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Abstract In this paper, we focus on learning op-

timal parameters for PDE-based image regulariza-

tion and decomposition. First we learn the regu-

larization parameter and the differential operator

for gray-scale image denoising using the fractional

Laplacian in combination with a bilevel optimiza-

tion problem. In our setting the fractional Lapla-

cian allows the use of Fourier transform, which en-

ables the optimization of the denoising operator.

We prove stable and explainable results as an ad-

vantage in comparison to other machine learning

approaches. The numerical experiments correlate

with our theoretical model setting and show a re-

duction of computing time in contrast to the ROF

model. Second we introduce a new image decom-

position model with the fractional Laplacian and

the Riesz potential. We provide an explicit formula

for the unique solution and the numerical experi-

ments illustrate the efficiency.

Keywords Variational image regularization ·
Fractional Laplacian · Bilevel optimization ·
Machine learning

1 Introduction

In the last few years machine learning approaches

have been established in image processing and com-

puter vision. In contrast to this, variational reg-
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ularization methods are used in image processing

and computer vision since decades. Variational reg-

ularization techniques offer rigourous and compre-

hensible image analysis, which allows stable nu-

merical results and error estimates. The certainty

of giving explainable results is essential in a broad

field of applications. Machine learning methods, on

the other hand, are extremly powerful as they learn

directly from datas for a specific task. The weak

point of data-driven approaches is that they gener-

ally cannot offer stability or error bounds. In this

paper we want to combine machine learning and

variational regularization techniques. In particu-

lar, we learn optimal image regularizers and data

fidelity parameters via a bilevel optimization ap-

proach making use of a training set. One of the

central problems in image processing is denoising.

Total variation image denoising is done with the

so-called Rudin-Osher-Fatemi (ROF) model [15],

which seeks a minimizer u ∈ BV (Td)∩L2(Td) for

E(u) =
∣∣Du∣∣

Td +
α

2
‖g − u‖2.

The d-dimensional torus Td denotes the image do-

main, ‖·‖ is the norm in L2(Td,C), and α is a reg-

ularization parameter. The function g : Td → C
represents the given image, which typically con-

tains noise. A numerical difficulty of the ROF model

is the non-differentiability of the total variation

term. In the last years the use of differential opera-

tors, which involves fractional powers, were applied

on many different kinds of problems, for example

in [8]. In image denoising as an alternative to the

ROF model the total variation term is replaced

by the fractional Laplacian. Fractional Laplacian

denoising of an image is given by minimizing

E(u) =
1

2
‖(−∆)

s
2u‖2L2(Td;C) +

α

2
‖u− g‖2L2(Td;C).



The application of the fractional Laplacian in im-

age denoising has been done in [1]. The results of

this fractional model has a computing time, which

is a reduction by factors 10-100 in contrast to the

well-known ROF model. Also in [11] and [4] the

fractional Laplacian has been used in image de-

noising and got comparable results to the ROF

model. Independent of the concrete choice of the

model, the main issue in image regularization is

the choice of particular regularization parameters,

in our case the two parameters s and α. A well-

known approach to compute suitable parameters is

to define a bilevel optimization problem. A bilevel

approach regarding a TVp-image denoising model

is studied in [10]. But the authors point out, that

their scheme is numerically inefficient. To find the

optimal regularization parameters they discretize

the parameter interval and iterate over every grid

point. An alternative approach using the fractional

Laplacian is done in [2]. There the authors learn

the parameters via a so called Bilevel Optimization

Neural Network. But as a disadvantage, which is

typical for Neural Networks, no error estimates for

the solutions are available.

1.1 Contribution of this work

In this paper we obtain an image denoising model

using the fractional Laplacian, which is on the one

hand numerically fast to compute and on the other

hand analytically understandable. We prove rigor-

ous error estimates for the continous and the dis-

crete solution. We consider the case of supervised

learning. This means we are given noisy images

g and the corresponding noise-free image ud. For

simplicity we perform our model on a single pair

(g, ud), but for multiple image pairs the results are

a straightforward modification. The main idea of

our model is to learn the optimal parameters s and

α on training data. The bilevel optimization prob-

lem is defined via

min J(s, α, u) =
1

2
‖u− ud‖2 + ϕ(s, α)

s.t. (−∆)su+ αu = αg in Td

with (s, α) ∈W.

The properties and the role of the function ϕ will

be discussed later. A theoretical analysis of this

type of optimization problem in a more general

setting is found in [17]. In the second part of the

paper we apply fractional differential operators in

image decomposition. We consider a novel image

(a) (b) (c)

Fig. 1: Decomposition of the original image (left)

in structural component u (middle) and textural

component v (right)

decomposition model of the form

I(u, v) =
1

2
‖(−∆)

s1
2 u‖2+

α

2
‖u+ v − g‖2 +

β

2
‖R s2

2
(v)‖2.

Typically the structural component u contains

the main components of the image, which is repre-

sented by the lower frequencies. The textural com-

ponent v contains the finer details like edges or

high oscillations. These components are included

in the high frequencies of an image. Therefore we

introduce the Riesz potential, which captures the

high frequencies, as the inverse of the fractional

Laplacian. In Figure 1 we illustrate a decomposi-

tion into these components. This paper contains

two main results. First we derive a rigourous error

estimate for the bilevel problem in the case of spec-

tral approximation. The numerical realization is

easy to implement and in comparison to the ROF

model much faster. Second we introduce a new

image decomposition model, which has promising

results in simultaneous image denoising and de-

composition. To the best of our knowledge, this

is the first work using fractional models in image

decomposition. Moreover, we point out, that frac-

tional differential operators are applicable in case

of image denoising and decompositon. The use of

fractional diffential operators in other image pro-

cessing areas is a point of future research.

1.2 Overview

This paper is organized as follows: In Section 2 we

recall some facts about fractional Sobolev spaces

and spectral approximation. The use of the frac-

tional Laplacian in a bilevel image denoising ap-

proach is topic of Section 3. Afterwards in Section

4 a spectral approximation of this problem is in-

troduced. In Section 5 we discuss the numerical

experiments. An image decomposition approach is
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done in Section 6 with numerical experiments in

Section 7.

2 Fractional Sobolev spaces and spectral

approximation

In this paragraph we collect some well known re-

sults concering fractional Sobolev spaces and spec-

tral approximation. We follow [1].

2.1 Fractional Sobolev spaces

On the torus Td the Laplacian operator

−∆ : H2
0 (Td;C)→ L2

0(Td;C) is defined via

−∆u =
1

(2π)d

∑
k∈Zd\{0}

|k|2ûkϕk.

with the functions ϕk(x) = eik·x and ûk =

(u, ϕk)L2(Td;C). In this setting the Laplacian opera-

tor is unbounded, non-negativ, self-adjoint and bi-

jective. Therefore we can apply the theorem ”Op-

erators with compact inverses” ([7], Theorem II-

6.6). As a result we can characterize the domain

of the Laplacian as

D(−∆) = H2
0 (Td;C) =

{u ∈ L2
0(Td;C)

∣∣ ∑
k∈Zd\{0}

|k|4|ûk|2 <∞}.

