichlet boundary data up € W'~ %2 (I p; RY), respectively.
We examine the minimization of the functional I7": Uf"(Ts) — RU{+4o00}, for every vy, € Uf"(Ts)
defined by

Iff(vh) = / ¢h('; Vh’l)h) dx +/ ¢h('7Hhvh) dx — (gh,whvh)pN + I{&}(whvh), (317)
Q Q
where Ifu’%}: (L(S; 7)) = RU {+o0} for every vy, € (L2(S, )" is defined by

0 if 05, = u® a.e.on I'p,

Ir'e (Tp) =
{u%}(w) {—1—00 else.

In what follows, we refer to the minimization of I;": Us"(7;,) — RU{+oo} as the discrete primal
problem.

Discrete dual problem. A corresponding discrete (Fenchel) dual problem to the minimiza-
tion of (3.17) is found to be given via the maximization of the functional D}*: Z;*(T,) — RU{—o0},
for every y;, € Z;*(T) defined by

D) = = [ G de = [ i Codivyn) do + G p)en = I3 ). (318)

where I{gi}: (L9(S; ™))" — RU {400} for every gy € (L2(S,"))! is defined by

= 0 if yp, = gp a.e. in I'y
IFN — 9
{gh}(yh) {+oo else.

We will always assume that ¢y, : Q x R¥? — RU{4+00} and 95, : @ x R® — RU{+o0} are such
that (3.17) admits at least one minimizer uf" € U7"(7y), called discrete primal solution, and that
(3.18) admits at least one maximizer z},' € Z;*(Ty), called discrete dual solution. The derivation
of the discrete dual problem (3.18) can be found in the proof of the following proposition that also
establishes the equivalence of a discrete strong duality relation and discrete convex optimality
relations.

Proposition 3.6 (Strong duality and convex duality relations). The following statements apply:
(i) A discrete weak duality relation applies, i.e.,

inf  I;7"(vy) > sup  D}i'(yn). (3.19)
thUZC““(Th) thZZt (Th)

(ii) A discrete strong duality relation applies, i.e.,

LT (u") = Dy (z1'), (3.20)

if and only if discrete convex optimality relations apply, i.e.,
Ozt Viud = ok (- Opzit) + on(-, Vaus™)  ace. in 2, (3.21)
div 2t - Mpu§™ = Y5 (-, div 2t) + n (- Thus”)  ace. in Q. (3.22)

Proof. ad (i). For every v, € Uf"(Ty,) and yp, € Z;*(Ts), by the Fenchel-Young inequality (cf. (2.3)),
we have that
O, Vion) = Mapyn 2 Vavy — ¢5(, ayn) a.e. in €,

3.23
Un (-, Mpvy) > divyy - v, — 5 (-, divyy) a.e. in (2. (3.23)
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Adding the two inequalities in (3.23), using the discrete integration-by-parts formula (2.12), for ev-
ery v, € U™ (Tp,) with mpvp, =uly a.e. on I'p and yp, € Z3*(Ty,) with yun =gy, a.e. on I'y, we find that

I;Cf(vh):/chh(wvhvh)dw+/Q¢h(-,Hhvh)d$—(ghmhvh)m

= _/ &5 (- Mpyn) do — / V(- divyy) dz + (yan,ulh)r, = Dif(yn) -
Q Q

On the other hand, for every v;, € U;"(7}) such that 'z (mpvp) =400, we have that I5" (vp,) = +o0,

{up}

and for every y, € Z;*(T) such that Ifgli}(yhn) = 460, we have that Dj*(2}!) = —oc0.
ad (i). The discrete strong duality relation (3.20) is equivalent to

/ &5 (- p2pt) — thflt s Vuy 4+ on(c, Viuy!) de
Q

+ / i (-, divzph) — div 2t - Tpu” + p (-, Tpus”) de = 0.
Q

Therefore, due to (3.23), we find that the discrete strong duality relation (3.20) is equivalent to
the discrete convex optimality relations (3.21), (3.22). O

Remark 3.7 (Equivalent discrete convex optimality relations). (i) If ¢p(x,-) € CH(R**?) for
a.e. x € Q, by the Fenchel-Young identity (cf. (2.4)), the discrete convex optimality relation
(3.21) is equivalent to

Ozt = Dop (-, Vyus™)  a.e. in Q; (3.24)

(ii) If ¢ (z,-) € CHRX?) for a.e. x € Q, by the Fenchel-Young identity (cf. (2.4)), the discrete
convez optimality relation (3.22) is equivalent to

Viul = D (- pzpt)  ace. in Q; (3.25)

(ii) If Yp(x,-) € CH(RY) for a.e. x € Q, by the Fenchel-Young identity (cf. (2.4)), the discrete
convex optimality relation (3.22) is equivalent to

div 2}t = Dy (-, Tpus™)  ace. in Q; (3.26)

(iv) If ¥ (x,-) € CHRY) for a.e. x € Q, by the Fenchel-Young identity (cf. (2.4)), the discrete

convex optimality relation (3.22) is equivalent to

Opuf” = Dyji(-,divz)t)  a.e. in Q. (3.27)

The relations (3.24)—(3.27) motivate the following discrete reconstruction formulas for a
discrete dual solution z}* € Z;*(7;,) from a discrete primal solution u§" € Uf"(Ty,) and vice versa,
called generalized Marini formulas (cf. [62, 16]).

Proposition 3.8 (Generalized Marini formulas). The following statements apply:
(i) If ¢n(x,-) € CHR>Y) and ¢y (x,) € CH(RY) for a.e. x € , then, given a minimizer
us™ € US™(Tr) of (3.17), a mazimizer z' € Z;*(Tp) of (3.18) is given by
Dipy (-, Hpuf)
d

and a discrete strong duality relation, i.e., (3.20), applies.
(ii) If ¢ (x,-) € CHR™) and ¥} (z,") € CLRY) for a.e. x € Q, then, given a maximizer
2t e Z7H(Th) of (3.18), a minimizer u” € U™ (Tr) of (3.17) is given by

u§” = Dy (-, div 2p") + D@ (-, 21" ) (idga — Mpidga) — a.e. in Q, (3.29)

and a discrete strong duality relation, i.e., (3.20), applies.

25 = Do (-, Vius") + ® (idga — Mpidga)  a.e. in Q, (3.28)
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Proof.

ad (i). By definition, it holds that 2}t € (£1(7))**¢ and the discrete convex optimality
relation (3.24) is satisfied. Since uft € Ug"(Ty) is minimal for (3.17) as well as ¢y, (z,-) € C(R?*?)
for a.e. x € Q and ¢y, (z,-) € CL(RY) for a.e. x € , for every vy, € U¢'p(Th), we have that

(Don (-, Viuy"), Vion)a + (DYn (-, pug ), pon)o — (9h, Thon)ry = 0. (3.30)

In particular, (3.30) implies that D¢y (-, Vius') € (Vh(ker(ﬂh\ylc:)(n))))L. Due to [19, Thm. 3.1],
it holds that (Vh(ker(l'[h\U;TB(T,L))))L =T10,(Z;*(Tn)). Thus, there exists y, € Z;*(7T;,) such that
Mpyn = Dén (-, Vauy)  ace.in 2. (3.31)
As a result, resorting to the discrete integration-by-parts formula (2.12) and to (3.31), (3.30), and
(3.24), for every vy, € Ug((Thr), we find that
(yn = 21", Von)a = (Dén (-, Viug'), Vivp)a + (DYn (- Myuf) ), pvp)o = 0. (3.32)
On the other hand, we have that div (y,—z+t) = 0 a.e. in Q, i.e., yp—25¢ € (LO(Tp))**<. Therefore,
(3.32) in conjunction with (2.13) implies that yn — 23" € (Va(Ug4(Tn))) " = ker(div|z (7))
As a result, due to yj, € Z;*(T), we conclude that z}* € Z;*(Ty,) with
U,z = Doy (-, Vius') a.e. in Q,
div 2}t = Dy, (-, pus’) a.e. in Q, (3.33)
2itn = gp, a.e.on 'y .
By the Fenchel-Young identity (cf. (2.4)), (3.33)1,2 are equivalent to
nzp' = Viuy” = 640, Tnzy") + on(, Viug) a.e. in 2, (3.34)
divzpt - Tpus” = 5 (-, div zpt) + n (-, pug”) a.e. in Q. '

Adding (3.34); and (3.34)5, subsequently, integrating with respect to € Q, using the discrete
integration-by-parts formula (2.12), and using the definitions (3.17) and (3.18), we arrive at
If" (u§™) = Dyt (2;t), which, by the discrete weak duality relation (3.19), implies that z},* € Z7*(T)
is maximal for (3.18).

ad (ii). By definition, it holds that u§" € (L(7}))* and the discrete convex optimality relation
(3.27) is satisfied. Since 2}t € Z*(T;,) is maximal for (3.18) as well as ¢} (z,-) € CH(R**?) for
a.e. v € Q and 95 (z,-) € CL(RY) for a.e. x € Q, for every y, € Z;'N(Tn), we have that

(D5, (- Mazy!), Mpyn)e + (D (- div 27), divyn)e + (yan, up)r, = 0. (3.35)

In particular, (3.35) implies that D¢ (-, II,2}") € (ker(div|zzto(n)))L. Due to (2.13), it holds that
(ker(div Z}fO(T;L)))L = Vp(U;"(Th)). Therefore, there exists vy, € U;"(Ty) such that

Vion = Doy (-, 12" ae. in Q. (3.36)

As a result, resorting to the discrete integration-by-parts formula (2.12) and to (3.36), (3.35),
and (3.27), for every y, € Z;((Tr), we find that

(v, —u§" divyn)a = — (D@, (-, Tpzpt), Mpyn)a — (DYji (-, div z;t), divyn)a = 0. (3.37)
On the other hand, we have that V,(vs, —u§") = 0 a.e. in Q, i.e., v, —u§" € (L2(Tp))¢. Therefore,
(3.37) in conjunction with (2.14) implies that v, — ug” € (div (Z;%(Tn))) " = ker(Vi|uer(7,))-
As a result, due to v, € U7 (Tp), we conclude that uf" € U;"(Ty) with
Vaus" = Do (-, T 2pt) a.e. in Q,
Oyus” = Dyji(-, div zpt) a.e. in (3.38)

Thus” = ulh a.e.on'p.

By the Fenchel-Young identity (cf. (2.4)), (3.38)1,2 is equivalent to (3.34). Adding (3.34); and
(3.34)5, subsequently, integrating with respect to = € €2, using the discrete integration-by-parts
formula (2.12), and using the definitions (3.17) and (3.18), we arrive at I§"(u§") = D;t(z}"), which,
by the discrete weak duality relation (3.19), implies that u§” € Ug"(7y) is minimal for (3.17). O
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4. MODEL PROBLEMS

In this section, we illustrate the procedure described above by addressing model problems.

