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Sören Bartels∗1 and Alex Kaltenbach†2

1Department of Applied Mathematics, University of Freiburg, Hermann–Herder–Str. 10, 79104 Freiburg
2Institute of Mathematics, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin

February 9, 2024

Abstract

A posteriori error estimates are an important tool to bound discretization errors in terms
of computable quantities avoiding regularity conditions that are often difficult to establish.
For non-linear and non-differentiable problems, problems involving jumping coefficients, and
finite element methods using anisotropic triangulations, such estimates often involve large
factors, leading to sub-optimal error estimates. By making use of convex duality arguments,
exact and explicit error representations are derived that avoid such effects.
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1. Introduction

1.1 Sharp error estimation

The derivation of sharp a posteriori error estimates has been an active area of research over
several decades. Typical concepts involve the precise characterization of generic constants occur-
ring in residual estimates (cf. [10, 1, 83, 50, 88, 40, 52]), the approximation of local problems by
higher-order methods (cf. [64, 39]), the usage of convex duality relations (cf. [66, 84]), and the de-
velopment of post-processing procedures to obtain equilibrated fluxes (cf. [61, 32, 31, 51, 26, 81]).
For general discussions of various aspects of a posteriori error estimation, we refer the reader,
e.g., to [11, 30, 73, 86, 42]. Recently, fully computable error representations for various convex
variational problems have been identified by deriving explicit representation formulas for solutions
of dual problems in terms of non-conforming primal approximations. The concept avoids the
occurrence of typical constants, applies to a large class of non-quadratic, non-differentiable, con-
strained, and degenerate problems, for which classical approaches lead to sub-optimal error control.
Closely related concepts have been used in the derivation of a posteriori error estimates for mixed
and non-conforming methods (cf. [8, 7, 4, 45, 2]).

1.2 Prager–Synge identity

A well-known error representation in the context of the homogeneous Poisson problem, i.e.,

−∆u = f in Ω ,

∇u · n = 0 on ΓN ,

u = 0 on ΓD ,

(1.1)

where ΓD,ΓN ⊆ ∂Ω with ΓD∪̇ΓN = ∂Ω and f ∈ L2(Ω), was pointed out in [71] and follows from
the celebrated Prager–Synge identity, i.e., if u ∈W 1,2

D (Ω) is the (weak) solution of the Poisson
problem (1.1) and z = ∇u ∈W 2

N (div; Ω) the solution of the corresponding (Fenchel) dual problem,

then for every v ∈W 1,2
D (Ω) and y ∈W 2

N (div; Ω) with div y = −f a.e. in Ω, it holds that

1
2∥∇v −∇u∥22,Ω + 1

2∥y − z∥22,Ω = 1
2∥∇v − y∥22,Ω . (1.2)

The identity (1.2) is an immediate consequence of the L2-orthogonality of y−z and ∇v−∇u and
has the interpretation that the squared L2-distance between the gradient of a primal approxima-
tion v ∈W 1,2

D (Ω) and a dual approximation y ∈W 2
N (div; Ω) with div y = −f a.e. in Ω yields an

explicit and computable way to determine the sum of the primal and dual approximation errors.
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A limitation of using this interpretation practically is that often merely a primal approximation is
given and determining an optimal or nearly optimal dual approximation typically is too expensive.
For special problems involving two-dimensional Poisson (cf. [30]) and obstacle problems (cf. [28]),
this difficulty has been overcome by constructing a nearly optimal discrete dual vector field via a
local post-processing procedure.

1.3 Continuous convex duality

The Prager–Synge identity (1.2) can be generalized to a larger class of convex minimization
problems following, e.g., the works [77, 73, 74, 75, 76, 78, 22, 24]: let ϕ : Ω×Rd → R∪{+∞} and
ψ : Ω×R → R∪{+∞} be (Lebesgue) measurable functions such that for a.e. x∈Ω, the functions
ϕ(x, ·) : Rd →R∪{+∞} and ψ(x, ·) :R→R∪{+∞} are proper, convex, and lower semi-continuous.
Then, the minimization of the functional I :W 1,p

D (Ω)→R∪{+∞}, for every v∈W 1,p
D (Ω) defined by

I(v) :=

ˆ
Ω

ϕ(·,∇v) dx+

ˆ
Ω

ψ(·, v) dx , (1.3)

denotes the (Fenchel) primal problem. A corresponding (Fenchel) dual problem consists in the
maximization of the functionalD : W p′

N (div; Ω) → R∪{−∞}, for every y ∈W p′

N (div; Ω) defined by

D(y) := −
ˆ
Ω

ϕ∗(·, y) dx−
ˆ
Ω

ψ∗(·,div y) dx . (1.4)

Here, ϕ∗ : Ω×Rd → R∪{+∞} and ψ∗ : Ω×R → R∪{+∞} denote the Fenchel conjugates (with
respect to the second argument) to ϕ : Ω×Rd → R∪{+∞} and ψ : Ω×R → R∪{+∞}, respectively.
Fenchel–Young inequalities (cf. (2.3)) in combination with an integration-by-parts formula imply
a weak duality relation, i.e., for every v ∈W 1,p

D (Ω) and y ∈W p′

N (div; Ω), it holds that

I(v) ≥
ˆ
Ω

∇v · y − ϕ∗(·, y) dx+

ˆ
Ω

ψ(·, v) dx

= −
ˆ
Ω

ϕ∗(·, y) dx−
ˆ
Ω

div y v − ψ(·, v) dx ≥ D(y) .

(1.5)

1.4 Continuous strong duality, convex optimality relations, and flux reconstruction

In many cases, e.g., if both ϕ : Ω× Rd → R and ψ : Ω× R → R are Carathéodory mappings1

and for every v ∈ Lp(Ω) and y ∈ Lp(Ω;Rd), it holds that ϕ(·, y), ψ(·, v) ∈ L1(Ω) (cf. [48,
Thm. 4.1, p. 59, Prop. 1.1, p. 77]), there even holds a strong duality relation, i.e., there exists
minimizer u ∈ W 1,p

D (Ω) of (1.3), called primal solution, and a maximizer z ∈ W p′
(div; Ω) of

(1.4), called dual solution, such that

I(u) = D(z) . (1.6)

The strong duality relation (1.6) is available for a large class of convex minimization problems, e.g.,
including non-linear Dirichlet problems, obstacle problems, certain non-differentiable problems, and
degenerate minimization problems. It is equivalent to convex optimality relations, i.e., it holds that

z · ∇u = ϕ∗(·, z) + ϕ(·,∇u) a.e. in Ω , (1.7)

div z u = ψ∗(·,div z) + ψ(·, u) a.e. in Ω . (1.8)

The convex optimality relations (1.7), (1.8) characterize equality in the Fenchel–Young inequalities
(cf. (2.3)) used in the derivation of the dual problem (cf. (1.5)). By the Fenchel–Young identity
(cf. (2.4)), the convex optimality relations (1.7), (1.8) are each equivalent to the inclusions

z ∈ ∂rϕ(·,∇u) a.e. in Ω , (1.9)

div z ∈ ∂rψ(·, u) a.e. in Ω , (1.10)

where we denote with ∂rϕ : Ω×Rd → 2R
d

and ∂rψ : Ω×R → 2R, the corresponding sub-differentials
of ϕ : Ω× Rd → R ∪ {+∞} and ψ : Ω× R → R ∪ {+∞} (with respect to the second argument).

1Amapping Φ: Ω×Rℓ → R, ℓ ∈ N, is called Carathéodory mapping if for a.e. x ∈ Ω, the function Φ(x, ·) : Rℓ → R
is continuous, and for every r ∈ Rℓ, the function Φ(·, r) : Ω → R is (Lebesgue) measurable.
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If ϕ(x, ·) ∈ C1(Rd) for a.e. x ∈ Ω or ψ(x, ·) ∈ C1(R) for a.e. x ∈ Ω, then (1.9), (1.10) each become

z = Dϕ(·,∇u) a.e. in Ω , (1.11)

div z = Dψ(·, u) a.e. in Ω , (1.12)

where the identity (1.11) has an interpretation as reconstruction formula, in the sense that given a
primal solution u ∈W 1,p

D (Ω), a dual solution z ∈W p′

N (div; Ω) is immediately available via (1.11).

1.5 Generalized Prager–Synge identity

The convex and concave functionals I : W 1,p
D (Ω)→R∪{+∞} andD :W p′

N (div; Ω)→R ∪ {−∞}
give rise to the definition of the non-negative coercivity measures ρ2I : W

1,p
D (Ω)×W 1,p

D (Ω) → R and

ρ2−D : W p′

N (div; Ω)×W p′

N (div; Ω) → R, for every v, v̂ ∈W 1,p
D (Ω) and y, ŷ ∈W p′

N (div; Ω) defined by

ρ2I(v, v̂) := I(v)− I(v̂)− ⟨δI(v̂), v − v̂⟩W 1,p
D (Ω) ,

ρ2−D(y, ŷ) := −D(y) +D(ŷ) + ⟨δD(ŷ), y − ŷ⟩Wp′
N (div;Ω) ,

(1.13)

in case that I : W 1,p
D (Ω) → R∪{+∞} and D : W p′

N (div; Ω) → R∪{−∞} are Fréchet differentiable.
The quantities (1.13) for every v, v̂ ∈W 1,p

D (Ω) and y, ŷ ∈W p′

N (div; Ω) measure the distance between
the functionals I and −D and their tangents at I(v̂) and −D(ŷ) evaluated at v and y, respectively.
More generally, the variations δI and δD in (1.13) can be replaced by suitable sub-gradients. Since
δI(u) = 0 and δD(z) = 0 (or 0 ∈ ∂I(u) and 0 ∈ ∂D(z)), in case of a strong duality (1.6), we find
a generalized Prager–Synge identity, i.e., given a primal solution u ∈W 1,p

D (Ω) and dual solution
z ∈W p′

N (div; Ω), for every v ∈W 1,p
D (Ω) with I(v) < +∞ and y ∈W p′

N (div; Ω) with D(y) > −∞,
it holds that

ρ2tot(v, y) := ρ2I(v, u) + ρ2−D(y, z)

= I(v)− I(u) +D(z)−D(y)

= I(v)−D(y)

=: η2gap(v, y) ,

(1.14)

i.e., the inaccessible total error ρ2tot(v, y) equals the accessible primal-dual gap estimator η2gap(v, y).

For the Poisson problem (1.1), we have that ϕ(r) = ϕ∗(r) = 1
2 |r|2 for all r ∈ Rd, ψ(x, s) = −f(x)s

for a.e. x ∈ Ω and all s ∈ R, and ψ∗(x, s) = IΩ{−f(x)}(s) for a.e. x ∈ Ω and all s ∈ R, where the lat-
ter indicator functional enforces the constraint div y = −f a.e. in Ω. Hence, for every v ∈W 1,p

D (Ω)
and y ∈W p′

N (div; Ω) with div y = −f a.e. in Ω, with an integration-by-parts formula, we find that

η2gap(v, y) =
1
2∥∇v∥22,Ω − (y,∇v)Ω + 1

2∥y∥22,Ω
= 1

2∥∇v − y∥22,Ω .
(1.15)

It is remarkable that the employed global relations lead to an error representation as an integral of a
non-negative function. Hence, the right-hand side can be decomposed using partitions and thereby
provides meaningful local refinement indicators. This observation can equally be generalized:
using the definitions (1.3), (1.4) and an integration-by-parts formula, for every v ∈W 1,p

D (Ω) with
I(v) < +∞ and y ∈W p′

N (div; Ω) with D(y) > −∞, we arrive at the general representation

η2gap(v, y) =

ˆ
Ω

ϕ(·,∇v)− y · ∇v + ϕ∗(·, y) dx

+

ˆ
Ω

ψ(·, v)− div y v + ψ∗(·,div y) dx .
(1.16)

Both integrands on the right-hand side of (1.16), by the Fenchel–Young inequality (cf. (2.3)), are
point-wise non-negative and vanish if and only if convex optimality relations (1.7), (1.8) are satisfied.
Hence, the primal dual-gap estimator measures the validity of the convex optimality relations
(1.7), (1.8). Note that the convex optimality relations (1.7), (1.8) do not require any regularity of
ϕ : Ω×Rd → R∪{+∞} and ψ : Ω×R → R∪{+∞}, which makes the primal-dual gap estimator
a predestined a posteriori error estimator for non-differentiable convex minimization problems.
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1.6 Discrete reconstruction formula

As in the case of the Poisson problem (1.1), dual problems typically involve constraints (e.g.,
div y = −f a.e. in Ω (cf. (1.2))) and are, thus, significantly harder to solve than primal problems,
which often lead to monotone operators for which efficient iterative numerical solution procedures
are available. It is, therefore, fundamental to avoid the explicit numerical solution of dual problems.
For a Crouzeix–Raviart approximation of the Poisson problem (1.1), seeking for ucrh ∈ S1,cr

D (Th)
such that for every vh ∈ S1,cr

D (Th), it holds that
(∇hu

cr
h ,∇hvh)Ω = (fh,Πhvh)Ω , (1.17)

where fh ∈ L0(Th) is an element-wise constant approximation of f ∈ L2(Ω), using elementary but
fundamental relations between the Crouzeix–Raviart and the Raviart–Thomas element, a remark-
able relation, calledMarini formula, between ucrh ∈S1,cr

D (Th) and a Raviart–Thomas solution zrth ∈
RT 0

N (Th) of the corresponding dual formulation to (1.17) has been established in [63, 9, 7], i.e.,

zrth = ∇hu
cr
h − fh

d
(idRd −ΠhidRd) a.e. in Ω . (1.18)

In (1.17), S1,cr
D (Th) denotes the Crouzeix–Raviart finite element space, RT 0

N (Th) the Raviart–
Thomas finite element space, ∇h the element-wise application of the gradient operator ∇, and Πh

the (local) L2-projection operator onto the space of element-wise constant functions L0(Th). Due
to RT 0

N (Th) ⊆W 2
N (div; Ω) and div zrth = −fh a.e. in Ω, if f = fh ∈ L0(Th), zrth ∈ RT 0

N (Th) given
via (1.18) is admissible in (1.2). In other words, in the case of the Poisson problem (1.1), the
discrete reconstruction formula (1.18) enables to approximate the primal and the dual problem
simultaneously using only approximation (1.17).

1.7 Discrete convex duality

It is possible to construct a discrete primal problem that induces the same (discrete) convex
duality relations like the continuous primal problem (1.3), i.e., a corresponding discrete dual
problem, a discrete weak duality relation, the equivalence of a discrete strong duality relation to
discrete convex optimality relations and, most important, a discrete analogue of the reconstruction
formula (1.11) or generalization of the discrete reconstruction formula (1.18), respectively. To this
end, we need to perform three non-conforming modifications on the primal energy functional (1.3):

• we replace the energy densities by ϕh : Ω×Rd → R∪{+∞} and ψh : Ω×Rd → R∪{+∞},
which are, again, are (Lebesgue) measurable functions such that for a.e. x ∈ Ω, the functions
ϕh(x, ·) : Rd → R∪{+∞} and ψh(x, ·) : R → R∪{+∞} are proper, convex, and lower semi-
continuous. In addition, for every r ∈ Rd and s ∈ R, the functions ϕh(·, r) : Ω → R∪{+∞}
and ψh(·, s) : R → R ∪ {+∞} are element-wise constant;

• we incorporate a (local) L2-projection Πh onto L0(Th) into the lower-order term;
• we replace the weak gradient ∇ with the element-wise gradient ∇h.

With these three non-conforming modifications the discrete primal problem is given via the
minimization of the functional Icrh : S1,cr

D (Th) → R ∪ {+∞}, for every vh ∈ S1,cr
D (Th) defined by

Icrh (vh) :=

ˆ
Ω

ϕh(·,∇hvh) dx+

ˆ
Ω

ψh(·,Πhvh) dx . (1.19)

A corresponding discrete dual problem to the minimization of (1.19) consists in the maximization
of the functional Drt

h : RT 0
N (Th) → R ∪ {−∞}, for every yh ∈ RT 0

N (Th) defined by

Drt
h (yh) := −

ˆ
Ω

ϕ∗h(·,Πhyh) dx+

ˆ
Ω

ψ∗
h(·,div yh) dx . (1.20)

Note that the three non-conforming modifications (more precisely, the first two modifications), in
particular, ensure that the integrands in (1.19) and (1.20), respectively, are element-wise constant.
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This is crucial for establishing a strong duality relation between the discrete primal problem (1.19)
and the discrete dual problem (1.20). As above, Fenchel–Young inequalities imply that a discrete
weak duality relation applies, i.e., for every vh ∈ S1,cr

D (Th) and yh ∈ RT 0
N (Th), it holds that

Icrh (vh) ≥
ˆ
Ω

∇hvh ·Πhyh − ϕ∗h(·,Πhyh) dx+

ˆ
Ω

ψh(·,Πhvh) dx

= −
ˆ
Ω

ϕ∗h(·,Πhyh) dx−
ˆ
Ω

div yhvh − ψh(·, vh) dx ≥ Drt
h (yh) .

(1.21)

In (1.21), we used a discrete integration-by-parts formula without contributions from element sides,
i.e., for every vh ∈ S1,cr

D (Th) and yh ∈ RT 0
N (Th), it holds that

(∇hvh,Πhyh)Ω = −(div yh,Πhvh)Ω . (1.22)

The use of the (local) L2-projection in (1.22) is optional, but crucial or establishing a strong
duality relation between the discrete primal problem (1.19) and the discrete dual problem (1.20).
There holds a discrete strong duality relation, i.e., it holds that

Icrh (ucrh ) = Drt
h (zrth ) , (1.23)

if and only if there hold discrete convex optimality relations, i.e., it holds that

Πhz
rt
h · ∇hu

cr
h = ϕ∗h(·,Πhz

rt
h ) + ϕh(·,∇hu

cr
h ) a.e. in Ω , (1.24)

div zrth Πhu
cr
h = ψ∗

h(·,div zrth ) + ψh(·,Πhu
cr
h ) a.e. in Ω . (1.25)

By the Fenchel–Young identity (cf. (2.4)), the discrete convex optimality relations (1.24), (1.25)
are each equivalent to the inclusions

Πhz
rt
h ∈ ∂rϕh(·,∇hu

cr
h ) a.e. in Ω , (1.26)

div zrth ∈ ∂rψh(·,Πhu
cr
h ) a.e. in Ω . (1.27)

If ϕh(x, ·)∈C1(Rd) for a.e. x∈Ω or ψh(x, ·)∈C1(R) for a.e. x∈Ω, then (1.26), (1.27) each become

Πhz
rt
h = Dϕh(·,∇hu

cr
h ) a.e. in Ω , (1.28)

div zrth = Dψh(·, ucrh ) a.e. in Ω . (1.29)

Note that, different from the continuous reconstruction formula (1.11), the discrete convex opti-
mality relation (1.28) does not give full information about a discrete dual solution zrth ∈ RT 0

N (Th).
However, using the additional information provided by the discrete convex optimality relation (1.29),
the surjectivity of the divergence operator div : RT 0

N (Th) → L0(Th) if ΓD ̸= ∅ (and surjectivity
of div : RT 0

N (Th) → L0(Th)/R if ΓD = ∅), and the discrete Helmholtz decomposition

(L0(Th))d = div (ker|RT 0
N (Th))⊕∇h(S1,cr

D (Th)) , (1.30)

if ϕh(x, ·) ∈ C1(Rd) and ψh(x, ·) ∈ C1(R) for a.e. x ∈ Ω, it is possible to establish a discrete
strong duality relation (1.23) and a generalized Marini formula (cf. [16, 38, 59]), i.e., it holds that

zrth = Dϕh(·,∇hu
cr
h ) +

Dψh(·,Πhu
cr
h )

d
(idRd −ΠhidRd) a.e. in Ω . (1.31)

Similar to the equivalence of (1.10) to u ∈ ∂rψ(·,div z) a.e. in Ω, that is u = Dψ(·,div z) a.e. in Ω
if ψ(x, ·) ∈ C1(R) for a.e. x ∈ Ω, if instead ϕ∗h(x, ·) ∈ C1(Rd) and ψ∗

h(x, ·) ∈ C1(R) for a.e. x ∈ Ω,
there exists an inversion of the reconstruction formula (1.31) (cf. [24]), i.e., it holds that

ucrh = Dψ∗
h(·,div zrth ) +Dϕ∗h(·,Πhz

rt
h ) · (idRd −ΠhidRd) a.e. in Ω . (1.32)

In many cases, we have that ψh = ψ, e.g., if ψ(x, s) = −f(x)s for a.e. x ∈ Ω and all s ∈ R with an
element-wise constant function f ∈ L0(Th), and, in this case, by Jensen’s inequality, we have that
−Drt

h (zrth ) ≤ −D(zrth ). Hence, in general, an inconsistent or non-conforming discretization of the
primal problem is necessary to ensure strong discrete duality and to obtain a reconstruction formula.
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1.8 A priori error estimates

The continuous strong duality relation (1.6) and the discrete strong duality relation (1.23) are
useful in deriving a priori error estimates for the primal problem (1.3) and the dual problem (1.4).
Letting vh := Πcr

h u ∈ S1,cr
D (Th) and yh := Πrt

h z ∈ RT 0
N (Th) be the Crouzeix–Raviart and Raviart–

Thomas quasi-interpolants of a primal solution u∈W 1,p
D (Ω) and a dual solution z ∈W p′

N (div; Ω),
respectively, if a strong duality relation (i.e., (1.6)) applies, due to the discrete weak duality
relation (1.21), we have that

e2tot,h(vh, yh) := ρ2Icr
h
(vh, u

cr
h ) + ρ2−Drt

h
(yh, z

rt
h )

= [Icrh (vh)− Icrh (ucrh )] + [Drt
h (zrth )−Drt

h (yh)]

≤ Icrh (vh)−Drt
h (yh)

= [Icrh (vh)− I(u)] + [D(z)−Drt
h (zrth )] ,

(1.33)

i.e., the primal approximation error between the discrete primal solution ucrh ∈ S1,cr
D (Th) and the

interpolant of the primal solution u ∈W 1,p
D (Ω) plus the dual approximation error between the

discrete dual solution zrth ∈ RT 0
N (Th) and the interpolant of the dual solution z ∈W p′

N (div; Ω) is
bounded in terms of primal and dual interpolation errors. For the Poisson problem (1.1), from (1.33),
using that ∇hvh = Πh∇u a.e. in Ω together with Jensen’s inequality, div yh = Πhdiv z a.e. in Ω to-
gether with div z=−f a.e. in Ω, an integration-by-parts formula, and the second binomial formula,
it follows that

1
2∥∇hvh −∇hu

cr
h ∥22,Ω + 1

2∥yh − zrth ∥22,Ω ≤ 1
2∥∇hvh∥22,Ω − 1

2∥∇u∥22,Ω
− (f, vh − u)Ω − 1

2∥z∥22,Ω + 1
2∥yh∥22,Ω

≤ (z, z − yh)Ω − 1
2∥z∥22,Ω + 1

2∥yh∥22,Ω
= 1

2∥z − yh∥22,Ω .