Using this spectral decomposition we can define

the fractional Sobolev spaces with 0 ≤ s ≤ 1 as

Hs
0(Td;C) :={
u ∈ L2

0(Td;C)
∣∣ ∑
k∈Zd\{0}

|k|4s|ûk|2 <∞
}
.

The next theorem gives us analogous embeddings

as in the case of general Sobolev spaces.

Theorem 1 (Rellich’s theorem on Td) For all

0 ≤ s < s′ we have Hs′

0 (Td;C) ⊂ Hs
0(Td;C).

Moreover, the canonical embedding is compact.

Proof [7] Proposition II.6.8. ut

The fractional Sobolev spaces are the natural set-

ting to generalize the Laplacian operator on the

torus.

Definition 1 (Fractional Laplacian) For s > 0

we define the fractional Laplacian (−∆)s, applied

on u ∈ Hs
0(Td;C), as

(−∆)su =
1

(2π)d

∑
k∈Zd

|k|2sûkϕk. (1)

(a) (−∆)0ud = id ud (b) (−∆)
1
3 ud

(c) (−∆)
2
3 ud (d) (−∆)1ud = −∆ud

Fig. 2: Fractional Laplacian (1) of image ud. A

higher exponent s in (1) emphasizes stronger the

high oscillations.

The fractional Laplacian is a linear operator for

the argument u, but non-linear in the parameter s.

Moreover we can define fractional Sobolev spaces

for negative s. The domain D((−∆)s) of the frac-

tional Laplacian with s < 0 must fullfill the prop-

erty of being a super set from L2
0(Td;C); so we

modify the norm for negative s with

‖u‖2D((−∆)s) :=
∑

k∈Zd\{0}

|k|4s|ûk|2.

Definition 2 (Negative Sobolev spaces)

Let s < 0. We refer Ḣs(Td;C) as the negative

Sobolev spaces defined as the completition of L2
0(Td;C)

regarding the norm ‖·‖D((−∆)s).

It can be shown that Ḣs(Td;C) is a Hilbert space

with the scalar product

(u, v)Ḣs(Td;C) =
∑

k∈Zd\{0}

|k|2sûkv̂k.

We are now in a position to define the Riesz po-

tential, which is the negative analogue to the frac-

tional Laplacian.

Definition 3 (Riesz potential) For s ≤ 0 we

define the Riesz potential of a function

u ∈ Ḣs(Td;C) as the inverse of the fractional

Laplacian with

Rs(u) =
1

(2π)d

∑
k∈Zd\{0}

|k|2sûkϕk. (2)
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(a) original image ud (b) R−0.1(ud)

(c) R−0.5(ud) (d) R−0.9(ud)

Fig. 3: Riesz potential (2) of image ud. A lower

exponent s in (2) smooths the image ud.

2.2 Spectral approximation

For short summaries about spectral approxima-

tion, we refer to [1] and [16]. The space of trigono-

metric polynomials on the torus Td is defined via

Tn =
{
vn ∈ C(Td,C)∣∣ vn(x) =

∑
k∈Zd

n

ckϕ
k(x), ck ∈ C

}
,

with Zdn := {k ∈ Zd
∣∣−n

2 ≤ ki ≤ n
2 − 1 ∀i}. The

functions ϕk(x) = eik·x define an orthogonal basis

in Tn regarding the L2-scalar product.

With v we associate a grid function V = (vj | j ∈
Ndn), which is represented by

vj = v(xj) , xj =
2π

n
(j1, ..., jd),

j ∈ Ndn = { j ∈ Nd | 0 ≤ ji ≤ n− 1 ∀j}.

The discrete scalar product of two grid func-

tions V = (vj | j ∈ Ndn) and W = (wj | j ∈ Ndn) is

given by

(V,W)n :=
(2π)d

nd

∑
j∈Nd

n

vjw̄j .

The induced norm is denoted by ‖ · ‖n.

Definition 4 (Fourier transform) For a given

grid function V = (vj | j ∈ Ndn) the discrete

Fourier transform is defined as the coefficient vec-

tor Ṽ = (ṽk| k ∈ Zdn) with

ṽk = (V, Φk)n.

The family

Φk = (eik·xj | j ∈ Ndn) , xj =
2π

n
(j1, ..., jd)

defines an orthogonal basis in the space of grid

functions regarding (·, ·)n.

To approximate a function in the fractional

Sobolev space Hs
0(Td;C), we consider suitable ap-

proximation in the trigonometric space Tn.

Definition 5 (Orthogonal projection)

The projection Pn : L2(Td;C)→ Tn fulfills for all

v ∈ L2(Td;C) the property

(Pnv, wn) = (v, wn) ∀wn ∈ Tn.

Using the orthogonality of the basis functions we

get

Pnv =
∑
k∈Zd

n

v̂kϕ
k.

The discrete Fourier transformation allows us

to define a suitable trigonometric interpolation.

Definition 6 (Trigonometric interpolant) Given

v ∈ C(Td;C) and discrete Fourier coefficients Ṽ =

(ṽk | k ∈ Zdn), the trigonometric interpolant Inv ∈
Tn of v is defined via

Inv =
1

(2π)d

∑
k∈Zd

n

ṽkϕ
k.

The following error estimate can be found in [1].

The norm ‖·‖D((−∆)s) is denoted by | · |s.

Lemma 1 (Projection error) For γ1, γ2 ∈ R
with γ1 ≤ γ2 and v ∈ Hγ2

0 (Td;C) we obtain

|v − Pnv|γ1 ≤
(n

2

)−(γ2−γ1)

|v|γ2 .

Lemma 2 (Interpolation error) If γ2 >
d
2 , 0 ≤

γ1 ≤ γ2 and v ∈ Hγ2
0 (Td;C) we obtain

|v − Inv|γ1 ≤ cd,γ1,γ2
(n

2

)−(γ2−γ1)

|v|γ2

with a constant cd,γ1,γ2 > 0 independent of v and

n.
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(a) original image ud (b) noisy image g

(c) s = 0.4, α = 5 (d) s = 0.1, α = 1

Fig. 4: The denoising via solving (3) strongly de-

pend on the choice of the parameters s and α.

3 Application of fractional Laplacian in

bilevel image optimization

As mentioned in the introduction for a given noisy

image g ∈ L2(Td;C) we want to solve

min E(u) =
1

2
‖(−∆)

s
2u‖2 +

α

2
‖u− g‖2 (3)

with 0 < s < 1 and u ∈ Hs
0(Td;C) ∩ L2

0(Td;C).

The main idea of this model is to supress the high

frequencies, which typically contain noise. In the

following we always assume, that the mean value

of g is zero. Otherwise, we replace g with

g̃(x) := g(x)− 1∣∣Td∣∣
∫
Td

g(x) dx.

and add the mean value to the solution. As a result

we can minimize in the function space Hs
0(Td;C).

Existence and uniqueness of the solution u consid-

ered in the frequency space yields

u =
1

(2π)d

∑
k∈Zd\{0}

α

|k|2s + α
ĝkϕ

k. (4)

A key point in image denoising is the choice of

the parameters, in this case s and α. Normally

this is done manually, which is time-consuming. As

seen in Figure 4 the results of denoising an image

highly depends on the right choice of the regular-

ization parameters. To overcome this problem we

use a bilevel optimization approach. We assume,

that we have the original image ud ∈ L2(Td;C)

and the noisy image g. So we define the optimiza-

tion problem

min
s,α,u

J(s, α, u) =
1

2
‖u− ud‖2L2(Td;C) + ϕ(α, s)

s.t. (−∆)su+ αu = αg (5)

with (s, α) ∈W := [s0, s1]× [α0, α1].