4.1 Non-linear Dirichlet problem
4.1.1  Continuous problem

A class of variational problems that includes the non-linear Laplace operator (cf. [38, 59, 58, 13])
involves a function ¢: Q x RY — R that satisfies

(A.1) ¢: Q x R* — R is a Carathéodory mapping and ¢(z,-): R? — R is convex for a.e. z € Q;
(A.2) There exist constants ., ay > 0, functions By, Bar € L1(Q), and a variable exponent
p € L>(Q) with p~ = esssup,cqp(z) such that for a.e. z € Q and r € RY, it holds that
B () + o [P < @, 7) < Baa (@) + g [P
and a function ¢: QxR — R defined by ¢ (z, s) == — f(x)s for a.e. x € Q and all s € R, where f €
LV O(Q)5 and p/(z) = 22 for a.e. 2 € Q. Then, for g € L¥ ) (Ty) and up € W72 (T'p),

p(z)—1
the non-linear Dirichlet problem is given via the optimality condition of the minimization of the

functional 7: WP()(Q) — R U {400}, for every v € WHP()(Q) defined by

I(v) = /§2¢(~,Vv) dz — (f,v)a — (g,v)ry + I{fD}(v), (4.1)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D: WP O)(div; Q) — RU {—o0}, for every y € W ()(div; Q) defined by

D@):—1L¢%wwdx+@rannD—Iﬁﬁ«mw>—¢?@'m~ (4.2)

As a result, given the two functionals (4.1) and (4.2), the corresponding primal-dual gap estimator
Miap WO (Q) x WP (div; Q) — R, for every v € WP (Q) with v = up a.e. in I'p and
y € WP O (div; Q) with divy = —f a.e. in Q and 5 -n = g a.e. on I'y, is given via

ﬁwww%=A¢EVW—V%y+thdw (4.3)

The integrand of (4.3), by the Fenchel-Young inequality (cf. (2.3)), is point-wise non-negative and,
by the Fenchel-Young identity (cf. (2.4)), vanishes if and only if y € 9,.¢(-, Vv) a.e. in Q.

4.1.2  Discrete problem

Let ¢5,: @xR? — R be an approximation ¢: Q2 xR? — R satisfying (A.1) and ¢y (-, 7) € L°(Tr)
for all r € R%. Moreover, let f, € LO(Ts), gn € LO(S}Y), and ul, € L2(S}?) be approximations
of f e L'O(Q), g € L¥ ) (Iy), and up € W'~3=» (I'p). Then, the discrete non-linear
Dirichlet problem is given via the minimization of the functional If": SV"(7) — R U {+o0},
for every vy, € SH¢"(T;,) defined by

I (vn) = /Q¢h('»thh) dz — (fn, Mwvn) — (gn, Twvn)ry + I 5 (mhon) (4.4)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Dit: RT(T,) — RU {—oc}, for every y, € RTY(T;,) defined by

Dt (yn) = —/Qd)}*Z(thyh)dﬂ? + (yn - nyub)rp = I gy (divyn) = 1Y (yn - ) (4.5)

If ¢p(z,-) € CHR?) for a.e. z € €, then given a discrete primal solution u§" € SV (Ty,), a
discrete dual solution 2" € RT(T},) is immediately available via the generalized Marini formula

zzt = D¢h('7 th‘;f) - %(ide - Hhide) a.e. in €. (46)

SLPO(Q) = {v € LY(Q) | b’ e LY (Q)}, WhPO(Q) = {v € WH(Q) | PO, |Vo|PO) € LY(Q)},
WP O (div; Q) = {y € Wi(div; Q) | |y[P'O), |divy[P' ) € L1(Q)}.
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4.2 Obstacle problem
4.2.1  Continuous problem

Non-differentiable lower-order contributions arise in formulating an obstacle problem as a varia-
tion problem (¢f. [53, 37]): for an external force f € L2(€2), Dirichlet boundary data up € W2:2(I'p),
and an obstacle y € WH2(Q) with x < up a.e. on I'p, the obstacle problem is given via the
minimization of the functional I: W2(Q) — R U {400}, for every v € W};*(Q) defined by

1) = 4IVelq — (o) + 1200 — ) + T2 (0), (17)
where the indicator functional I¥: L?(€2) — R U {+o0} for every v € L?(12) is defined by

0 ifv>0a.e Q
IQ D) = - )
+(v) {—l—oo else.

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D: L2(;RY) — RU {—oc}, for every y € W (div; 2) defined by

D(y) = =%lyl30 — (divy + f,x)a + (y - n,up)r, — I2(f +divy), (4.8)
where the indicator functional I%: L2(Q2) — RU {+oc0} for every § € L*(Q) is defined by

e 0 ify<0a.e Q
% = - ’
-(®) {—l—oo else.

The dual problem is, in general, ill-posed in W3 (div; Q). A maximizing vector field z € L2(Q;R%)
with distributional divergence defines a non-negative distribution A := —divy — f € (WéQ(Q))*
As aresult, given the two functionals (4.7) and (4.8), the corresponding primal-dual gap estimator
Neap: WH2(Q) x WE (div; Q) — R, for every v € W2(Q) with v = up a.e. on T'p and v > x a.e.
in Q and y € W3 (div; Q) and divy < —f a.e. in (2, using the integration-by-parts formula (2.5),
is given via

Maap(0,9) = 3[V0 = yl3 .0 + (=divy — f,v— X)a. (4.9)

The first part of (4.9) measures a violation of the optimality condition y = Vv a.e. in  and the
second part of (4.9) measures a violation of the complementarity property (divy+ f,v—x)q = 0.

4.2.2  Discrete problem

Let fr, € LO(Tp), ul, € EO(S}:D), and x, € L°(T,) be approximations of f € L%(Q), up €
W22(I'p), and y € WH2(Q). Then, the discrete obstacle problem is given via the minimization
of the functional If": S (T,) — R U {+o0}, for every v, € SH"(Ty,) defined by

I () = $IVaonl3.a — (fas hon)e + IS (Mpv, — xn) + I{ng}(ﬂhvh)- (4.10)
Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Dt RTS(Tn) — RU{—o0}, for every y;, € RT%(Ts) defined by

Dit(yn) = =2 IMhynll3.0 — (divys + fro xn)e + n - n,uh)r, — I2(fr + divys) . (4.11)

Given a discrete primal solution u§" € SV (7;,) and a Lagrange multiplier X" € I, (S5 (7)),
for every vy, € S5 (T5) satisfying

N Mhvn)a = (fas Mavn) — (Viug|, Vion)a (4.12)
proceeding as in the proof Proposition 3.8(i), a discrete dual solution z;* € RT?(T},) is immediately
available via the generalized Marini formula
=AY

d (lde - Hhide) a.e. in . (413)

szt = Vyuy"
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4.8  Scalar Signorini problem
4.3.1 Continuous problem

A scalar variant of elastic contact problems leads to a variational problem with an inequality
constraint on a subset I'c of the boundary on which penetration of an obstacle is prevented (¢f. [80]):
for 'p, T, To C 8Q with TpUl yUle = 8Q, f € L2(Q), g€ W 22(T'y), up € W2:2(I'p), and
x € WH2(Q) with x = up a.e. on I'p, the scalar Signorini problem is given via the minimization
of the functional I: W2(Q) — R U {400}, for every v € W;5*(Q) defined by

1) i= 4 Vol g — () — (g, 0)rs + (0 — %) + T2 (), (4.14)
where the indicator functional IEC : W22(I'¢) = RU{+00} for every T € W22(I'¢) is defined by

LEC (5) = {0 ifv>0a.e onl¢,
+oo  else.

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D: W2(div; Q) — RU {—o0}, for every y € W?(div; Q) defined by

D(y) = =3lyl30+ (y-nX)rpure — I{ 5 (divy)

—I[N(y-n) Iy -n).

As a result, given the two functionals (4.14) and (4.15), the corresponding primal-dual gap es-
timator nZ,,: WH2(Q) x W?(div; Q) — R, for every v € W?(Q) with v = up a.e. on I'p and
v > x a.e. on ['c and y € W2(div;Q) with y-n =g a.e. on 'y and y-n > 0 in W_%vz(FN),
using the integration-by-parts formula (2.5), is given via

(4.15)

Meap(v,9) = 3Vo = yl3 o + (- n0 = X)re - (4.16)

The first part of (4.16) measures a violation of the optimality relation y = Vv a.e. in 2 and the
second part of (4.16) measures a violation of the complementarity property (y - n,v — x)r, = 0.

4.3.2  Discrete problem

Let f,€L%(Th), gn €L (S}I;N), ul e L0 (S};D), and xp, EEO(S,I;C) be approximations of f € L?(Q2),
g€ W_%Q(TN)7 up € W22(I'p), and x|r, € W%72(Fc). Then, the discrete scalar Signorini
problem is given via the minimization of I;": SBCT(Th) — RU {+o0}, for every v, € SBCT(E)
defined by

L7 (vn) = [IVhonll3.0 — (fr Dhon)a — (9h, Thow)ry
: : (417)
+ I{qﬁb}(ﬂ-hvh) + I+C (ﬂ'hvh — Xh) s

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Dyt RTO(T,) — RU{—o0}, for every y, € RT°(Ty) defined by

Di'(yn) = =5 IMaynl3.0 + (yn - n maub)rpure (4.18)
— Iy (divyn) = I (yn - n) = 13 (yn - ).

Appealing to Proposition 3.8(i), given a discrete primal solution u$" € S*¢"(Ty,), a discrete dual
solution 27! € RT°(T3) is immediately available via the generalized Marini formula

Zzt = thff - %(lde - Hhide) a.e. in .
For an element-wise affine obstacle xy € S!(7},), an admissible approximation u§" € W12(Q), e.g.,

can be obtained via node-averaging combined with setting ;" (v) := max{x(v), (¢ u§")(v)} for
all boundary nodes v € N}, belonging to the contact boundary I'c.
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4.4 Rudin—Osher—Fatemi image de-noising model
4.4.1 Continuous problem

A model problem that requires the usage of spaces of functions with bounded variation is the
Rudin—Osher—Fatemi image de-noising model (cf. [79, 15]): for a noisy image g € L?(Q) and a
fidelity parameter o > 0, it is given via the minimization of the functional I: BV (2) N L?(Q) — R,
for every v € BV (Q) N L?(Q) defined by

I(v) := [Dv[(Q) + §llv — gl3.0- (4.19)

Here, [D(-)[(R): L. () = R U {+oc}, for every v € Ll (Q) defined by

loc

IDv|(Q2) = sup (v,divp)a
P€C (ARY) : [[p]loo,0<1

denotes the total variation functional and BV (Q) = {v € L(Q) | |Dv|(2) < +oo} the space
of functions with bounded variation. The total variation functional can be seen as an exten-
sion of the semi-norm in W1(Q) and allows for discontinuous minimizers. For every v € L?(Q),
it can be characterized via the Fenchel duality

Dul(@) = sup  —(v.divy)a — I}, ) (¥) (4.20)
yeWZ(div;Q)

where the indicator functional 1% K1(0): : W (div; Q) — RU{+o0} for every g € W2 (div; Q) is defined by

. 0 if |y <1 a.e. in Q
Q — = )
i@ = {+oo else.

By means of the relation (4.20), one finds that (¢f. [56]) the (Fenchel) (pre-)dual problem is given
via the maximization of D: Wg(div; Q) — R U {—oo}, for every y € W§(div; ) defined by
D(y) = —I%,(0)(¥) — 55 lldivy + agll3 o + §ll9l3.q - (4.21)
As a result, given the two functionals (4.19) and (4.21), the corresponding primal-dual gap esti-
mator 72, : BV (Q)NL*(Q) x W (div; Q) = R, for every v € BV(Q)NL*(Q) and y € W§(div; Q)
with |y| <1 a.e. in , is given via
Maap (0 y) = Do|() + (v, divy)o + 55 [divy +a (v —g)[5q - (4.22)

The first two parts of (4.22) measure a violation of the optimality condition |Dv|(2) = — (v, divy)q
and the third part of (4.22) measures a violation of the optimality condition divy = a(v — g)
a.e. in ).