(1.34)

If u ∈W 1+s,2(Ω) (i.e., z ∈W s,2(Ω;Rd)), s ∈ (0, 1), the right-hand side in (1.34) is of orderO(h2s).
This short proof can be generalized to a large class of variational problems (cf. [16, 58, 18]) and
avoids the usage of Strang lemmas to control the effect of the non-conformity of the discretization.
It has recently been observed that Crouzeix–Raviart discretizations lead to higher convergence
rates than classical conforming methods for certain non-differentiable problems (cf. [41, 17]).

1.9 Data approximation and inexact solution

1.9.1 Data approximation

In the case of a linear lower-order term ψ : Ω× R → R, i.e., ψ(x, s) = −f(x)s for a.e. x ∈ Ω
and all s ∈ R for some f ∈ Lp′

(Ω), the discrete dual solution zrth ∈ RT 0
N (Th) given via (1.31) is

admissible in the continuous dual problem, i.e., satisfies D(zrth ) > −∞, if and only if div yh = −f
a.e. in Ω, i.e., if and only if f = fh ∈ L0(Th) is element-wise constant. If this is not the case, then
we introduce a modified functional I(h) : W 1,p

D (Ω) → R∪{+∞}, for every v ∈W 1,p
D (Ω) defined by

I(h)(v) :=

ˆ
Ω

ϕh(·,∇v) dx+

ˆ
Ω

ψh(·,Πhv) dx . (1.35)

Then, for a minimizer u(h) ∈W 1,p
D (Ω) of (1.35), due to I(h)(u(h)) ≤ I(h)(u), we have that

ρ2I(u
(h), u) = I(u(h))− I(u)

≤ I(u(h))− I(h)(u(h)) + I(h)(u)− I(u)

≤ ∥ϕ(·,∇u(h))− ϕh(·,∇u(h))∥1,Ω + ∥ψ(·, u(h))− ψh(·,Πhu
(h))∥1,Ω

+ ∥ϕh(·,∇u)− ϕ(·,∇u)∥1,Ω + ∥ψh(·,Πhu)− ψ(·, u)∥1,Ω .
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For autonomous higher-order term ϕ : Rd → R∪{+∞} and linear lower-order term ψ : Ω×R → R,
i.e., ψ(x, s) = −f(x)s for a.e. x ∈ Ω and all s ∈ R for some f ∈ Lp′

(Ω), with discretization ψh : Ω×
R → R, given via ψh(x, s) = −fh(x)s for a.e. x ∈ Ω and all s ∈ R, where fh := Πhf ∈ L0(Th),
due to f − fh ⊥ Πh(u− u(h)) in L2(Ω), using element-wise Poincaré‘s inequality, we find that

ρ2I(u
(h), u) = (f − fh, u− u(h) −Πh(u− u(h)))Ω

≤ cP ∥hT (f − fh)∥p′,Ω∥∇u−∇u(h)∥p,Ω .
Then, the arguments explained above apply to the modified functional (1.35).

1.9.2 Inexact solution

In the case ϕh(x, ·) ∈ C1(Rd) and ψh(x, ·) ∈ C1(R) for a.e. x ∈ Ω, we can incorporate errors
resulting from the inexact iterative solution of the discrete primal problem via discrete residuals.
More precisely, if ũcrh ∈ S1,cr

D (Th) is an inexact approximation of the discrete primal problem,
i.e., quasi-minimizer of (1.19), we represent the residual in the discrete W 1,2-semi-norm. More
precisely, we choose r̃h ∈ S1,cr

D (Th) such that for every vh ∈ S1,cr
D (Th), it holds that

(∇hr̃h,∇hvh)Ω = (Dϕh(·,∇hu
cr
h ),∇hvh)Ω + (Dψh(·, ucrh ),Πhvh)Ω .

Then, ũcrh ∈ S1,cr
D (Th) is a minimizer of the functional Ĩcrh : S1,cr

D (Th) → R, for every vh ∈ S1,cr
D (Th)

defined by

Ĩcrh (v) :=

ˆ
Ω

ϕ̃h(·,∇hvh) dx+

ˆ
Ω

ψh(·, vh) dx .

where ϕ̃h : Ω×Rd → R is defined by ϕ̃h(x, r) := ϕh(x, r)−∇hr̃h(x)·r for a.e. x ∈ Ω and all r ∈ Rd.

The identities and estimates derived above now hold with ϕh replaced with ϕ̃h.

1.10 Properties of the primal-dual gap estimator

In general, the discrete primal solution ucrh ∈ S1,cr
D (Th) is not admissible in the continuous pri-

mal problem since ucrh /∈W 1,p
D (Ω) and, thus, cannot be inserted in the primal-dual gap estimator,

while the discrete dual solution zrth ∈ RT 0
N (Th) ⊆W p′

N (div; Ω), up to data approximation terms, is

admissible in the continuous dual problem. An admissible approximation ucrh ∈W 1,p
D (Ω), e.g., can

be obtained via a cheap node-averaging procedure. The generalized Prager–Synge identity (1.14)
imposes no restrictions about optimality of the arguments, so that with admissible approximations

ucrh ∈W 1,p
D (Ω) with I(ucrh ) < +∞ and zrth ∈W p′

N (div; Ω) with D(zrth ) > −∞, we still have that

ρ2tot(u
cr
h , z

rt
h ) = η2gap(u

cr
h , z

rt
h ) . (1.36)

The primal-dual gap error estimator has some remarkable features:

• It is obtained by a simple post-processing procedure of the discrete primal problem (cf. (1.31));
• It is reliable and efficient with constants one (cf. (1.14));
• It does not require an exact solution of the possibly non-linear primal problem (cf. (1.36));
• It is globally equivalent to residual type estimators for many model problems;
• Its integrands are point-wise non-negative and, thus, it is suitable for local mesh-refinement;
• It applies to non-linear, non-differentiable, degenerate, scalar, and vectorial problems and
does not require the development of a particular error analysis.

Besides these positive features, some relevant properties are desirable but are not yet established:

• Is it possible to prove optimal convergence of adaptive methods based on the local mesh
refinement indicators given by the local contributions to the primal-dual gap estimator?

• Can one devise a general strategy to ensure admissibility of the reconstructed flux in the
dual problem?
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The second aspect arises in model problems with non-differentiable function ϕ : Ω×Rd→R∪{+∞}
and some remedies have been proposed (cf. [41, 21, 24]). The first aspect primarily relates to
the lack of local efficiency estimates. Due to the global equivalence of primal-dual gap estimators
to residual type estimators, for which convergence theories are available, convergence is expected.
The verification of this equivalence follows closely the derivation of estimators of that type. In fact,
the discrete primal solution ucrh ∈ S1,cr

D (Th) acts as a substitute of the primal solution u∈W 1,p
D (Ω).

In the case of the Poisson problem (1.1), the conforming P1-approximation up1h ∈S1
D(Th), and f=fh,

due to Πhz
rt
h = ∇hu

cr
h a.e. in Ω and∇up1h −∇hu

cr
h ⊥ 1

dfh(idRd−ΠhidRd) in L2(Ω;Rd), we have that

η2gap(u
p1
h , z

rt
h ) = 1

2∥∇u
p1
h −∇hu

cr
h ∥22,Ω + 1

2d2 ∥fh(idRd −ΠhidRd)∥22,Ω .

Letting δh := up1h − ucrh ∈ S1,cr
D (Th) and Πav

h δh ∈ S1
D(Th) be its node-averaging quasi-interpolant,

so that, due to∇hδh ⊥ ∇h(S1
D(Th)) in L2(Ω;Rd), via element-wise integration-by-parts, we obtain

∥∇up1h −∇hu
cr
h ∥22,Ω = (∇hδh,∇hδh −∇hΠ

av
h δh)Ω

= (J∇up1h · nK, {δh −Πav
h δh})Sh

+ (fh, δh −Πav
h δh)Ω

≤ cav η
2
res,h(u

p1
h ) ∥∇up1h −∇hu

cr
h ∥2,Ω .

The converse estimate uses typical bubble function arguments (cf. [36, 58]).

1.11 Recent related results and open problems

The concepts described above can be generalized to other pairs of finite element methods:

• In [21], a discrete convex duality theory for a first-order Discontinuous Galerkin (DG) method
was derived. More precisely, in [21], a discrete primal problem is given via the minimization

of the functional Idgh : L1(Th) → R ∪ {+∞}, for every vh ∈ L1(Th) defined by

Idgh (vh) :=

ˆ
Ω

ϕh(·,∇hvh) dx+

ˆ
Ω

ψh(·,Πhvh) dx

+
∑
S∈Sh

αS

2 ∥JvhKS(xS)∥22,S +
∑
S∈Sh

βS

2 ∥{vh}S(xS)∥22,S ,

and a corresponding (Fenchel) dual problem is given via the maximization of the functional

Ddg
h :RT 0,dg(Th) :=(L0(Th))d+(idRd−ΠhidRd)L0(Th)→R∪{−∞}, for every yh∈RT 0,dg(Th)

defined by

Ddg
h (yh) := −

ˆ
Ω

ϕ∗h(·,Πhyh) dx−
ˆ
Ω

ψ∗
h(·,div yh) dx

−
∑
S∈Sh

1
2αS

∥Jyh · nKS∥22,S +
∑
S∈Sh

1
2βS

∥{yh · n}S∥22,S .

A discrete strong duality applies, i.e., Idgh (udgh ) = Ddg
h (zdgh ) for some udgh ∈ L1(Th) and zdgh ∈

RT 0,dg(Th), provided that the parameters αS , βS > 0, S ∈ Sh, are appropriately chosen;
• In [82], a discrete convex duality theory for a Hybrid High-Order (HHO) method was derived,
thus, representing the first step towards higher-order element methods.

1.12 Outline of the article

The article is organized as follows. In Section 2, we introduce the employed notation and the
relevant function and finite element spaces. In Section 3, we propose a general approach for explicit
a posteriori error representation based on convex duality relations. In Section 4, we apply the
general concepts of Section 3 to typical model problems including the non-linear Dirichlet problem,
the obstacle problem, the Signorini problem, the Rudin–Osher–Fatemi image de-noising problem,
a minimization problem jumping coefficients, the Navier–Lamé problem, and the Stokes problem.
In Section 5, in the case of the non-linear Dirichlet problem, we establish the global equivalence
of the primal-dual gap estimator to a residual type estimator. In Section 6, we establish that
the node-averaging quasi-interpolation operator locally preserves approximation capabilities. In
Section 7, we review the practical relevance of the theoretical investigations of Section 4.
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2. Preliminaries

2.1 Convex analysis

For a (real) Banach space X, which is equipped with the norm ∥·∥X : X → R≥0, we denote its
corresponding (continuous) dual space by X∗ equipped with the dual norm ∥ · ∥X∗ : X∗ → R≥0,
defined by ∥x∗∥X∗ := sup∥x∥X≤1 ⟨x∗, x⟩X for every x∗ ∈ X∗, where ⟨·, ·⟩X : X∗×X → R, defined
by ⟨x∗, x⟩X := x∗(x) for every x∗ ∈ X∗ and x ∈ X, denotes the duality pairing. A functional
F : X → R∪{+∞} is called sub-differentiable in x ∈ X, if F (x) <∞ and if there exists x∗ ∈ X∗,
called sub-gradient, such that for every y ∈ X, it holds that

⟨x∗, y − x⟩X ≤ F (y)− F (x) . (2.1)

The sub-differential ∂F : X → 2X
∗
of a functional F : X → R∪{+∞} for every x ∈ X is defined by

(∂F )(x) := {x∗ ∈ X∗ | (2.1) holds for x∗} if F (x) <∞ and (∂F )(x) := ∅ else.
For a given functional F : X → R∪{±∞}, we denote its corresponding (Fenchel) conjugate by

F ∗ : X∗ → R ∪ {±∞}, which for every x∗ ∈ X∗ is defined by

F ∗(x∗) := sup
x∈X

⟨x∗, x⟩X − F (x) . (2.2)

If F : X → R∪{+∞} is a proper, convex, and lower semi-continuous functional, then also its (Fen-
chel) conjugate F ∗ : X∗ → R∪{+∞} is a proper, convex, and lower semi-continuous functional (cf.
[48, p. 17]). Furthermore, for every x∗ ∈ X∗ and x ∈ X such that F ∗(x∗) + F (x) is well-defined,
i.e., critical cancellations ∞−∞ do not occur, the Fenchel–Young inequality

⟨x∗, x⟩X ≤ F ∗(x∗) + F (x) (2.3)

applies. In particular, for every x∗ ∈ X∗ and x ∈ X, it holds the Fenchel–Young identity

x∗ ∈ (∂F )(x) ⇔ ⟨x∗, x⟩X = F ∗(x∗) + F (x) . (2.4)

The following convexity measures for functionals play an important role in the derivation of
an explicit a posteriori error representation for convex minimization problems in Section 3; for
further information, we refer the reader to [33, 68, 69, 20].

Definition 2.1 (Brègman distance and symmetric Brègman distance). Let X be a (real) Banach
space and F : X → R ∪ {+∞} proper, i.e., D(F ) := {x ∈ X | F (x) <∞} ≠ ∅.
(i) The Brègman distance σ2

F : D(F )×X → [0,+∞] for every x ∈ D(F ) and y ∈ X is defined by

σ2
F (y, x) := F (y)− F (x)− sup

x∗∈(∂F )(x)

⟨x∗, y − x⟩X ,

where we use the convention sup(∅) := −∞.
(ii) The symmetric Brègman distance σ2

F,s : D(F )2 → [0,+∞] for every x, y ∈ D(F ) is defined by

σ2
F,s(y, x) := σ2

F (y, x) + σ2
F (x, y) = inf

x∗∈(∂F )(x);y∗∈(∂F )(y)
⟨x∗ − y∗, x− y⟩X ,

where we use the convention inf(∅) := +∞.

Definition 2.2 (Optimal convexity measure at a minimizer). Let X be a (real) Banach space and
F : X → R ∪ {+∞} proper. Moreover, let x ∈ X be minimal for F : X → R ∪ {+∞}. Then, the
optimal convexity measure ρ2F : X2 → [0,+∞] at x ∈ X for every y ∈ X is defined by

ρ2F (y, x) := F (y)− F (x) ≥ 0 .

Remark 2.3. Let X be a (real) Banach space and F : X → R∪{+∞} proper. Moreover, let x ∈
X be minimal for F : X → R ∪ {+∞}. Then, due to 0 ∈ (∂F )(x), for every y ∈ X, it holds that

σ2
F (y, x) ≤ ρ2F (y, x) .
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2.2 Function spaces

Throughout the article, unless otherwise specified, we denote by Ω ⊆ Rd, d ∈ N, a bounded
polyhedral Lipschitz domain, whose (topological) boundary is disjointly divided into a closed
Dirichlet part ΓD and an open Neumann part ΓN , i.e., ΓD,ΓN ⊆ ∂Ω and ΓD∪̇ΓN = ∂Ω.

For ℓ ∈ N and p ∈ [1,+∞), we employ the notation

Up
ℓ (Ω) :=

{
v ∈ Lp(Ω;Rℓ) | ∇v ∈ Lp(Ω;Rℓ×d)

}
,

Zp
ℓ (Ω) :=

{
y ∈ Lp′

(Ω;Rℓ×d) | div y ∈ Lp′
(Ω;Rℓ)

}
,

where the divergence needs to be understood row-wise , i.e., if y = (yij)i∈{1,...,ℓ},j∈{1,...,d} ∈ Zp
ℓ (Ω),

then (div y)i :=
∑d

j=1 ∂jyij for all i = 1, . . . , ℓ. In the special case ℓ = 1, we employ the standard
notation Lp(Ω) := Lp(Ω;R1), W 1,p(Ω) := Up

1 (Ω), and W
p′
(div; Ω) := Zp

1 (Ω).
For ℓ ∈ N, a (Lebesgue) measurable setM ⊆ Rd, d ∈ N, and (Lebesgue) measurable functions,

vector or tensor fields u, v : M → Rℓ, we employ the inner product

(u, v)M :=

ˆ
M

u⊙ v dx ,

whenever the right-hand side is well-defined, where ⊙ : Rℓ × Rℓ → R either denotes scalar multi-
plication, the Euclidean inner product, or the Frobenius inner product. For ℓ ∈ N, p ∈ [1,+∞],
and a (Lebesgue) measurable setM ⊆ Rn, n ∈ N, we employ the notation ∥ ·∥p,M := ∥ ·∥Lp(M ;Rℓ).

Denote by tr(·) : Up
ℓ (Ω)→W 1− 1

p ,p(∂Ω;Rℓ) the trace and by tr(·)n : Zp
ℓ (Ω)→W− 1

p′ ,p
′
(∂Ω;Rℓ)2

the normal trace operator. Then, for every v ∈ Up
ℓ (Ω) and y ∈ Zp

ℓ (Ω), it holds that

(∇v, y)Ω + (v,div y)Ω = ⟨tr(y)n, tr(v)⟩∂Ω , (2.5)

where we abbreviate ⟨tr(y)n, tr(v)⟩γ := ⟨tr(y)n, tr(v)⟩W 1− 1
p
,p(γ;Rℓ) for all y ∈ W− 1

p′ ,p
′
(γ;Rℓ),

v ∈W 1− 1
p ,p(γ;Rℓ), and γ ∈ {ΓN , ∂Ω}. Then, for ℓ ∈ N and p ∈ [1,+∞], we employ the notation

Up
ℓ,D(Ω) :=

{
v ∈ Up

ℓ (Ω) | tr(v) = 0 a.e. on ΓD

}
,

Zp
ℓ,N (Ω) :=

{
y ∈ Zp

ℓ (Ω) | tr(y)n = 0 in W
− 1

p′ ,p
′
(ΓN ;Rℓ)

}
.

In what follows, we omit writing both tr(·) and tr(·)n in this context. For ℓ ∈ N and p ∈ [1,+∞),
we employ the notation Up

ℓ,0(Ω) := Up
ℓ,D(Ω) if ΓD = ∂Ω as well as Zp

ℓ,0(Ω) := Zp
ℓ,N (Ω) if ΓN = ∂Ω.

In the special case ℓ=1, we employ the standard notationW 1,p
D (Ω) :=Up

1,D(Ω),W 1,p
0 (Ω) :=Up

1,0(Ω),
W p′

N (div; Ω) := Zp
1,N (Ω), and W p′

0 (div; Ω) := Zp
1,0(Ω).

2.3 Triangulations

Throughout the entire paper, we denote by {Th}h>0, a family of regular (i.e., uniformly shape
regular and conforming, triangulations of Ω⊆Rd, d∈N, cf. [49]). Here, h > 0 refers to the average
mesh-size, i.e., if we set hT := diam(T ) for all T ∈ Th, then, we have that h = 1

card(Th)

∑
T∈Th

hT .

For every element T ∈ Th, we denote by ρT > 0, the supremum of diameters of inscribed balls. We
assume that there exists a constant ω0 > 0, independent of h > 0, such that maxT∈Th

hT ρ
−1
T ≤ ω0.

The smallest such constant is called the chunkiness of {Th}h>0. We define

Sh := Si
h ∪ S∂Ω

h ,

Si
h := {T ∩ T ′ | T, T ′ ∈ Th ,dimH (T ∩ T ′) = d− 1} ,

S∂Ω
h := {T ∩ ∂Ω | T ∈ Th ,dimH (T ∩ ∂Ω) = d− 1} ,
Sγ
h := {S ∈ Sh | int(S) ⊆ γ} for γ ∈ {ΓD,ΓN} ,

where for every M ⊆ Rd, we denote by dimH (M) := inf{d′ ≥ 0 | H d′
(M) = 0}, the Hausdorff

dimension. The set Nh contains the vertices of Th.
2Here, W− 1

p′ ,p
′
(γ;Rℓ) := (W 1− 1

p
,p(γ;Rℓ))∗ for all γ ∈ {ΓN , ∂Ω}.
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For k ∈ N∪{0} and T ∈ Th, let Pk(T ) denote the set of polynomials of maximal degree k on T .
Then, for k ∈ N∪{0}, the sets of element-wise polynomial functions and continuous element-wise
polynomial functions, respectively, are defined by

Lk(Th) :=
{
vh ∈ L∞(Ω) | vh|T ∈ Pk(T ) for all T ∈ Th

}
,

Sk(Th) := Lk(Th) ∩ C0(Ω) .