The function ϕ must fulfill following assumptions.

Definition 7 The function ϕ ∈ C2(W o,R) is non

negative, convex and has following properties:

lim
s→s0

ϕ(s, α) = lim
α→α0

ϕ(s, α) =∞

= lim
s→s1

ϕ(s, α) = lim
α→α1

ϕ(s, α). (6)

Parsevals’s identity and the isometry properties

between L2(Td;C) and `2(Zd) imply the equiva-

lent representation of (5) with

J(s, α, u) =
1

2(2π)d
‖Û− Ûd‖2l2 + ϕ(α, s) (7)

s.t. ((α+ |k|2s)ûk − αĝk)k∈Zd\{0} = 0 (8)

with (s, α) ∈W := [s0, s1]× [α0, α1].

The expressions Û and Ûd denote the Fourier co-

efficient vector of u and ud. Solving (8) according

to ûk yields a solution operator S defined via

S : [s0, s1]× [α0, α1]→ `2(Zd)

(s, α) 7→ S(s, α) = Û =
( α

α+ |k|2s
ĝk
)
k∈Zd . (9)

To analyze the optimization problem (7)-(8), we

need to characterize the partial derivatives of the

solution operator S.

Theorem 2 The operator S as an operator from

W → L2(Td;C) ' `2(Zd) is twice Fréchet-differentiable

and in particular continous. For h1, h2 ∈ R the

partial derivatives up to order two are represented

by

∂sS(s, α)[h1] = h1∂sS(s, α),

∂2
sS(s, α)[h1, h2] = h1h2∂s2S(s, α),

∂αS(s, α)[h1] = h1∂αS(s, α),

∂2
αS(s, α)[h1, h2] = h1h2∂α2S(s, α),

∂α,sS(s, α)[h1, h2] = h1h2∂α,sS(s, α),
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with

∂sS(s, α) =
∑

k∈Zd\{0}

2α|k|2sln(|k|)
(|k|2s + α)2

ĝk,

∂2
sS(s, α) =

∑
k∈Zd\{0}

4α|k|2sln(|k|)2(|k|2s − α)

(α+ |k|2s)3
ĝk,

∂αS(s, α) =
∑

k∈Zd\{0}

|k|2s

(|k|2s + α)2
ĝk,

∂2
αS(s, α) =

∑
k∈Zd\{0}

−2|k|2s

(|k|2s + α)3
ĝk,

∂α,sS(s, α) =
∑

k∈Zd\{0}

−2|k|2sln(|k|)(|k|2s − α)

(|k|2s + α)3
ĝk.

Proof The proof requires straightforward calcula-

tions, but follows mainly the proof structure of

Section 3.1 in [3]. A more general case is also found

in [17]. In our case we focus on the function Ek :

[s0, s1]× [α0, α1]→ R for k ∈ Zd with

Ek(s, α) :=
α

α+ |k|2s
.

The remaining part of the proof is a straightfor-

ward modification of the cited paper. ut

Using the explicit representation of the partial deriva-

tives we obtain upper bounds for these.

Lemma 3 (Boundedness of partial

derivatives) Let ε > 0 and i = 1, 2, 3. Then we

have the following estimates for the partial deriva-

tives:

‖∂iαS(s, α)‖`2 ≤
∑

k∈Zd\{0}

i!

|k|2si
|ĝk|,

‖∂isS(s, α)‖`2 ≤
∑

k∈Zd\{0}

Mα1,i

εi|k|2s−iε
|ĝk|,

‖∂s,αS(s, α)‖`2 ≤
∑

k∈Zd\{0}

Mα1

ε|k|2s−ε
|ĝk|.

Proof We obtain these results by using Theorem 2

and straightforward calculations. ut

If g ∈ L2(Td;C) and ε > 0, we deduce from Lemma

3

∂isS(s, α) ∈ H2s−iε
0 (Td;C),

∂iαS(s, α) ∈ H2si
0 (Td;C)

for i = 1, 2, 3.

The introduction of the solution operator S allows

us to consider a reduced version of (7)-(8). The

reduced problem j : R2 7→ R of (7) and (8) is

given by minimizing

j(s, α) := J(s, α,S(s, α)) (10)

=
1

2(2π)d
‖S(s, α)− Ûd‖2`2 + ϕ(s, α)

with (s, α) ∈W.

As an optimal triple we denote a minimizer of

j(s, α) together with u = S(s, α).

Definition 8 (Optimal triple) The triple

(s̄, ᾱ,S(s̄, ᾱ)) ∈W o×H2s
0 (Td;C) is called optimal

for the problem (5) if

j(s̄, ᾱ) ≤ j(s, α)

for all (s, α,S(s, α)) ∈W o ×H2s
0 (Td;C).

The existence of an optimal triple can easily be

shown.

Theorem 3 (Existence of a solution) There

exists an optimal triple

(s̄, ᾱ,S(s̄, ᾱ)) ∈W o×H2s(Td;C) for problem (5).

Proof The proof follows [3].

Let W` = [s`1 , s`2 ] × [α`1 , α`2 ] be a sequence of

closed intervals with W` ⊂W`+1 ⊂W o and⋃
`∈N

W` = W . The continuity of j guarantees the

existence of

(s`, α`) = arg min
(s,α)∈W`

j(s, α).

Because of the construction of the intervals we

have

j(sm, αm) ≤ j(s`, α`)

for all m ≥ `.
As a result we get a convergent subsequence

{(s`, α`)}`∈N with (s`, α`)→ (s̄, ᾱ) ∈W .

The property

j(s̄, ᾱ) ≤ j(s`, α`) (11)

for all ` ∈ N and j(s, α) ≥ ϕ(s, α) together with

assumption (6) yields (s̄, ᾱ) ∈ W o and the mini-

mizer property.

Due the continuity and the closed range of S there

exists a ū in the image of S with

S(s`, α`)→ ū = (
α

α+ |k|2̄s
ĝk)k∈Zd\{0}

for `→∞.

Therefore we obtain S(s̄, ᾱ) ∈ H2s
0 (Td;C). ut
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The reduced problem is essentially a restricted op-

timization problem in R2, so we can easily provide

first order necessary and second order sufficient op-

timality conditions.

Theorem 4 (Optimality conditions)

Let (s̄, ᾱ,S(s̄, ᾱ)) be an optimal triple for problem

(5). For shorter notation we define ū := S(s̄, ᾱ).

Then the first order optimality conditions must be

valid, this implies

1

2(2π)d
(
(ū− Ûd, ∂sū)l2 + (∂sū, ū− Ûd)l2

)
+ ∂sϕ(s̄, ᾱ) = 0,

1

2(2π)d
(
(ū− Ûd, ∂αū)l2 + (∂αū, ū− Ûd)l2

)
+ ∂αϕ(s̄, ᾱ) = 0.