4.4.2 Discrete problem

Let ¢, € C1(R?) and g;, € L°(T) be approximations of the Euclidean length || and g € L2(12).
Then, the discrete Rudin—Osher—Fatemi image de-noising model is given via the minimization of
the functional Iy : SV (Ty,) — R, for every vy, € SV"(T},) defined by

157 on) = [ on(Taen) do + § I wn — gnlB 0. (423
Q

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Dit: RT)(Tn) — RU {—oc}, for every y, € RT{(Tp) defined by

Dyt () = /%m% Y <lgulZe. (4.24)

Appealing to Proposition 3.8(i), given a discrete primal solution u" € S1¢"(Ty,), a discrete dual
solution 27* € RT{(Tx) is immediately available via the generahzed Marini formula

a(pug” — gh)(

Zh fDrj)h(th ) d

idge — ITpidga) a.e. in Q. (4.25)
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4.5 Jumping coefficients
4.5.1 Continuous problem

The derivation of sharp a posteriori error estimates is particularly challenging if a partial
differential equation involves coefficients whose minimal and maximal values are not comparable:

for a right-hand side f € L2(Q), Neumann boundary data g € W~22(I'y), and Dirichlet bound-

ary data up € W%Q(F D), a related model problem is given via the minimization of the functional
I: Wh2(Q) — RU {400}, for every v € Wh2(Q) defined by

1(0) = LA} ()Vol3.0 — (Fv)a — (g, 0)ry + 102, (v), (4.26)

where A: Q — R%¥4 is a tensor-valued mapping has the following properties:

(B.1) A: Q — R¥4 is (Lebesgue) measurable;
(B.2) For a.e. z € , the tensor A(z) € R4*? is symmetric and positive definite;
(B.3) There exist constants c,,aps > 0 such that for every r € R? and a.e. z € Q, it holds that

amr? < A2 (2)r]? = A(z)r - r < anlr]?.
Note that, due to (B.2), for a.e. z € Q, the tensor A(z) € R¥*? admits a root A(z)z e R¥*9,
The tensor-valued mapping Az : Q@ — R4 in (4.26) is defined by A2 () := A(z)? for a.e. z € Q.
Since for a.e. z € €2, the tensor A(m)% € R¥¥4 is symmetric and positive definite, it is invertible.
The tensor-valued mapping A2 : Q — R%*? is defined by A~z (z) := A(z)"2 for a.c. z € Q.

If ¢: Q x R? — R is defined by ¢(z,r) == L[A2(z)r|? for a.e. z € Q and all » € R, then
¢*: A xRY = R for a.e. z € Q and every s € R? is found to be given via

¢"(2,8) = |42 (2)s].
Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D: W2(div; Q) — RU {—o0}, for every y € W?(div; Q) defined by
_1 .
D(y) = =342 (yllsa + (- nup)ry, — I py(divy) = [ N (y - n). (4.27)

As aresult, given the two functionals (4.26) and (4.27), the corresponding primal-dual gap estimator
Neap: W2 (Q)xW2(div; Q) — R, for every v e W'?(Q) with v =up a.e. on T'p and y € W?(div; Q)
with y-n = gin W22 (Ty) and divy = — f a.e. in Q, using the integration-by-parts formula (2.5),
is given via

Noap(0,y) = S AZ()Vv — A72 (|3 g, (4.28)

measuring the violation of the optimality condition y = A(-)Vwv a.e. in Q.

4.5.2  Discrete problem

Let Ay, € (£°(T3))**? be an approximation of A: Q — R4 satisfying (B.2). Moreover, let
frn € LY(Th), gn € LO(S} ™), and uly € £L9(S} P) be approximations of f € L*(Q), g € W-22(Ty),
and up € W%>2(F p). Then, the discrete problem is given via the minimization of the functional
Ig: SYer(Ty) — R U {+o0}, for every v, € S1"(Ty,) defined by

1
L7 (on) = 5143 ()Vavnl3 0 = (F Tnon)e = (g mnon)ry + 105 3 (mon) - (4.29)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Drt: RTO(T,) — RU{—o0}, for every y, € RT°(T;) defined by

1 .
Dy (yn) = — 31145 2 Ownl3.o + (n - moudy)ry — I 4y (diven) =I5 (o). (4.30)

Appealing to Proposition 3.8(i), given a discrete primal solution u$"™ € SH¢"(Ty,), a discrete dual
solution 2}* € RT%(Ty) is immediately available via the generalized Marini formula

Z;;t = Ah(-)thir — %(lde — Hhide) a.e. in Q . (431)
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4.6 Navier—Lamé problem
4.6.1 Continuous problem

Small deformations of elastic bodies are modeled by the Navier-Lamé equations (cf. [43]):
for an external force f € L2(€;R%), Neumann boundary data g € W—22(I'y; R%), and Dirichlet
boundary data up € W32 (T p; RY), the Navier-Lamé minimization problem is given via optimality
condition of the minimization of the functional I': U2(2) — RU{+oc}, for every v € UZ(£2) defined by

I(v) = 3[IC3e() 3.0 — (£, v)a — (g, vhry + 12, (v). (4.32)

Here, the symmetric gradient e: UZ(€2) — L?(Q; R?*?) is defined by e(v) := 3(Vu+ Vo) a.e. in
Q for all v € Uj(Q) and the positive definite linear operator C: R — R4*4 is defined by CR :=
2uR+ A(tr R)Ijxq for all R € R4 where X, 1 > 0 denote the so-called Lamé constants. If
¢: R4 — Ry is defined by ¢(R) = %|(C%R|2 =CR: Rforall R € R™4 then ¢*: R¥*? — Ryq
for every S € R?*¢ is found to be given via

¢*(S)=L|C isPP=C"1S: S,

where C~1: R4¥4 5 R¥*4 ig given via C™15 = m (trS) Lyxa + ﬁ dev S for all S € R4*d
where dev S := S —1 (tr 5) I;xq is the deviatoric part. Then, a corresponding (Fenchel) dual prob-

lem is given via the maximization of the functional D: Z3(2) — R U {—oc}, for every y € Z3(Q)
defined by

D(y) = —=3llyl3.0 + (yn,up)ry — I{ 4y (divy) = I; 5 (yn) - (4.33)
As a result, given the two functionals (4.32) and (4.33), the corresponding primal-dual gap estima-
tor nZ,,: U7 () x Z3(Q) — R, for every v € U7(Q) with v = up a.e. on I'p and y € Z7() with
yn = g in W’%’Q(I‘N; R?) and divy = —f a.e. in §, using the integration-by-parts formula (2.5),
is given via
1 _1
Meap (v, 9) = 3[|C2e(v) = CT 2y

;Q ) (4.34)

4.6.2 Discrete problem

The canonical discretization of (4.32) with a Crouzeix—Raviart method is unstable due to the
lack of a discrete (non-conforming variant of) Korn’s inequality, i.e., in general, there exist non-
trivial vector fields v, € US"(T5)\{0} with ex(vs,) = 0 a.e. in 2, where the element-wise symmetric
gradient 5, : US" (Tr,) — (L9(Tr))4*? is defined by &y, (vp,) |1 =€ (vp|7) for all T € Tp, and vy, € US (Tp).
Hence, a stabilization is required, for f, € (£L°(75))%, gn € (£L2(S, V)%, and uly € (£2(S; 7)),
leading to a functional I US"(T,) — R U {400}, for every vy, € US™(Ty) defined by

I;r,stab(vh) = %”Cégh(vh)ng,ﬂ —+ sh(vh, ’Uh) — (fh, Hhvh)Q — (ghaﬂ—hvh)l"N + I{I‘MDD}(TF}L’Uh) s

where sp,: U™ (Tn) x US"(Trn) — R is a symmetric bilinear form, so that the problem is well-posed
(¢f- [29]). Given the minimizer u§™ € US"(T5) of L5 US™(T;,) — RU {400}, we choose a resid-
ual given via element-wise gradient of a Crouzeix—Raviart vector field, i.e., we choose 1y, € U, (7Th)
such that for every v, € Ug'p(7Th), it holds that

(Varn, Vaon)a = su(un, vn) = (fo, Trvn)a + (9 Thvn)ry — (Cen(uf"), Vivn)a - (4.35)

Then, from (4.35), proceeding as in the proof of Proposition 3.8(i), we find that a tensor field
zit e Z5H(Ty) with I, 2t = Cep(uf”) + Viry ae. in Q, divz! = —f; a.e. in Q, and z)'n = g,
a.e. in I'y is given via the generalized Marini formula

1
Z}Tlt = Cep(ui") + Vpry — gfh ® (idge — II}idgae) a.e. in Q. (4.36)

The possible asymmetry of (4.36) can be seen as part of the discretization error. In general, it
is not true that (4.36) is optimal for a discrete dual problem. It is, however, admissible in the
continuous dual problem (4.33) if f = f, and g = gp.
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4.7 Stokes’ problem
4.7.1  Continuous problem

Stokes’ problem can be formulated as a minimization problem over divergence-free velocity
fields (¢f. [27]): for an external force f € L2(€;R?), Neumann boundary data g € W~ 2-2(I' y; R?),
and Dirichlet boundary data up € W22 (Tp; R?), the Stokes minimization problem is defined
via the minimization of the functional I: U32(2) — R U {+o0}, for every v € U2(Q) defined by

I(v) = 3l[Vl3.0 + I{y (tr Vo) = (f,0)a = (g,0)rx + [[2 4 (v). (4.37)
where the indicator functional I?o} : L2(Q2) — R U {+o00} for every © € L2() is defined by

0 ifv=0a.e.in
12 (7)== ’
(o} ©) {Jroo else.

If the function ¢: R**? — R U {+oo} is defined by ¢(R) = 3|R|*> — I{%}(tr R) for all R € R¥*4,
then ¢*: R¥*? — R U {+o0} for every S € R?*? is found to be given via
¢*(z,5) = L|dev S|>.

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D: Z%(Q) = RU{—oc}, for every y € Z3(12) defined by

D(y) = —3lldevyll3.0 + (yn,up)ry — I s (divy) — I (yn). (4.38)
As a result, given the two functionals (4.37) and (4.38), the corresponding primal-dual gap
estimator 17, : U7 (Q) x Z3(Q) = R, for every v € U3 () with v = up a.c. on I'p and tr Vo =0
a.e. in Q and y € Z2(Q) with divy = —f a.e. in Q and yn = g in W~22(T'y;R?), using the
integration-by-parts formula (2.5) and that (devy, Vv)q = (y, Vv)q, is given via

ngap(vay) = %”vv - yH%,Q )

measuring the violation of the optimality condition y = Vv a.e. in €.