In addition, we set Sk
D(Th) := Sk(Th)∩W 1,p

D (Ω) and Sk
0 (Th) := Sk(Th)∩W 1,p

0 (Ω). The (local) L2-
projection Πh : L

1(Ω;Rℓ)→ (L0(Th))ℓ onto element-wise constant functions, vector or tensor fields,
respectively, for every v ∈ L1(Ω;Rℓ) is defined by

Πhv|T :=

 
T

v dx for all T ∈ Th .

The element-wise gradient∇h : (L1(Th))ℓ→ (L0(Th))ℓ×d is given via the element-wise application of
the gradient operator, i.e., for every vh ∈ (L1(Th))ℓ, we have that∇hvh|T :=∇(vh|T ) for all T ∈Th.

Moreover, for m ∈ N ∪ {0} and S ∈ Sh, let Pm(S) denote the set of polynomials of maximal
degree m on S. Then, for m ∈ N ∪ {0} and Mh ∈ {Sh,Si

h,S∂Ω
h ,SΓD

h ,SΓN

h }, the set of side-wise
polynomial functions is defined by

Lm(Mh) :=
{
vh ∈ L∞(∪Mh) | vh|T ∈ Pm(S) for all S ∈ Mh

}
.

The (local) L2-projection πh : L
1(∪Sh;Rℓ) → (L0(Sh))

ℓ onto side-wise constant functions, vector,
or tensor fields, respectively, for every v ∈ L1(∪Sh;Rℓ) is defined by

πhv|S :=

 
S

v ds for all S ∈ Sh .

2.3.1 Crouzeix–Raviart element

The Crouzeix–Raviart finite element space (cf. [44]) is defined as the space of element-wise
affine functions that are continuous in the barycenters of inner element sides, i.e.,3

S1,cr(Th) :=
{
vh ∈ L1(Th) | πhJvhKS = 0 in S for all S ∈ Si

h

}
.

The Crouzeix–Raviart finite element space with homogeneous Dirichlet boundary condition
on ΓD is defined as the space of Crouzeix–Raviart finite element functions that vanish in the
barycenters of boundary element sides that belong to ΓD, i.e.,

S1,cr
D (Th) :=

{
vh ∈ S1,cr(Th) | πhJvhKS = 0 in S for all S ∈ SΓD

h

}
.

We employ the notation S1,cr
0 (Th) = S1,cr

D (Th) if ΓD = ∂Ω. The functions φS ∈ S1,cr(Th), S ∈ Sh,
that satisfy the Kronecker property φS(xS′) = δS,S′ for all S, S′ ∈ Sh, form a basis of S1,cr(Th).
Then, the functions φS ∈ S1,cr

D (Th), S ∈ Sh\SΓD

h , form a basis of S1,cr
D (Th). For ℓ ∈ N, we employ

the notation

U cr
ℓ (Th) := (S1,cr(Th))ℓ , U cr

ℓ,D(Th) := (S1,cr
D (Th))ℓ , U cr

ℓ,0(Th) := (S1,cr
0 (Th))ℓ .

The (Fortin) quasi-interpolation operator Πcr
h :Up

ℓ (Ω)→U cr
ℓ (Th), for every v∈Up

ℓ (Ω) is defined by

Πcr
h v :=

∑
S∈Sh

vS φS , where vS :=

 
S

v ds , (2.6)

preserves averages of gradients and moments, i.e., for every v ∈ Up
ℓ (Ω), it holds that

∇hΠ
cr
h v = Πh∇v (L0(Th))ℓ×d , (2.7)

πhΠ
cr
h v = πhv (L0(Sh))

ℓ . (2.8)

In particular, from (2.8), it follows that Πcr
h (Up

ℓ,D(Ω)) ⊆ U cr
ℓ,D(Th) and Πcr

h (Up
ℓ,0(Ω)) ⊆ U cr

ℓ,0(Th).
3Here, for every inner side S ∈ Si

h, the jump is defined by JvhKS := vh|T+
− vh|T− on S, where T+, T− ∈ Th

satisfy ∂T+ ∩ ∂T− = S, and for every boundary side S ∈ Sh ∩ ∂Ω, the jump is defined by JvhKS := vh|T on S,
where T ∈ Th satisfies S ⊆ ∂T .
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2.3.2 Raviart–Thomas element

The (lowest order) Raviart–Thomas finite element space (cf. [72]) is defined as the space
of element-wise affine vector fields that have continuous constant normal components on inner
elements sides, i.e.,4

RT 0(Th) :=
{
yh ∈ (L1(Th))d | yh|T · nT = const on ∂T for all T ∈ Th ,

Jyh · nKS = 0 on S for all S ∈ Si
h

}
.

The Raviart–Thomas finite element space with homogeneous slip boundary condition on ΓN is
defined as the space of Raviart–Thomas vector fields whose normal components vanish on ΓN , i.e.,

RT 0
N (Th) :=

{
yh ∈ RT 0(Th) | yh · n = 0 on ΓN

}
.

We employ the notationRT 0
0 (Th) :=RT 0

N (Th) if ΓN = ∂Ω. The vector fields ψS ∈RT 0(Th), S ∈Sh,
that satisfy the Kronecker property ψS |S′ ·nS′ = δS,S′ on S′ for all S′ ∈Sh, where nS for all S ∈Sh is
the unit normal vector on S pointing from T− to T+ if T+∩T− = S ∈ Sh, form a basis of RT 0(Th).
Then, the vector fields ψS ∈ RT 0

N (Th), S ∈ Sh \ ΓN , form a basis of RT 0
N (Th). For ℓ ∈ N, we

employ the notations

Zrt
ℓ (Th) :=

{
y = (yij)i∈{1,...,ℓ},j∈{1,...,d} | (yij)j∈{1,...,d} ∈ RT 0(Th) for all i = 1, . . . , ℓ

}
,

Zrt
ℓ,N (Th) :=

{
y = (yij)i∈{1,...,ℓ},j∈{1,...,d} | (yij)j∈{1,...,d} ∈ RT 0

N (Th) for all i = 1, . . . , ℓ
}
,

Zrt
ℓ,0(Th) :=

{
y = (yij)i∈{1,...,ℓ},j∈{1,...,d} | (yij)j∈{1,...,d} ∈ RT 0

0 (Th) for all i = 1, . . . , ℓ
}
.

The corresponding (Fortin) quasi-interpolation operator Πrt
h : W 1,1(Ω;Rℓ×d) → Zrt

ℓ (Th), for every
y ∈W 1,1(Ω;Rℓ×d) is defined by

Πrt
h y :=

∑
S∈Sh

yS ψS , where yS :=

 
S

ynS ds , (2.9)

preserves averages of divergences and normal traces, i.e., for every y ∈W 1,1(Ω;Rℓ×d), it holds that

divΠrt
h y = Πhdiv y (L0(Th))ℓ , (2.10)

[Πrt
h y]n = [πhy]n (L0(Sh))

ℓ . (2.11)

In particular, from (2.11), it follows that Πrt
h (Zp

ℓ,N (Ω)) ⊆ Zrt
ℓ,N (Th) and Πrt

h (Zp
ℓ,0(Ω)) ⊆ Zrt

ℓ,0(Th).

2.3.3 Discrete integration-by-parts formula

For every vh ∈ U cr
ℓ (Th) and yh ∈ Zrt

ℓ (Th), there holds the discrete integration-by-parts formula

(∇hvh,Πhyh)Ω + (Πhvh, div yh)Ω = (πhvh, yhn)∂Ω . (2.12)

which follows from the fact that for every yh ∈ Zrt
ℓ (Th), it holds that yh|TnT = const on ∂T for all

T ∈ Th and JyhnKS = 0 on S for all S ∈ Si
h, and for every vh ∈ U cr

ℓ (Th), it holds that πhJvhKS = 0
for all S ∈ Si

h. In [38, 59, 41, 21, 16, 22], the discrete integration-by-parts formula (2.12) formed a
cornerstone in the derivation of a discrete convex duality theory and, as such, plays a central role
in the derivation of the results presented below. Appealing to [19, Sec. 2.4] and [24, Subsec. 2.3.3],
there hold the discrete Helmholtz decompositions

(L0(Th))ℓ×d = ker(div|Zrt
ℓ,N (Th))⊕∇h(U

cr
ℓ,D(Th)) , (2.13)

(L0(Th))ℓ = ker(∇h|Ucr
ℓ,D(Th))⊕ div (Zrt

ℓ,N (Th)) . (2.14)

4For every inner side S ∈ Si
h, the normal jump is defined by JyhnKS := yh|T+

nT+
+ yh|T−nT− on S, where

T+, T− ∈ Th satisfy ∂T+ ∩ ∂T− =S, and for every T ∈ Th, nT : ∂T → Sd−1 denotes the outward unit normal
vector field to T , and for every boundary side S ∈ Sh ∩ ∂Ω, the normal jump is defined by JyhnKS := yh|Tn on S,
where T ∈ Th satisfies S ⊆ ∂T .
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3. Exact a posteriori error estimation for convex minimization problems

3.1 Continuous convex duality

Primal problem. Let ϕ : Ω× Rℓ×d → R ∪ {+∞} and ψ : Ω× Rℓ → R ∪ {+∞} be (Lebesgue)
measurable functions such that for a.e. x ∈ Ω, the functions ϕ(x, ·) : Rℓ×d → R ∪ {+∞} and
ψ(x, ·) : Rℓ → R ∪ {+∞} are proper, convex, and lower semi-continuous such that for every
y ∈ Lp(Ω;Rℓ×d) and v ∈ Lp(Ω;Rℓ), the following integrals exist and are finite or infinity, i.e.,ˆ

Ω

ϕ(·, y) dx,
ˆ
Ω

ψ(·, v) dx ∈ R ∪ {+∞} .

Moreover, let g∈W− 1
p′ ,p

′
(ΓN ;Rℓ) be given Neumann boundary data and let uD∈W 1− 1

p ,p(ΓD;Rℓ)
be given Dirichlet boundary data. We examine the minimization problem of the functional
I : Up

ℓ (Ω) → R ∪ {+∞}, for every v ∈ Up
ℓ (Ω) defined by

I(v) :=

ˆ
Ω

ϕ(·,∇v) dx+

ˆ
Ω

ψ(·, v) dx− ⟨g, v⟩ΓN
+ IΓD

{uD}(v) , (3.1)

where IΓD

{uD} : W
1− 1

p ,p(ΓD;Rℓ) → R ∪ {+∞} for every v̂ ∈W 1− 1
p ,p(ΓD;Rℓ) is defined by

IΓD

{uD}(v̂) :=

{
0 if v̂ = uD a.e. on ΓD ,

+∞ else .

In what follows, we refer to the minimization of I : Up
ℓ (Ω) → R ∪ {+∞} as the primal problem.

Dual problem. Let ϕ∗ : Ω× Rℓ×d → R ∪ {+∞} and ψ∗ : Ω× Rℓ → R ∪ {+∞} be the Fenchel
conjugates to ϕ : Ω×Rℓ×d → R∪ {+∞} and ψ : Ω×Rℓ → R∪ {+∞}, respectively, with respect
to the second argument and assume that for every y ∈ Lp′

(Ω;Rℓ) and v ∈ Lp′
(Ω), the following

integrals exist and are finite or infinity, i.e.,ˆ
Ω

ϕ∗(·, y) dx,
ˆ
Ω

ψ∗(·, v) dx ∈ R ∪ {+∞} .

Then, a (Fenchel) dual problem to the minimization of (3.1) is given via the maximization of the
functional D : Zp

ℓ (Ω) → R ∪ {−∞}, for every y ∈ Zp
ℓ (Ω) defined by

D(y) := −
ˆ
Ω

ϕ∗(·, y) dx−
ˆ
Ω

ψ∗(·,div y) dx+ ⟨yn, uD⟩ΓD
− IΓN

{g}(yn) , (3.2)

where IΓN

{g} : W
− 1

p′ ,p
′
(ΓN ;Rℓ) → R ∪ {+∞} for every ŷ ∈W− 1

p′ ,p
′
(ΓN ;Rℓ) is defined by

IΓN

{g}(ŷ) :=

{
0 if ŷ = g in W− 1

p′ ,p
′
(ΓN ;Rℓ) ,

+∞ else .

We always assume that ϕ : Ω× Rℓ×d → R ∪ {+∞} and ψ : Ω× Rℓ → R ∪ {+∞} are such that
(3.1) admits at least one minimizer u ∈ Up

ℓ (Ω), called primal solution, and that (3.2) admits at
least one maximizer z ∈ Zp

ℓ (Ω), called dual solution. The derivation of a weak duality relation
between of (3.1) and (3.2) can be found in the proof of the following results that also establishes
the equivalence of a strong duality relation and convex optimality relations.

Proposition 3.1 (Strong duality and convex duality relations). The following statements apply:

(i) A weak duality relation applies, i.e.,

inf
v∈Up

ℓ (Ω)
I(v) ≥ sup

y∈Zp
ℓ (Ω)

D(y) . (3.3)

(ii) A strong duality relation applies, i.e.,

I(u) = D(z) , (3.4)

if and only if the convex optimality relations apply, i.e.,

z : ∇u = ϕ∗(·, z) + ϕ(·,∇u) a.e. in Ω , (3.5)

div z · u = ψ∗(·,div z) + ψ(·, u) a.e. in Ω . (3.6)
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Proof. ad (i). For every v ∈ Up
ℓ (Ω) and y ∈ Zp

ℓ (Ω), by the Fenchel–Young inequality (cf. (2.3)),
we have that

ϕ(·,∇v) ≥ y : ∇v − ϕ∗(·, y) a.e. in Ω ,

ψ(·, v) ≥ div y · v − ψ∗(·,div y) a.e. in Ω .
(3.7)

Adding the two inequalities in (3.7), using the integration-by-parts formula (2.5), for every v ∈
Up
ℓ (Ω) with v = uD a.e. on ΓD and y ∈ Zp

ℓ (Ω) with yn = g in W− 1
p′ ,p

′
(ΓN ;Rℓ), we find that

I(v) =

ˆ
Ω

ϕ(·,∇v) dx+

ˆ
Ω

ψ(·, v) dx− ⟨g, v⟩ΓN

≥ −
ˆ
Ω

ϕ∗(·, y) dx−
ˆ
Ω

ψ∗(·,div y) dx+ ⟨yn, uD⟩ΓD
= D(y) .

On the other hand, for every v ∈ Up
ℓ (Ω) such that IΓD

{uD}(v) = +∞, we have that I(v) = +∞,
and for every y ∈ Zp

ℓ (Ω) such that IΓN

{g}(yn) = +∞, we have that D(z) = −∞.
ad (ii). The strong duality relation (3.4) is equivalent toˆ

Ω

ϕ∗(·, z)− z : ∇u+ ϕ(·,∇u) dx+

ˆ
Ω

ψ∗(·,div z)− div z · u+ ψ(·, u) dx = 0 .

Therefore, due to (3.7), we find that the strong duality relation (3.4) is equivalent to the convex
optimality relations (3.5), (3.6).

Remark 3.2 (Equivalent convex optimality relations ). (i) If ϕ(x, ·)∈C1(Rℓ×d) for a.e. x∈Ω,
by the Fenchel–Young identity (cf. (2.4)), the convex optimality relation (3.5) is equivalent to

z = Dϕ(·,∇u) a.e. in Ω ; (3.8)

(ii) If ϕ∗(x, ·) ∈ C1(Rℓ×d) for a.e. x ∈ Ω, by the Fenchel–Young identity (cf. (2.4)), the convex
optimality relation (3.5) is equivalent to

∇u = Dϕ∗(·, z) a.e. in Ω ; (3.9)

(iii) If ψ(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, then, by the Fenchel–Young identity (cf. (2.4)), by the
Fenchel–Young identity (cf. (2.4)), the convex optimality relation (3.6) is equivalent to

div z = Dψ(·, u) a.e. in Ω ; (3.10)

(iv) If ψ∗(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, then, by the Fenchel–Young identity (cf. (2.4)), by the
Fenchel–Young identity (cf. (2.4)), the convex optimality relation (3.6) is equivalent to

u = Dψ∗(·,div z) a.e. in Ω . (3.11)

The convex duality relations (3.5), (3.6) motivate introducing the primal-dual gap estimator
η2gap : U

p
ℓ (Ω)× Zp

ℓ (Ω) → [0,+∞], for every (v, y)⊤ ∈ Up
ℓ (Ω)× Zp

ℓ (Ω) defined by

η2gap(v, y) := I(v)−D(y) . (3.12)

Note that the sign of the estimator (3.12) is a consequence of the weak duality relation (3.3).
Together with the optimal convexity measures (cf. Definition 2.2) ρ2I : U

p
ℓ (Ω) → [0,+∞] of

(3.1) at a primal solution u ∈ Up
ℓ (Ω) and ρ

2
−D : Zp

ℓ (Ω) → [0,+∞] of the negative of (3.2) at a
dual solution z ∈ Zp

ℓ (Ω), we arrive at the following generalized Prager–Synge identity.

Theorem 3.3 (Generalized Prager–Synge identity). If the strong duality relation (3.4) applies,
then the following statements apply:

(i) For every v ∈ Up
ℓ (Ω) and y ∈ Zp

ℓ (Ω), for the total error, we have that

ρ2tot(v, y) := ρ2I(v, u) + ρ2−D(y, z) = η2gap(v, y) . (3.13)

(ii) For every v ∈ Up
ℓ (Ω) with v = uD a.e. in ΓD and y ∈ Zp

ℓ (Ω) with yn = g in W− 1
p′ ,p

′
(ΓN ;Rℓ),

we have that

η2gap(v, y) =

ˆ
Ω

ϕ(·,∇v)−∇v : y + ϕ∗(·, y) dx

+

ˆ
Ω

ψ(·, v)− v · div y + ψ∗(·,div y) dx .
(3.14)
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Proof. ad (i). Due to (3.4), Definition 2.2, and (3.12), for every v ∈ Up
ℓ (Ω) and y ∈ Zp

ℓ (Ω), we
have that

ρ2tot(v, y) = ρ2I(v, u) + ρ2−D(y, z) = I(v)− I(u) +D(z)−D(y) = η2gap(v, y) .

ad (ii). The identitiy (3.14) follows from (3.1), (3.2), the integration-by-parts formula (2.5),
and that for every v ∈Up

ℓ (Ω) with v= uD a.e. in ΓD and y ∈Zp
ℓ (Ω) with yn= g inW− 1

p′ ,p
′
(ΓN ;Rℓ),

it holds that

⟨yn, v⟩∂Ω = ⟨g, v⟩ΓN
+ ⟨yn, uD⟩ΓD

.

Remark 3.4. (i) By the Fenchel–Young inequality (cf. (2.3)), the integrands in the representa-
tion (3.14) are non-negative, i.e., for every v ∈ Up

ℓ (Ω) and y ∈ Zp
ℓ (Ω), we have that

ϕ(·,∇v)−∇v : y + ϕ∗(·, y) ≥ 0 a.e. in Ω ,

ψ(·, v)− v · div y + ψ∗(·,div y) ≥ 0 a.e. in Ω .

and, thus, are suitable as local refinement indicators in an adaptive refinement procedure.
Apart from that, due to Proposition 3.1(ii), for every v ∈ Up

ℓ (Ω) with v = uD a.e. in ΓD

and y ∈ Zp
ℓ (Ω) with yn = g in W− 1

p′ ,p
′
(ΓN ;Rℓ), we have that

ϕ(·,∇v)−∇v : y + ϕ∗(·, y) = 0 a.e. in Ω ,

ψ(·, v)− v · div y + ψ∗(·,div y) = 0 a.e. in Ω ,

if and only if

I(v) = D(y) ,

i.e., if v ∈ Up
ℓ (Ω) is minimal for (3.1) and y ∈ Zp

ℓ (Ω) is maximal for (3.2). In other words,
given the strong duality relation (3.4), the primal-dual gap estimator measures how well
approximations v ∈ Up

ℓ (Ω) and y ∈ Zp
ℓ (Ω) satisfy the convex optimality relations (3.5), (3.6).

This is an advantage compared to residual type a posteriori error estimators which traditionally
measure how well an approximation v ∈ Up

ℓ (Ω) satisfies the strong formulation of optimality
conditions and, consequently, employ classical derivatives of the energy densities. The
convex optimality relations (3.5), (3.6), however, do not require any regularity of the energy
densities. This makes the primal-dual gap estimator a predestined a posteriori error estimator,
in particular, for non-differentiable convex minimization problems.

(ii) Due to Remark 2.3, from Theorem 3.3(i), for every v ∈ Up
ℓ (Ω) and y ∈ Zp

ℓ (Ω), it follows that

σ2
I (v, u) + σ2

−D(y, z) ≤ η2gap(v, y) .