If there exists a pair (s̄, ᾱ) with ū = S(s̄, ᾱ), which

fulfills the first order optimality conditions and the

Hessian matrix A ∈ R2×2 is positive definit, i.e.

det

(
a1 1 a1 2

a2 1 a2 2

)
> 0,

then (s̄, ᾱ, ū) is an optimal triple for (5).

To get the uniqueness of the optimal tripel, we

need a stronger assumption on the function ϕ.

Definition 9 (Strong convexity, [6]) Let W be

a convex set. A two-times differentiable function

ϕ : W ⊂ Rn → R is strongly convex, if there exists

a constant θ > 0 with

∇2ϕ(x) � θI

for all x ∈ W , i.e. the matrix ∇2ϕ(x) − θI is
positive definit.

The definiton of strong convexity implies (cf.

[12])

(∇ϕ(x)−∇ϕ(y))T
(
x− y

)
≥ θ
∣∣x− y∣∣ (12)

for all x, y ∈W and

ϕ(x) ≥ ϕ(x̄) +
1

2
θ|(x− y)|2 ∀y ∈W. (13)

in the case∇ϕ(x̄) = 0 for a x̄ ∈W . In the following

we always assume, that the function ϕ is strongly

convex.

Lemma 4 If ‖g‖ and ‖ud‖ are suffienctly small,

then there exists a constant κ > 0, such that

∇2j(s, α) � κI (14)

for all (s, α) ∈W .

Proof Decompose the Hessian matrix A from (4)

in four parts with

xTAx = xTM1x+ xTM2x+ xTM3x+ xTM4x

for arbitrary x ∈ R2. The matrix M1

M1 =
1

2(2π)d

(
m1

11 m
1
12

m1
21 m

1
22

)
has the values

m1
11 = (S(s, α)− Ûd, ∂

2
sS(s, α))`2 ,

m1
12 = m1

21 = (S(s, α)− Ûd, ∂
2
s,αS(s, α))`2 ,

m1
22 = (S(s, α)− Ûd, ∂

2
αS(s, α))`2 .

The matrix M2 is defined analogously to M1, only

the arguments in the `2-scalar-product are inter-

changed. Therefore the following arguments for ma-

trix M1 are also valid for matrix M2. We obtain

xTM1x = m1
11x

2
1 + 2m1

12m
1
21x1x2 +m1

22x
2
2

≥ m1
11x

2
1 − 2|m1

12||m1
21||x1x2|+m1

22x
2
2

for arbitrary x ∈ R2. The Cauchy-Schwarz and

Young inequality imply

xTM1x ≥ (−|m1
11| − |m1

12||m1
21|)x2

1

+ (−|m1
22| − |m1

12||m1
21|)x2

2.

Together with Lemma 3 we have

|m1
ij | ≤

Cij
s0

(‖g‖+ ‖ud‖)‖g‖.

The matrix M3 is the Gramian matrix between

the vectors ∂sS(s, α) and ∂αS(s, α), which implies

xTM2x ≥ 0 for all x ∈ R2.

The strong convexity of the function ϕ yields for

the matrix M4, which is defined as

M4 =

(
∂2
sϕ(s, α) ∂2

s,αϕ(s, α)

∂2
s,αϕ(s, α) ∂2

αϕ(s, α)

)
,

the result

xTM4x ≥ θ|x|2.

Combining all arguments we obtain

xTAx ≥ −C(‖ud‖, ‖g‖,
1

s0
)|x|2 + θ|x|2.

Therefore we have for suffienctly small ‖ud‖ and

‖g‖, that the constant C(‖ud‖, ‖g‖, 1
s0

) is smaller

than θ. This implies the positiv definitness of the

matrix A. ut
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If the prerequisites of Lemma 4 are fulfilled, we

obtain for an optimal triple (s̄, ᾱ,S(s̄, ᾱ))

(∇j(s, α)−∇j(s̄, ᾱ))T
((s

α

)
−
(
s̄

ᾱ

))
≥ κ

∣∣∣(s
α

)
−
(
s̄

ᾱ

)∣∣∣2
and

j(s, α) ≥ j(s̄, ᾱ) +
κ

2

∣∣∣( s̄
ᾱ

)
−
(
s

α

)∣∣∣2
for all (s, α) ∈W . The quadratic growth conditon

implies the uniqueness of the optimal triple.

4 Spectral approximation and convergence

analysis

For given gn ∈ Tn we have the discrete problem

(−∆)sun + αun = αgn in Tn.

Define the discrete solution operator Sn via

Sn : [s0, s1]× [α0, α1]→ Tn,

(s, α) 7→ (
α

α+ |k|2s
ĝn,k)k∈Zd

n
.

The following Lipschitz continuity holds.

Lemma 5 (Stability) Let u = S(s, α) be the

continous and un = Sn(s, α) the discrete solution

for (s, α) ∈ W . Then we have the following error

estimate between these both solutions

|u− un|s ≤ α|Ĝ− Ĝn|−s.

Proof We have

|u− un|2s = ‖(−∆)
s
2 (u− un)‖2`2

= ((−∆)s(u− un),u− un)`2

= (αĜ− αu− αĝn + αun,u− un)`2

=α(Ĝ− Ĝn,u− un)`2−α(u− un,u− un)`2

⇐⇒ |u−un|2s+α|u−un|20 = α(Ĝ−Ĝn,u−un)`2 .

For s, r ∈ R with s ≤ r we have the estimate

|V̂|s ≤ |V̂|r (15)

and therefore

|u− un|2s + α|u− un|20 ≤ (1 + α)|u− un|2s
≤ (1 + α)α|Ĝ− Ĝn|−s|u− un|s,

which implies the assertion. ut

The discrete solution operator Sn allows us to de-

fine an approximation for the optimization prob-

lem j.

Definition 10 The discrete optimization problem

jn with n ∈ N is defined as

min
(s,α)∈W

jn(s, α) (16)

=
1

2(2π)d
‖Sn(s, α)− Û

n

d‖2l2 + ϕ(s, α),

with Û
n

d is a suitable approximation of Ûd in the

space Tn.

The associated unique optimal triple for the prob-

lem (16) is denoted by (s̄n, ᾱn,Sn(s̄n, ᾱn)).

Theorem 5 (Convergence of the projection)

Let g, gn ∈ Hs2
0 (Td;C) be and ud, u

n
d ∈ H

s3
0 (Td;C)

with s2, s3 > 0 for the continous and discrete opti-

mization problem (18) respectively (16). The func-

tions gn, u
n
d are defined as the projections of g and

ud in Tn.

If ‖g‖ and ‖ud‖ are sufficient small, then there ex-

ists a constant κ > 0, such that the Hessian matrix

∇2j(s, α) � κI (17)

for all (s, α) ∈W .

The associated optimal triples are denoted by

(s̄, ᾱ, ū = S(s̄, ᾱ)) respectively

(s̄n, ᾱn, ūn = Sn(s̄n, ᾱn)).

Then we obtain the following error estimate be-

tween the discrete solution (s̄n, ᾱn) and the con-

tinuous solution (s̄, ᾱ)∣∣∣( s̄n
ᾱn

)
−
(
s̄

ᾱ

)∣∣∣ ≤ C(s0, α1)

κ
(
n

2
)−ω max{|g|ω, |ud|ω},

with ω := min{s2, s3}.