4.7.2  Discrete problem

Let fn € (L2(Th))%, gn € (L2(S) V)%, and ul, € (L2(S}?))? be approximations of f € L?(Q; RY),
g€ W’%’Z(FN;Rd), and up € W%’Z(FD;Rd). Then, the discrete Stokes minimization problem
is given via the minimization of the functional If": U (Tr) — RU {400}, for every v, € U™ (Th)
defined by

I (on) = 5lIVhonll3 0 + Loy (tr Vavn) = (Fas aon)e — (gn, mivn)ry + Iy (Tavn) -

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Dyt: Z7H(Th) — RU {—o0}, for every yp, € Z5*(Ty) defined by

Dyt (yn) = — 5| Mndev ynll3 o + (ynn, up)ry — I,y (divys) — Ifgfl}(yhn) -

Appealing to Proposition 3.8(i), given a discrete primal solution u§" € US"(Tp,), a discrete dual
solution z}* € Z3(Ty,) is immediately available via the generalized Marini formula

1
Z;;t = thzr — gfh ® (ide — Hhide) a.e.in Q.

Note that, different from the previous model problem, an admissible approximation u5" € UZ(Q),
i.e., U =up a.e.on'p and tr Vuj = 0 a.e. in {2, cannot be obtained via simple node-averaging
since, in general, we have that |[{tr VII?u§" # 0}| > 0, although, by construction, we have that
tr Vyup” = 0 a.e. in Q. Instead an approximation uj” € U, 3((2) can be obtained via node-averaging
combined with a local divergence-correction procedure (cf. [85]), in which one solves local discrete
Stokes problems in finite element spaces with higher polynomial degree. Since these local problems
can be solved in parallel, the overall cost of the local divergence-correction procedure is moderate.
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5. EQUIVALENCE TO RESIDUAL TYPE ERROR ESTIMATORS

In the case of the o-Dirichlet problem, i.e., if we have that ¢ == pol-| € CO(RY)NC?(R4\ {0}),
where ¢: R>g — R is an N-function (cf. Appendix A.2) that satisfies the following conditions
(cf. [46, Assumption 1]):

(C.1) ¢ satisfies Ay-condition (i.e., Ag(¢) < 00) and the Va-condition (i.e., Ay(p*) < 00);
(C.2) ¢ € C?%(0,00) and uniformly with respect to ¢t > 0, it holds that®

¢'(t) ~te"(t);
and if we have that ¢(x,-) == (s = —f(2)s) € C1(R) for a.e. z € Q, assuming that f = f, € L°(T3)
and g = g, = 0, we can relate the primal-dual gap estimator to the residual type estimator in [46],
which, in fact, coincides with the standard residual type estimator for the Poisson problem (1.1)
(i.e., p(t) =3t for 1 >0). If u?' € Sh(Ty) is the unique minimizer of 17" :=1|s1 (7;,): Sh(Tn) > R,
the residual type estimator denotes the quantity

nres h U’h Z T]reb T (51)
TeTh

where, if hg = diam(S) for all S € Sy, for every T € T, and S € S}, with S C 9T

1 1 1
Moo (W) = r (b )+ > mis(ul),

Sesi:scor
* 5.2
% 7 <uzl>:= I(orvagn) (i) (5.2)
773,3( = Hh [£( v“ﬁl ]]SH2T

In (5.2), for every a > 0, the function (apa)* : R>0 — R is the Fenchel conjugate of ¢, : R>g = R>¢
(cf. Appendix A.2) and the function F': R? — RY for every r € R? is defined by

In [46, Lem. 8 & Cor. 11], it has been shown that the error estimator (5.1) is reliable and efficient
with respect to the primal approximation error, i.e., there exist constants cel, Cof > 0 such that

crel |[F(Vuh') — F(Vu)|3.0 < 02 n(uh) < cot |F(VUl') — F(Vu)|3q - (5.3)

Generalizing the procedure in [35, 54, 55, 22] and resorting to properties of the node-averaging
quasi-interpolation operator 113V : S L 5 (Th) — Sp(Th) (cf Appendix A.1), we are able to establish
the global equivalence of the prlmal dual gap estimator (4.3) in the case v = uh € S5(Tn) and
y =21t € RTY(Tp) to the residual type estimator (5.1).

Theorem 5.1. Let ¢ = po|-| € CO(RY) NC%(R?\ {0}), where ¢: R>g — Rsq is an N-function
satisfying (C.1), (C.2), ¥(z,-) = (s = —f(x)s) € CY(R) for a.e. z € Q for f = fun € LO(Th),
and let g = g, = 0. Then, it holds that

Tees (W) ~ Map (201 = | (Vi) = Vg - 2if 4 6" () dr, (5.4)
where the equivalence ~ depends only on wg, Aa(p), and Va(p).

Remark 5.2. Theorem 5.1 extends the results in [46] by the aspect that the residual type estimator
(5.1) is not only equivalent to the primal approximation (i.e., to pI(uh ,u)), but to the primal
approzimation plus the dual approzimation error (i.e., to p2., (uil, Zpt) = pl(uh Ju)+p p(zrt, 2)).
In other words, the residual type estimator (5.1) also provides control of the approzimation error
of the Raviart—Thomas approximation of the dual problem.

SHere, we employ the notation f ~ g for two (Lebesgue) measurable functions f,g:  — R, if there exists a
constant ¢ > 0 such that ¢~1f < g < cf almost everywhere in Q.



ExacT ERROR CONTROL VIA CONVEX DUALITY 27

Proof of (Theorem 5.1). ad ngap(uil, 27t < cnfes’h(uﬁl). Using the discrete optimality relation
(3.21) (which is equivalent to (3.24)), we find that

H(Vup') = Vup' Tz + 6" (21)
= ¢(Vul') = DH(Viu§") - (Vul' — Viu§") + ¢(Vaus") a.e. in Q. (5.5)
+¢7(2") — ¢ (Tnzy) -
On the other hand, by the convextity of ¢, ¢* € C'(R?), we have that
—p(Vhui") < —p(Vub') + Do(Vul') - (Vub' — Vypu§”)  ae. in Q
—¢*(Lpzpt) < —¢*(25") + Do* (25" - (27 — Up2)t) a.e. in 2,
Therefore, using (5.5) and (5.6) together with D¢y* (I, 2) L (27t —T1527¢) in L2(Q; R?), we find that
Maap (U 241) < (DS(Vup') — DS(Viuil), Vil — Vi )o
+ (Dg* (') — De* (T 271), 21t — Upzph)q (5.7)
= I,i + I,ZL .

(5.6)

So, it is enough to estimate I}. and IZ:
ad I}. Abbreviating e;, == ul" — us" € S5 (T,) and using Galerkin orthogonality of the
continuous and the discrete primal problem, we find that
I = (DO(Vup'), Valen —T1j"en))a
+ (fn 113%en — en)a
+ (Dg(Vuh') — DP(Vu), VI en)o
=L+ 02+ 10

Let us next estimate Ih , I,1L 2, and I 3

ad I}'*. Using that [Dé(Val')-n(ey, —H‘“’eh)]]s = [[DQS(VUZI) ns{en—T%"ep} s+{Dp(Vul)-
n}slen — M¢%en]s on S, men — M¢Pen]s = 0 and {Dp(Vul')}s = const on S for all S € S}, an
element-wise integration-by-parts, a discrete trace inequality (cf. [49, Lem. 12.8]), and Proposition
A.1, denoting for every S € Sj, by wg = |J{T € Tn | S C 9T} the side patch and for every
TeT,by wr=J{T"€Tn| TNT #0} the element patch, we find that

I = ([D$(Vul') - n], {en — 3 en})s;

< Z IIDS(Vul") - n]s||{en — i en}s|1.s
SeS;
< Y |IDo(VY) - nllslhstllen — 115 (5.9)

Ses;

<e > > (VR nls|Vienlwr -

Sesi TET, : TCws

Then, for every T' € Ty, using in wr, the e-Young inequality (cf. (A.1)) for ¢vurt ()| R>0 = Rxo
and (chU vmy))* (I[Dd(Vul") - n]s|) ~ [[F(Vul")]s|? for all S € Si with S C IT (cf. [46, Cor. 6)),
where we write Vu}" (T') to indicate that the shift on wp depends only on the value of Vuhl onT,
from (5.9), for every e > 0, we deduce that

L'<Y ellewaa) (IDs(V) nls))

Sesi TET, : TCws

Yec Z Z ||<p|vU vy (IVren)l1,wr (5.10)
SESi TETh: TCws
<o X Bl +ee X o a(Tacablhor

Ses; TeTh
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ad I;’z. Using the e-Young inequality (¢f. (A.1)) and Proposition A.1, for every £ > 0, we obtain
1,2 *
2 <ce Y (erwur) (bl fal) s

TETh
+e Y llepwur (b len =TT en]) [, (5.11)
TETh
<ce Y mprlun)+ec Y lewuwt @ (VaenDliwr -
TeTh TETh

ad I, The e-Young inequality (cf. (A.1)), the equivalence <¢|VU£1‘)*(|D¢(VU£1) —D¢(Vu)|)
|F(Vu Y)Y — F(Vu)|? (¢f. [46, Cor. 6]), and Proposition A.1, for every e > 0, yield that

L7 <ee Y Iewu)*(1D6(Vup) — D(Vu))l1r
TETh

te Z lorwur | (IVITE en]) |17 (5.12)
TETh

< e |F(Vuh) = F(Vu)ll3o+ec Y llovurt @) (IVaen])llwr -
TETh

Combining (5.10)—(5.12) in (5.8), using (5.3) in doing so, for every € > 0, we conclude that

Iy < oo p(ul) + Z lervurt () (IVren 1 ,wr - (5.13)
TETh
Proceeding as in [46 p-9& 10] we find that
sc Z ||%0|vuf"1 (IVrerlliwr +¢ Z nJS . (5.14)
TETh TeTh ses}

Therefore, using (5.14) i in (5.13) together with the equivalence chain @y, rt|(|Vien|) ~ [F(Vuj, H—
F(Vpu§ )|2 (DH(VUl') — D(Vyus")) - (Vb — Vypus") ace. in Q, for every € > 0, we arrive at

I < confu (W) + ey (5.15)

Resorting the reconstruction formula (4.6) and [46, Lem. 3], with F*: R? — R? for every r € RY
defined by

Y

Py J@V 0D,

7]

and the equivalence |F*(2]t) — F* (Il 258) |2 ~ (D¢*(z5t) — Do* (I,250)) - (25F — I1j,250) ace. in €,
a change of shift (cf [46, Cor 28]), and the equlvalence |F(Vul') — F(V,, CT)|2 (DH(Vul') —
Dé(Viu§")) - (Vub' — Vius™) ae. in Q, for every e > 0, we find that

I < cll(@vyugr)* (her fal)
< ce e (uf)) + el
For € > 0 sufficiently small, from (5.15) and (5.16) in (5.7), we conclude that
1 1
ngap(u‘z azh ) < Cnfcs,h(ui ) (517)

ad nres (U h < cngap(ufll, zh *). From Theorem 3.3(i), (5.17), and (5.3) together with the
equivalence pl(uhl, u) ~ ||F(Vub') - F(Vu)]|3 o, we conclude that

(5.16)

1 1
ptot (u}p; ,Z}?) = ngap(uﬁ azzt)
1
< cnrQes,h(uZ )

< cpi(ul,u)

1
S Cpgot(uz 7Zh ) O
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6. QUASI—OPTIMALITY OF NODE-AVERAGING OPERATOR

Since, in general, for a discrete primal solution, we have that u§” ¢ U} (), it is necessary to
post-process the discrete primal solution to obtain an admissible approxunation aj € Uy ().
Here, it is convenient to enforce admissibility via the node-averaging quasi-interpolation operator
I Sllj’m"('ﬁl) — 8% (Tn) (cf. Appendix A.1), which satisfies the following local best-approximation
result.

Lemma 6.1. Let ¢ = po|-| € CO(RY) NC%(R?\ {0}), where ¢: R>q — Rxq is an N-function
satisfying (C.1), (C.2). Then, there exists a constant ¢ > 0 depending only on wg, Aa(p), and
Va(p), such that for every v, € S5 (Th) and T € T, it holds that

IF(Vhon) = F(VIG w37 < ¢ inf IF(Vhon) = F(V0)|3 .,
vEW SN (Q) : F(Vv)EL2(S;RY)

e Hh1/2[[F (Vion ]]Hz,s;;(T) ’

where 8§ (T) ={S €S8} | SNT # 0} for all T € T, and hs|s = hg for all S € S,.
Proof. Follows along the lines of the proof of [58, Lem. 3.8] up to obvious adjustments. O

Using Lemma 6.1, in turn, we can deduce that the local distance of a node-averaged Crouzeix—
Raviart function to a Sobolev function on an element is bounded by the local distance of the same
Crouzeix—Raviart function to the same Sobolev function on an element patch plus an additive
term quantifying the local fractional higher regularity of the Sobolev function, which justifies the
usage of the node-averaging quasi-interpolation operator in local mesh refinement procedures.