Since the dual problem to the minimization of the negative of (3.2), in turn, consists in the
maximization of the negative of (3.1), the roles of the primal problem and the dual problem may
be interchanged. An advantage of Theorem 3.3 consists in the fact that it yields reliable and
efficient a posteriori error estimators for both the primal problem and the dual problem.

Remark 3.5. Theorem 3.3 shows that for every y ∈ Zp
ℓ (Ω), the estimator η2I,y := (v 7→ η2gap(v, y)) :

Up
ℓ (Ω) → [0,+∞] satisfies

ρ2tot(v, y) = η2I,y(v) for all v ∈ Up
ℓ (Ω) , (3.15)

and for each v ∈ Up
ℓ (Ω), the estimator η2−D,v := (y 7→ η2gap(v, y)) : Z

p
ℓ (Ω) → [0,+∞] satisfies

ρ2tot(v, y) = η2−D,v(y) for all y ∈ Zp
ℓ (Ω) . (3.16)

For the a posteriori error estimators (3.15) and (3.16) for being numerically practicable, it is
necessary to have a computationally cheap way to obtain sufficiently accurate approximations of
the dual solution (for (3.15)) and/or of the primal solution (for (3.16)), respectively. In Section 3.2,
resorting to (discrete) convex duality relations between a non-conforming Crouzeix–Raviart
approximation of the primal problem and a Raviart–Thomas approximation of the dual problem,
we arrive at discrete reconstruction formulas, called generalized Marini formula (cf. [62, 16]).
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3.2 Discrete convex minimization problem and discrete convex duality

Discrete primal problem. Let ϕh : Ω× Rℓ×d → R ∪ {+∞} and ψh : Ω× Rℓ → R ∪ {+∞} be
approximations of ϕ : Ω×Rℓ×d → R∪{+∞} and ψ : Ω×Rℓ → R∪{+∞}, respectively, such that
for a.e. x ∈ Ω, the functions ϕh(x, ·) : Rℓ×d → R∪{+∞} and ψh(x, ·) : Rℓ → R∪{+∞} are proper,
convex, and lower semi-continuous and ϕh(·, r), ψh(·, s) ∈ L0(Th) for all r ∈ Rd and s ∈ R. More-
over, let gh ∈ (L0(SΓN

h ))ℓ and uhD ∈ (L0(SΓD

h ))ℓ be approximations of the Neumann boundary

data g ∈W− 1
p′ ,p

′
(ΓN ;Rℓ) and the Dirichlet boundary data uD ∈W 1− 1

p ,p(ΓD;Rℓ), respectively.
We examine the minimization of the functional Icrh : U cr

ℓ (Th) → R∪{+∞}, for every vh ∈ U cr
ℓ (Th)

defined by

Icrh (vh) :=

ˆ
Ω

ϕh(·,∇hvh) dx+

ˆ
Ω

ψh(·,Πhvh) dx− (gh, πhvh)ΓN
+ IΓD

{uh
D}(πhvh) , (3.17)

where IΓD

{uh
D} : (L0(SΓD

h ))ℓ → R ∪ {+∞} for every v̂h ∈ (L0(SΓD

h ))ℓ is defined by

IΓD

{uh
D}(v̂h) :=

{
0 if v̂h = uhD a.e. on ΓD ,

+∞ else .

In what follows, we refer to the minimization of Icrh : U cr
ℓ (Th) → R∪{+∞} as the discrete primal

problem.
Discrete dual problem. A corresponding discrete (Fenchel) dual problem to the minimiza-

tion of (3.17) is found to be given via the maximization of the functionalDrt
h : Zrt

ℓ (Th)→R∪{−∞},
for every yh ∈ Zrt

ℓ (Th) defined by

Drt
h (yh) := −

ˆ
Ω

ϕ∗h(·,Πhyh) dx−
ˆ
Ω

ψ∗
h(·,div yh) dx+ (yhn, u

h
D)ΓD

− IΓN

{gh}(yhn) , (3.18)

where IΓN

{gh} : (L
0(SΓN

h ))ℓ → R ∪ {+∞} for every ŷh ∈ (L0(SΓN

h ))ℓ is defined by

IΓN

{gh}(ŷh) :=

{
0 if ŷh = gh a.e. in ΓN ,

+∞ else .

We will always assume that ϕh : Ω×Rℓ×d → R∪{+∞} and ψh : Ω×Rℓ → R∪{+∞} are such
that (3.17) admits at least one minimizer ucrh ∈ U cr

ℓ (Th), called discrete primal solution, and that
(3.18) admits at least one maximizer zrth ∈ Zrt

ℓ (Th), called discrete dual solution. The derivation
of the discrete dual problem (3.18) can be found in the proof of the following proposition that also
establishes the equivalence of a discrete strong duality relation and discrete convex optimality
relations.

Proposition 3.6 (Strong duality and convex duality relations). The following statements apply:

(i) A discrete weak duality relation applies, i.e.,

inf
vh∈Ucr

ℓ (Th)
Icrh (vh) ≥ sup

yh∈Zrt
ℓ (Th)

Drt
h (yh) . (3.19)

(ii) A discrete strong duality relation applies, i.e.,

Icrh (ucrh ) = Drt
h (zrth ) , (3.20)

if and only if discrete convex optimality relations apply, i.e.,

Πhz
rt
h : ∇hu

cr
h = ϕ∗h(·,Πhz

rt
h ) + ϕh(·,∇hu

cr
h ) a.e. in Ω , (3.21)

div zrth ·Πhu
cr
h = ψ∗

h(·,div zrth ) + ψh(·,Πhu
cr
h ) a.e. in Ω . (3.22)

Proof. ad (i). For every vh ∈U cr
ℓ (Th) and yh ∈Zrt

ℓ (Th), by the Fenchel–Young inequality (cf. (2.3)),
we have that

ϕh(·,∇hvh) ≥ Πhyh : ∇hvh − ϕ∗h(·,Πhyh) a.e. in Ω ,

ψh(·,Πhvh) ≥ div yh ·Πhvh − ψ∗
h(·,div yh) a.e. in Ω .

(3.23)



Exact Error Control via Convex Duality 17

Adding the two inequalities in (3.23), using the discrete integration-by-parts formula (2.12), for ev-
ery vh∈U cr

ℓ (Th) with πhvh=uhD a.e. on ΓD and yh∈Zrt
ℓ (Th) with yhn=gh a.e. on ΓN , we find that

Icrh (vh) =

ˆ
Ω

ϕh(·,∇hvh) dx+

ˆ
Ω

ψh(·,Πhvh) dx− (gh, πhvh)ΓN

≥ −
ˆ
Ω

ϕ∗h(·,Πhyh) dx−
ˆ
Ω

ψ∗
h(·,div yh) dx+ (yhn, u

h
D)ΓD

= Drt
h (yh) .

On the other hand, for every vh∈U cr
ℓ (Th) such that IΓD

{uh
D}(πhvh)=+∞, we have that Icrh (vh)=+∞,

and for every yh ∈ Zrt
ℓ (Th) such that IΓN

{gh}(yhn) = +∞, we have that Drt
h (zrth ) = −∞.

ad (ii). The discrete strong duality relation (3.20) is equivalent toˆ
Ω

ϕ∗h(·,Πhz
rt
h )−Πhz

rt
h : ∇hu

cr
h + ϕh(·,∇hu

cr
h ) dx

+

ˆ
Ω

ψ∗
h(·,div zrth )− div zrth ·Πhu

cr
h + ψh(·,Πhu

cr
h ) dx = 0 .

Therefore, due to (3.23), we find that the discrete strong duality relation (3.20) is equivalent to
the discrete convex optimality relations (3.21), (3.22).

Remark 3.7 (Equivalent discrete convex optimality relations). (i) If ϕh(x, ·) ∈ C1(Rℓ×d) for
a.e. x ∈ Ω, by the Fenchel–Young identity (cf. (2.4)), the discrete convex optimality relation
(3.21) is equivalent to

Πhz
rt
h = Dϕh(·,∇hu

cr
h ) a.e. in Ω ; (3.24)

(ii) If ϕ∗h(x, ·) ∈ C1(Rℓ×d) for a.e. x ∈ Ω, by the Fenchel–Young identity (cf. (2.4)), the discrete
convex optimality relation (3.22) is equivalent to

∇hu
cr
h = Dϕ∗h(·,Πhz

rt
h ) a.e. in Ω ; (3.25)

(iii) If ψh(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, by the Fenchel–Young identity (cf. (2.4)), the discrete
convex optimality relation (3.22) is equivalent to

div zrth = Dψh(·,Πhu
cr
h ) a.e. in Ω ; (3.26)

(iv) If ψ∗
h(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, by the Fenchel–Young identity (cf. (2.4)), the discrete

convex optimality relation (3.22) is equivalent to

Πhu
cr
h = Dψ∗

h(·,div zrth ) a.e. in Ω . (3.27)

The relations (3.24)–(3.27) motivate the following discrete reconstruction formulas for a
discrete dual solution zrth ∈ Zrt

ℓ (Th) from a discrete primal solution ucrh ∈ U cr
ℓ (Th) and vice versa,

called generalized Marini formulas (cf. [62, 16]).

Proposition 3.8 (Generalized Marini formulas). The following statements apply:

(i) If ϕh(x, ·) ∈ C1(Rℓ×d) and ψh(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, then, given a minimizer
ucrh ∈ U cr

ℓ (Th) of (3.17), a maximizer zrth ∈ Zrt
ℓ (Th) of (3.18) is given by

zrth = Dϕh(·,∇hu
cr
h ) +

Dψh(·,Πhu
cr
h )

d
⊗ (idRd −ΠhidRd) a.e. in Ω , (3.28)

and a discrete strong duality relation, i.e., (3.20), applies.
(ii) If ϕ∗h(x, ·) ∈ C1(Rℓ×d) and ψ∗

h(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, then, given a maximizer
zrth ∈ Zrt

ℓ (Th) of (3.18), a minimizer ucrh ∈ U cr
ℓ (Th) of (3.17) is given by

ucrh = Dψ∗
h(·,div zrth ) +Dϕ∗h(·,Πhz

rt
h )(idRd −ΠhidRd) a.e. in Ω , (3.29)

and a discrete strong duality relation, i.e., (3.20), applies.
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Proof.
ad (i). By definition, it holds that zrth ∈ (L1(Th))ℓ×d and the discrete convex optimality

relation (3.24) is satisfied. Since urth ∈ U cr
ℓ (Th) is minimal for (3.17) as well as ϕh(x, ·) ∈ C1(Rℓ×d)

for a.e. x ∈ Ω and ψh(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, for every vh ∈ U cr
ℓ,D(Th), we have that

(Dϕh(·,∇hu
cr
h ),∇hvh)Ω + (Dψh(·,Πhu

cr
h ),Πhvh)Ω − (gh, πhvh)ΓN

= 0 . (3.30)

In particular, (3.30) implies thatDϕh(·,∇hu
cr
h ) ∈ (∇h(ker(Πh|Ucr

ℓ,0(Th))))
⊥. Due to [19, Thm. 3.1],

it holds that (∇h(ker(Πh|Ucr
ℓ,0(Th))))

⊥ = Πh(Z
rt
ℓ (Th)). Thus, there exists yh ∈ Zrt

ℓ (Th) such that

Πhyh = Dϕh(·,∇hu
cr
h ) a.e. in Ω . (3.31)

As a result, resorting to the discrete integration-by-parts formula (2.12) and to (3.31), (3.30), and
(3.24), for every vh ∈ U cr

ℓ,0(Th), we find that

(yh − zrth ,∇hvh)Ω = (Dϕh(·,∇hu
cr
h ),∇hvh)Ω + (Dψh(·,Πhu

cr
h ),Πhvh)Ω = 0 . (3.32)

On the other hand, we have that div (yh−zrth ) = 0 a.e. in Ω, i.e., yh−zrth ∈ (L0(Th))ℓ×d. Therefore,
(3.32) in conjunction with (2.13) implies that yh − zrth ∈ (∇h(U

cr
ℓ,0(Th)))⊥ = ker(div|Zrt

ℓ (Th)).

As a result, due to yh ∈ Zrt
ℓ (Th), we conclude that zrth ∈ Zrt

ℓ (Th) with
Πhz

rt
h = Dϕh(·,∇hu

cr
h ) a.e. in Ω ,

div zrth = Dψh(·,Πhu
cr
h ) a.e. in Ω ,

zrth n = gh a.e. on ΓN .

(3.33)

By the Fenchel–Young identity (cf. (2.4)), (3.33)1,2 are equivalent to

Πhz
rt
h : ∇hu

cr
h = ϕ∗h(·,Πhz

rt
h ) + ϕh(·,∇hu

cr
h ) a.e. in Ω ,

div zrth ·Πhu
cr
h = ψ∗

h(·,div zrth ) + ψh(·,Πhu
cr
h ) a.e. in Ω .

(3.34)

Adding (3.34)1 and (3.34)2, subsequently, integrating with respect to x ∈ Ω, using the discrete
integration-by-parts formula (2.12), and using the definitions (3.17) and (3.18), we arrive at
Icrh (ucrh ) = Drt

h (zrth ), which, by the discrete weak duality relation (3.19), implies that zrth ∈ Zrt
ℓ (Th)

is maximal for (3.18).
ad (ii). By definition, it holds that ucrh ∈ (L1(Th))ℓ and the discrete convex optimality relation

(3.27) is satisfied. Since zrth ∈ Zrt
ℓ (Th) is maximal for (3.18) as well as ϕ∗h(x, ·) ∈ C1(Rℓ×d) for

a.e. x ∈ Ω and ψ∗
h(x, ·) ∈ C1(Rℓ) for a.e. x ∈ Ω, for every yh ∈ Zrt

ℓ,N (Th), we have that

(Dϕ∗h(·,Πhz
rt
h ),Πhyh)Ω + (Dψ∗

h(·,div zrth ),div yh)Ω + (yhn, u
h
D)ΓD

= 0 . (3.35)

In particular, (3.35) implies that Dϕ∗h(·,Πhz
rt
h ) ∈ (ker(div|Zrt

ℓ,0(Th)))
⊥. Due to (2.13), it holds that

(ker(div|Zrt
ℓ,0(Th)))

⊥ = ∇h(U
cr
ℓ (Th)). Therefore, there exists vh ∈ U cr

ℓ (Th) such that

∇hvh = Dϕ∗h(·,Πhz
rt
h ) a.e. in Ω . (3.36)

As a result, resorting to the discrete integration-by-parts formula (2.12) and to (3.36), (3.35),
and (3.27), for every yh ∈ Zrt

ℓ,0(Th), we find that

(vh − ucrh ,div yh)Ω = −(Dϕ∗h(·,Πhz
rt
h ),Πhyh)Ω − (Dψ∗

h(·,div zrth ),div yh)Ω = 0 . (3.37)

On the other hand, we have that ∇h(vh−ucrh ) = 0 a.e. in Ω, i.e., vh−ucrh ∈ (L0(Th))ℓ. Therefore,
(3.37) in conjunction with (2.14) implies that vh − ucrh ∈ (div (Zrt

ℓ,0(Th)))⊥ = ker(∇h|Ucr
ℓ (Th)).

As a result, due to vh ∈ U cr
ℓ (Th), we conclude that ucrh ∈ U cr

ℓ (Th) with
∇hu

cr
h = Dϕ∗h(·,Πhz

rt
h ) a.e. in Ω ,

Πhu
cr
h = Dψ∗

h(·,div zrth ) a.e. in Ω ,

πhu
cr
h = uhD a.e. on ΓD .

(3.38)

By the Fenchel–Young identity (cf. (2.4)), (3.38)1,2 is equivalent to (3.34). Adding (3.34)1 and
(3.34)2, subsequently, integrating with respect to x ∈ Ω, using the discrete integration-by-parts
formula (2.12), and using the definitions (3.17) and (3.18), we arrive at Icrh (ucrh ) = Drt

h (zrth ), which,
by the discrete weak duality relation (3.19), implies that ucrh ∈ U cr

ℓ (Th) is minimal for (3.17).
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4. Model problems

In this section, we illustrate the procedure described above by addressing model problems.

4.1 Non-linear Dirichlet problem

4.1.1 Continuous problem

A class of variational problems that includes the non-linear Laplace operator (cf. [38, 59, 58, 13])
involves a function ϕ : Ω× Rd → R that satisfies

(A.1) ϕ : Ω× Rd → R is a Carathéodory mapping and ϕ(x, ·) : Rd → R is convex for a.e. x ∈ Ω;
(A.2) There exist constants αm, αM > 0, functions βm, βM ∈ L1(Ω), and a variable exponent

p ∈ L∞(Ω) with p− := ess supx∈Ωp(x) such that for a.e. x ∈ Ω and r ∈ Rd, it holds that

βm(x) + αm |r|p(x) ≤ ϕ(x, r) ≤ βM (x) + αM |r|p(x) ;
and a function ψ : Ω×R → R defined by ψ(x, s) := −f(x)s for a.e. x ∈ Ω and all s ∈ R, where f ∈
Lp′(·)(Ω)5 and p′(x) := p(x)

p(x)−1 for a.e. x ∈ Ω. Then, for g ∈ L(p−)′(ΓN ) and uD ∈W 1− 1

p−
,p−

(ΓD),

the non-linear Dirichlet problem is given via the optimality condition of the minimization of the
functional I : W 1,p(·)(Ω) → R ∪ {+∞}, for every v ∈W 1,p(·)(Ω) defined by

I(v) :=

ˆ
Ω

ϕ(·,∇v) dx− (f, v)Ω − ⟨g, v⟩ΓN
+ IΓD

{uD}(v) , (4.1)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D : W p′(·)(div; Ω) → R ∪ {−∞}, for every y ∈W p′(·)(div; Ω) defined by

D(y) := −
ˆ
Ω

ϕ∗(·, y) dx+ ⟨y · n, uD⟩ΓD
− IΩ{−f}(div y)− IΓN

{g}(y · n) . (4.2)

As a result, given the two functionals (4.1) and (4.2), the corresponding primal-dual gap estimator
η2gap : W

1,p(·)(Ω) ×W p′(·)(div; Ω) → R, for every v ∈W 1,p(·)(Ω) with v = uD a.e. in ΓD and
y ∈W p′(·)(div; Ω) with div y = −f a.e. in Ω and y · n = g a.e. on ΓN , is given via

η2gap(v, y) :=

ˆ
Ω

ϕ(·,∇v)−∇v · y + ϕ∗(·, y) dx . (4.3)

The integrand of (4.3), by the Fenchel–Young inequality (cf. (2.3)), is point-wise non-negative and,
by the Fenchel–Young identity (cf. (2.4)), vanishes if and only if y ∈ ∂rϕ(·,∇v) a.e. in Ω.

4.1.2 Discrete problem

Let ϕh : Ω×Rd → R be an approximation ϕ : Ω×Rd → R satisfying (A.1) and ϕh(·, r) ∈ L0(Th)
for all r ∈ Rd. Moreover, let fh ∈ L0(Th), gh ∈ L0(SΓN

h ), and uhD ∈ L0(SΓD

h ) be approximations

of f ∈ Lp′(·)(Ω), g ∈ L(p−)′(ΓN ), and uD ∈ W 1− 1

p−
,p−

(ΓD). Then, the discrete non-linear
Dirichlet problem is given via the minimization of the functional Icrh : S1,cr(Th) → R ∪ {+∞},
for every vh ∈ S1,cr(Th) defined by

Icrh (vh) :=

ˆ
Ω

ϕh(·,∇hvh) dx− (fh,Πhvh)Ω − (gh, πhvh)ΓN
+ IΓD

{uh
D}(πhvh) . (4.4)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Drt

h : RT 0(Th) → R ∪ {−∞}, for every yh ∈ RT 0(Th) defined by

Drt
h (yh) := −

ˆ
Ω

ϕ∗h(·,Πhyh) dx+ (yh · n, uhD)ΓD
− IΩ{−fh}(div yh)− IΓN

{gh}(yh · n) . (4.5)

If ϕh(x, ·) ∈ C1(Rd) for a.e. x ∈ Ω, then given a discrete primal solution ucrh ∈ S1,cr(Th), a
discrete dual solution zrth ∈ RT 0(Th) is immediately available via the generalized Marini formula

zrth = Dϕh(·,∇hu
cr
h )− fh

d
(idRd −ΠhidRd) a.e. in Ω . (4.6)

5Lp′(·)(Ω) := {v ∈ L1(Ω) | |v|p′(·) ∈ L1(Ω)}, W 1,p(·)(Ω) := {v ∈ W 1,1(Ω) | |v|p(·), |∇v|p(·) ∈ L1(Ω)},
W p′(·)(div; Ω) := {y ∈ W 1(div; Ω) | |y|p′(·), |div y|p′(·) ∈ L1(Ω)}.
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4.2 Obstacle problem

4.2.1 Continuous problem

Non-differentiable lower-order contributions arise in formulating an obstacle problem as a varia-
tion problem (cf. [53, 37]): for an external force f ∈L2(Ω), Dirichlet boundary data uD∈W 1

2 ,2(ΓD),
and an obstacle χ ∈ W 1,2(Ω) with χ ≤ uD a.e. on ΓD, the obstacle problem is given via the
minimization of the functional I : W 1,2(Ω) → R ∪ {+∞}, for every v ∈W 1,2

D (Ω) defined by

I(v) := 1
2∥∇v∥22,Ω − (f, v)Ω + IΩ+(v − χ) + IΓD

{uD}(v) , (4.7)

where the indicator functional IΩ+ : L2(Ω) → R ∪ {+∞} for every v̂ ∈ L2(Ω) is defined by

IΩ+(v̂) :=

{
0 if v̂ ≥ 0 a.e. Ω ,

+∞ else .