Proof The strong convexity of j and

∇j(s̄, ᾱ) = ∇jn(s̄n, ᾱn) = 0 imply

κ
∣∣∣( s̄n
ᾱn

)
−
(
s̄

ᾱ

)∣∣∣2
≤ (∇j(s̄n, ᾱn)−∇j(s̄, ᾱ))T (

(
s̄n
ᾱn

)
−
(
s̄

ᾱ

)
)

= (∇j(s̄n, ᾱn)−∇jn(s̄n, ᾱn))T (

(
s̄n
ᾱn

)
−
(
s̄

ᾱ

)
).

As a result we obtain

κ
∣∣∣( s̄n
ᾱn

)
−
(
s̄

ᾱ

)∣∣∣ ≤ |∂sj(s̄n, ᾱn)− ∂sjn(s̄n, ᾱn)|

+ |∂αj(s̄n, ᾱn)− ∂αjn(s̄n, ᾱn)|.
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In the following we denote S(s̄n, ᾱn) as u̇. For the

partial derivatives with respect to variable s we

have

|∂sj(s̄n, ᾱn)− ∂sjn(s̄n, ᾱn)|

=
1

2(2π)d

∣∣∣∣(u̇− Ûd, ∂su̇)l2 − (ūn − Ûd, ∂sūn)`2

+ (u̇, u̇− Ûd)`2 − (∂sūn, ūn − Ûd)`2

∣∣∣∣.
Because of the anti-symmetry of the `2-scalar prod-

uct we only consider the first two summands. We

have∣∣∣∣(u̇− Ûd, ∂su̇)`2 − (ūn − Û
n

d , ∂sūn)`2

∣∣∣∣ ≤∣∣∣∣(u̇− Ûd, ∂su̇)`2 − (ūn − Û
n

d , ∂su̇)`2

∣∣∣∣+∣∣∣∣(ūn − Û
n

d , ∂su̇)`2 − (ūn − Û
n

d , ∂sūn)`2

∣∣∣∣ =: A+B.

For the summands A and B we obtain

A ≤ ‖u̇− ūn‖`2‖∂su̇‖`2 + ‖Ûd − Û
n

d‖l2‖∂su̇‖`2

and

B ≤ ‖∂su̇− ∂sūn‖`2‖ūn‖`2+

‖Û
n

d‖`2‖∂su̇− ∂sūn‖`2 .

The terms ‖∂su̇‖`2 , ‖ūn‖`2 and ‖Û
n

d‖`2 in sum-

mands A and B are bounded with a constant C

independent from n. The constant C only depends

on s0, α1 and ‖Ĝ‖`2 .

Moreover, we have with Lemma 5 and estimate

(15)

‖u̇− ūn‖`2 ≤ ᾱn‖Ĝ− Ĝn‖`2 .

Lemma 3 implies

‖∂su̇− ∂sūn‖`2‖ūn‖`2

≤ C(s0,Mα1,1, ‖g‖)‖Ĝ− Ĝn‖`2 .

Lemma 1 and estimate (15) yield

|∂sj(s̄n, ᾱn)− ∂sjn(s̄n, ᾱn)|

≤ C(s0, α1)(
n

2
)−ω max{|g|ω, |ud|ω}.

with ω = min{s2, s3}. An analogous argumenta-

tion for |∂αj(s̄n, ᾱn)− ∂αjn(s̄n, ᾱn)| has as result

|∂αj(s̄n, ᾱn)− ∂αjn(s̄n, ᾱn)|

≤ C̃(
n

2
)−ω max{|g|ω, |ud|ω},

with C̃ > 0 not depends on s0, α1. ut

In the case of the Fourier interpolation we can

prove a similar result, but we need stronger as-

sumptions.

Theorem 6 (Convergence of the interpola-

tion)

Let g, gn ∈ Hs2
0 (Td;C) and ud, u

n
d ∈ Hs3

0 (Td;C)

with ω := min{s2, s3} > d
2 be given for the con-

tinous and discrete optimization problem (18) re-

spectively (16). The discrete functions gn, u
n
d are

defined as the Fourier interpolation of the func-

tions. If ‖g‖ and ‖ud‖ are sufficient small, then

there exists a constant κ > 0, such that the Hes-

sian matrix

∇2j(s, α) � κI

for all (s, α) ∈W . The associated optimal triple we

denote by (s̄, ᾱ,S(s̄, ᾱ)) and (s̄n, ᾱn,Sn(s̄n, ᾱn)).

Then we have following error estimate between the

discrete solution (s̄n, ᾱn) and the continous solu-

tion (s̄, ᾱ)∣∣∣( s̄n
ᾱn

)
−
(
s̄

ᾱ

)∣∣∣
≤ C(s0, α1, d, ω)

κ
(
n

2
)−ω max{|g|ω, |ud|ω}.

Proof The proof is analogous to Theorem 5 using

Lemma 2. ut

5 Numerical Experiments

For our numerical experiments we consider the fol-

lowing specific problem

min jn(s, α) := Jn(s, α,Sn(s, α)) (18)

=
1

2(2π)d
‖Sn(s, α)− Ûd,n‖2`2 + 5 · 10−5ϕ1(s, α)

with (s, α) ∈ [0, 0.5]× [0, 250] and

ϕ1(s, α) =
1

s(0.5− s)
+

1

α(250− α)
.

We denote Ûd,n as the interpolated Fourier coeffic-

cients of ud up to order n. The Fourier coefficents

of g are defined analogously. Motivated on embed-

ding arguments in [1], we choose for the parameter

s values between 0 and 1
2 . The existence interval for

the parameter α is choosen empirically. A suitable

choice of the scaling factor for the function ϕ1 is

an important aspect of the optimization problem.

If the scaling factor is too large, then the optimiza-

tion problem is dominated by the function ϕ1. As

a consequence, it is mainly optimized with respect

9



Fig. 5: Energy functional jn with function ϕ1 and

different choices for s and α.

to the function ϕ and not after the denoising pa-

rameters s and α. If the scaling factor is too small,

then the convergence properties get worse because

of the small influence of the strong convexity con-

stant of the function ϕ. In numerical experiments

we observe that the runtime of the optimization

problem depends on the scaling factor; it increases

for a small scaling factor.

We solve the restricted optimization problem in

MATLAB using an SQP-solver, applied on

min
s,α

jn(s, α)

s.t. h(s, α) ≤ 0

with h : R2 → R4 and

h(s, α) =


−s

s− 0.5

−α
α− 250

 .

Let hi for i = 1, 2, 3, 4 denote the components of

the function h. The SQP-problem is the quadratic

approximation of the associated Lagrange function

L(s, α, λ) = jn(s, α) +

4∑
i=1

λihi(s, α)

with

min
d∈R2

1

2
dTHkd+∇jn(sk, αk)T d

s.t ∇hi(sk, αk)T d+ hi(sk, αk) ≤ 0 i = 1, ..., 4.