In order to express the fractional regularity of functions, we make use of Nikolskii spaces. For
given p € [1,00), 8 € (0,1], an open set G C R, d € N, and v € LP(G), the Nikolskii semi-norm
is defined by

P
[V]ner(q) = sup h|_6(/ [v(-+h) —v|P dac) < 00.
heR4\ {0} GN(G—h)

Then, for p € [1,00) and 8 € (0, 1], the Nikolskii space is defined by
NP?(G) = {v € LP(G) | [Insw(e) < o0},
and the Nikolskii norm || - | yeow(c) = || - llp.c + [Insr(q) turns NP?(G) into a Banach space.

Proposition 6.2. Let ¢ = po|-| € CO(RI)NCZ(R\{0}), where p: R>g — Rsq is an N-function
satisfying (C.1), (C.2). Then, there exists a constant ¢>0 depending only on wg, As(p), and Va(p),
such that for every v, € S5 (Th), v € W5 (Q) with F(Vv) € L>(R?), and T € Ty, it holds that

[P (VT o) = F(Vo)l3 7 < e|F(Vaon) = F(V)3,, +c Jnf |F(Vv) - F)3wrs  (6.1)

and if, in addition, F(Vv) € N?2(int(wr); RY) with 3 € (0,1], then it holds that

IF(VITE v,) — F(V)[I30 < ¢ [F(Vivn) = F(V0)|[30p + b3 [F(VO) Rs2ngory - (6:2)
Proof. ad (6.1). For every v, € S5 (Tn), v € W5 (Q) with F(Vv) € L2(;R?), and T € Ty, it
holds that

112 IETno)l5 51z = = inf |hs*[F(Vhon) —

(1) T)HHQ,S;’L(T)
2
<e inf [IF(Vion) ~ FO) By (63
< lIF(Vaen) = F(V0) B+ inf, [IF(V0) = FO)[B
so that, using Lemma 6.1, we conclude that (6.1) applies.
ad (6.2). If, in addition, F(Vv) € N2 (int(wr); R?) with 8 € (0, 1], choosing r = £, Vodz
for every T € Ty, in (6.1), by [34, inegs. (4.6), (4.7)], we find that (6.2) applies. O
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7. NUMERICAL EXPERIMENTS

In this section, we review the practical relevance of the theoretical investigations of Section 4.
In doing so, we restrict to scalar model problems of Section 4 (i.e., we restrict to the case £ =1). The
vectorial model problems of Section 4 (¢f. Subsections 4.6, 4.7) will be experimentally investigated
in forthcoming articles. All experiments were conducted deploying the finite element software
package FEniCS (version 2019.1.0, ¢f. [60]). All graphics were generated using the Matplotlib
library (version 3.5.1, ¢f. [57]) and the Vedo library (version 2023.4.4, cf. [65]).

7.1 Implementation details regarding the adaptive mesh refinement procedure

The experiments are based on the following generic adaptive algorithm (cf. [11, 14, 86]):
Algorithm 7.1 (AFEM). Let estop >0, 6 € (0,1). and Ty an initial triangulation of Q2. Then,
for every k € NU {0}

(’Solve’) Compute a discrete primal solution uf’ = u§" € SV (Ty,) (i.e., a minimizer of (3.17))
and a discrete dual solution z}! :— zpt € RT(Tx) (i.e., a mazimizer of (3.18)).
Post-process u§™ € S (Ty,) and 2}t € RTO(’E) to obtain admzsszble approzimations
uy € Wl’p(Q) with 1(T@§") < oo and Zit € WP (div; Q) with D(Z}!) > —oo;
(’Estimate’) Compute the resultmg local refinement pmmal dual indicators {ngap (@ 2 e -
If n2.p (@5, Z;!t) < estop, then STOP; otherwise, continue with step ("Mark’);
("Mark’) Choose a minimal (in terms of cardmalzty) subset My, C Ty such that
Z n(y,zy) > 6° Z (@, 7))
TeM;y TETx
(’Refine’)  Perform a (minimal) conforming refinement of Ty, to obtain Ti41 such that each ele-
ment T € My, is ‘refined’ in Ti41. Increase k — k+1 and continue with step ("Solve’).

Remark 7.2. (i) If not otherwise specified, we employ the parameter 6 = % in step ("Mark’).

(ii) To find the set My, C Ty, in step ("Mark’), we resort to the Dorfler marking strategy (cf. [47]).

(i1i) The (minimal) conforming refinement of Tr, with respect to My, in step ('Refine’) is obtained
by deploying the red-green-blue-refinement algorithm (cf. [86]) for d =2 and by deploying
the Plaza—Carey refinement algorithm (cf. [70]) for d = 3.

7.2 Inhomogeneuous p(-)-Dirichlet problem

In this subsection, we review the theoretical findings of Subsection 4.1.

7.2.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.3. (i) The discrete primal solution u§™ € S"(Ty) (i.e., minimizer of (4.4)) in step
(’Solve’) is computed using the Newton line search algorithm of PETSC (version 8.17.3, cf. [12])
(with an absolute tolerance of Taps = 1.0 x 1078 and a relative tolerance of Tre; = 1.0 x 10710)
to the corresponding discrete Euler—Lagrange equations. The linear system emerging in each
Newton step is solved using the sparse direct solver from MUMPS (version 5.5.0, cf. [5]);

(i) The reconstruction of the discrete dual solution z' € RT(Ty) (i.e., mazimizer of (4.5)) in
step (‘Solve’) is based on the generalized Marini formula (4.6);

(iii) As conforming approzimations in step ("Solve’), we employag =TI3" ug" € S'(Tx) C whrh)(Q)
and zZit = 25t € RT(T) € WP O)(div; Q).

(iv) The local refinement indicators {n3,, (@', z;") }yrer, € R0, for every T € T, are given via

a2 (T 25 / B, V) — Va1 + 6" () da

which follows from restricting ngap(ﬂk 20t (cf. (4.3)) to each element T € T,
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7.2.2  Example with corner singularity on L-shape domain

For our numerical experiments, we choose Q == (—1,1)* \([0,1] x [-1,0]), Tp =09, Ty =0,
up =0 € Wi=3=% (I'p), pe C®(Q), for every z € Q defined by
p(z) =p~ + jlz?,
where p~ € {1.5,2}, ¢: Q@ x R?2 = R (satisfying (A.1), (A.2)), for every z € Q and r € R? defined by

. 1 x)—1 1 T
o(@,1) = e I — s

and as manufactured primal solution € WP()(Q) (i.e., minimizer of (4.1)), in polar coordinates,
for every (r,)" € (0,00) x (0,27) defined by

u(r, ) = (1 —r?cos®(¢))(1 — r*sin®(p))r? "V sin(2¢p) ,

where o € C™(0, 400) with o(r) € (0,1) for all € (0,1), i.e., we choose f € LP ()(Q) accordingly.
As approximations, for k = 0, ..., 20, we employ ¢, == ¢p, : Q x R? = R, for a.e. z € Q and
every r € R? defined by

bn,, (x, 1) = m(hi F @=L,

T 2 x
— e (b + [l — he ),

where py, == pp,, € L°(Ty) is defined by
Ph|r =pler) forall T € Ty,

where zp == % ZueNh .ver V is the barycenter of T for all T' € T, and fy, := fp, =1y, f € L0(Th).
For every p~ € {1.5,2}, the function o € C*°(0,+00) for every r € (0,00) is defined by

o 1
o(r) :=1.01 — PRmw

which precisely yields the fractional regularity

F(-,Vu) € N32(Q;R?), (7.1)

p(xz)—2

where F': Q x R? — R? is defined by F(z,r) == |r|” 2 7 for a.e. x € Q and all r € R?.

In the case of uniform mesh refinement (i.e., # =1 in Algorithm 7.1), the fractional regularity (7.1)
let us expect the reduced convergence rate hy ~ Nk_%7 k=0,...,20, where N}, := dim(Sé’CT(E)),
for the alternative total error quantity

Prot (@ s 2i') = | F (-, Va) — F(, V)3 o k=0,...,20
FIF (o) = F (250 | o
where F*: Q x R? — R? is defined by F*(z,r) == |r|" =1 for ae. z € Qand all 1 € R?, which
up to a multiplicative constant is a lower bound for the total error pZ, (u§", 27t), k = 0,.. ., 20, i.e.,
there exists a constant c,.y > 0, depending only on p~ := essinf,cqp(z) and pt = esssup,cqap(z),
such that
ﬁgot (ﬂ?, let) < Cp(-) p%ot(ﬂgv let) , k=0,...,20.

The coarsest triangulation 7o of Figure 2 consists of 96 elements and 65 vertices. In Figure 1,
for p~ € {1.5,2}, one sees that uniform mesh refinement (i.e., # = 1 in Algorithm 7.1) yields
the expected reduced convergence rate hy ~ N~ %, k=0,...,4, while adaptive mesh refinement
(i.e., 0= % in Algorithm 7.1) yields the quasi-optimal convergence rate hi ~ N,;l, k=0,...,20.
In particular, for every p~ € {1.5,2} and k = 0, ..., 20, when using adaptive mesh refinement, and
k=0,...,4, when using uniform mesh refinement, the primal-dual gap estimator 72, (@, z;")
is reliable and efficient with respect to g2, (u§", z;'), k = 0,. .., 20, although it is an upper bound
only up to a constant. This is due to the unspecified constant c,.y > 0.
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(uniform, § = 1) (uniform, 6 = 1)
5 B apl ) (0 = 15) o 0ol @ 1) =1
= S @) (7 =15) 80 T 6 DY) (0 = 1)
B 101 B g G = 20) e g O W) 0 =20
- ; 56 D) (o — 2.0) 0~ T
E e o) U = 20) g, B o e e —20T 89 gRRR
= ~6. g S L0 [P35 ot SRS ST At ’
]
3 A (adaptive, 6 = %)
g 10-2] (adaptive, 6 = }) B 1 -~ I(@) (p7 =15)
S 5 T % e o -1y
g 'ffﬂp(j‘* % = 1o) g —= T(u) = 0989737 (™ = 15) X3
= K o @A) (7 =15) £ o @) (b~ =2.0) §
= 0~ WEap @ 5! (b =2.0) X% —1.29 %= DY) (- =20)
104 =X- 5o (@il 2 :2»:3> il ' m@ '— I(u) ~ —1.13842 (p :Vz.n) |
102 10% 10t 102 10% 104
Number of degrees of freedom — Ny, = dim(Sy " (77)) Number of degrees of freedom — Nj, = dim(Sy " (77))

Figure 1: LEFT: primal-dual gap estimator 77, (a5, z;") and alternative total error ¢, (g, z;,");
RIGHT: primal energy I(u§") and dual energy D(z}"); each for p~ € {1.5,2} and k = 0,..., 20,
when using adaptive mesh refinement (i.e., § = % in Algorithm 7.1), and for k£ = 0, ..., 4, when uni-
form mesh refinement (i.e., # =1 in Algorithm 7.1), in the inhomogeneous p(-)-Dirichlet problem.

In Figure 2, for p~ € {1.5,2}, one finds that Algorithm 7.1 refines towards the origin, where
the gradient of the primal solution u € Wl’p(')(Q) has its singularity. More precisely, Figure 2
displays the triangulations T, k € {0,10, 20}, generated by Algorithm 7.1 in the case p~ = 2.