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D : L2(Ω;Rd) → R ∪ {−∞}, for every y ∈W 2

N (div; Ω) defined by

D(y) := − 1
2∥y∥22,Ω − (div y + f, χ)Ω + ⟨y · n, uD⟩ΓD

− IΩ−(f + div y) , (4.8)

where the indicator functional IΩ− : L2(Ω) → R ∪ {+∞} for every ŷ ∈ L2(Ω) is defined by

IΩ−(ŷ) :=

{
0 if ŷ ≤ 0 a.e. Ω ,

+∞ else .

The dual problem is, in general, ill-posed in W 2
N (div; Ω). A maximizing vector field z ∈ L2(Ω;Rd)

with distributional divergence defines a non-negative distribution λ := −div y − f ∈ (W 1,2
D (Ω))∗.

As a result, given the two functionals (4.7) and (4.8), the corresponding primal-dual gap estimator
η2gap : W

1,2(Ω)×W 2
N (div; Ω) → R, for every v ∈W 1,2(Ω) with v = uD a.e. on ΓD and v ≥ χ a.e.

in Ω and y ∈W 2
N (div; Ω) and div y ≤ −f a.e. in Ω, using the integration-by-parts formula (2.5),

is given via

η2gap(v, y) =
1
2∥∇v − y∥22,Ω + (−div y − f, v − χ)Ω . (4.9)

The first part of (4.9) measures a violation of the optimality condition y = ∇v a.e. in Ω and the
second part of (4.9) measures a violation of the complementarity property (div y+ f, v−χ)Ω = 0.

4.2.2 Discrete problem

Let fh ∈ L0(Th), uhD ∈ L0(SΓD

h ), and χh ∈ L0(Th) be approximations of f ∈ L2(Ω), uD ∈
W

1
2 ,2(ΓD), and χ ∈W 1,2(Ω). Then, the discrete obstacle problem is given via the minimization

of the functional Icrh : S1,cr(Th) → R ∪ {+∞}, for every vh ∈ S1,cr(Th) defined by

Icrh (vh) :=
1
2∥∇hvh∥22,Ω − (fh,Πhvh)Ω + IΩ+(Πhvh − χh) + IΓD

{uh
D}(πhvh) . (4.10)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Drt

h : RT 0
N (Th) → R ∪ {−∞}, for every yh ∈ RT 0

N (Th) defined by

Drt
h (yh) := − 1

2∥Πhyh∥22,Ω − (div yh + fh, χh)Ω + (yh · n, uhD)ΓD
− IΩ−(fh + div yh) . (4.11)

Given a discrete primal solution ucrh ∈ S1,cr(Th) and a Lagrange multiplier λcrh ∈ Πh(S1,cr
D (Th)),

for every vh ∈ S1,cr
D (Th) satisfying

(λcrh ,Πhvh)Ω = (fh,Πhvh)Ω − (∇hu
cr
h ,∇hvh)Ω , (4.12)

proceeding as in the proof Proposition 3.8(i), a discrete dual solution zrth ∈ RT 0(Th) is immediately
available via the generalized Marini formula

zrth = ∇hu
cr
h − fh − λcrh

d
(idRd −ΠhidRd) a.e. in Ω . (4.13)
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4.3 Scalar Signorini problem

4.3.1 Continuous problem

A scalar variant of elastic contact problems leads to a variational problem with an inequality
constraint on a subset ΓC of the boundary on which penetration of an obstacle is prevented (cf. [80]):

for ΓD,ΓN ,ΓC ⊆ ∂Ω with ΓD∪̇ΓN ∪̇ΓC = ∂Ω, f ∈ L2(Ω), g ∈W− 1
2 ,2(ΓN ), uD ∈W

1
2 ,2(ΓD), and

χ ∈W 1,2(Ω) with χ = uD a.e. on ΓD, the scalar Signorini problem is given via the minimization
of the functional I : W 1,2(Ω) → R ∪ {+∞}, for every v ∈W 1,2

D (Ω) defined by

I(v) := 1
2∥∇v∥22,Ω − (f, v)Ω − ⟨g, v⟩ΓN

+ IΓC
+ (v − χ) + IΓD

{uD}(v) , (4.14)

where the indicator functional IΓC
+ : W

1
2 ,2(ΓC) → R∪{+∞} for every v̂ ∈W

1
2 ,2(ΓC) is defined by

IΓC
+ (v̂) :=

{
0 if v̂ ≥ 0 a.e. on ΓC ,

+∞ else .

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D : W 2(div; Ω) → R ∪ {−∞}, for every y ∈W 2(div; Ω) defined by

D(y) := − 1
2∥y∥22,Ω + ⟨y · n, χ⟩ΓD∪ΓC

− IΩ{−f}(div y)

− IΓN

{g}(y · n)− IΓC
+ (y · n) .

(4.15)

As a result, given the two functionals (4.14) and (4.15), the corresponding primal-dual gap es-
timator η2gap : W

1,2(Ω)×W 2(div; Ω) → R, for every v ∈ W 1,2(Ω) with v = uD a.e. on ΓD and
v ≥ χ a.e. on ΓC and y ∈ W 2(div; Ω) with y · n = g a.e. on ΓN and y · n ≥ 0 in W− 1

2 ,2(ΓN ),
using the integration-by-parts formula (2.5), is given via

η2gap(v, y) =
1
2∥∇v − y∥22,Ω + ⟨y · n, v − χ⟩ΓC

. (4.16)

The first part of (4.16) measures a violation of the optimality relation y = ∇v a.e. in Ω and the
second part of (4.16) measures a violation of the complementarity property ⟨y · n, v − χ⟩ΓC

= 0.

4.3.2 Discrete problem

Let fh∈L0(Th), gh∈L0(SΓN

h ), uhD∈L0(SΓD

h ), and χh∈L0(SΓC

h ) be approximations of f ∈L2(Ω),

g ∈ W− 1
2 ,2(ΓN ), uD ∈ W

1
2 ,2(ΓD), and χ|ΓC

∈ W
1
2 ,2(ΓC). Then, the discrete scalar Signorini

problem is given via the minimization of Icrh : S1,cr
D (Th) → R ∪ {+∞}, for every vh ∈ S1,cr

D (Th)
defined by

Icrh (vh) :=
1
2∥∇hvh∥22,Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN

+ IΓD

{uh
D}(πhvh) + IΓC

+ (πhvh − χh) ,
(4.17)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Drt

h : RT 0(Th) → R ∪ {−∞}, for every yh ∈ RT 0(Th) defined by

Drt
h (yh) := − 1

2∥Πhyh∥22,Ω + (yh · n, πhuhD)ΓD∪ΓC

− IΩ{−fh}(div yh)− IΓN

{gh}(yh · n)− IΓC
+ (yh · n) .

(4.18)

Appealing to Proposition 3.8(i), given a discrete primal solution ucrh ∈ S1,cr(Th), a discrete dual
solution zrth ∈ RT 0(Th) is immediately available via the generalized Marini formula

zrth = ∇hu
cr
h − fh

d
(idRd −ΠhidRd) a.e. in Ω .

For an element-wise affine obstacle χ ∈ S1(Th), an admissible approximation ucrh ∈W 1,2(Ω), e.g.,
can be obtained via node-averaging combined with setting ucrh (ν) := max{χ(ν), (Πav

h ucrh )(ν)} for
all boundary nodes ν ∈ Nh belonging to the contact boundary ΓC .



S. Bartels and A. Kaltenbach 22

4.4 Rudin–Osher–Fatemi image de-noising model

4.4.1 Continuous problem

A model problem that requires the usage of spaces of functions with bounded variation is the
Rudin–Osher–Fatemi image de-noising model (cf. [79, 15]): for a noisy image g ∈ L2(Ω) and a
fidelity parameter α > 0, it is given via the minimization of the functional I : BV (Ω) ∩ L2(Ω) → R,
for every v ∈ BV (Ω) ∩ L2(Ω) defined by

I(v) := |Dv|(Ω) + α
2 ∥v − g∥22,Ω . (4.19)

Here, |D(·)|(Ω): L1
loc(Ω) → R ∪ {+∞}, for every v ∈ L1

loc(Ω) defined by

|Dv|(Ω) := sup
φ∈C∞

c (Ω;Rd) : ∥φ∥∞,Ω≤1

(v,divφ)Ω ,

denotes the total variation functional and BV (Ω) := {v ∈ L1(Ω) | |Dv|(Ω) < +∞} the space
of functions with bounded variation. The total variation functional can be seen as an exten-
sion of the semi-norm in W 1,1(Ω) and allows for discontinuous minimizers. For every v ∈ L2(Ω),
it can be characterized via the Fenchel duality

|Dv|(Ω) = sup
y∈W 2

0 (div;Ω)

−(v,div y)Ω − IΩK1(0)
(y) , (4.20)

where the indicator functional IΩK1(0)
:W 2

0 (div; Ω)→R∪{+∞} for every ŷ∈W 2
0 (div; Ω) is defined by

IΩK1(0)
(ŷ) :=

{
0 if |ŷ| ≤ 1 a.e. in Ω ,

+∞ else .

By means of the relation (4.20), one finds that (cf. [56]) the (Fenchel) (pre-)dual problem is given
via the maximization of D : W 2

0 (div; Ω) → R ∪ {−∞}, for every y ∈W 2
0 (div; Ω) defined by

D(y) := −IΩK1(0)
(y)− 1

2α∥div y + α g∥22,Ω + α
2 ∥g∥22,Ω . (4.21)

As a result, given the two functionals (4.19) and (4.21), the corresponding primal-dual gap esti-
mator η2gap : BV (Ω)∩L2(Ω)×W 2

0 (div; Ω) → R, for every v ∈ BV (Ω)∩L2(Ω) and y ∈W 2
0 (div; Ω)

with |y| ≤ 1 a.e. in Ω, is given via

η2gap(v, y) = |Dv|(Ω) + (v,div y)Ω + 1
2α∥div y + α (v − g)∥22,Ω . (4.22)

The first two parts of (4.22) measure a violation of the optimality condition |Dv|(Ω) = −(v,div y)Ω
and the third part of (4.22) measures a violation of the optimality condition div y = α(v − g)
a.e. in Ω.

4.4.2 Discrete problem

Let ϕh ∈ C1(Rd) and gh ∈ L0(Th) be approximations of the Euclidean length |·| and g ∈ L2(Ω).
Then, the discrete Rudin–Osher–Fatemi image de-noising model is given via the minimization of
the functional Icrh : S1,cr(Th) → R, for every vh ∈ S1,cr(Th) defined by

Icrh (vh) =

ˆ
Ω

ϕh(∇hvh) dx+ α
2 ∥Πhvh − gh∥22,Ω . (4.23)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Drt

h : RT 0
0 (Th) → R ∪ {−∞}, for every yh ∈ RT 0

0 (Th) defined by

Drt
h (yh) := −

ˆ
Ω

ϕ∗h(Πhyh) dx− 1
2α∥div yh + α gh∥22,Ω + α

2 ∥gh∥22,Ω . (4.24)

Appealing to Proposition 3.8(i), given a discrete primal solution ucrh ∈ S1,cr(Th), a discrete dual
solution zrth ∈ RT 0

0 (Th) is immediately available via the generalized Marini formula

zrth = Dϕh(∇hu
cr
h ) +

α(Πhu
cr
h − gh)

d
(idRd −ΠhidRd) a.e. in Ω . (4.25)
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4.5 Jumping coefficients

4.5.1 Continuous problem

The derivation of sharp a posteriori error estimates is particularly challenging if a partial
differential equation involves coefficients whose minimal and maximal values are not comparable:
for a right-hand side f ∈ L2(Ω), Neumann boundary data g ∈W− 1

2 ,2(ΓN ), and Dirichlet bound-

ary data uD ∈W
1
2 ,2(ΓD), a related model problem is given via the minimization of the functional

I : W 1,2(Ω) → R ∪ {+∞}, for every v ∈W 1,2(Ω) defined by

I(v) := 1
2∥A

1
2 (·)∇v∥22,Ω − (f, v)Ω − ⟨g, v⟩ΓN

+ IΓD

{uD}(v) , (4.26)

where A : Ω → Rd×d is a tensor-valued mapping has the following properties:

(B.1) A : Ω → Rd×d is (Lebesgue) measurable;
(B.2) For a.e. x ∈ Ω, the tensor A(x) ∈ Rd×d is symmetric and positive definite;
(B.3) There exist constants αm, αM > 0 such that for every r ∈ Rd and a.e. x ∈ Ω, it holds that

αm|r|2 ≤ |A 1
2 (x)r|2 = A(x)r · r ≤ αM |r|2 .

Note that, due to (B.2), for a.e. x ∈ Ω, the tensor A(x) ∈ Rd×d admits a root A(x)
1
2 ∈ Rd×d.

The tensor-valued mapping A
1
2 : Ω → Rd×d in (4.26) is defined by A

1
2 (x) := A(x)

1
2 for a.e. x ∈ Ω.

Since for a.e. x ∈ Ω, the tensor A(x)
1
2 ∈ Rd×d is symmetric and positive definite, it is invertible.

The tensor-valued mapping A− 1
2 : Ω → Rd×d is defined by A− 1

2 (x) := A(x)−
1
2 for a.e. x ∈ Ω.

If ϕ : Ω × Rd → R is defined by ϕ(x, r) := 1
2 |A

1
2 (x)r|2 for a.e. x ∈ Ω and all r ∈ Rd, then

ϕ∗ : Ω× Rd → R for a.e. x ∈ Ω and every s ∈ Rd is found to be given via

ϕ∗(x, s) = |A− 1
2 (x)s|2 .

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D : W 2(div; Ω) → R ∪ {−∞}, for every y ∈W 2(div; Ω) defined by

D(y) := − 1
2∥A− 1

2 (·)y∥22,Ω + ⟨y · n, uD⟩ΓD
− IΩ{−f}(div y)− IΓN

{g}(y · n) . (4.27)

As a result, given the two functionals (4.26) and (4.27), the corresponding primal-dual gap estimator
η2gap :W

1,2(Ω)×W 2(div; Ω)→R, for every v ∈W 1,2(Ω) with v= uD a.e. on ΓD and y ∈W 2(div; Ω)

with y·n = g inW− 1
2 ,2(ΓN ) and div y = −f a.e. in Ω, using the integration-by-parts formula (2.5),

is given via

η2gap(v, y) =
1
2∥A

1
2 (·)∇v −A− 1

2 (·)y∥22,Ω , (4.28)

measuring the violation of the optimality condition y = A(·)∇v a.e. in Ω.

4.5.2 Discrete problem

Let Ah ∈ (L0(Th))d×d be an approximation of A : Ω → Rd×d satisfying (B.2). Moreover, let

fh ∈ L0(Th), gh ∈ L0(SΓN

h ), and uhD ∈ L0(SΓD

h ) be approximations of f ∈ L2(Ω), g ∈W− 1
2 ,2(ΓN ),

and uD ∈W
1
2 ,2(ΓD). Then, the discrete problem is given via the minimization of the functional

Icrh : S1,cr(Th) → R ∪ {+∞}, for every vh ∈ S1,cr(Th) defined by

Icrh (vh) :=
1
2∥A

1
2

h (·)∇hvh∥22,Ω − (fh,Πhvh)Ω − (gh, πhvh)ΓN
+ IΓD

{uh
D}(πhvh) . (4.29)

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Drt

h : RT 0(Th) → R ∪ {−∞}, for every yh ∈ RT 0(Th) defined by

Drt
h (yh) := − 1

2∥A
− 1

2

h (·)yh∥22,Ω + (yh · n, uhD)ΓD
− IΩ{−fh}(div yh)− IΓN

{gh}(yh · n) . (4.30)

Appealing to Proposition 3.8(i), given a discrete primal solution ucrh ∈ S1,cr(Th), a discrete dual
solution zrth ∈ RT 0(Th) is immediately available via the generalized Marini formula

zrth = Ah(·)∇hu
cr
h − fh

d
(idRd −ΠhidRd) a.e. in Ω . (4.31)
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4.6 Navier–Lamé problem

4.6.1 Continuous problem

Small deformations of elastic bodies are modeled by the Navier–Lamé equations (cf. [43]):

for an external force f ∈ L2(Ω;Rd), Neumann boundary data g ∈W− 1
2 ,2(ΓN ;Rd), and Dirichlet

boundary data uD∈W 1
2 ,2(ΓD;Rd), the Navier–Lamé minimization problem is given via optimality

condition of the minimization of the functional I :U2
d (Ω)→R∪{+∞}, for every v∈U2

d (Ω) defined by

I(v) := 1
2∥C

1
2 ε(v)∥22,Ω − (f, v)Ω − ⟨g, v⟩ΓN

+ IΓD

{uD}(v) . (4.32)

Here, the symmetric gradient ε : U2
d (Ω) → L2(Ω;Rd×d) is defined by ε(v) := 1

2 (∇v+∇v⊤) a.e. in
Ω for all v ∈ U2

d (Ω) and the positive definite linear operator C : Rd×d → Rd×d is defined by CR :=
2µR + λ (trR) Id×d for all R ∈ Rd×d, where λ, µ > 0 denote the so-called Lamé constants. If

ϕ : Rd×d → R≥0 is defined by ϕ(R) := 1
2 |C

1
2R|2 = CR : R for all R ∈ Rd×d, then ϕ∗ : Rd×d → R≥0

for every S ∈ Rd×d is found to be given via

ϕ∗(S) = 1
2 |C− 1

2S|2 = C−1S : S ,

where C−1 : Rd×d → Rd×d is given via C−1S = 1
d2λ+2dµ (trS) Id×d +

1
2µ devS for all S ∈ Rd×d,

where devS := S− 1
d (trS) Id×d is the deviatoric part. Then, a corresponding (Fenchel) dual prob-

lem is given via the maximization of the functional D : Z2
d(Ω) → R∪ {−∞}, for every y ∈ Z2

d(Ω)
defined by

D(y) := − 1
2∥y∥22,Ω + ⟨yn, uD⟩ΓN

− IΩ{−f}(div y)− IΓN

{g}(yn) . (4.33)

As a result, given the two functionals (4.32) and (4.33), the corresponding primal-dual gap estima-
tor η2gap : U

2
d (Ω)× Z2

d(Ω) → R, for every v ∈ U2
d (Ω) with v = uD a.e. on ΓD and y ∈ Z2

d(Ω) with

yn = g in W− 1
2 ,2(ΓN ;Rd) and div y = −f a.e. in Ω, using the integration-by-parts formula (2.5),

is given via

η2gap(v, y) :=
1
2∥C

1
2 ε(v)− C− 1

2 y∥22,Ω . (4.34)

4.6.2 Discrete problem

The canonical discretization of (4.32) with a Crouzeix–Raviart method is unstable due to the
lack of a discrete (non-conforming variant of) Korn’s inequality, i.e., in general, there exist non-
trivial vector fields vh ∈ U cr

d (Th)\{0} with εh(vh) = 0 a.e. in Ω, where the element-wise symmetric
gradient εh :U

cr
d (Th)→ (L0(Th))d×d is defined by εh(vh)|T :=ε(vh|T ) for all T ∈Th and vh∈U cr

d (Th).
Hence, a stabilization is required, for fh ∈ (L0(Th))d, gh ∈ (L0(SΓN

h ))d, and uhD ∈ (L0(SΓD

h ))d,

leading to a functional Icr,stabh : U cr
d (Th) → R ∪ {+∞}, for every vh ∈ U cr

d (Th) defined by

Icr,stabh (vh) :=
1
2∥C

1
2 εh(vh)∥22,Ω + sh(vh, vh)− (fh,Πhvh)Ω − (gh, πhvh)ΓN

+ IΓD

{uD}(πhvh) ,

where sh : U
cr
d (Th)×U cr

d (Th) → R is a symmetric bilinear form, so that the problem is well-posed

(cf. [29]). Given the minimizer ucrh ∈ U cr
d (Th) of Icr,stabh : U cr

d (Th) → R∪{+∞}, we choose a resid-
ual given via element-wise gradient of a Crouzeix–Raviart vector field, i.e., we choose rh ∈ U cr

d,D(Th)
such that for every vh ∈ U cr

d,D(Th), it holds that
(∇hrh,∇hvh)Ω = sh(uh, vh) = (fh,Πhvh)Ω + (gh, πhvh)ΓN

− (Cεh(ucrh ),∇hvh)Ω . (4.35)

Then, from (4.35), proceeding as in the proof of Proposition 3.8(i), we find that a tensor field
zrth ∈ Zrt

d (Th) with Πhz
rt
h = Cεh(ucrh ) +∇hrh a.e. in Ω, div zrth = −fh a.e. in Ω, and zrth n = gh

a.e. in ΓN is given via the generalized Marini formula

zrth = Cεh(ucrh ) +∇hrh − 1

d
fh ⊗ (idRd −ΠhidRd) a.e. in Ω . (4.36)

The possible asymmetry of (4.36) can be seen as part of the discretization error. In general, it
is not true that (4.36) is optimal for a discrete dual problem. It is, however, admissible in the
continuous dual problem (4.33) if f = fh and g = gh.
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4.7 Stokes’ problem

4.7.1 Continuous problem

Stokes’ problem can be formulated as a minimization problem over divergence-free velocity
fields (cf. [27]): for an external force f ∈ L2(Ω;Rd), Neumann boundary data g ∈W− 1

2 ,2(ΓN ;Rd),

and Dirichlet boundary data uD ∈W
1
2 ,2(ΓD;Rd), the Stokes minimization problem is defined

via the minimization of the functional I : U2
d (Ω) → R ∪ {+∞}, for every v ∈ U2

d (Ω) defined by

I(v) := 1
2∥∇v∥22,Ω + IΩ{0}(tr∇v)− (f, v)Ω − ⟨g, v⟩ΓN

+ IΓD

{uD}(v) . (4.37)

where the indicator functional IΩ{0} : L
2(Ω) → R ∪ {+∞} for every v̂ ∈ L2(Ω) is defined by

IΩ{0}(v̂) :=

{
0 if v̂ = 0 a.e. in Ω ,

+∞ else .