The matrix Hk is a positive definit approximation

of the Hessian matrix from the Lagrange function

L(s, α, λ). The solution dk of the quadratic pro-

gram gives us for a suitable step size βk(
sk+1

αk+1

)
=

(
sk
αk

)
+ βkdk.

(a) original image ud (b) image g; SSIM: 0.215

(c) image u with s̄ =
0.471, ᾱ = 45.38; SSIM:
0.512

Fig. 6: Results for the image ”boat”. As clearly

seen, the model eliminates the fog based on the

normally distributed noise.

Using the fact that

∇2
s,αL(s, α, λ) = ∇2jn(s, α)

we can argue that the approximation of the Hes-

sian matrix ∇2j(s, α) is positiv definit using the

argumentation structure as in the proof of Lemma

4. This implies the well-posedness of the SQP-

method. For details of this algorithm we refer to

the official documentation of the software library

MATLAB.

For our numerical examples we obtain our noisy

images g from ud, where the additve noise is nor-

mally distributed with mean zero and standard

deviation 0.15. For the obtained results, we mea-

sure the quality of reconstructions using metrics

such as the peak signal-to-noise ratio (PSNR) and

structural-similarity-index (SSIM). In Figures 6

and 7 we illustrate the optimal solution ū of the

discrete optimization problem (18) for two test im-

ages. As expected our model correlates with the

standard deviation σ as seen in Figures 9 and 8.

A higher noise implies that the denoised image ū

has a higher deviation from the noisy image g and

a stronger smoothing.

Furthermore, we compare our model with the

ROF model [15], which consists in minimizing

E(u) =
∣∣Du∣∣

Td +
α

2
‖g − u‖2. (19)
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(a) original image ud
(b) noisy image g; SSIM:
0.174

(c) image u with s̄ =
0.475, ᾱ = 48.93; SSIM:
0.495

Fig. 7: In the image ”peppers” is a significant re-

duction of noise while maintaining the edges.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

σ

s̄

Fig. 8: We study the influence of the noise on the

parameter s. The numerical results coincide with

theoretical considerations that more noise implies

a stronger smoothing of the image, i.e a higher

value of the parameter s.

for given g ∈ L2(Td,R). It can be shown, that for

α > 0 exists a unique minimizer u ∈ BV (Td) ∩
L2(Td;R).

The minimization of the ROF model is done with

a gradient flow. The variatonal derivation of total

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

250

σ

ᾱ

Fig. 9: Also in the case of the parameter α the

numerical results coincide with theoretical consid-

erations. A higher noise has the result, that the

denoised image is more far away from the noisy

image, i.e a higher value of the parameter α.

variation

∇|Du
∣∣
Td = div (

∇u
|∇u|

).

is not differentiable in 0, so we substitute |∇u(x)|
with

√
ε2 + |∇u(x)|2 and ε = 0.004.

For the numerical implementation and test images

we refer to [14]. In the ROF model we test 20 dif-

ferent values for the parameter α, all in the range

of [10−6, 0.2] with equidistant distance. Afterwards

we choose the parameter α, such that we have the

highest peak signal-to-noise-ratio in comparison to

the reference image ud.

(a) Fractional-Laplacian-
model; SSIM: 0.513

(b) ROF-model; SSIM:
0.735

Fig. 10: In comparison to the fractional Laplacian

model has the ROF model smoother edges. More-

over the ROF model has a better SSIM-value.

As in [9] mentioned, the space of bounded vari-

ation BV (Td) is insufficient to describe all natural
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Pixels Fractional
Laplacian

Regularized
ROF

128 0.38s 6.34s
256 1.23 s 22.28 s
512 5.9 s 96.26 s
1024 25.25 s 433.59 s
2048 102.1 s 2273.59 s

Fig. 11: Runtime comparison between the frac-

tional Laplacian model and the ROF model. Both

model show empirically a linear runtime, but the

fractional Laplacian model has a reduced com-

puting time by factors 16-22. We used MATLAB

R2015a with CPU i3-3240 and 8 GB RAM.

0 3 · 10−2 7 · 10−2 0.11 0.15
20

25

30

35

40

σ

P
S
N
R

ROF baboon

Laplacian baboon

ROF boat

Laplacian boat

Fig. 12: The discrepancy of PSNR depends on the

choice of the image.

images. Therefore, we look at the image ”Baboon”

as a counterexample. Figure 14 shows a part of the
coat structure. A comparison between the ROF

model and the Laplacian model regarding differ-

ent noise levels shows that the performance of both

models highly depends on the choice of the image.

But we point out, that our model has a worse per-

formance in comparison of the ROF model, as we

see in Figures 12 and 13. We compare the runtime

of the fractional Laplacian and the ROF model

in Figure 11. Our model has a significantly lower

runtime with a reduction factor of 16 to 22 in time.

6 Fractional operators in image

decomposition

In the following we derive a novel approach to de-

compose an image using fractional differential op-

erators. Based on the idea to decompose an image

0 3 · 10−2 7 · 10−2 0.11 0.15
0.5

0.6

0.8

1

σ

S
S
I
M

ROF baboon

Laplacian baboon

ROF boat

Laplacian boat

Fig. 13: Also for the SSIM-value the discrepancy

depends on the choice of the image.

(a) original image ud (b) noisy image g

(c) Fractional-Laplacian-
model; SSIM: 0.552

(d) ROF-model; SSIM:
0.604

Fig. 14: Detail of the image ”Baboon”. The results

are comparable.

in a high and low frequency part we consider the

functional

I(u, v) =
1

2
‖(−∆)

s1
2 u‖2 +

α

2
‖u+ v − g‖2+

β

2
‖R s2

2
(v)‖2 (20)

with s1 ≥ 0 and s2 ≤ 0.

6.1 Existence of a solution and solution operators

The following theorem is the main result of this

section.
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Theorem 7 For g ∈ L2(Td;C) we define

g̃ = g − 1

|Td|

∫
Td

g dx.

Then exist ũ ∈ Hs1
0 (Td;C) and v ∈ Ḣs2(Td;C) ∩

L2
0(Td;C), such that the solution pair (ũ, v) mini-

mizes (20). Moreover, the solutions u := ũ+
1
|Td|

∫
Td g and v fulfill the identity∫
Td

(u(x)− g(x)) dx =

∫
Td

v(x) dx = 0.

Furthermore, the solution pair (u, v) is unique.

Proof Since I is bounded from below, there exists

an infimum sequence (un, vn) with

‖(−∆)
s1
2 un‖2 ≤ C,

‖un + vn − g‖2 ≤ C,
‖R s2

2
(vn)‖2 ≤ C.

The constant C > 0 is independent of n.

The fact ‖un‖2 ≤ ‖(−∆)
s1
2 un‖2 ≤ C yields the

uniform boundedness of un in L2(Td;C) and there-

fore also the uniform boundedness of vn in

L2(Td;C). As a matter of fact, we have

un ⇀ ũ in Hs1
0 (Td;C),

vn ⇀ ṽ in L2(Td;C),

vn ⇀ v in Ḣs2(Td).

Using the test function w ≡ 1 and the weak L2-

convergence, we obtain∫
Td

ṽ(x) dx = (ṽ, w) =

lim
n→∞

(vn, w) =

∫
Td

vn(x) dx = 0.