This behavior can also be seen in Figure 3, in which the discrete primal solution u{j € Sé “"(Tho),
the node-averaged discrete primal solution II3" u{j € S4(To), and the discrete dual solution
278 € RT(Tho) are plotted, each in the case p~ = 2.

To Tio 720

Figure 2: Initial triangulation Ty and adaptively refined triangulations Ty, k € {10, 20}, generated
by Algorithm 7.1 for 8 = %, each in the case p~ = 2 in the inhomogeneous p(-)-Dirichlet problem.

1.00
- ler FCT 1 KR rt 0 2
ufy € Sy (Tho) ufh € S5(Tho) e T2 € (£°(Tho)
0.751 B
0.5 05 o504
0.4 0.4 N
03 03 0251
0:2 02 400
0.1 0.1
0.0 ~0.25
1o ~0.50
~0.75 1
1.00
. . . . .
—1.0 —05 0.0 0.5 10

Figure 3: LEFT: discrete primal solution uff € Sé "“"(T10); MIDDLE: node-averaged discrete
primal solution u} € S§(T10); RIGHT: (local) L2-projection (onto (£°(710))?) of discrete dual
solution 27§ € RT°(T10), each in the the case p~ = 2 in the inhomogeneous p(-)-Dirichlet problem.
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7.8  Obstacle problem

In this subsection, we review the theoretical findings of Subsection 4.2.

7.3.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, again, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.4. (i) The discrete primal solution u§" € SV (Ty) (i.e., minimizer of (4.10)) and
the discrete Lagrange multiplier X € T, (S5 (Tr)) (i.e., solution of (4.12)) in step (*Solve’)
are computed using a primal-dual active set strateqy interpreted as a locally super-linear
converging semi-smooth Newton method (cf. [18, Alg. 6.1 with o = 1]). Since only a finite
number of active sets are possible, the algorithm terminates after a finite number of iterations
at (ug", )T € SY(T) XMy, (S5 (Tr)) - The linear system emerging in each semi-smooth
Newton step is solved using the sparse direct solver of SciPy (version 1.8.1, cf. [87]);

(i) The reconstruction of the discrete dual solution zi' € RT°(Ty) (i.e., mazimizer of (4.11))
in step ("Solve’) is based on the generalized Marini formula (4.13);

(iii) As conforming approzimations in step ("Solve’), we employug’ = max{IIj uf’, x} € W?(Q)
and zZ;! = 21t € RT(Ty,) C W2(div; Q).

(iv) The local refinement indicators {n3,, (@, z;") yrer, € R0, for every T € T, are given via

néap,T(Uzra th) = %"Vﬂ? - Z?H%,T + (—diV th - f7 Uir - X)T’

which follows from restricting n2,, (@i, z;") (cf. (4.9)) to each element T € Ty,.

7.8.2  Example with unknown exact solution

For our numerical experiments, we choose 2 := (=3,2)2, T'p :=9Q, Ty =0, f =0 € L*(Q),
up =0 € W22(8Q), and y € Wy2(Q) (¢f. Figure 4), for every 2 = (21, 22)" € Q defined by

x(21,®2) == max{0, min{min{z; + 1,1,1 — 21}, min{zs + 1, 1,1 — a5 }}}.

As approximation, for k =0, ...,25, we employ xx = Xn, = ln,x € LO(Tx) (cf. Figure 4).
The primal solution u € Wy'?(€2) (i.e., minimizer of (4.7)) is not known and cannot be expected
to satisfy u € W22(Q) inasmuch as x ¢ W22(Q). In consequence, uniform mesh refinement (i.e.,
6 =1 in Algorithm 7.1) is expected to yield a reduced convergence rate compared to the quasi-
optimal convergence rate h ~ N, ', k=0, ..., 25, where Ny := dim(Sy" (7x)) + dim(L°(7z)).

X € Wo?(Q) X15 = In, x € L2(Tis)
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0
15 1.5
_15_1‘0_0,5 70.(5)40
05 10 71;)1'0 s L0 71;)1'0
15 15

Figure 4: LEFT: nodal interpolant of the obstacle x € VVO1 ’Q(Q); RIGHT: (local) L2-projection
(onto £9(T)) x15 = M, x € L2(Ti5) of the obstacle y € W, 2(9).
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The coarsest triangulation 7Ty in Figure 5 consists of 64 elements and 41 vertices. More premsely,
Figure 5 displays the triangulations T, k € {0, 5, 10, 15, 20, 25}, generated by Algorithm 7.1 for § =
The discrete contact zones Cy" = {IIj, u§ —Xk} {)\C’" <0}, k€{0,5,10,15,20,25}, are plotted
in white in Figure 5 while thelr complements are shaded.

Algorithm 7.1 refines the triangulations towards the contact zone C := {u = x} (¢f. Figure 5)

The discrete contact zones Cy", k € {0,...,25}, reduce to C. This can also be observed in Figure 7,
where the discrete primal solutlon u§s € Sy (Tis), the node-averaged discrete primal solution

I5Y gy € 50 (T15), the discrete Lagrange multlpher XL € T, (Sy " (Tis)), and the discrete dual
{ € RT°(Ti5) are plotted. In Figure 6, one sees that uniform mesh reﬁnement (z e.,
4

solution zig
f=1in Algorlthm 7.1) yields the expected reduced convergence rate hy ~ N2, k=0,.
while adaptlve mesh refinement (i.e., § = £ 1n Algorithm 7.1) yields the qua51—opt1mal convergence
rate h ~ N, ', k=0,...,25.
To

]

N

W

<
3

0z

Figure 5: Adaptively refined triangulations T, k € {0, 5,10, 15,20, 25}, with discrete contact
zones Ci", k € {0, 5,10, 15,20, 25}, shown in white in the obstacle problem.

P 1.2 @ ; _
o oB- Z-me., ’n“ (uniform, = 1)
B \x\ i
1 MY S~ 5 ! \
10 5 12} x 1.01 T
o 5 i
= . Se 6 2 e
g (uniform, 6 = 1) 9 =< 20 {
_ S <2
2 =©- ap (T 2} 3 o L;:J 0.81 " 5 7
= 102 ! \\ G%ﬁ ,“ ,;( NESel - XmmTT (adaptive, § = %)
‘ = Y2 S :
€ e -~ Iy
(adaptive, 6 = 1) “be 0.61 ," oy Ryt - D(El;,'cf))
1,7 -7
~O gap @y, =) 1 % 6” — () ~ 0.793761
I
10? 10 10 10? 10° 10
Number of degrees of freedom — dim (S, (73)) + dim(£°(75))

Number of degrees of freedom — dim (S, (75)) + dim(£°(T5))

Figure 6: LEFT: primal-dual gap estimator ngap(ﬂﬁ’“,zk ); RIGHT: primal energy I(ay”), dual
%), and primal energy I(u) approximated via Aitken’ s §2-process (cf. [3]); each for

energy D(z],
25 when using adaptive mesh refinement (i.e., § = 5 in Algorithm 7.1), and for

k=0,...,25
k=0,...,4, when uniform mesh refinement (i.e., § = 1 in Algorithm 7.1), in the obstacle problem.
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usy € S (Tis)

ufh € Sy (Tis)

0.5

0.4

0.3 f

IR
i
Iy

0.2
0.1
0.0

—1.5 \ .
-10 _ ~05

—0.5
0.0

0.5 -1.0 .
1.0 _ 1.0 _
L5 15 L5 15

thzﬁ’) & (50(7—15))2

T
-1.5

Figure 7: UPPER LEFT: discrete primal solution u§; € Sy (Ti5); UPPER RIGHT: node-

averaged discrete primal solution uf; € St(715); LOWER LEFT: discrete Lagrange multiplier

At € £9(T15); LOWER RIGHT: (local) L2-projection of the discrete dual solution 27t € RT%(T15);
each on the triangulation 775 in the obstacle problem.
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7.4 Rudin—Osher—Fatemi (ROF) image denoising problem

In this subsection, we review the theoretical findings of Subsection 4.4. To compare approxi-
mations to an exact solution, we impose homogeneous Dirichlet boundary conditions on I'p = 99,
even though, then, a corresponding existence theory is difficult to establish, in general. However,
the set-up derived in Subsection 4.4 carries over verbatimly with I'y = () provided that the exis-
tence of a minimizer is a priori guaranteed.

7.4.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, again, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.5. (i) The discrete primal solution u§” € Sy (Tr) in step (*Solve’) is computed
using a semi-implicit discretized L?-gradient ﬂow (cf. [24, Alg. 5. 1/) for fized step-size T = 1,

stopping criterion 5?2‘017 \%LO, and initial condition ul =0 € Sy’ (Ty). Appealing to [24,

Prop. 5.2(ii)], [24, Alg. 5.1] is unconditionally strongly stable, so that employing the fized

step-size T = 1 is a canonical choice. The stopping cmtemon ghe = % ensures (cf. the ar-

sto.
gumentation below [24, Alg. 5.1]) that the final iterate uh €Sy cTI()'E) i* €N, is a sufficiently
accurate approzimation (in L*(Q)) of the discrete primal solution uS™ € Sy (Tr.), in the
sense that its accuracy does not violate the best possible convergence mte (cf. [24, Rem. 5.6]).
The linear systems emerging in each gradient descent step is solved using the conjugate gradient
method of PETSc (version 3.17.3, cf. [12]) preconditioned with an incomplete LU factorization.
(i) The reconstruction of the discrete dual solution zi' € RT°(Ty) (i.e., mazimizer of (4.24))
in step ("Solve’) is based on the generalized Mamm formula (4 25).
(i1i) As conforming approzimations in step (‘Solve’), we employ T§ = Hg? € Sl “T(Tx) with
ui” =0 a.e. on O, where the operator Hg?: Ster(Ty) — Sé’cr(ﬁ) for every vy, € SH"(Tx)
is defined by

5%, = E vn, (T5) P55
Ses;, 1 8NoN=0

where rg = 3 Zue/\/h veg V denotes the barycenter of S for all S € Sy, and Z}; t e RT(Ty)
with |Z;| <1 a.e. in Q, defined by
25t

max{1, [z} .0}

Ezt —

(7.2)

CT‘.

Note that the post-processing u Hg?uz’” is only due to the imposed homogeneous Dirichlet

boundary condition. In the case T'p =10, the choice u§" =u§" € SV (Ty) is always admissible.

(iv) The local refinement indicators {Ugap,T(ﬁirafzt)}TeTk C Rxo, for every T € Ty, are given via

ngap,T(ﬂzr> let) = ngap,A,T(azT’ Ezt) + n;ap,B,T (ﬂz’r’ E?) ’
Noap A @20 = IVaa e — (Vamg Iz e+ > @ Dslhus
2 —cr —rty . 1 i 5Tt —CT 2 SESy : 8COT
Nap,B,7 (U5 2k ) = 55 |divzy +a @ —g)l5r,
where we used in (4.22) the discrete integration-by-parts formula (2.12) and the discrete
representation of the total variation (cf. [25]), i.e., for every v, € LY(Ty), it holds that

Donl(©@) = [Vawnlo+ 3
SeSy

to arrive at an alternative representation for (4.22), i.e., for every v, € S¥"(T,) and
yn € RTY(Tr) with |yn] < 1 a.e. in 2, we have that

Noap (0 yn) = I Vhvnlli.o = (Vaon, Mhyn)a + Y llvalsl.s
. SeSh
+ o=l divyn + o (v — 9)||§,T .
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7.5  Example with Lipschitz continuous dual solution

We examine an example from [23]. In this example, we let Q == (—1,1)%, d € {2,3}, I'p := 99,
ri=4,a:=10,and g := X i) € BV(Q)NL>*(Q). Then, the primal solution u € BV (Q)NL>(£2)
and a dual solution z € W2(div; Q) N L= (Q;RY), for a.e. x € Q are given via

—z if |z] <7,

u(e) =1~ 5)gle),  z(z)= { T

73
_m it [ > (7:3)

As approximations, for k = 0, ...,25, we employ ¢y, == ¢, € C1(R?), for every r € R? defined
by ¢, (r) = (1= h}) (b} + |r[?)%, and gy, = gy, =TI, g € L2(Ty).