If the function ϕ : Rd×d → R ∪ {+∞} is defined by ϕ(R) := 1
2 |R|2 − IΩ{0}(trR) for all R ∈ Rd×d,

then ϕ∗ : Rd×d → R ∪ {+∞} for every S ∈ Rd×d is found to be given via

ϕ∗(x, S) = 1
2 |devS|2 .

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
D : Z2

d(Ω) → R ∪ {−∞}, for every y ∈ Z2
d(Ω) defined by

D(y) := − 1
2∥dev y∥22,Ω + ⟨yn, uD⟩ΓN

− IΩ{−f}(div y)− IΓN

{g}(yn) . (4.38)

As a result, given the two functionals (4.37) and (4.38), the corresponding primal-dual gap
estimator η2gap : U

2
d (Ω)×Z2

d(Ω) → R, for every v ∈ U2
d (Ω) with v = uD a.e. on ΓD and tr∇v = 0

a.e. in Ω and y ∈ Z2
d(Ω) with div y = −f a.e. in Ω and yn = g in W− 1

2 ,2(ΓN ;Rd), using the
integration-by-parts formula (2.5) and that (dev y,∇v)Ω = (y,∇v)Ω, is given via

η2gap(v, y) =
1
2∥∇v − y∥22,Ω ,

measuring the violation of the optimality condition y = ∇v a.e. in Ω.

4.7.2 Discrete problem

Let fh ∈ (L0(Th))d, gh ∈ (L0(SΓN

h ))d, and uhD ∈ (L0(SΓD

h ))d be approximations of f ∈L2(Ω;Rd),

g ∈W− 1
2 ,2(ΓN ;Rd), and uD ∈W

1
2 ,2(ΓD;Rd). Then, the discrete Stokes minimization problem

is given via the minimization of the functional Icrh : U cr
d (Th) → R∪{+∞}, for every vh ∈ U cr

d (Th)
defined by

Icrh (vh) :=
1
2∥∇hvh∥22,Ω + IΩ{0}(tr∇hvh)− (fh,Πhvh)Ω − (gh, πhvh)ΓN

+ IΩ{uh
D}(πhvh) .

Then, a corresponding (Fenchel) dual problem is given via the maximization of the functional
Drt

h : Zrt
d (Th) → R ∪ {−∞}, for every yh ∈ Zrt

d (Th) defined by

Drt
h (yh) := − 1

2∥Πhdev yh∥22,Ω + (yhn, u
h
D)ΓN

− IΩ{−fh}(div yh)− IΓN

{gh}(yhn) .

Appealing to Proposition 3.8(i), given a discrete primal solution ucrh ∈ U cr
d (Th), a discrete dual

solution zrth ∈ Zrt
d (Th) is immediately available via the generalized Marini formula

zrth = ∇hu
cr
h − 1

d
fh ⊗ (idRd −ΠhidRd) a.e. in Ω .

Note that, different from the previous model problem, an admissible approximation ucrh ∈ U2
d (Ω),

i.e., ucrh = uD a.e. on ΓD and tr∇ucrh = 0 a.e. in Ω, cannot be obtained via simple node-averaging
since, in general, we have that |{tr∇Πav

h ucrh ̸= 0}| > 0, although, by construction, we have that
tr∇hu

cr
h = 0 a.e. in Ω. Instead an approximation ucrh ∈ U2

d (Ω) can be obtained via node-averaging
combined with a local divergence-correction procedure (cf. [85]), in which one solves local discrete
Stokes problems in finite element spaces with higher polynomial degree. Since these local problems
can be solved in parallel, the overall cost of the local divergence-correction procedure is moderate.
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5. Equivalence to residual type error estimators

In the case of the φ-Dirichlet problem, i.e., if we have that ϕ := φ◦|· | ∈ C0(Rd)∩C2(Rd\{0}),
where φ : R≥0 → R≥0 is an N -function (cf. Appendix A.2) that satisfies the following conditions
(cf. [46, Assumption 1]):

(C.1) φ satisfies ∆2-condition (i.e., ∆2(φ) <∞) and the ∇2-condition (i.e., ∆2(φ
∗) <∞);

(C.2) φ ∈ C2(0,∞) and uniformly with respect to t ≥ 0, it holds that6

φ′(t) ∼ t φ′′(t) ;

and if we have that ψ(x, ·) := (s 7→ −f(x)s) ∈ C1(R) for a.e. x ∈ Ω, assuming that f = fh ∈ L0(Th)
and g = gh = 0, we can relate the primal-dual gap estimator to the residual type estimator in [46],
which, in fact, coincides with the standard residual type estimator for the Poisson problem (1.1)
(i.e., φ(t) := 1

2 t
2 for ll t≥0). If up1h ∈S1

D(Th) is the unique minimizer of Ip1h :=I|S1
D(Th) :S1

D(Th)→R,
the residual type estimator denotes the quantity

η2res,h(u
p1
h ) :=

∑
T∈Th

η2res,T (u
p1
h ) , (5.1)

where, if hS := diam(S) for all S ∈ Sh, for every T ∈ Th and S ∈ Si
h with S ⊆ ∂T

η2res,T (u
p1
h ) := η2E,T (u

p1
h ) +

∑
S∈Si

h :S⊆∂T

η2J,S(u
p1
h ) ,

η2E,T (u
p1
h ) := ∥(φ|∇up1

h |)
∗(hT |fh|)∥1,T ,

η2J,S(u
p1
h ) :=

∥∥h 1
2

S JF (∇up1h )KS
∥∥2
2,T

.

(5.2)

In (5.2), for every a≥ 0, the function (φa)
∗ : R≥0 →R≥0 is the Fenchel conjugate of φa : R≥0 →R≥0

(cf. Appendix A.2) and the function F : Rd → Rd for every r ∈ Rd is defined by

F (r) :=

√
φ′(|r|)
|r| r .

In [46, Lem. 8 & Cor. 11], it has been shown that the error estimator (5.1) is reliable and efficient
with respect to the primal approximation error, i.e., there exist constants crel, ceff > 0 such that

crel ∥F (∇up1h )− F (∇u)∥22,Ω ≤ η2res,h(u
p1
h ) ≤ ceff ∥F (∇up1h )− F (∇u)∥22,Ω . (5.3)

Generalizing the procedure in [35, 54, 55, 22] and resorting to properties of the node-averaging
quasi-interpolation operator Πav

h : S1,cr
D (Th) → S1

D(Th) (cf. Appendix A.1), we are able to establish
the global equivalence of the primal-dual gap estimator (4.3) in the case v = up1h ∈ S1

D(Th) and
y = zrth ∈ RT 0

N (Th) to the residual type estimator (5.1).

Theorem 5.1. Let ϕ = φ ◦ | · | ∈ C0(Rd)∩C2(Rd \ {0}), where φ : R≥0 → R≥0 is an N -function
satisfying (C.1), (C.2), ψ(x, ·) := (s 7→ −f(x)s) ∈ C1(R) for a.e. x ∈ Ω for f = fh ∈ L0(Th),
and let g = gh = 0. Then, it holds that

η2res,h(u
p1
h ) ∼ η2gap(u

p1
h , z

rt
h ) =

ˆ
Ω

ϕ(∇up1h )−∇up1h · zrth + ϕ∗(zrth ) dx , (5.4)

where the equivalence ∼ depends only on ω0, ∆2(φ), and ∇2(φ).

Remark 5.2. Theorem 5.1 extends the results in [46] by the aspect that the residual type estimator
(5.1) is not only equivalent to the primal approximation (i.e., to ρ2I(u

p1
h , u)), but to the primal

approximation plus the dual approximation error (i.e., to ρ2tot(u
p1
h , z

rt
h ) := ρ2I(u

p1
h , u)+ρ

2
−D(zrth , z)).

In other words, the residual type estimator (5.1) also provides control of the approximation error
of the Raviart–Thomas approximation of the dual problem.

6Here, we employ the notation f ∼ g for two (Lebesgue) measurable functions f, g : Ω → R, if there exists a
constant c > 0 such that c−1f ≤ g ≤ cf almost everywhere in Ω.
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Proof of (Theorem 5.1). ad η2gap(u
p1
h , z

rt
h ) ≤ c η2res,h(u

p1
h ). Using the discrete optimality relation

(3.21) (which is equivalent to (3.24)), we find that

ϕ(∇up1h )−∇up1h ·Πhz
rt
h + ϕ∗(zrth )

= ϕ(∇up1h )−Dϕ(∇hu
cr
h ) · (∇up1h −∇hu

cr
h ) + ϕ(∇hu

cr
h )

+ ϕ∗(zrth )− ϕ∗(Πhz
rt
h ) .

 a.e. in Ω . (5.5)

On the other hand, by the convextity of ϕ, ϕ∗ ∈ C1(Rd), we have that

−ϕ(∇hu
cr
h ) ≤ −ϕ(∇up1h ) +Dϕ(∇up1h ) · (∇up1h −∇hu

cr
h ) a.e. in Ω ,

−ϕ∗(Πhz
rt
h ) ≤ −ϕ∗(zrth ) +Dϕ∗(zrth ) · (zrth −Πhz

rt
h ) a.e. in Ω ,

(5.6)

Therefore, using (5.5) and (5.6) together withDϕ∗(Πhz
rt
h )⊥(zrth −Πhz

rt
h ) in L2(Ω;Rd), we find that

η2gap(u
p1
h , z

rt
h ) ≤ (Dϕ(∇up1h )−Dϕ(∇hu

cr
h ),∇up1h −∇hu

cr
h )Ω

+ (Dϕ∗(zrth )−Dϕ∗(Πhz
rt
h ), zrth −Πhz

rt
h )Ω

=: I1h + I2h .

(5.7)

So, it is enough to estimate I1h and I2h:

ad I1h. Abbreviating eh := up1h − ucrh ∈ S1,cr
D (Th) and using Galerkin orthogonality of the

continuous and the discrete primal problem, we find that

I1h = (Dϕ(∇up1h ),∇h(eh −Πav
h eh))Ω

+ (fh,Π
av
h eh − eh)Ω

+ (Dϕ(∇up1h )−Dϕ(∇u),∇Πav
h eh)Ω

=: I1,1h + I1,2h + I1,3h .

(5.8)

Let us next estimate I1,1h , I1,2h , and I1,3h :

ad I1,1h . Using that JDϕ(∇up1h ) ·n(eh−Πav
h eh)KS = JDϕ(∇up1h ) ·nKS{eh−Πav

h eh}S+{Dϕ(∇up1h )·
n}SJeh −Πav

h ehKS on S, πhJeh −Πav
h ehKS = 0 and {Dϕ(∇up1h )}S = const on S for all S ∈ Si

h, an
element-wise integration-by-parts, a discrete trace inequality (cf. [49, Lem. 12.8]), and Proposition
A.1, denoting for every S ∈ Sh by ωS :=

⋃{T ∈ Th | S ⊆ ∂T} the side patch and for every
T ∈ Th by ωT :=

⋃{T ′ ∈ Th | T ∩ T ′ ̸= ∅} the element patch, we find that

I1h = (JDϕ(∇up1h ) · nK, {eh −Πav
h eh})Si

h

≤
∑
S∈Si

h

|JDϕ(∇up1h ) · nKS |∥{eh −Πav
h eh}S∥1,S

≤ c
∑
S∈Si

h

|JDϕ(∇up1h ) · nKS |h−1
S ∥eh −Πav

h eh∥1,ωS

≤ c
∑
S∈Si

h

∑
T∈Th :T⊆ωS

∥|JDϕ(∇up1h ) · nKS |∇heh∥1,ωT
.

(5.9)

Then, for every T ∈ Th, using in ωT , the ε-Young inequality (cf. (A.1)) for φ|∇up1
h (T )| : R≥0 → R≥0

and (φ|∇up1
h (T )|)∗(|JDϕ(∇up1h ) · nKS |)∼ |JF (∇up1h )KS |2 for all S ∈Si

h with S ⊆ ∂T (cf. [46, Cor. 6]),
where we write ∇up1h (T ) to indicate that the shift on ωT depends only on the value of ∇up1h on T ,
from (5.9), for every ε > 0, we deduce that

I1,1h ≤ c
∑
S∈Si

h

∑
T∈Th :T⊆ωS

cε ∥(φ|∇up1
h (T )|)

∗(|JDϕ(∇up1h ) · nKS |)∥1,ωT

+ ε c
∑
S∈Si

h

∑
T∈Th :T⊆ωS

∥φ|∇up1
h (T )|(|∇heh|)∥1,ωT

≤ cε
∑
S∈Si

h

η2J,S(u
p1
h ) + ε c

∑
T∈Th

∥φ|∇up1
h (T )|(|∇heh|)∥1,ωT

.

(5.10)
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ad I1,2h . Using the ε-Young inequality (cf. (A.1)) and Proposition A.1, for every ε> 0, we obtain

I1,2h ≤ cε
∑
T∈Th

∥(φ|∇up1
h |)

∗(hT |fh|)∥1,T

+ ε
∑
T∈Th

∥φ|∇up1
h |(h

−1
T |eh −Πav

h eh|)∥1,T

≤ cε
∑
T∈Th

η2E,T (u
p1
h ) + ε c

∑
T∈Th

∥φ|∇up1
h (T )|(|∇heh|)∥1,ωT

.

(5.11)

ad I1,3h . The ε-Young inequality (cf. (A.1)), the equivalence (φ|∇up1
h |)∗(|Dϕ(∇up1h )−Dϕ(∇u)|)

∼ |F (∇up1h )− F (∇u)|2 (cf. [46, Cor. 6]), and Proposition A.1, for every ε > 0, yield that

I1,3h ≤ cε
∑
T∈Th

∥(φ|∇up1
h |)

∗(|Dϕ(∇up1h )−Dϕ(∇u)|)∥1,T

+ ε
∑
T∈Th

∥φ|∇up1
h |(|∇Πav

h eh|)∥1,T

≤ cε ∥F (∇up1h )− F (∇u)∥22,Ω + ε c
∑
T∈Th

∥φ|∇up1
h (T )|(|∇heh|)∥1,ωT

.

(5.12)

Combining (5.10)–(5.12) in (5.8), using (5.3) in doing so, for every ε > 0, we conclude that

I1h ≤ cε η
2
res,h(u

p1
h ) + ε c

∑
T∈Th

∥φ|∇up1
h (T )|(|∇heh|)∥1,ωT

. (5.13)

Proceeding as in [46, p. 9 & 10], we find that∑
T∈Th

∥φ|∇up1
h (T )|(|∇heh|)∥1,ωT

≤ c
∑
T∈Th

∥φ|∇up1
h |(|∇heh|)∥1,ωT

+ c
∑
S∈Si

h

η2J,S(u
p1
h ) . (5.14)

Therefore, using (5.14) in (5.13) together with the equivalence chain φ|∇up1
h |(|∇heh|) ∼ |F (∇up1h )−

F (∇hu
cr
h )|2 ∼ (Dϕ(∇up1h )−Dϕ(∇hu

cr
h )) · (∇up1h −∇hu

cr
h ) a.e. in Ω, for every ε > 0, we arrive at

I1h ≤ cε η
2
res,h(u

p1
h ) + ε c I1h . (5.15)

Resorting the reconstruction formula (4.6) and [46, Lem. 3], with F ∗ : Rd → Rd for every r ∈ Rd

defined by

F ∗(r) :=

√
(φ∗)′(|r|)

|r| r ,

and the equivalence |F ∗(zrth )− F ∗(Πhz
rt
h )|2 ∼ (Dϕ∗(zrth )−Dϕ∗(Πhz

rt
h )) · (zrth −Πhz

rt
h ) a.e. in Ω,

a change of shift (cf. [46, Cor. 28]), and the equivalence |F (∇up1h )− F (∇hu
cr
h )|2 ∼ (Dϕ(∇up1h )−

Dϕ(∇hu
cr
h )) · (∇up1h −∇hu

cr
h ) a.e. in Ω, for every ε > 0, we find that

I2h ≤ c ∥(φ|∇hucr
h |)

∗(hT |fh|)∥1,Ω
≤ cε η

2
res,h(u

p1
h ) + ε c I1h .

(5.16)

For ε > 0 sufficiently small, from (5.15) and (5.16) in (5.7), we conclude that

η2gap(u
p1
h , z

rt
h ) ≤ c η2res,h(u

p1
h ) . (5.17)

ad η2res,h(u
p1
h ) ≤ c η2gap(u

p1
h , z

rt
h ). From Theorem 3.3(i), (5.17), and (5.3) together with the

equivalence ρ2I(u
p1
h , u) ∼ ∥F (∇up1h )− F (∇u)∥22,Ω, we conclude that

ρ2tot(u
p1
h , z

rt
h ) = η2gap(u

p1
h , z

rt
h )

≤ c η2res,h(u
p1
h )

≤ c ρ2I(u
p1
h , u)

≤ c ρ2tot(u
p1
h , z

rt
h ) .
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6. Quasi-optimality of node-averaging operator

Since, in general, for a discrete primal solution, we have that ucrh /∈ Up
ℓ (Ω), it is necessary to

post-process the discrete primal solution to obtain an admissible approximation ucrh ∈ Up
ℓ (Ω).

Here, it is convenient to enforce admissibility via the node-averaging quasi-interpolation operator
Πav

h :S1,cr
D (Th)→S1

D(Th) (cf. Appendix A.1), which satisfies the following local best-approximation
result.

Lemma 6.1. Let ϕ = φ ◦ | · | ∈ C0(Rd) ∩ C2(Rd \ {0}), where φ : R≥0 → R≥0 is an N -function
satisfying (C.1), (C.2). Then, there exists a constant c > 0 depending only on ω0, ∆2(φ), and
∇2(φ), such that for every vh ∈ S1,cr

D (Th) and T ∈ Th, it holds that

∥F (∇hvh)− F (∇Πav
h vh)∥22,T ≤ c inf

v∈W 1,1
D (Ω) :F (∇v)∈L2(Ω;Rd)

∥F (∇hvh)− F (∇v)∥22,ωT

+ c
∥∥h1/2S JF (∇hvh)K

∥∥2
2,Si

h(T )
,

where Si
h(T ) := {S ∈ Si

h | S ∩ T ̸= ∅} for all T ∈ Th and hS |S := hS for all S ∈ Sh.

Proof. Follows along the lines of the proof of [58, Lem. 3.8] up to obvious adjustments.

Using Lemma 6.1, in turn, we can deduce that the local distance of a node-averaged Crouzeix–
Raviart function to a Sobolev function on an element is bounded by the local distance of the same
Crouzeix–Raviart function to the same Sobolev function on an element patch plus an additive
term quantifying the local fractional higher regularity of the Sobolev function, which justifies the
usage of the node-averaging quasi-interpolation operator in local mesh refinement procedures.

In order to express the fractional regularity of functions, we make use of Nikolskĭı spaces. For
given p ∈ [1,∞), β ∈ (0, 1], an open set G ⊆ Rd, d ∈ N, and v ∈ Lp(G), the Nikolskĭı semi-norm
is defined by

[v]Nβ,p(G) := sup
h∈Rd\{0}

|h|−β

(ˆ
G∩(G−h)

|v(·+ h)− v|p dx
) 1

p

<∞ .

Then, for p ∈ [1,∞) and β ∈ (0, 1], the Nikolskĭı space is defined by

Nβ,p(G) :=
{
v ∈ Lp(G) | [·]Nβ,p(G) <∞

}
,

and the Nikolskĭı norm ∥ · ∥Nβ,p(G) := ∥ · ∥p,G + [·]Nβ,p(G) turns N
β,p(G) into a Banach space.