The fact ṽ ∈ Ḣs2(Td;C) allows us to identify v

with ṽ. Rellich’s theorem (Theorem 1) implies the

strong convergence of a subsequence with un →
ũ ∈ L2

0(Td;C).

The weak lower semicontinuity of I yields

I(ũ, v) ≤ lim inf
n→∞

I(un, vn) = inf
w,z

I(w, z),

which implies the existence of a solution. To prove

the uniqueness of the solution, we use the isome-

try property between L2(Td;C) and `2(Zd). With

ĝ0 = û0 we obtain

I(Û, V̂) =
∑

k∈Zd\{0}

1

2
|k|2s1 |ûk|2

+
α

2
|ûk + v̂k − ĝk|2 +

β

2
|k|2s2 |v̂k|2.

Because of the uniqueness of Fourier coefficients

we can differentiate for arbitrary k ∈ Zd \ {0} re-

garding v̂k and ûk. In the minimum of I(Û , V̂ ) we

get

0 = α(ûk + v̂k − ĝk) + β|k|2s2 v̂k, (21)

0 = |k|2s1 ûk + α(ûk + v̂k − ĝk). (22)

for arbitrary k ∈ Zd \ {0}. Combining (22) and

(21) imply

ûk =
β|k|2s2
|k|2s1

v̂k for k ∈ Zd \ {0}. (23)

Substituting (23) in (21), we obtain

α(
β|k|2s2
|k|2s1

v̂k + v̂k − ĝk) + β|k|2s2 v̂k = 0

⇔ v̂k =
αĝk

αβ|k|2(s2−s1) + α+ β|k|2s2
,

which implies uniquness. ut

Definition 11 Let Y := [s0, s3]×[α0, α1]×[s4, s5]

× [β0, β1] with s3 > s0 ≥ 0 and −1 ≤ s4 < s5 ≤ 0.

Define the solution operators S1,S2 : Y → `2(Zd)
as

S1(s1, α, s2, β) =[
αβ|k|2(s2−s1)ĝk

αβ|k|2(s2−s1) + α+ β|k|2s2

]
k∈Zd\{0}

(24)

and

S2(s1, α, s2, β) =[
αĝk

αβ|k|2(s2−s1) + α+ β|k|2s2

]
k∈Zd\{0}

. (25)

6.2 Relation to other image models

In the following we study the behavior in the limit-

ing case when the regularization parameters α and

β tend to infinity.

Lemma 6 Let β > 0 be and g ∈ L2
0(Td;C). With

αn we denote an increasing, positive sequence, such

that lim
n→

αn =∞. The pair (uαn
, vαn

) is the unique

minimum (20) for the specific αn.

The sequence (uαn
, vαn

) is bounded and a subse-

quence converges weakly to (u0, g− u0), with u0 is

the unique minimizer of

I(u) :=
1

2
‖(−∆)

s1
2 u‖2 +

β

2
‖R s2

2
(u− g)‖2. (26)
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Proof The proof follows [5]. The existence of a so-

lution (uαn
, vαn

) for the specific αn follows from

(7). Moreover, we have

I(uαn
, vαn

) ≤ I(0, g) =
β

2
‖R s2

2
(g)‖2,

which implies the boundedness of the sequence

(uαn
, vαn

) independent of n ∈ N. Furthermore,

this implies the weak convergence of a subsequence

to u0 in Hs1
0 (Td;C) respectivly v0 in Ḣs2(Td;C)∩

L2
0(Td;C). The estimate

‖un + vn − g‖2 ≤
β

2αn
‖R s2

2
(g)‖2

for all n ∈ N guarantees

‖u0 + v0 − g‖2 = 0,

u0(x) + v0(x) = g(x) a. e.

in the limiting case n → ∞. For arbitrary u ∈
Hs1

0 (Td;C) we have

1

2
‖(−∆)

s1
2 u‖2 +

αn
2
‖u+ (g − u)− g‖2

+
β

2
‖R s2

2
(u− g)‖2

≥ 1

2
‖(−∆)

s1
2 uαn‖2 +

αn
2
‖uαn + vαn − g‖2

+
β

2
‖R s2

2
(vαn)‖2

≥ 1

2
‖(−∆)

s1
2 uαn

‖2 +
β

2
‖R s2

2
(vαn

)‖2

for all n ∈ N. The weak lower semicontinuity of

the functional yields

1

2
‖(−∆)

s1
2 u0‖2 +

β

2
‖R s2

2
(g − u0)‖2

≤ lim inf
n→∞

1

2
‖(−∆)

s1
2 uαn

‖2 +
β

2
‖R s2

2
(vαn

)‖2.

From this we conclude that (u0, g − u0) is the

unique minimizer of (26). ut

We can prove a similiar result in the limiting case

when β tends to infinity.

Lemma 7 Let g ∈ L2(Td;C) be and α > 0. With

βn we denote an increasing, positive sequence, such

that lim
n→

βn = ∞. The pair is the unique mini-

mum (uβn
, vβn

) for this specific βn. The sequence

(uβn , vβn) is bounded and a subsequence converges

weakly to (u0, 0), with u0 is minimizer of (3).

(a) u with α = 0.001 (b) v with α = 0.001

(c) u with α = 1000 (d) v with α = 1000

Fig. 15: Image components with fixed s1 =

0.2, s2 = −1, β = 1 and different choices for pa-

rameter α for the noise-free image. The choice of

the parameter α has a strong impact on the de-

composition.

Proof Without loss of generality we assume, that∫
Td g(x) dx = 0. The existence of a solution

(uβn , vβn) follows directly from (7). This yields

I(uβn , vβn) ≤ I(0, 0) =
α

2
‖g‖2

for all n ∈ N. As a consequence we have the bound-

edness of the sequence (uβn , vβn), which implies
the existence of weakly convergent subsequences to

u0 in Hs1
0 (Td;C) respectively v0 in Ḣs2(Td;C) ∩

L2
0(Td;C). We obtain

‖R s2
2

(vβn)‖2 ≤ α

2βn
‖g‖2 = I(0, 0) → 0

for n→∞ and therefore

vβn
→ 0 = v in Ḣs2(Td;C),

i.e. lim
n→∞

∑
k∈Zd\{0}

|k|2s2 |v̂βn,k|2 = 0.

To prove the weak convergence of vβn to 0 in

L2
0(Td;C), we choose an arbitrary function w ∈

L2
0(Td;C).

The function Rs2(w) = 1
(2π)d

∑
k∈Zd\{0}

|k|2s2ŵkϕk

as an element in L2
0(Td;C) is well-defined and we

14



obtain in the limiting case n→∞

(v0, Rs2(w))L2
0(Td;C) ← (vβn

, Rs2(w))L2
0(Td;C)

=
1

(2π)d

∑
k∈Zd\{0}

|k|2s2 v̂βn,kŵk

=
1

(2π)d
(vβn

, w)Ḣs2 (Td;C) → 0

and therefore v0 ⇀ 0 in L2
0(Td;C).