2D Case. The coarsest triangulation 7Ty of Figure 8 consists of 32 elements and 25 vertices.
More precisely, Figure 8 displays the triangulations Tk, k € {0, 15,25}, generated by Algorithm 7.1.
A refinement towards B2(0), i.e., the jump set J,, of the primal solution u € BV (2) N L>(12)
(c¢f. (7.3)) is reported. This behavior is also seen in Figure 10, in which the discrete primal
solution u§s € Sy (Tis), the (local) L2-projection (onto £O(71s)) Iy, ush € LO(T15), the (local)
L?-projections (onto £!(715)) of the modulus of the discrete dual solution 2]t € RTO(Ti5),
and the (local) L?-projections (onto £!(715)) of the unit-length scaled discrete dual solution
Zk € RT%(Tis) (cf (7.2)) are plotted. In Figure 9, one sees that uniform mesh refinement (i.e.,
6 = 1in Algorithm 7.1) yields the expected reduced the convergence rate hy ~ N,;%, k=0,...,25,
(predicted by [41, 16]), while adaptive mesh refinement (i.e., = 1 in Algorithm 7.1) yields the
quasi-optimal convergence rate h? ~ N !, k =0,...,25. In addition, Figure 9 indicates the
primal-dual gap estimator is reliable and efficient respect to the alternative total error quantity

ﬁ%ot(ﬂzrvzzt) = %Hﬂ? - u”%,ﬂ + i”divz? - diVZ”%,Q ) k= Oa teey 25 ) (74)
which is a lower bound for the total error pf.. (uf’, z;') = ng., (W5, 24'), k= 0,...,25.

7o 715 72

Figure 8: Initial triangulation 7o and adaptively refined triangulations T, k € {15, 25}, generated
by Algorithm 7.1 for 0 = % in the Rudin-Osher—Fatemi image de-noising problem.
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5 101 X mee, e 5 |4 |}
s 10 (uniform, 6 = 1) X XS o) 141 T~ . .
= e Ko Cn — Q. (adaptive, 6 = 1)
&3 -O- ng{ap(“ﬂ V2 X %~\ = 16N 2
36— 2 (qer =t Ra S = SO RE Sl [P/
= K= oy (T E) XX e Bt NS
210724 =+ Xs¢ o B Bg O
< ; i % = 1.2 Q e
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= ) 2 & (] =<
é’ =62 ’Ié;ap(i?fzﬁ) % \GO‘G ~~~~ e
10734 -3¢ (a7 1 o 29060000089
102 10° 10! 102 10° 10!

Number of degrees of freedom — Ny, = dim(Sy " (77)) Number of degrees of freedom — Ny, = dim(Sy " (77))
Figure 9: LEFT: primal-dual gap estimator ngap (u§", z;t) and alternative total error p?(us", z5);
RIGHT: maximal length of discrete dual solution ||z}*||~,o; each for k = 0,. .., 25, when using ad-
aptive mesh refinement (i.e., 0 = % in Algorithm 7.1), and for k = 0, ..., 5, when using uniform mesh

refinement (i.e., §=1 in Algorithm 7.1), in the Rudin—Osher-Fatemi image de-noising problem.
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ush € 8y (Tis) Iy ush € L£2(Tis)

Figure 10: UPPER LEFT: discrete primal solution u§% € Sy’ (7T15), UPPER RIGHT: (local) L*-
projection of discrete primal solution I, u$t € £°(T15); LOWER LEFT: (local) L2-projection
(onto L£'(T15)) of discrete dual solution ITj |z7f] € £'(Ti5); LOWER RIGHT: (local) L*-
projection (onto £'(715)) of unit-length scaled discrete dual solution IT;, _[Z7%| € £ (T1s) (cf. (7.2));
each on the triangulation 715 in the Rudin—Osher—Fatemi image de-noising problem.
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3D Case. The initial triangulation 7 of Algorithm 7.1 consists of 384 elements and 125 vertices.
Algorithm 7.1 refines the triangulations towards dB2(0), i.e., the jump set J,, of the exact solution
u € BV (Q) N L>®(Q) (¢f (7.3)), which can be observed in Figure 11, in which, more concretely,
for k € {0,5,9}, the discrete primal solution u§” € Sy’ (7) and the (local) L-projection (onto
L1(Ty)) of the modulus of the discrete dual solution 2! € RTY(7y) are plotted. In Figure 12,
one sees that uniform mesh refinement (i.e., =1 in Algorithm 7.1) yields the expected reduced
convergence rate hy ~ Nk_%, k=0,...,3, (predicted by [41, 16]), while adaptive mesh refinement
(i.e., 0 = % in Algorithm 7.1) yields the improved convergence rate hi ~ Nk_%, k=0,...,9.

y 4

Figure 11: TOP: discrete primal solutions u{” € Sy (Tx), k€ {0,5,9}; BOTTOM: (local) L*-
projection (onto £'(Tx)) of the moduli of the discrete dual solutions I}, [2;*| € £1(Tx), k€{0,5,9};
each on the triangulation Ty, k € {0,5,9}, in the Rudin-Osher—Fatemi image de-noising problem.

1 151 O\-\ ________ (uniform, 6 = 1)
10+ 3 i & -0 [fllwn
i AN
: grap o N
= , - < o e = $
form, 0 =1) ., Tesg RN T R RN
2 1011 (uni 012111, ik 7”) g oAn Q\\G\ =13 o B, (adaptive, 0 = 1)
5 =O- ngap (7 i 7 THL oo = T N -o- |2
E =% o (W) £ - © £ 9] S NN % oot
g R ) s
5 1024 (adaptive, 6 = 1) 2 X‘\\X\ = oy AS)
-0 ) |3 e L1 oo
) 1 “| Ll -0
10° 10! 10° 10° 10° 10! 10° 10°
Number of degrees of freedom — dim(Sy (7)) Number of degrees of freedom — dim(Sy (77))
Figure 12: LEFT: primal-dual gap estimator 72, (@, Z},") and alternative total error 5, (g, Z;,");
RIGHT: maximal length of discrete dual solution ||2}!||oc,0; €ach for k =0,...,9, when using ad-
aptive mesh refinement (i.e., § = % in Algorithm 7.1), and for ¥ = 0, . .., 3, when using uniform mesh

refinement (i.e., 6 =1 in Algorithm 7.1), in the Rudin—Osher-Fatemi image de-noising problem.
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7.6  Jumping coefficients

In this subsection, we review the theoretical findings of Subsection 4.5.

7.6.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, again, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.6. (i) The discrete primal solution u{" € S (Ty,) (i.e., minimizer of (4.29)) in step
(’Solve’) is computed using the sparse direct solver from MUMPS (version 5.5.0, cf. [5])
applied to the corresponding discrete Euler—Lagrange equation;

(i) The reconstruction of the discrete dual solution zi' € RT°(Ty) (i.e., mazimizer of (4.30))
in step ("Solve’) is based on the generalized Marini formula (4.31);

(iii) As conforming approzimations in (‘Solve’), we employ uf =TI ui” € S'(T,) € W(Q)
and Z)t = 21t € RT(Tx) C W?2(div; Q).

(iv) The local refinement indicators {n3,, (@', z;") yrer, € Rxo, for every T € Ty, are given via

— 1 — _1
Moap, 7 (T, 21) 1= 31| A2 (VT — A72 ()3 1

which follows from restricting 0., (uy", z;t) (cf. (4.28)) to each element T € Ty,.

7.6.2 Example with unknown ezxact solution

For our numerical experiments, we choose Q:=(—1, 1)27 I'p:=00,Tn=0,up=0¢ W%’2(FD),
f=1€ L?(Q), and as jumping coefficient matrix A°: Q — R?*2 for every ¢ € {16,32,64} and
x € ) defined by

Af(x) =

{Elzxz if |z +e| <1, (75)

1lpxo  else,

where e; = (1,0)T € R2.

As approximation, for k = 0,...,40 and € € {16,32,64}, we employ Aj = Aj =1Ij A° €
(LO(T;))?*2. For every e € {16,32,64}, the primal solution u® € W,*(Q) (i.e. minimizer of (4.26)
with A = A°) is not known and cannot be expected to satisfy u® € W22(Q2) since A° ¢ C°(Q; R?*2).
As a consequence, uniform mesh refinement (i.e., 8 = 1 in Algorithm 7.1) is expected to yield a
reduced convergence rate compared to the quasi-optimal convergence rate (h{)? ~ (N£)~!, where
Ng = dim(S07 (7).

The coarsest triangulation 7 consists of 32 halved elements and 25 vertices. In Figure 13, for
every € € {16, 32,64}, the final triangulations 75, generated by Algorithm 7.1 are displayed. In it,
a refinement towards dB%(e;) N, i.e., the jump set J4- of the discontinuous coefficient matrix
A € L*°(Q;R2*2) (cf. (7.5)) is reported.

T (e =16) T (e =32)

Figure 13: Final triangulations 7, ¢ € {16, 32,64}, generated by Algorithm 7.1 for = § in
the jumping coefficient problem.
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This behavior is also seen in Figure 14, in which, for every e € {16, 32,64}, the discrete primal
solution ugy® € Sy (T5,) (i.e., minimizer of (4.29) with Aj, = Aj ) and the node-averaged discrete
primal solution uw ©eSH(T; ) are plotted. In addition, Figures 13, 14 show that for increasing
value of ¢ € {16, 327 64}, the refinement is more concentrated at the jump set J4c = dB%(e;) N .

gy € 8 (T) (e = 16) usy” € Sy (Ts) (e = 32) uss” € Sy (Ts) (e = 64)

8 g 8

7 7 7

6 6 6

5 5 5

1 1 1

3 3 3

5 5 P

1 1 1

0 0 0
1.0 1.0 —-1.0

5 5 —0.5
1.0 0.0
_ ) 5
05_1 4 L. 0
5 € 8 (Ts) (e = 16) 5 € Sy (T) (e = 32) a5 € Sy (T) (e = 64)

8 8 8
7 7 7

6 6 6

5 5 5

] ] ]

3 3 3

5 5 5

i i i

0 0 0
~1.0 ~1.0 ~1.0

Figure 14: TOP: discrete primal solutions uly® € Sy (T5,), € € {16,32,64}; BOTTOM: node-
averaged discrete primal solution wy° € S, ’CT( 5)s € € {16,32,64}; each on the triangulation 75

in the jumping coefficient problem.

In Figure 15, for every ¢ € {16, 32,64}, one sees that uniform mesh refinement (i.e., § =1 in
Algorithm 7.1) yields the expected reduced convergence rate (h{)%7 ~ (Ng)=%35 k=0,...,5,
while adaptive mesh refinement (i.e., § = % in Algorithm 7.1) yields the quasi-optimal convergence

rate (h$)? ~ (NE)™1, k=0,...,40.