Proposition 6.2. Let ϕ = φ◦|·| ∈ C0(Rd)∩C2(Rd\{0}), where φ : R≥0 → R≥0 is an N -function
satisfying (C.1), (C.2). Then, there exists a constant c>0 depending only on ω0, ∆2(φ), and ∇2(φ),
such that for every vh ∈ S1,cr

D (Th), v ∈W 1,1
D (Ω) with F (∇v) ∈ L2(Ω;Rd), and T ∈ Th, it holds that

∥F (∇Πav
h vh)− F (∇v)∥22,T ≤ c ∥F (∇hvh)− F (∇v)∥22,ωT

+ c inf
r∈Rd

∥F (∇v)− F (r)∥22,ωT
, (6.1)

and if, in addition, F (∇v) ∈ Nβ,2(int(ωT );Rd) with β ∈ (0, 1], then it holds that

∥F (∇Πav
h vh)− F (∇v)∥22,T ≤ c ∥F (∇hvh)− F (∇v)∥22,ωT

+ c h2βT [F (∇v)]2Nβ,2(int(ωT )) . (6.2)

Proof. ad (6.1). For every vh ∈ S1,cr
D (Th), v ∈W 1,1

D (Ω) with F (∇v) ∈ L2(Ω;Rd), and T ∈ Th, it
holds that∥∥h1/2S JF (∇hvh)K

∥∥2
2,Si

h(T )
= inf

r∈Rd

∥∥h1/2S JF (∇hvh)− F (r)K
∥∥2
2,Si

h(T )

≤ c inf
r∈Rd

∥F (∇hvh)− F (r)∥22,ωT

≤ c ∥F (∇hvh)− F (∇v)∥22,ωT
+ c inf

r∈Rd
∥F (∇v)− F (r)∥22,ωT

,

(6.3)

so that, using Lemma 6.1, we conclude that (6.1) applies.
ad (6.2). If, in addition, F (∇v) ∈ Nβ,2(int(ωT );Rd) with β ∈ (0, 1], choosing r =

ffl
ωT

∇v dx
for every T ∈ Th in (6.1), by [34, ineqs. (4.6), (4.7)], we find that (6.2) applies.
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7. Numerical experiments

In this section, we review the practical relevance of the theoretical investigations of Section 4.
In doing so, we restrict to scalar model problems of Section 4 (i.e., we restrict to the case ℓ=1). The
vectorial model problems of Section 4 (cf. Subsections 4.6, 4.7) will be experimentally investigated
in forthcoming articles. All experiments were conducted deploying the finite element software
package FEniCS (version 2019.1.0, cf. [60]). All graphics were generated using the Matplotlib

library (version 3.5.1, cf. [57]) and the Vedo library (version 2023.4.4, cf. [65]).

7.1 Implementation details regarding the adaptive mesh refinement procedure

The experiments are based on the following generic adaptive algorithm (cf. [11, 14, 86]):

Algorithm 7.1 (AFEM). Let εSTOP > 0, θ ∈ (0, 1). and T0 an initial triangulation of Ω. Then,
for every k ∈ N ∪ {0}:
(’Solve’) Compute a discrete primal solution ucrk := ucrhk

∈S1,cr(Tk) (i.e., a minimizer of (3.17))
and a discrete dual solution zrtk := zrthk

∈ RT 0(Tk) (i.e., a maximizer of (3.18)).
Post-process ucrk ∈ S1,cr(Tk) and zrtk ∈ RT 0(Tk) to obtain admissible approximations

ucrk ∈W 1,p(Ω) with I(ucrk ) <∞ and zrtk ∈W p′
(div; Ω) with D(zrtk ) > −∞;

(’Estimate’) Compute the resulting local refinement primal-dual indicators {η2gap,T (ucrk , zrtk )}T∈Tk
.

If η2gap(u
cr
k , z

rt
k ) ≤ εSTOP, then STOP; otherwise, continue with step (’Mark’);

(’Mark’) Choose a minimal (in terms of cardinality) subset Mk ⊆ Tk such that∑
T∈Mk

η2T (u
cr
k , z

rt
k ) ≥ θ2

∑
T∈Tk

η2T (u
cr
k , z

rt
k ) ;

(’Refine’) Perform a (minimal) conforming refinement of Tk to obtain Tk+1 such that each ele-
ment T ∈ Mk is ‘refined’ in Tk+1. Increase k 7→ k+1 and continue with step (’Solve’).

Remark 7.2. (i) If not otherwise specified, we employ the parameter θ = 1
2 in step (’Mark’).

(ii) To find the set Mk ⊆ Tk in step (’Mark’), we resort to the Dörfler marking strategy (cf. [47]).
(iii) The (minimal) conforming refinement of Tk with respect to Mk in step (’Refine’) is obtained

by deploying the red-green-blue-refinement algorithm (cf. [86]) for d = 2 and by deploying
the Plaza–Carey refinement algorithm (cf. [70]) for d = 3.

7.2 Inhomogeneuous p(·)-Dirichlet problem

In this subsection, we review the theoretical findings of Subsection 4.1.

7.2.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.3. (i) The discrete primal solution ucrk ∈ S1,cr(Tk) (i.e., minimizer of (4.4)) in step
(’Solve’) is computed using the Newton line search algorithm of PETSc (version 3.17.3, cf. [12])
(with an absolute tolerance of τabs = 1.0×10−8 and a relative tolerance of τrel = 1.0×10−10)
to the corresponding discrete Euler–Lagrange equations. The linear system emerging in each
Newton step is solved using the sparse direct solver from MUMPS (version 5.5.0, cf. [5]);

(ii) The reconstruction of the discrete dual solution zrtk ∈ RT 0(Tk) (i.e., maximizer of (4.5)) in
step (’Solve’) is based on the generalized Marini formula (4.6);

(iii) As conforming approximations in step (’Solve’), we employ ucrk :=Πav
hk
ucrk ∈S1(Tk)⊆W 1,p(·)(Ω)

and zrtk = zrtk ∈ RT 0(Tk) ⊆W p′(·)(div; Ω).
(iv) The local refinement indicators {η2gap,T (ucrk , zrtk )}T∈Tk

⊆ R≥0, for every T ∈ Th, are given via

η2gap,T (u
cr
k , z

rt
k ) :=

ˆ
T

ϕ(·,∇ucrk )−∇ucrk · zrtk + ϕ∗(·, zrtk ) dx ,

which follows from restricting η2gap(u
cr
k , z

rt
k ) (cf. (4.3)) to each element T ∈ Th.
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7.2.2 Example with corner singularity on L-shape domain

For our numerical experiments, we choose Ω := (−1, 1)
2 \ ([0, 1]× [−1, 0]), ΓD := ∂Ω, ΓN := ∅,

uD = 0 ∈W 1− 1

p−
,p−

(ΓD), p ∈ C∞(Ω), for every x ∈ Ω defined by

p(x) := p− + 1
2 |x|2 ,

where p− ∈ {1.5, 2}, ϕ : Ω×R2 →R (satisfying (A.1), (A.2)), for every x∈Ω and r ∈R2 defined by

ϕ(x, r) := 1
p(x)−1 |r|p(x)−1r − 1

p(x)(p(x)−1) |r|p(x) ,

and as manufactured primal solution u ∈W 1,p(·)(Ω) (i.e., minimizer of (4.1)), in polar coordinates,
for every (r, φ)⊤ ∈ (0,∞)× (0, 2π) defined by

u(r, φ) := (1− r2 cos2(φ))(1− r2 sin2(φ))rσ(r) sin( 23φ) ,

where σ ∈ C∞(0,+∞) with σ(r) ∈ (0, 1) for all r ∈ (0, 1), i.e., we choose f ∈Lp′(·)(Ω) accordingly.
As approximations, for k = 0, . . . , 20, we employ ϕk := ϕhk

: Ω× R2 → R, for a.e. x ∈ Ω and
every r ∈ R2 defined by

ϕhk
(x, r) := 1

pk(x)−1 (h
2
k + |r|)pk(x)−1r

− 1
pk(x)(pk(x)−1) ((h

2
k + |r|)pk(x) − h

2pk(x)
k ) ,

where pk := phk
∈ L0(Th) is defined by

phk
|T := p(xT ) for all T ∈ Tk ,

where xT := 1
3

∑
ν∈Nh : ν∈T ν is the barycenter of T for all T ∈Tk, and fk := fhk

:=Πhk
f ∈L0(Th).

For every p− ∈ {1.5, 2}, the function σ ∈ C∞(0,+∞) for every r ∈ (0,∞) is defined by

σ(r) := 1.01− 1
p−+r2 ,

which precisely yields the fractional regularity

F (·,∇u) ∈ N 1
2 ,2(Ω;R2) , (7.1)

where F : Ω× R2 → R2 is defined by F (x, r) := |r| p(x)−2
2 r for a.e. x ∈ Ω and all r ∈ R2.

In the case of uniformmesh refinement (i.e., θ=1 in Algorithm 7.1), the fractional regularity (7.1)
let us expect the reduced convergence rate hk ∼ N− 1

2
k , k = 0, . . . , 20, where Nk := dim(S1,cr

0 (Tk)),
for the alternative total error quantity

ρ̃2tot(u
cr
k , z

rt
k ) := ∥F (·,∇ucrk )− F (·,∇u)∥22,Ω

+ ∥F ∗(·, zrtk )− F ∗(·, z)∥22,Ω

}
, k = 0, . . . , 20 ,

where F ∗ : Ω×R2 → R2 is defined by F ∗(x, r) := |r| p
′(x)−2

2 r for a.e. x ∈ Ω and all r ∈ R2, which
up to a multiplicative constant is a lower bound for the total error ρ2tot(u

cr
k , z

rt
k ), k = 0, . . . , 20, i.e.,

there exists a constant cp(·) > 0, depending only on p− := ess infx∈Ωp(x) and p
+ := ess supx∈Ωp(x),

such that

ρ̃2tot(u
cr
k , z

rt
k ) ≤ cp(·) ρ

2
tot(u

cr
k , z

rt
k ) , k = 0, . . . , 20 .

The coarsest triangulation T0 of Figure 2 consists of 96 elements and 65 vertices. In Figure 1,
for p− ∈ {1.5, 2}, one sees that uniform mesh refinement (i.e., θ = 1 in Algorithm 7.1) yields
the expected reduced convergence rate hk ∼ N− 1

2
k , k = 0, . . . , 4, while adaptive mesh refinement

(i.e., θ = 1
2 in Algorithm 7.1) yields the quasi-optimal convergence rate h2k ∼ N−1

k , k = 0, . . . , 20.
In particular, for every p− ∈ {1.5, 2} and k = 0, . . . , 20, when using adaptive mesh refinement, and
k = 0, . . . , 4, when using uniform mesh refinement, the primal-dual gap estimator η2gap(u

cr
k , z

rt
k )

is reliable and efficient with respect to ρ̃2tot(u
cr
k , z

rt
k ), k = 0, . . . , 20, although it is an upper bound

only up to a constant. This is due to the unspecified constant cp(·) > 0.
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Figure 1: LEFT: primal-dual gap estimator η2gap(u
cr
k , z

rt
k ) and alternative total error ρ̃2tot(u

cr
k , z

rt
k );

RIGHT: primal energy I(ucrk ) and dual energy D(zrtk ); each for p− ∈ {1.5, 2} and k = 0, . . . , 20,
when using adaptive mesh refinement (i.e., θ = 1

2 in Algorithm 7.1), and for k = 0, . . . , 4, when uni-
form mesh refinement (i.e., θ=1 in Algorithm 7.1), in the inhomogeneous p(·)-Dirichlet problem.

In Figure 2, for p− ∈ {1.5, 2}, one finds that Algorithm 7.1 refines towards the origin, where
the gradient of the primal solution u ∈W 1,p(·)(Ω) has its singularity. More precisely, Figure 2
displays the triangulations Tk, k ∈ {0, 10, 20}, generated by Algorithm 7.1 in the case p− = 2.

This behavior can also be seen in Figure 3, in which the discrete primal solution ucr10 ∈S1,cr
0 (T10),

the node-averaged discrete primal solution Πav
h10
ucr10 ∈ S1

0 (T10), and the discrete dual solution
zrt10 ∈ RT 0(T10) are plotted, each in the case p− = 2.

T0 T10 T20

Figure 2: Initial triangulation T0 and adaptively refined triangulations Tk, k∈{10, 20}, generated
by Algorithm 7.1 for θ = 1

2 , each in the case p− = 2 in the inhomogeneous p(·)-Dirichlet problem.
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Figure 3: LEFT: discrete primal solution ucr10 ∈ S1,cr
0 (T10); MIDDLE: node-averaged discrete

primal solution ucr10 ∈ S1
0 (T10); RIGHT: (local) L2-projection (onto (L0(T10))2) of discrete dual

solution zrt10 ∈ RT 0(T10), each in the the case p− = 2 in the inhomogeneous p(·)-Dirichlet problem.
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7.3 Obstacle problem

In this subsection, we review the theoretical findings of Subsection 4.2.

7.3.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, again, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.4. (i) The discrete primal solution ucrk ∈ S1,cr(Tk) (i.e., minimizer of (4.10)) and

the discrete Lagrange multiplier λcrk ∈ Πhk
(S1,cr

D (Tk)) (i.e., solution of (4.12)) in step (’Solve’)
are computed using a primal-dual active set strategy interpreted as a locally super-linear
converging semi-smooth Newton method (cf. [18, Alg. 6.1 with α = 1]). Since only a finite
number of active sets are possible, the algorithm terminates after a finite number of iterations
at (ucrk , λ

cr
k )⊤ ∈ S1,cr(Tk)×Πhk

(S1,cr
D (Tk)) . The linear system emerging in each semi-smooth

Newton step is solved using the sparse direct solver of SciPy (version 1.8.1, cf. [87]);
(ii) The reconstruction of the discrete dual solution zrtk ∈ RT 0(Tk) (i.e., maximizer of (4.11))

in step (’Solve’) is based on the generalized Marini formula (4.13);
(iii) As conforming approximations in step (’Solve’), we employ ucrk := max{Πav

hk
ucrk , χ} ∈W 1,2(Ω)

and zrtk = zrtk ∈ RT 0(Tk) ⊆W 2(div; Ω).
(iv) The local refinement indicators {η2gap,T (ucrk , zrtk )}T∈Tk

⊆ R≥0, for every T ∈ Th, are given via

η2gap,T (u
cr
k , z

rt
k ) := 1

2∥∇ucrk − zrtk ∥22,T + (−div zrtk − f, ucrk − χ)T ,

which follows from restricting η2gap(u
cr
k , z

rt
k ) (cf. (4.9)) to each element T ∈ Th.

7.3.2 Example with unknown exact solution

For our numerical experiments, we choose Ω := (− 3
2 ,

3
2 )

2, ΓD := ∂Ω, ΓN := ∅, f = 0 ∈ L2(Ω),

uD = 0 ∈W
1
2 ,2(∂Ω), and χ ∈W 1,2

0 (Ω) (cf. Figure 4), for every x = (x1, x2)
⊤ ∈ Ω defined by

χ(x1, x2) := max{0,min{min{x1 + 1, 12 , 1− x1},min{x2 + 1, 12 , 1− x2}}} .
As approximation, for k = 0, . . . , 25, we employ χk := χhk

:= Πhk
χ ∈ L0(Tk) (cf. Figure 4).

The primal solution u ∈W 1,2
0 (Ω) (i.e., minimizer of (4.7)) is not known and cannot be expected

to satisfy u ∈W 2,2(Ω) inasmuch as χ /∈W 2,2(Ω). In consequence, uniform mesh refinement (i.e.,
θ = 1 in Algorithm 7.1) is expected to yield a reduced convergence rate compared to the quasi-
optimal convergence rate h2k ∼ N−1

k , k = 0, . . . , 25, where Nk := dim(S1,cr
0 (Tk)) + dim(L0(Tk)).
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Figure 4: LEFT: nodal interpolant of the obstacle χ ∈W 1,2
0 (Ω); RIGHT: (local) L2-projection

(onto L0(Th)) χ15 := Πh15χ ∈ L0(T15) of the obstacle χ ∈W 1,2
0 (Ω).
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The coarsest triangulation T0 in Figure 5 consists of 64 elements and 41 vertices. More precisely,
Figure 5 displays the triangulations Tk, k∈{0, 5, 10, 15, 20, 25}, generated byAlgorithm 7.1 for θ= 1

2 .
The discrete contact zones Ccr

k := {Πhk
ucrk =χk}= {λcrk < 0}, k ∈ {0, 5, 10, 15, 20, 25}, are plotted

in white in Figure 5 while their complements are shaded.
Algorithm 7.1 refines the triangulations towards the contact zone C := {u = χ} (cf. Figure 5).

The discrete contact zones Ccr
k , k ∈ {0, . . . , 25}, reduce to C. This can also be observed in Figure 7,

where the discrete primal solution ucr15 ∈ S1,cr
0 (T15), the node-averaged discrete primal solution

Πav
h15
ucr15 ∈ S1

0 (T15), the discrete Lagrange multiplier λcr15 ∈ Πh15
(S1,cr

0 (T15)), and the discrete dual
solution zrt15 ∈ RT 0(T15) are plotted. In Figure 6, one sees that uniform mesh refinement (i.e.,
θ = 1 in Algorithm 7.1) yields the expected reduced convergence rate hk ∼ N− 1

2
k , k = 0, . . . , 4,

while adaptive mesh refinement (i.e., θ = 1
2 in Algorithm 7.1) yields the quasi-optimal convergence

rate h2k ∼ N−1
k , k = 0, . . . , 25.

T0 T5 T10

T15 T20 T25

Figure 5: Adaptively refined triangulations Tk, k ∈ {0, 5, 10, 15, 20, 25}, with discrete contact
zones Ccr

k , k ∈ {0, 5, 10, 15, 20, 25}, shown in white in the obstacle problem.
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Figure 6: LEFT: primal-dual gap estimator η2gap(u
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k , z
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k ); RIGHT: primal energy I(ucrk ), dual

energy D(zrtk ), and primal energy I(u) approximated via Aitken’s δ2-process (cf. [3]); each for
k = 0, . . . , 25, when using adaptive mesh refinement (i.e., θ = 1

2 in Algorithm 7.1), and for
k = 0, . . . , 4, when uniform mesh refinement (i.e., θ = 1 in Algorithm 7.1), in the obstacle problem.
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Figure 7: UPPER LEFT: discrete primal solution ucr15 ∈ S1,cr
0 (T15); UPPER RIGHT: node-

averaged discrete primal solution ucr15 ∈ S1
0 (T15); LOWER LEFT: discrete Lagrange multiplier

λcr15 ∈L0(T15); LOWER RIGHT: (local) L2-projection of the discrete dual solution zrt15 ∈RT 0(T15);
each on the triangulation T15 in the obstacle problem.
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7.4 Rudin–Osher–Fatemi (ROF) image denoising problem

In this subsection, we review the theoretical findings of Subsection 4.4. To compare approxi-
mations to an exact solution, we impose homogeneous Dirichlet boundary conditions on ΓD = ∂Ω,
even though, then, a corresponding existence theory is difficult to establish, in general. However,
the set-up derived in Subsection 4.4 carries over verbatimly with ΓN = ∅ provided that the exis-
tence of a minimizer is a priori guaranteed.

7.4.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, again, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.5. (i) The discrete primal solution ucrk ∈ S1,cr
0 (Tk) in step (’Solve’) is computed

using a semi-implicit discretized L2-gradient flow (cf. [24, Alg. 5.1]) for fixed step-size τ = 1,
stopping criterion εhk

stop := hk√
20
, and initial condition u0k = 0 ∈ S1,cr

0 (Tk). Appealing to [24,

Prop. 5.2(ii)], [24, Alg. 5.1] is unconditionally strongly stable, so that employing the fixed
step-size τ = 1 is a canonical choice. The stopping criterion εhk

stop := hk√
20

ensures (cf. the ar-
gumentation below [24, Alg. 5.1]) that the final iterate ui

∗

hk
∈S1,cr

0 (Tk), i∗ ∈N, is a sufficiently

accurate approximation (in L2(Ω)) of the discrete primal solution ucrk ∈ S1,cr
0 (Tk), in the

sense that its accuracy does not violate the best possible convergence rate (cf. [24, Rem. 5.6]).
The linear systems emerging in each gradient descent step is solved using the conjugate gradient
method of PETSc (version 3.17.3, cf. [12]) preconditioned with an incomplete LU factorization.

(ii) The reconstruction of the discrete dual solution zrtk ∈ RT 0(Tk) (i.e., maximizer of (4.24))
in step (’Solve’) is based on the generalized Marini formula (4.25).

(iii) As conforming approximations in step (’Solve’), we employ ucrk := Π∂Ω
hk
ucrk ∈ S1,cr

0 (Tk) with

ucrk = 0 a.e. on ∂Ω, where the operator Π∂Ω
hk

: S1,cr(Tk) → S1,cr
0 (Tk) for every vhk

∈ S1,cr(Tk)
is defined by

Π∂Ω
hk
vhk

:=
∑

S∈Si
hk

:S∩∂Ω=∅
vhk

(xS)φS ,

where xS := 1
d

∑
ν∈Nh : ν∈S ν denotes the barycenter of S for all S ∈ Sh, and z

rt
k ∈ RT 0(Tk)

with |zrtk | ≤ 1 a.e. in Ω, defined by

zrtk :=
zrtk

max{1, ∥zrtk ∥∞,Ω}
. (7.2)

Note that the post-processing ucrk := Π∂Ω
hk
ucrk is only due to the imposed homogeneous Dirichlet

boundary condition. In the case ΓD = ∅, the choice ucrk := ucrk ∈S1,cr(Tk) is always admissible.
(iv) The local refinement indicators {η2gap,T (ucrk , zrtk )}T∈Tk

⊆ R≥0, for every T ∈ Th, are given via

η2gap,T (u
cr
k , z

rt
k ) := η2gap,A,T (u

cr
k , z

rt
k ) + η2gap,B,T (u

cr
k , z

rt
k ) ,

η2gap,A,T (u
cr
k , z

rt
k ) := ∥∇hu

cr
k ∥1,T − (∇hu

cr
k ,Πhz

rt
k )T +

∑
S∈Sh :S⊆∂T

∥Jucrk KS∥1,S ,

η2gap,B,T (u
cr
k , z

rt
k ) := 1

2α∥div zrtk + α (ucrk − g)∥22,T ,
where we used in (4.22) the discrete integration-by-parts formula (2.12) and the discrete
representation of the total variation (cf. [25]), i.e., for every vh ∈ L1(Th), it holds that

|Dvh|(Ω) = ∥∇hvh∥1,Ω +
∑
S∈Sh

∥JvhKS∥1,S ,

to arrive at an alternative representation for (4.22), i.e., for every vh ∈ S1,cr(Th) and
yh ∈ RT 0

0 (Th) with |yh| ≤ 1 a.e. in Ω, we have that

η2gap,T (vh, yh) = ∥∇hvh∥1,Ω − (∇hvh,Πhyh)Ω +
∑
S∈Sh

∥JvhKS∥1,S
+ 1

2α∥div yh + α (vh − g)∥22,T .
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7.5 Example with Lipschitz continuous dual solution

We examine an example from [23]. In this example, we let Ω := (−1, 1)d, d ∈ {2, 3}, ΓD := ∂Ω,
r := 1

2 , α := 10, and g := χBd
r (0)

∈ BV (Ω)∩L∞(Ω). Then, the primal solution u ∈ BV (Ω)∩L∞(Ω)

and a dual solution z ∈W 2(div; Ω) ∩ L∞(Ω;Rd), for a.e. x ∈ Ω are given via

u(x) := (1− d
αr ) g(x) , z(x) :=

{
−x

r if |x| < r ,

− rx
|x|d if |x| ≥ r .