Using the minimizer property of the sequence

(uβn
, vβn

) we have for arbitrary u ∈ Hs1
0 (Td;C)

1

2
‖(−∆)

s1
2 u‖2 +

α

2
‖u− g‖2 =

1

2
‖(−∆)

s1
2 u‖2

+
α

2
‖u+ 0− g‖2 +

βn
2
‖R s2

2
(0)‖2

≥ 1

2
‖(−∆)

s1
2 uβn‖2 +

α

2
‖uβn + vβn − g‖2

+
βn
2
‖R s2

2
(vβn

)‖2

for all n ∈ N.

Because of the weak lower semicontinuity we get

1

2
‖(−∆)

s1
2 u0‖2 +

α

2
‖u0 − g‖2

≤ lim inf
n→∞

1

2
‖(−∆)

s1
2 uβn

‖2 +
α

2
‖uβn

+ vβn
− g‖2

+
βn
2
‖R s2

2
(vβn

)‖2.

This shows that u0 is minimizer of (3). ut

7 Image decomposition and numerical

experiments

We first show an error estimate between the conti-

nous and discrete solution for fixed, but arbitrary

parameters.

Lemma 8 Let s1, α, s2, β be fixed, but arbitrarily

chosen. The associated pair (u = S1(s1, α, s2, β),

v = S2(s1, α, s2, β) is a minimizer of (20). The

pair (un = S1,n(s1, α, s2, β), vn = S2,n(s1, α, s2, β))

is the solution of the associated discrete problem in

the trigonometric space Tn.

Then we obtain the error estimate

|u− un|2s1 + β|vn − v|2s2 +
α

2
‖un + vn − u− v‖2`2

≤ α

2
‖Ĝ− Ĝn‖2`2 .

Proof The solution pair (u,v) fulfills the Euler-

Lagrange equation

(−∆)s1u + α(u + v− Ĝ) = 0 in `2(Zd)
and

α(u + v− Ĝ) + βRs2(v) = 0 in `2(Zd).

We obtain an analogous Euler-Lagrange equation

for the solution pair (un,vn). We have

|u− un|s1 =

− α(un + vn − ĝn − u− v + Ĝ,un − u)`2

and

β|vn − v|s2 =

− α(un + vn − Ĝn − u− v + Ĝ,vn − v)`2 .

Using the Cauchy-Schwarz and Young

inequality yields

|u− un|s1 + β|vn − v|s2 =

α(−un − vn + Ĝn + u + v− Ĝ,un + vn − u− v)`2

= −α‖un + vn − u− v‖2`2+

α(Ĝn − Ĝ,un + vn − u− v)`2

≤ −α
2
‖un + vn − u− v‖2`2 +

α

2
‖Ĝ− Ĝn‖2`2 .

This implies the assertion. ut

7.1 Numerical experiments

For the numerical experiments we consider the op-

timization problem

jn(s1, α, s2, β) =
1

2
‖S1,n(s1, α, s2, β)− Û

n

d‖2l2

+ ϕ(s1, α, s2, β) (27)

s.t. (s1, α, s2, β) ∈W.

with the discrete solution operator S1,n. For the

convex set W we choose

[0, 0.5]× [0.01, 104]× [−1, 0]× [0, 105]

and as the strong convex function ϕ

ϕ(s1, α, s2, β) =

1

s1(0.5− s1)
+

1

(α− 0.01)(104 − α)

+
1

−s2(s2 + 1)
+

1

β(105 − β)
.

The scaling factor of the function ϕ is 3 · 10−7.

The noise is normal distributed with mean value

µ = 0 and standard deviation σ = 0.15. In all

numerical experiments we see a better reconstruc-

tion of the original image in comparison to the

fractional model (18), see for example Figure 16.
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(a) noisy image g (b) Fractional-Laplacian
model (18); SSIM: 0.356

(c) component u of (27);
SSIM: 0.581

(d) component v of (27)

Fig. 16: Decompositon of the image ”kentaur” with

optimal parameters s̄1 = 0.172, ᾱ = 9999.7, s̄2 =

−0.926 and β̄ = 10410. We see a significantly im-

provement of the SSIM-value.

7.2 Comparison with OSV model

To compare our model we choose a modification of

the ROF model, as shown in [13].

There the L2-norm is replaced by the weaker H−1-

norm, such that finer details are better

reconstructed. Therefore, we assume that g − u =

div(v) with v ∈ L2(Td;C)
2
. This yields a unique

hodge-decomposition

v = ∇P + Q

with P ∈ H1(Td) and a divergence-free vector field

Q. Using g − u = div(v) = ∆P we have P =

∆−1(g−u). Combining all arguments has as result

the convex minimization problem

inf
u
E(u) =

∫
Td

|∇u|+ α

∫
Td

|∇(∆−1(g − u))|2.

(28)

which has a solution.

For the numerical implementation we refer to [14].

In Figure 17 and 18 we compare the Riesz model

(27) and the OSV model (28). The Riesz model

can separate the textural component v much bet-

ter than the OSV model.

(a) component u of (28);
SSIM: 0.798

(b) component g − u of
(28)

(c) component u of (27);
SSIM: 0.716

(d) component v of (27)

Fig. 17: Detail of the image ”pepper” (σ = 0.1).

The model (28) can not sufficiently distinguish be-

tween noise and component v.

(a) component u of (28);
SSIM: 0.553

(b) component g − u of
(28)

(c) component u of (27);
SSIM: 0.691

(d) component v of (27)

Fig. 18: Detail of the image ”Baboon” (σ = 0.1).

8 Conclusion and outlook

In this work we illustrated the possibilities of frac-

tional differential operators in image regulariza-

tion and decomposition. Working with the Fourier

transform we can easily define solution operators.

In the case of image regularization the analysis of

the solution operator S allows us to define and

analyse a bilevel optimization problem to deter-
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mine the optimal values for the parameter s and

α. In contrast to Deep Learning approaches we

obtain error estimates and are able to derive an

analytical understanding of the problem. The the-

oretical considerations correlate with the numer-

ical experiments. As an advantage in comparison

to the ROF model we can automatically determine

the optimal parameters, but we have slightly worse

SSIM-values. We point out, that our model has a

lower runtime. An open question for further in-

vestigations is the choice of a suitable metric to

compare the denoised image u and the original

image ud. The L2-norm only considers the abso-

lut difference between two images and no struc-

tural similarity between them. In the case of im-

age decomposition we introduced a new functional.

We proved existence and uniqueness of the solu-

tion regarding this model. Moreover, our model

can approximate other image decompositon mod-

els in the limiting case when α or β tends to infin-

ity. The numerical experiments show better results

than the fractional Laplacian model. The compari-

son with the OSV model yields comparable results.

Furthermore, we point out, that our model can re-

construct the image component v better than the

OSV model. The extension to color images is a

point of future research. An experimental setup in

case of fractional image denoising indicates that

the use of quaternionic Fourier transform seems to

be the right choice.

References

1. Antil, H., Bartels, S.: Spectral approximation of
fractional PDEs in image processing and phase field
modeling. Comput. Methods Appl. Math. 17(4),
661–678 (2017). DOI 10.1515/cmam-2017-0039.
URL https://doi.org/10.1515/cmam-2017-0039

2. Antil, H., Khatri, R., et al.: Bilevel optimization,
deep learning and fractional laplacian regularization
with applications in tomography. arXiv preprint
arXiv:1907.09605 (2019)
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