10% 4 (uniform, 6 = 1) 1200 4 (unifonn 0=1) (adaptive, 6 = 1)
Ngap,e (T (uk ) (e =16.0) 5@ (e = 16.0)
1024 B .. 1000 D*(") (e = 16.0) De(z;*) (e =16.0)
B ap () (o= 9 <"A ”) 6 =320) () & ~ 115124 (e = 16.0)
5 . 8001 e DF(z") (e =32.0) -©- (@)
T 10 & -0 (uk ) (¢ =64.0) X~ D)
E S 6009 % D) (e = 040) —— I7(uf) ~ 200871 (¢ = 320)
e : S R -©- @) (e =640)
m 10°4 ® \ G~~ R )
(adaptive, 6 = 1) R 4007 9“9’)&00 i (Z}r.,) iy
" —— IF(uf) ~ —25.3785 (= = 64.0)
1011 Tk, ) (=160) 200 %}
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1072 ===y T T T T T T .
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Number of degrees of freedom — Nt = dim(S,“" (7)) Number of degrees of freedom — Ni = dim(S) (7))

Figure 15: LEFT primal-dual gap estimator 72, (7%, z 2;1%); RIGHT: primal energy I° (),

dual energy D°(z}" 2z, %), and primal energy I°¢(u®) approxnnated via Aitken’s §2-process (cf. [3]);
each for e € {16,32,64} and k = 0,...,40, when using adaptive mesh refinement (i.e., § = % i
Algorithm 7.1), for K =0,...,40 and for £ = 0,...,5, when uniform mesh refinement (i.e., § =1

in Algorithm 7.1), in the jumping coefficient problem.
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7.7 Anisotropic mesh refinement

In this subsection, we examine the behavior of the primal-dual gap estimator with respect to
anisotropic mesh refinement. For an extensive examination of anisotropic mesh refinement, we
refer the reader to [6, 67]. We restrict to the Poisson problem (1.1), i.e., we employ the implemen-
tation of Subsection 4.5, but in the case A(z) := I xq for a.e. z € Q.

7.7.1 FExample with unknown exact solution

For our numerical experiments, we choose € == (—1,1)%\ ([0,1] x [~1,0]4"1), d € {2,3},
Ip=0Q Ty =0, up=0eW22(p),and f=1¢€ L?(Q). For different grading strengths
RS {%, 1, %} and k = 0,...,40, we anisotropically refine the triangulations ’ﬁf towards the origin,
where the gradient of the unknown primal solution u € Wy'*(2) (i.e., minimizer of (4.26) with
A = I xq) is expected to have a singularity. Note that the grading strength 8 = 1 precisely
corresponds to uniform mesh refinement.

2D Case. For g € {é, 1, 2} the coarsest triangulation TB consists of 6 element and 8 vertlces
Figure 16 depicts the anisotropically refined triangulation 7'20 for grading strengths 8 € {2, 1,2
In it, one observes that for increasing value grading strength 3 € {3, 1, 3}, the potential smgulanty
of the gradient of the unknown primal solution u € WO1 %(Q) at the origin is better resolved.
The same behavior can be seen in Figure 18, in which for different grading strengths 5 € {%, 1, % ,
the discrete primal solution uSy” € 83" (74)) (i.e., minimizer of (4.26) with Ay, = Iox2) and the
node-averaged discrete prlmal solutlon Usg o €Sy CT(T ) are depicted. In Figure 17 ome sees that
the grading strengths ﬁ 5 and 8 =1 yleld the reduced convergence rates (hﬁ )08 ~ (N A )0
(for =1) and (h])~" (N’B) 075 (for 8 = 1), respectively, where N,f = dim ( Sy CT(Tﬁ))
while the grading strength B=3 3 vields the quasi-optimal convergence rate (hﬁ )2~ (N ) . Overall,
we find that the primal-dual gap estimator is robust with respect to the choice of gradlng strengths.

Ty (8 =0.5) T2 (8=1) T4 (8 =15)

Figure 16: Anisotropically refined triangulations ’TQ% for different grading strengths g € {%, 1, %

o) a0 (anisotropic)
RS 1@ (5=05)
T8, | D) (3=05)
S -0 1@ (8=10)
E - 1 %= D) (8=1.0)
g 1 .- 1" (5=15) o8
- ! -R- e *
5 X- D) (615 “Neeg
& e e e~
(anisotropic) ’x_,x——*‘x'
1034 Uéap(ﬁT'ﬁaZ;w) (3=05) ’X/’
6 apE’57) (B=10) Lo
O a4 (5= 15) %
10" 107 10° 10° 10! 107 10° 10*
Number of degrees of freedom — Ny, = dim(S&'”(’ﬁc)) Number of degrees of freedom — Nj, = dim(sé-,cr(n))

Figure 17: LEFT: primal-dual gap estimator 72, (@, 2;1%); RIGHT: primal energy I(;, erhy.

dual energy D(z}" %, and primal energy I(u) approximated via Aitken’s 62-process (cf. [3]); each
for grading strengths 8 € {%, 1, %} and k= 0,...,40.
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ug” € 8 (Ty) (8 = 15)

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
1.0
0.5
S 0.0
—0.5 0. —0.5 0.0 —0.5
05 1 —10 05 1 —10 05 1 —10
" € Sy (Tyg) (8 =0.5) Ty’ €8 (T)) (8 =1.0) € 8y (Tyg) (B =15)
4 0.14 0.14
013 0.12 0.12
0.10 0.10 0.10
0.08 0.08 0.08
0.06 0.06 0.06
0.04 0.04 0.04
0.02 0.02 0.02
0.00 0.00 0.00
0 1.0 1.0
0.5 0.5
10 . 0.0 ~L0_ - 0.0
: —0.5 " —0.5
00 . o 00 . o
1o —L 1o L

Figure 18: TOP: discrete primal solutions ugg’ﬁ € Sé’CT(TQ%), B € {3,1,2}; BOTTOM: node-
averaged discrete primal solution Egg”g c Sé “r (7'260), B € {%,1,2}; each on the anisotropically

refined triangulation 73% for grading strengths 8 € {%, 1, %}

38D Case. For 8 € {%, 1, %}, the coarsest triangulation %ﬂ consists of 336 elements and 117 ver-
tices. In Figure 20 and Figure 21, for k € {0,2,4} and different grading strengths 8 € {1, 1, 2}, the
discrete primal solution u{"” € S;*" (7,7) (i.e., minimizer of (4.26) with Ay, =Iyx2) and the (local)
L2-projection (onto £1(7;)) of the modulus of discrete dual solution z;t’ﬁ € RTO('Y;B ) are depicted.
In Figure 19, one sees that the grading strengths 5 = % and 8 =1 yield the reduced convergence rates
(h) ™% ~ (N) 7% (for B = 3) and (b))~ ~ (N)~# (for § = 1), where N} = dim(Sy"" (7)),
while the grading strength 8 = 2 yield the improved convergence rate (h/,j )2~ (N ,’f )75,

10719 82 —0.177 O===—u___ -
TR \\N\ So
e 25018 )
e g
TN 2 0191 C-——c_ [ONSEER
> 55 N -~
— ~ : R T N R R e, © T
2 e — —020{ (anisotropic) — _'8 )
g 5 28 (8= 05 Pt
g 10724 = @) (8=0.5) e
= A —0.21 G
7 3 D(z;") (8=0.5)
= (anisotropic) — 0229 ©- 1) (8=1.0)
. g | % by s=10)
Pan (@2, %) (8= 0.5) g 09234 )¢
T i - @) (8=15)
O mhap (i ) B=10) —0.241 -%- D(z*%) (8=1.5)
107y - :léap(“l' 72 (93':1‘5) | ' sl 'I(u)z—0,199105 ' | '
10° 10" 10° 10° 10° 10! 109 10°
Number of degrees of freedom — Ny = dim(S; (7x)) Number of degrees of freedom — Ny, = dim(Sy " (75))

Figure 19: LEFT: primal-dual gap estimator néap (wyF, z,:t’s); RIGHT: primal energy I (ﬂzr’ﬁ ),
dual energy D(zlzt’ﬁ ), and primal energy I(u) approximated via Aitken’s §%-process (cf. [3]); each
for grading strengths 8 € {%, 1, %} and k=0,...,3.
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Figure 20: Discrete primal solution v’ € S;*"(7,) on triangulationsT,” obtained using
anisotropic mesh refinement for k& € {0,2,4} (from left two right) and 3 € {3,1, 3} (from top to
bottom).
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f |

Figure 21: (Local) L2-projection (onto 61(7'5)) of modulus of discrete dual solution Hlﬁ |z fle

£1(Tﬂ ) on triangulation 7'5 obtalned using anisotropic mesh refinement for & € {0, 2 4} (from
left two right) and 3 € {2, , 5 (from top to bottom).
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A. NODE-AVERAGING QUASI-INTERPOLATION OPERATOR AND INTERPOLATION ERROR
ESTIMATE IN TERMS OF (SHIFTED) N-FUNCTIONS

In this appendix, we recall the definition of node-averaging operator I1¢V: L1 (T) — Sh(Th)
and an interpolation error estimate in terms of (shifted) N-functions.

A.1 Node-averaging quasi-interpolation operator

The node-averaging quasi-interpolation operator 11¢°: LY(T;,) — SH(Tr), denoting for every
v € Ny, by Th(v) = {T € Ts, | v € T}, the set of elements sharing v, for every v, € L}(T3,), is
defined by

1 ity e QUT Y
avy, = ouon. o), i 4 AT 2TeTi ) (UalT) ) :
B R y;\;hfww (vn) {0 v eTy,

where we denote by (¢, ),en;, the nodal basis of S1(73).

A.2  Interpolation error estimate in terms of (shifted) N -functions

A convex function ¢: R>¢g — R>q is said to be an N-function if and only if ¢(0) = 0, ¢(t) > 0
for all ¢ > 0, lim;—,¢ ¢(t)/t = 0, and lim;_,o ¢(¢)/t = co. Then, there exists a right-derivative
¢t R>¢g — Ry, which is non-decreasing and satisfies ¢’'(0) = 0, ¢’(¢t) > 0 for all ¢ > 0, and
lim;_,o0 ¢/ (t) = co. In addition, an N-function ¢: R>g — R is said to satisfy the Ay-condition
(in short, ¢ € Ay) if and only if there exists a constant ¢ > 0 such that ¢(2t) < co(t) for all t > 0.
We denote the smallest such constant by As(p). An N-function ¢: R>¢ — R is said to satisfy
the Va-condition (in short, ¢ € Vy), if its Fenchel conjugate ¢*: R>¢ — R>( is an N-function
satisfying the Ag-condition. If p: R>o — R satisfies the Ay- and the Vy-condition (in short,
¢ € Ay N'V3), then we define the corresponding family of shifted N -functions ¢, : R>o — R>o,
a > 0, for every t > 0 by

t /
pult) = [ plo)as, where () = L0

Appealing to [46, Lem. 22], it holds that c, = sup,>q A2(¢a) < co. In particular, for every e > 0,
there exists a constant ¢, > 0, not depending on a > 0, such that for every ¢,s > 0 and a > 0,
there holds the following e-Young inequality:

st < e (pa)™(s) +epa(t). (A.1)

Proposition A.1. Let p: R>9 = Rx>o be an N-function such that ¢ € Ay N Vy. Then, for
every vy, € S (Ty), m € {0,1,2}, a > 0 and T € Ty, we have that

/ (R IV (0n — TI"u)) e < can / palhr|Vionl) de
T

wT

sforall s >0.

where cq > 0 depends only on c, and wy.

Proof. See [58, Cor. A.2]. O
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