(7.3)

As approximations, for k = 0, . . . , 25, we employ ϕk := ϕhk
∈ C1(Rd), for every r ∈ Rd defined

by ϕhk
(r) := (1− h2k) (h

4
k + |r|2) 1

2 , and gk := ghk
:= Πhk

g ∈ L0(Tk).
2D Case. The coarsest triangulation T0 of Figure 8 consists of 32 elements and 25 vertices.

More precisely, Figure 8 displays the triangulations Tk, k ∈ {0, 15, 25}, generated by Algorithm 7.1.
A refinement towards ∂B2

r (0), i.e., the jump set Ju of the primal solution u∈BV (Ω) ∩ L∞(Ω)
(cf. (7.3)) is reported. This behavior is also seen in Figure 10, in which the discrete primal
solution ucr15 ∈ S1,cr

0 (T15), the (local) L2-projection (onto L0(T15)) Πh15u
cr
15 ∈ L0(T15), the (local)

L2-projections (onto L1(T15)) of the modulus of the discrete dual solution zrt15 ∈ RT 0(T15),
and the (local) L2-projections (onto L1(T15)) of the unit-length scaled discrete dual solution
zrt15 ∈ RT 0(T15) (cf. (7.2)) are plotted. In Figure 9, one sees that uniform mesh refinement (i.e.,
θ = 1 in Algorithm 7.1) yields the expected reduced the convergence rate hk ∼ N− 1

2
k , k = 0, . . . , 25,

(predicted by [41, 16]), while adaptive mesh refinement (i.e., θ = 1
2 in Algorithm 7.1) yields the

quasi-optimal convergence rate h2k ∼ N−1
k , k = 0, . . . , 25. In addition, Figure 9 indicates the

primal-dual gap estimator is reliable and efficient respect to the alternative total error quantity

ρ̃2tot(u
cr
k , z

rt
k ) := α

2 ∥ucrk − u∥22,Ω + 1
2α∥div zrtk − div z∥22,Ω , k = 0, . . . , 25 , (7.4)

which is a lower bound for the total error ρ2tot(u
cr
k , z

rt
k ) = η2gap(u

cr
k , z

rt
k ), k = 0, . . . , 25.

T0 T15 T25

Figure 8: Initial triangulation T0 and adaptively refined triangulations Tk, k∈{15, 25}, generated
by Algorithm 7.1 for θ = 1

2 in the Rudin–Osher–Fatemi image de-noising problem.
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Figure 9: LEFT: primal-dual gap estimator η2gap(u
cr
k , z

rt
k ) and alternative total error ρ̃2(ucrk , z

rt
k );

RIGHT: maximal length of discrete dual solution ∥zrtk ∥∞,Ω; each for k = 0, . . . , 25, when using ad-
aptive mesh refinement (i.e., θ= 1

2 in Algorithm 7.1), and for k = 0, . . . , 5, when using uniformmesh
refinement (i.e., θ=1 in Algorithm 7.1), in the Rudin–Osher–Fatemi image de-noising problem.
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Figure 10: UPPER LEFT: discrete primal solution ucr15 ∈ S1,cr
0 (T15), UPPER RIGHT: (local) L2-

projection of discrete primal solution Πh15
ucr15 ∈ L0(T15); LOWER LEFT: (local) L2-projection

(onto L1(T15)) of discrete dual solution Π1
h15

|zrt15| ∈ L1(T15); LOWER RIGHT: (local) L2-
projection (onto L1(T15)) of unit-length scaled discrete dual solution Π1

h15
|zrt15| ∈ L1(T15) (cf. (7.2));

each on the triangulation T15 in the Rudin–Osher–Fatemi image de-noising problem.
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3D Case. The initial triangulation T0 of Algorithm 7.1 consists of 384 elements and 125 vertices.
Algorithm 7.1 refines the triangulations towards ∂B3

r (0), i.e., the jump set Ju of the exact solution
u ∈ BV (Ω) ∩ L∞(Ω) (cf. (7.3)), which can be observed in Figure 11, in which, more concretely,
for k ∈ {0, 5, 9}, the discrete primal solution ucrk ∈ S1,cr

0 (Tk) and the (local) L2-projection (onto
L1(Tk)) of the modulus of the discrete dual solution zrtk ∈ RT 0(Tk) are plotted. In Figure 12,
one sees that uniform mesh refinement (i.e., θ = 1 in Algorithm 7.1) yields the expected reduced
convergence rate hk ∼ N− 1

3
k , k = 0, . . . , 3, (predicted by [41, 16]), while adaptive mesh refinement

(i.e., θ = 1
2 in Algorithm 7.1) yields the improved convergence rate h2k ∼ N− 2

3
k , k = 0, . . . , 9.

Figure 11: TOP: discrete primal solutions ucrk ∈S1,cr
0 (Tk), k∈{0, 5, 9}; BOTTOM: (local) L2-

projection (onto L1(Tk)) of the moduli of the discrete dual solutions Π1
hk
|zrtk |∈L1(Tk), k∈{0, 5, 9};

each on the triangulation Tk, k ∈ {0, 5, 9}, in the Rudin–Osher–Fatemi image de-noising problem.
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Figure 12:LEFT: primal-dual gap estimator η2gap(u
cr
k , z

rt
k ) and alternative total error ρ̃2tot(u

cr
k , z

rt
k );

RIGHT: maximal length of discrete dual solution ∥zrtk ∥∞,Ω; each for k = 0, . . . , 9, when using ad-
aptive mesh refinement (i.e., θ= 1

2 in Algorithm 7.1), and for k = 0, . . . , 3, when using uniformmesh
refinement (i.e., θ=1 in Algorithm 7.1), in the Rudin–Osher–Fatemi image de-noising problem.



S. Bartels and A. Kaltenbach 40

7.6 Jumping coefficients

In this subsection, we review the theoretical findings of Subsection 4.5.

7.6.1 Implementation details regarding the optimization procedure

Before we present our numerical experiments, again, we briefly outline implementation details
regarding the optimization procedure.

Remark 7.6. (i) The discrete primal solution ucrk ∈ S1,cr(Tk) (i.e., minimizer of (4.29)) in step
(’Solve’) is computed using the sparse direct solver from MUMPS (version 5.5.0, cf. [5])
applied to the corresponding discrete Euler–Lagrange equation;

(ii) The reconstruction of the discrete dual solution zrtk ∈ RT 0(Tk) (i.e., maximizer of (4.30))
in step (’Solve’) is based on the generalized Marini formula (4.31);

(iii) As conforming approximations in (’Solve’), we employ ucrk :=Πav
hk
ucrk ∈S1(Tk) ⊆W 1,2(Ω)

and zrtk = zrtk ∈ RT 0(Tk) ⊆W 2(div; Ω).
(iv) The local refinement indicators {η2gap,T (ucrk , zrtk )}T∈Tk

⊆ R≥0, for every T ∈ Th, are given via

η2gap,T (u
cr
k , z

rt
k ) := 1

2∥A
1
2 (·)∇ucrk −A− 1

2 (·)zrtk ∥22,T ,
which follows from restricting η2gap(u

cr
k , z

rt
k ) (cf. (4.28)) to each element T ∈ Th.

7.6.2 Example with unknown exact solution

For our numerical experiments, we choose Ω:=(−1, 1)
2
, ΓD :=∂Ω, ΓN :=∅, uD=0 ∈W

1
2 ,2(ΓD),

f = 1 ∈ L2(Ω), and as jumping coefficient matrix Aε : Ω → R2×2, for every ε ∈ {16, 32, 64} and
x ∈ Ω defined by

Aε(x) :=

{
εI2×2 if |x+ e1| < 1 ,
1
ε I2×2 else ,

(7.5)

where e1 := (1, 0)⊤ ∈ R2.
As approximation, for k = 0, . . . , 40 and ε ∈ {16, 32, 64}, we employ Aε

k := Aε
hk

:= Πε
hk
Aε ∈

(L0(T ε
k ))

2×2. For every ε ∈ {16, 32, 64}, the primal solution uε ∈W 1,2
0 (Ω) (i.e. minimizer of (4.26)

with A = Aε) is not known and cannot be expected to satisfy uε ∈W 2,2(Ω) since Aε /∈C0(Ω;R2×2).
As a consequence, uniform mesh refinement (i.e., θ = 1 in Algorithm 7.1) is expected to yield a
reduced convergence rate compared to the quasi-optimal convergence rate (hεk)

2 ∼ (Nε
k)

−1, where

Nε
k := dim(S1,cr

0 (T ε
k )).

The coarsest triangulation T0 consists of 32 halved elements and 25 vertices. In Figure 13, for
every ε ∈ {16, 32, 64}, the final triangulations T ε

40 generated by Algorithm 7.1 are displayed. In it,
a refinement towards ∂B2

1(e1) ∩ Ω, i.e., the jump set JAε of the discontinuous coefficient matrix
Aε ∈ L∞(Ω;R2×2) (cf. (7.5)) is reported.

T ε40 (ε = 16) T ε40 (ε = 32) T ε40 (ε = 64)

Figure 13: Final triangulations T ε
40, ε ∈ {16, 32, 64}, generated by Algorithm 7.1 for θ = 1

2 in
the jumping coefficient problem.
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This behavior is also seen in Figure 14, in which, for every ε ∈ {16, 32, 64}, the discrete primal
solution ucr,ε30 ∈S1,cr

0 (T ε
30) (i.e., minimizer of (4.29) withAhk

=Aε
hk
) and the node-averaged discrete

primal solution ucr,ε30 ∈S1
0 (T ε

30) are plotted. In addition, Figures 13, 14 show that for increasing
value of ε ∈ {16, 32, 64}, the refinement is more concentrated at the jump set JAε = ∂B2

1(e1) ∩ Ω.
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Figure 14: TOP: discrete primal solutions ucr,ε30 ∈ S1,cr
0 (T ε

30), ε ∈ {16, 32, 64}; BOTTOM: node-
averaged discrete primal solution ucr,ε30 ∈ S1,cr

0 (T ε
30), ε ∈ {16, 32, 64}; each on the triangulation T ε

30

in the jumping coefficient problem.

In Figure 15, for every ε ∈ {16, 32, 64}, one sees that uniform mesh refinement (i.e., θ = 1 in
Algorithm 7.1) yields the expected reduced convergence rate (hεk)

0.7 ∼ (Nε
k)

−0.35, k = 0, . . . , 5,
while adaptive mesh refinement (i.e., θ = 1

2 in Algorithm 7.1) yields the quasi-optimal convergence
rate (hεk)

2 ∼ (Nε
k)

−1, k = 0, . . . , 40.
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Figure 15: LEFT: primal-dual gap estimator η2gap(u
cr,ε
k , zrt,εk ); RIGHT: primal energy Iε(ucr,εk ),

dual energy Dε(zrt,εk ), and primal energy Iε(uε) approximated via Aitken’s δ2-process (cf. [3]);
each for ε ∈ {16, 32, 64} and k = 0, . . . , 40, when using adaptive mesh refinement (i.e., θ = 1

2 in
Algorithm 7.1), for k = 0, . . . , 40 and for k = 0, . . . , 5, when uniform mesh refinement (i.e., θ = 1
in Algorithm 7.1), in the jumping coefficient problem.
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7.7 Anisotropic mesh refinement

In this subsection, we examine the behavior of the primal-dual gap estimator with respect to
anisotropic mesh refinement. For an extensive examination of anisotropic mesh refinement, we
refer the reader to [6, 67]. We restrict to the Poisson problem (1.1), i.e., we employ the implemen-
tation of Subsection 4.5, but in the case A(x) := Id×d for a.e. x ∈ Ω.

7.7.1 Example with unknown exact solution

For our numerical experiments, we choose Ω := (−1, 1)
d \ ([0, 1] × [−1, 0]d−1), d ∈ {2, 3},

ΓD := ∂Ω, ΓN := ∅, uD = 0 ∈W
1
2 ,2(ΓD), and f = 1 ∈ L2(Ω). For different grading strengths

β ∈ { 1
2 , 1,

3
2} and k = 0, . . . , 40, we anisotropically refine the triangulations T β

k towards the origin,

where the gradient of the unknown primal solution u∈W 1,2
0 (Ω) (i.e., minimizer of (4.26) with

A := Id×d) is expected to have a singularity. Note that the grading strength β = 1 precisely
corresponds to uniform mesh refinement.

2D Case. For β ∈ { 1
2 , 1,

3
2}, the coarsest triangulation T β

0 consists of 6 element and 8 vertices.
Figure 16 depicts the anisotropically refined triangulation T β

20 for grading strengths β ∈ { 1
2 , 1,

3
2}.

In it, one observes that for increasing value grading strength β ∈ { 1
2 , 1,

3
2}, the potential singularity

of the gradient of the unknown primal solution u ∈ W 1,2
0 (Ω) at the origin is better resolved.

The same behavior can be seen in Figure 18, in which for different grading strengths β ∈ { 1
2 , 1,

3
2},

the discrete primal solution ucr,β20 ∈ S1,cr
0 (T β

20) (i.e., minimizer of (4.26) with Ah20
= I2×2) and the

node-averaged discrete primal solution ucr,β20 ∈ S1,cr
0 (T β

20) are depicted. In Figure 17, one sees that
the grading strengths β = 1

2 and β = 1 yield the reduced convergence rates (hβk)
−0.8 ∼ (Nβ

k )
−0.4

(for β = 1
2 ) and (hβk)

−1.5 ∼ (Nβ
k )

−0.75 (for β = 1), respectively, where Nβ
k = dim(S1,cr

0 (T β
k )),

while the grading strength β= 3
2 yields the quasi-optimal convergence rate (hβk)

2∼ (Nβ
k )

−1. Overall,
we find that the primal-dual gap estimator is robust with respect to the choice of grading strengths.

T β20 (β = 0.5) T β20 (β = 1) T β20 (β = 1.5)

Figure 16: Anisotropically refined triangulations T β
20 for different grading strengths β ∈ { 1

2 , 1,
3
2}.
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Figure 17: LEFT: primal-dual gap estimator η2gap(u
cr,ε
k , zrt,εk ); RIGHT: primal energy I(ucr,βk ),

dual energy D(zrt,βk ), and primal energy I(u) approximated via Aitken’s δ2-process (cf. [3]); each
for grading strengths β ∈ { 1

2 , 1,
3
2} and k = 0, . . . , 40.
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Figure 18: TOP: discrete primal solutions ucr,β20 ∈ S1,cr
0 (T β

20), β ∈ { 1
2 , 1,

3
2}; BOTTOM: node-

averaged discrete primal solution ucr,β20 ∈ S1,cr
0 (T β

20), β ∈ { 1
2 , 1,

3
2}; each on the anisotropically

refined triangulation T β
30 for grading strengths β ∈ { 1

2 , 1,
3
2}.

3D Case. For β ∈ { 1
2 , 1,

3
2}, the coarsest triangulation T β

0 consists of 336 elements and 117 ver-
tices. In Figure 20 and Figure 21, for k ∈ {0, 2, 4} and different grading strengths β ∈ { 1

2 , 1,
3
2}, the

discrete primal solution ucr,βk ∈S1,cr
0 (T β

k ) (i.e., minimizer of (4.26) with Ahk
=I2×2) and the (local)

L2-projection (onto L1(Tk)) of the modulus of discrete dual solution zrt,βk ∈RT 0(T β
k ) are depicted.

In Figure 19, one sees that the grading strengths β = 1
2 and β =1 yield the reduced convergence rates

(hβk)
− 3

4 ∼ (Nβ
k )

− 1
4 (for β = 1

2 ) and (hβk)
− 3

2 ∼ (Nβ
k )

− 1
2 (for β = 1), where Nβ

k = dim(S1,cr
0 (T β

k )),
while the grading strength β = 3

2 yield the improved convergence rate (hβk)
2 ∼ (Nβ

k )
− 2

3 .
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Figure 19: LEFT: primal-dual gap estimator η2gap(u
cr,ε
k , zrt,εk ); RIGHT: primal energy I(ucr,βk ),

dual energy D(zrt,βk ), and primal energy I(u) approximated via Aitken’s δ2-process (cf. [3]); each
for grading strengths β ∈ { 1

2 , 1,
3
2} and k = 0, . . . , 3.
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Figure 20: Discrete primal solution ucr,βk ∈ S1,cr
0 (T β

k ) on triangulationsT β
k obtained using

anisotropic mesh refinement for k ∈ {0, 2, 4} (from left two right) and β ∈ { 1
2 , 1,

3
2} (from top to

bottom).
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Figure 21: (Local) L2-projection (onto L1(T β
k )) of modulus of discrete dual solution Π1

hβ
k

|zcr,βk | ∈
L1(T β

k ) on triangulation T β
k obtained using anisotropic mesh refinement for k ∈ {0, 2, 4} (from

left two right) and β ∈ { 1
2 , 1,

3
2} (from top to bottom).
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A. Node-averaging quasi-interpolation operator and interpolation error
estimate in terms of (shifted) N-functions

In this appendix, we recall the definition of node-averaging operator Πav
h : L1(Th) → S1

D(Th)
and an interpolation error estimate in terms of (shifted) N -functions.

A.1 Node-averaging quasi-interpolation operator

The node-averaging quasi-interpolation operator Πav
h : L1(Th) → S1

D(Th), denoting for every
ν ∈ Nh, by Th(ν) := {T ∈ Th | ν ∈ T}, the set of elements sharing ν, for every vh ∈ L1(Th), is
defined by

Πav
h vh :=

∑
ν∈Nh

⟨vh⟩νφν , ⟨vh⟩ν :=

{
1

card(Th(ν))

∑
T∈Th(ν)

(vh|T )(ν) if ν ∈ Ω ∪ ΓN ,

0 if ν ∈ ΓD ,

where we denote by (φν)ν∈Nh
the nodal basis of S1(Th).

A.2 Interpolation error estimate in terms of (shifted) N -functions

A convex function φ : R≥0 → R≥0 is said to be an N -function if and only if φ(0) = 0, φ(t) > 0
for all t > 0, limt→0 φ(t)/t = 0, and limt→∞ φ(t)/t = ∞. Then, there exists a right-derivative
φ′ : R≥0 → R>0, which is non-decreasing and satisfies φ′(0) = 0, φ′(t) > 0 for all t > 0, and
limt→∞ φ′(t) = ∞. In addition, an N -function φ : R≥0 → R≥0 is said to satisfy the ∆2-condition
(in short, φ ∈ ∆2) if and only if there exists a constant c > 0 such that φ(2t) ≤ c φ(t) for all t ≥ 0.
We denote the smallest such constant by ∆2(φ). An N -function φ : R≥0 → R≥0 is said to satisfy
the ∇2-condition (in short, φ ∈ ∇2), if its Fenchel conjugate φ

∗ : R≥0 → R≥0 is an N -function
satisfying the ∆2-condition. If φ : R≥0 → R≥0 satisfies the ∆2- and the ∇2-condition (in short,
φ ∈ ∆2 ∩∇2), then we define the corresponding family of shifted N -functions φa : R≥0 → R≥0,
a ≥ 0, for every t ≥ 0 by

φa(t) :=

ˆ t

0

φ′
a(s) ds , where φ′

a(s) :=
φ′(a+ s)

a+ s
s for all s ≥ 0 .

Appealing to [46, Lem. 22], it holds that cφ := supa≥0 ∆2(φa) <∞. In particular, for every ε > 0,
there exists a constant cε > 0, not depending on a ≥ 0, such that for every t, s ≥ 0 and a ≥ 0,
there holds the following ε-Young inequality :

s t ≤ cε (φa)
∗(s) + εφa(t) . (A.1)

Proposition A.1. Let φ : R≥0 → R≥0 be an N-function such that φ ∈ ∆2 ∩ ∇2. Then, for
every vh ∈ S1,cr(Th), m ∈ {0, 1, 2}, a ≥ 0 and T ∈ Th, we have thatˆ

T

φa(h
m
T |∇m

h (vh −Πav
h vh)|) dx ≤ cav

ˆ
ωT

φa(hT |∇hvh|) dx .

where cav > 0 depends only on cφ and ω0.

Proof. See [58, Cor. A.2].
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